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The conference was organized by H. Cohen (Talence) H.W. Lenstra (Leiden) and D.
Zagier (Bonn, Utrecht).

The goal was to present new methods and results on concrete aspects of number theory.
In many cases this included computational and experimental work, but with the primary
emphasis being on the implications for number theory rather than on the computational
methods used.

A ‘mini-series’ of three 1-hour lectures was given by Manjul Bhargava about the parametri-
sation of algebraic structures. Two 1-hour lectures were given by Yuri Bilu about the work
of Preda Mihailescu on the Catalan equation.

Some of the other main themes included:

• rational points on curves and higher dimensional varieties
• class number formulas, Stark’s conjecture, algebraic K-theory
• analytic algebraic number theory
• Diophantine equations

As always in Oberwolfach, the atmosphere was ideal for exchanging ideas and conducting
lively discussions.
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Abstracts

Construction of irreducible polynomials over prime finite field of large
characteristic

Bill Allombert

Given a prime number p and an integer n, we want to compute an irreducible polynomial
of degree n over Fp.

The first deterministic polynomial time algorithm (under the Extended Riemann Hy-
pothesis) solving this question was given in 1986 by Adleman and Lenstra, using polyno-
mials defining subextensions of cyclotomic fields.

We present a modification of this algorithm that computes the defining polynomial over
Q` for some well-chosen prime ` instead of computing it in an Fp-algebra. This approach
leads to a faster algorithm than the original, which is more efficient in practice than the
other known algorithms when p is large, although still having a deterministic polynomial
running time under the ERH.

Factoring polynomials using van Hoeij’s method

Karim Belabas

Mark van Hoeij proposed an algorithm for factoring polynomials over the rational inte-
gers, which rests on the same principle as Berlekamp-Zassenhaus (compute factor bound,
choose prime p and factor over Qp, then recombine modular factors) but uses lattice basis
reduction to improve drastically on the recombination phase. His ideas give rise to a col-
lection of algorithms, differing greatly in their performance characteristics. We present a
deterministic variant which achieves good overall performance (experimentally), and can
be proven to terminate in finite time. I conjecture it is actually polynomial time. This
variant was generalized to number field, and is typically able to factor polynomials with
hundreds of modular factors in a few minutes, even when they have few rational factors.

Catalan without Tijdeman

Yuri Bilu

I spoke on the new work of Preda Mihailescu, who used the argument of Bugeaud and
Hanrot to prove that in Catalan’s equation xp−yq = 1, none of the exponents is 1 mod the
other. This is an important step in Mihailescu’s celebrated proof of Catalan’s conjecture;
before this new development, it could be done only using logarithmic forms and extensive
electronic computations. Now the proof of Catalan is totally independent of logarithmic
forms and computers.

Ranks of quadratic twists of an elliptic curve

Dongho Byeon

Let E be the elliptic curve 37C in Cremona’s table with the equation E: y2 + y = x3 +x2−
23x− 50. In this talk I will show that for at least 40 percent. of the positive fundamental
discriminants D and at least 24 percent. of the negative fundamental discriminants D,
Ords=1L(s, ED) = 1.
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Parity of modular degrees

F. Calegari

Let E be a (modular) elliptic curve of conductor N . There exists a minimal modular
parametrization:

π : X0(N) → E.

The degree deg(π) is called the modular degree. Suppose that the conductor of E is prime,
and that the modular degree of E is odd. Then we show that N is 3 modulo 8, proving
a conjecture of Watkins. Furthermore, we show in such cases that E has supersingular
reduction at 2, and that the (Mordell–Weil) rank of E(Q) is zero.

Global obstructions for the descent of coverings and varieties

Jean-Marc Couveignes

We recall what is a field of definition and a field of moduli. We show that there exist global
obstructions for the field of moduli to be a field of definition.

Let Q be the field of rationals.

Theorem : there exists a projective regular irreducible variety over Q̄ having Q as field
of moduli and admitting a model over any completion of Q but no model over Q.

So the local-global principal fails for descent of varieties. It also fails for coverings (as
we also prove).

Our proof builds on classical examples from class field theory and inverse Galois tech-
niques, plus some natural geometric constructions.

Local obstructions for the existence of a model over the field of definition were known
to exist for varieties (Mestre) and for coverings (Couveignes).

Very explicit descent on elliptic curves

John Cremona and Michael Stoll

(joint work with T. A. Fisher (Cambridge), C. O’Neil (MIT), D. Simon (Caen))

Let E/K be an elliptic curve over a number field. Descent on E attempts to get infor-
mation on both the Mordell-Weil group E(K) and the Shafarevich-Tate group X(E/K).
For each n ≥ 2, there is an exact sequence

0 −→ E(K)/nE(K) −→ Sel(n)(E/K) −→ X(E/K)[n] −→ 0 ,

where Sel(n)(E/K) is the n-Selmer group. Our goal is to compute the n-Selmer group,
and represent its elements explicitly as curves C ⊂ Pn−1 (when n ≥ 3). Having this
representation allows searching for points on C (which in turn give points in E(K), since
C may be seen as an n-covering of E), and also doing higher descents.

Let A = MapK(E[n], K) be the affine algebra of the scheme E[n]. There is an isomor-

phism H1(K, E[n])
∼−→ H, where H is a subquotient of (Sym2 A)×; for n prime, we also

have H ↪→ A×/(A×)n (Shaefer, Stoll). This can be used to find the image of Sel(n)(E/K)
in H.

Let ξ ∈ H be represented by ρ ∈ (Sym2 A)×. The
curve Cξ corresponding to ξ can be embedded in Sξ, a twist of Pn−1 (a Brauer-Severi

variety). For ξ in the Selmer group we have Sξ
∼= Pn−1. In order to obtain Cξ ⊂ Pn−1
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we represent the obstruction against Sξ
∼= Pn−1 as a central simple algebra Aρ over K

(constructed from ρ and A) and then find an explicit isomorphism Aρ
∼= Matn(K). We

can always find a model Cρ ⊂ P(Aρ); using this isomorphism, we have a diagram

Cρ
� � //

∼=
��

P(Aρ)
∼= // P(Mat3)

Cξ
//

55
Pn−1 × (Pn−1)∨

Segre
44jjjjjjjjjjjjjjjj

P(trace zero matrices)
?�

OO

Projection onto the first factor Pn−1 gives Cξ ⊂ Pn−1. This has been implemented for
K = Q and n = 3.

Computations with L-functions of curves

T. Dokchitser

There are various conjectures concerning ζ- and L-functions of arithmetic origin. These
functions are supposed to possess meromorphic continuation to the complex plane, sat-
isfy a predicted functional equation and Riemann hypothesis. Also, there are numerous
conjectures concerning special values at integer points, for instance the conjectures of Birch-
Swinnerton-Dyer, Stark, Deligne-Scholl-Beilinson, Lichtenbaum and Bloch-Kato. This talk
is aimed to explain how to test these conjectures for higher genus curves. One aspect of
this is essentially analytic, the actual computation of values of L-series. Another one is
arithmetic, understanding the invariants which enter the functional equation. One illus-
tration of the latter is how to determine local factors of L-series of higher genus curves at
primes of bad reduction.

Computation of fields of definition of torsion points of Jacobian varieties.

Bas Edixhoven

The aim of the talk is to explain my strategy to compute fields of definition of torsion
points of jacobian varieties, and to give an account of what has already been done.

To give the idea, an example concerning the 5-torsion of an elliptic curve E in Weierstrass
form is given. One takes a nonzero differential form ω considers the map:

E(C) → C/Λ, P 7→
∫ P

∞
ω

For a given 5-torsion point x in C/Λ, there is a unique P that is mapped to x. To
approximate this P , one uses Newton’s method and formal integration of power series.
The approximation then gives the minimal polynomial of the coordinates of P . Let K be a
number field, OK its ring of integers. Let X be an arithmetic surface over the spectrum S
of the ring OK , assumed to be semistable. Let π : X → S denote the structure map,
and suppose that we have a section P . Suppose that D and D′ are effective horizontal
divisors on X, such that D′ − D is torsion on the generic fibre. Put E := P ∗OX(D′ −
D), equipped with its metrics at the infinite places from Arakelov theory. Then, using
arithmetic Faltings’s Grothendieck Riemann Roch, plus Noether’s formula (Moret-Bailly),
one gets an estimate:

deg(E) ≤ −1

2
〈D + V, D + V − ω〉+ h(X) +

∑
σ

log ‖θ‖σ,sup +
g

2
[K : Q] log(2π).
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This estimate was obtained in collaboration with Robin de Jong (Amsterdam). It should
suffice to bound the required precision for the approximation part.

As a possible application I think of the 2-dimensional subspace Vl of J1(l)(Q)[l] that
corresponds to the modular

form ∆ of weight 12. For X = X1(l) it seems that the terms in the estimate above are
polynomial in l (but we are not so sure yet about log ‖θ‖σ,sup). If the estimates will indeed
turn out to be polynomial in l, and if the approximation (with the required precision
)can be done in time polynomial in l, then we get an algorithm to compute Vl in time
polynomial in l, and an algorithm to compute τ(p) in time polynomial in log p (as in
Schoof’s algorithm).

Effective methods for the computation of the cohomology of arithmetic
groups and application to the K-theory of the integers.

Philippe Elbaz-Vincent

(joint work with Herbert Gangl(MPI Bonn) and Christophe Soulé (CNRS & IHES))

We will explain how we can compute reasonably efficiently the cohomology of GLN(Z) or
SLN(Z), with N < 8, using the theory of perfect forms developed initially by Voronoi, and
in particular the equivariant spectral sequence associated to the Voronoi complex. From
then, we will explain how we can deduce, modulo some non-trivial homotopical arguments,
that K5(Z) = Z and K6(Z) = 0. We will also mention some related works in progress.

Curves Ek : X3 + Y3 = k of high rank

Noam D. Elkies

(joint work with Nicholas F. Rogers)

r smallest k such that Ek : X3 + Y 3 = k has rank r
0 1
1 6 = 2 · 3
2 19 (prime)
3 657 = 32 73
4 21691 = 109 · 199
5 489489 = 3 · 7 · 11 · 13 · 163
6 9902523 = 3 · 73 · 103 · 439 (*)
7 1144421889 = 3 · 13 · 19 · 41 · 139 · 271 (*)
8 ≤ 1683200989470 = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 29 · 41 · 47 · 59 (**)
9 ≤ 18686874226924241 = 13 · 23 · 31 · 43 · 61 · 73 · 157 · 199 · 337

(*) Minimal assuming parity conjecture and GRH for L(Ek, s) (k < 1144421889)
(**) Minimality is likely but not proved

In particular we have the first known cases of r > 7. For each k, the curve Ek is
3-isogenous with E ′

k : XY (X + Y ) = k, an elliptic curve with a rational 3-torsion point.
Thus E ′

k(Q) ∼= Z9⊕ (Z/3Z) for k = 18686874226924241. The previous rank record for any
elliptic curve over Q with a 3-torsion point was 8 [Kulesz-Stahlke 2001, Dujella 2001]. Also
new are: the r = 6 and r = 7 examples, which improve on N.F.Rogers’ earlier records;
their proofs of conjectural minimality; and (we think) the proofs of minimality for r = 4, 5
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(Selmer already claimed the r = 3 minimum in 1951). The r = 8 example also has the
curious feature of 8 independent integer solutions of xy(x + y) = k, namely

(x, y) = (11, 391170), (533, 55930), (770, 46371), (1003, 40467),

(2639, 23970), (6970, 12441), (7293, 1197), (8555, 10387).

These yield independent points on Ek(Q).
Let P1(X, Y ) = X3 + Y 3 and P2(X,Y ) = XY (X + Y ). We want integers that can

be written as the cubefree part d−3P1(x, y) or d−3P2(x, y) for many x, y ∈ Z ∩ [−H, H].
But there are some H2 choices of (x, y), which will clog our CPU and/or memory with
k-values most of which have r = 1. We reduce this H2 to H by searching over pairs of
points: solutions to Pi(x, y) = Pj(x

′, y′) with (i, x, y) 6= (j, x′, y′). This is possible because
in each case Pi(x, y) = Pj(x

′, y′) is a rational cubic surface. Such a surface is expected to
have CH logA(H) rational points of height up to H, of which we can find about H in time
C ′H logB(H) by using all (r : s : t) ∈ P2(Q) of height� H1/3 in a rational parametrization
such as

(x : y : x′ : y′) = (r3 − s3 : s3 + t3 : r2s− s2t + t2r : r2t− s2r − t2s)

for (i, j) = (1, 2).
For each k, we compute the Selmer ranks for the isogenies Ek ↔ E ′

k, and retain only
those k for which the upper bound on r is large enough. (This computation is of course also
a key ingredient in verifying that Ek has rank exactly r in the above table, and also that
these k are minimal for r ≤ 5 and conjecturally minimal for r = 6, 7.) Those 3-descents
require the complete factorization of k. Fortunately the 9th-degree form k(r, s, t) splits
into linear and quadratic factors for (i, j) 6= (1, 1). Further heuristic refinements include a
Mestre threshold on partial products for L(Ek, 1), and a requirement that k be 1613-smooth
[NB 1613 = p255 considerably exceeds the largest prime factor in the above table].

The pair-of-points idea can be applied in other contexts. Mark Watkins has recently
used it to find elliptic curves E/Q (with no restrictions on the form of E) of ranks 9 and 10
whose conductors and/or discriminants are smaller than previous records; a direct search
for E/Q with many integral points would take about 20–50 times longer to reach these
new curves. A search for rank 11 is currently in progress.

The Brauer-Manin Obstruction on Curves

Victor Flynn

When a variety violates the Hasse principle, this can be due to an obstruction known
as the Brauer-Manin obstruction. It is an unsolved problem whether all violations of the
Hasse principle on curves are due to this obstruction. I shall describe computations in
progress which test a wide selection of curves, and tries to test for these examples whether
the Brauer-Manin obstruction is the cause of all violations of the Hasse principle. This has
involved the development of several new techniques, exploiting the embedding of a curve
in its Jacobians via a rational divisor class of degree 1.
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Multiple polylogarithms, rooted trees and algebraic cycles

Herbert Gangl

We construct, for a field F and a natural number n, algebraic cycles in Bloch’s cubical cycle

group of codimension n cycles in
(
P1

F \ {1}
)2n−1

which correspond to weight n multiple
polylogarithms. Moreover, we construct out of them a differential graded subalgebra in
the Bloch-Kriz cycle DGA. In the process, we are led to introduce two other DGA’s which
are mapped to the cycle DGA: one of them is built from trees (reminiscent of the Connes-
Kreimer renormalization Hopf algebra) and the other one from polygons (closely connected
to Goncharov’s dihedral Lie algebra).

Convex polytopes, the Ehrhart polynomial, and Hecke operators

Paul E. Gunnells

(joint work with Fernando Rodriguez Villegas)

Let P be a simple convex lattice polytope with vertices in the lattice L. Ehrhart proved
that the function t 7→ #(tP ∩L), as t ranges over all nonnegative integers, is a polynomial
E(P ) of degree n with rational coefficients. Formulas for the coefficients of E(P ) were
given by Khovanskii-Pukhlikov, Brion-Vergne, and Diaz-Robins. In general these formulas
involve volumes of the faces of P as well as higher-dimensional Dedekind sums generalizing
those considered by Zagier.

Let p be a prime number, and let k be an integer with 1 ≤ k ≤ n − 1. We define a
new polynomial Ep,k(P ) attached to P as follows. Via the isomorphism p−1L/L ' Fn

p , any

lattice M satisfying p−1L ⊃ M ⊃ L determines a subspace M̄ ⊂ Fn
p . Then we put

Ep,k(P ) =
∑

E(PM),

where the sum is taken over all M between p−1L and L with dim M̄ = k, and where PM

denotes the polytope P thought of as a lattice polytope with vertices in M . Recall that a
polytope is called nonsingular if the associated toric variety is nonsingular.

Theorem Suppose P is nonsingular, and for any polynomial f let cl(f) be the degree l
coefficient. Then there is a polynomial νk,l(T ) ∈ Z[T ] such that

cl(Ep,k(P ))/cl(E(P )) = νk,l(p).

Moreover, νk,l(p) can be explicitly computed as follows. Let W ⊂ Fn
p be a fixed subspace

of dimension l. Then
νk,l(p) =

∑
pdim(V ∩W ),

where the sum is taken over all subspaces V ⊂ Fn
p of dimension k. The proof shows that

every term of degree l in the Brion-Vergne formula for E(P ) transforms by scaling by
νk,l(p) when passing to Ep,k(P ). This implies that the Dedekind sums appearing in the
computation of cl satisfy many identities.
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On the asymptotics of number fields with given Galois group

Jürgen Klüners

Let k be a number field, G be a finite permutation group, and

Z(k,G; x) := |{K/k | Gal(K/k) = G, N(dK/k) ≤ x}|.
This number is finite for any given real x. There is a conjecture of Malle which says that
for x →∞ we expect

that
Z(k, G; x) ∼ c(k,G)xa(G) log(x)b(k,G),

where the constants a(G) and b(k,G) are explicitely given. The full conjecture is true for
all abelian groups and some small groups. Recently we have proved that there are good
lower and upper bounds for nilpotent groups, i.e. we can show for nilpotent groups G:
Z(k,G; x) = O(xa(G) log(x)d(G)), where a(G) is as expected and d(G) may be larger than
b(k, G).

In this talk we want to show that for the infinite series of generalized quaternion groups
we can prove that the corresponding Dirichlet series have a mereomorphic continuation to
the left of the critical point. Therefore we get for k = Q and G a generalized quaternion
group that Z(Q, G; x) ∼ c(G)xa(G).

In a second part of our talk we show that there are relations between upper bounds
for the class group of number fields and our problem. Assuming a weak version of the
Cohen-Lenstra-heuristics we are able to show lower and upper bounds for dihedral groups
D`, where ` is prime. Furthermore we show that the failure of the asymptotics conjecture
means that the Cohen-Lenstra-conjecture is wrong.

Elliptic curve point counting using X0(N)

David R. Kohel

Let E/Fpr be an ordinary elliptic curve over a finite field of small characteristic p and degree
r over the prime field. Let R/Zp be the maximal order in the unramified extension of Qp of
degree r. We describe a general algorithm for lifting modular invariants of E on X0(N)(Fpr)
to p-adic approximations of their canonical lifts to Heegner points on X0(N)(R). The
determination of the zeta function of E is an application. For N = 1 this construction
recovers the algorithm of Satoh and for N = 8 (with p = 2), one obtains an algorithm
equivalent to the AGM algorithm of Mestre.

The algorithm involves a precomputed correspondence

X0(pN) → X0(N)×X0(N),

whose image is defined by equations Φ(P, Q) = 0. For N = pm, and X0(N) of genus zero,
we find a model for the curves such that the correspondence takes the form Φ(x, y) ≡
xp − y mod p in terms of a degree one function x = f(q) and y = f(qp).

The classical theory of complex multiplication implies that the arithmetic action of
the Frobenius automorphism on moduli should preserve the geometric data of p-isogenies
between the CM elliptic curves related by the correspondence Φ. The interplay between the
Frobenius automorphism and iterative Hensel liftings of the CM invariants gives rise to a
rapidly convergent algorithm for lifting a Heegner point (or its Galois orbit) to X0(N)(R).

The computation of the zeta function of E is completed by precomputation of the action
of the pullback of Frobenius isogenies on the fibers of an elliptic surface over X0(N). The
action of Frobenius can be determined generically on the elliptic surface, such that its
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specialization to a point on X0(N)(R) gives the action on the differentials of the canonical
lift of E to R. In characteristic zero, one can read off the nonzero scalar action of Frobenius
(or its dual) as an element of R to algebraically compute its trace.

Hyperelliptic Curves and Deformations

Alan Lauder

Recently I introduced a method for computing the zeta function of a variety over a finite
field based upon the “deformation theory” of Bernard Dwork. I have worked this approach
out in full detail for smooth projective hypersurfaces, following essentially the theory of
Dwork. In this talk I will sketch how the method may be applied to affine hyperelliptic
curves, using a relative version of the cohomology theory of Monsky-Washnitzer.

Elliptic surfaces and Heron triangles

Ronald van Luijk

A heron triangle is a triangle with integral sides and integral area. M. Aassila has proved
that there exists an infinite parametrized family of pairs of heron triangles with the same
area and the same perimeter. Using elliptic surfaces we will prove a generalization, namely
that for every positive integer n, there is an infinite parametrized family of n-tuples of
heron triangles, all with the same area and the same perimeter.

Capacity of union of real intervals and heights of points on hyperelliptic
curves.

Jean-François Mestre

(joint work with J.-B. Bost (Orsay) )

In this talk, we rely the capacity of the union of the real intervals [ai, bi], 1 ≤ i ≤ g + 1
to the archimedean height of P+ − P− on the hyperelliptic curve

C : y2 =

g+1∏
i=1

(x− ai)(x− bi),

where P+ and P− are the two infinite points of C.
In the case of elliptic curve, the archimedean height of a real point P (x0, y0) of the

elliptic curve E of equation

y2 = (x− a)(x− b)(x− c),

a, b, c real, is the logarithm of the capacity of the union of the two real intervals defined
par the four real numbers

0, (x0 − a)(x0 − b), (x0 − b)(x0 − c), (x0 − c)(x0 − a).

We give also a quadratically convergent algorithm to compute the capacity of the union of
two intervals (so, because of the previous formulae, a quadratically convergent algorithm
to compute the archimedean height of a real point on an real elliptic curve. Each step
needs two square roots, and there is no need (in contrast with the usual method with
sigma functions) to compute the z of the torus corresponding to the point on the curve.
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x2 + y3 = z7

Bjorn Poonen

(joint work with Ed Schaefer and Michael Stoll)

We use a descent argument involving the simple group of order 168 to reduce the problem
of finding all integer solutions to x2 + y3 = z7 with gcd(x, y, z) = 1 to the problem of
determining the rational points (satisfying certain congruence conditions) on 10 twists of
the Klein quartic curve

X : x3y + y3z + z3x = 0

in P2. The relevant twists were determined by a combination of methods, one of which
involved identifying X with the modular curve X(7) and using the modularity of elliptic
curves over Q. For 9 of the 10 curves, our list of rational points satisfying the congruence
conditions has been proved complete by variants of Chabauty’s method. If, as is likely, our
list for the 10-th curve also is complete, then the original equation has exactly 16 solutions,
namely

(±1,−1, 0), (±1, 0, 1), ±(0, 1, 1), (±3,−2, 1), (±71,−17, 2),

(±2213459, 1414, 65), (±15312283, 9262, 113), (±21063928,−76271, 17) .

L-functions and random matrix theory

M. Rubinstein

We present a precise conjecture for moments of general families of zeta- and L-functions
on or near the critical line or at or near the central critical point which includes the full
asymptotic expansion in the case of integral moments and as many finite terms as we desire
for non-integer moments.

We give evidence for this conjecture in two ways: one in terms of theorems about charac-
teristic polynomials for random matrices which reveal completely analogous behavior; the
other is by explicit numerical examples, both for integral moments as well as real and even
complex moments. We also present a heuristic method via approximate functional equa-
tions which leads to the conjectures. Our conjectures agree with all the known theorems
(and several number theoretical conjectures) about moments of families of L-functions.

Exponents of torsion cosets and Salem numbers

Chris Smyth

We show that there are Salem numbers of every trace. The nontrivial part of this result
is for Salem numbers of negative trace. The proof has two main ingredients. The first is
a novel construction, using pairs of polynomials whose zeros interlace on the unit circle,
polynomials of specified negative trace having one factor a Salem polynomial, with any
other factors being cyclotomic. The second is an upper bound for the exponent of a
maximal torsion coset of an algebraic torus in a variety defined over the rationals. This
second result, which may be of independent interest, enables us to refine our construction
to avoid getting cyclotomic factors, and so produce Salem polynomials of any specified
trace.
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Principal moduli and class fields

Peter Stevenhagen

(joint work with David Cox (Amherst) and John McKay (Concordia))

We study the Galois theoretic properties of the values taken by Γ0(n)-modular functions
at elliptic points of order 2 for the Fricke group Γ0(n)† that lie outside Γ0(n). In the case
of a principal modulus (‘Hauptmodul’) for Γ0(n) or Γ0(n)†, we determine the class fields
generated by these values.

Deterministic equation solving over finite fields

Christiaan van de Woestijne

Introduction and results

Many algorithmic problems over finite fields have up to now only found a probabilistic
solution, if one wants algorithms of polynomial time complexity. In particular, finding zeros
of polynomial equations in general finite fields is a problem for which no deterministic fast
algorithm is known.

In this note, I want to propose a deterministic polynomial time equation solver for
a special class of polynomial equations, namely homogeneous diagonal forms in many
variables.

Theorem 1. There exists an algorithm which does the following. Given a positive integer
n, a finite field F and nonzero elements a0, . . . , an in F, it finds x0, . . . , xn in F, not all
zero, such that

(1)
n∑

i=0

aix
n
i = 0,

in time polynomial in log |F| and in n.

Here I assume the finite field given by a generating equation over the prime field, together
with the characteristic. Note that equations like (1) are always solvable by the Chevalley-
Warning theorem.

We have found an algorithm satisfying the above properties running in time

O((log |F|)4 log log |F| n5) ,

whose building blocks are summarized below.

Building blocks

Let F be a finite field, and write q = |F|.
First one remarks that we can easily reduce to the case that the exponent n divides

q − 1. (This is not needed in the following results, however.)
Next, we have the following lemma:

Lemma 1. Let a0, . . . , an be nonzero elements of F, and let G be the subgroup of F∗
generated by the ai. Then there exist two among the ai, say a0 and a1, such that their
quotient a0/a1 has an nth root in the group G.
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Furthermore, we can adapt the Tonelli-Shanks algorithm for computing square (and
higher) roots into a deterministic polynomial time algorithm to compute such an nth root.
We will call this the n-Shanks algorithm1.

Lemma 2. Given a positive integer n, we can find deterministically, in polynomial time
x0, . . . , xn in F, not all zero, such that

(2)
n∑

i=0

xn
i = 0.

There exists an algorithm for the task described in the lemma which uses among other
things Õ(n) calls of the n-Shanks algorithm. Of course, the task is trivial if n (or just
gcd(n, q − 1)) is odd. As an example for the even n, our algorithm can write −1 as a sum
of squares deterministically in time O((log q4)).

Lemma 3. Given a solution to (2) and given a0, . . . , an, we can construct a solution to
(1) deterministically, in polynomial time.

Here the running time is essentially given by the cost of n2 calls to the n-Shanks algo-
rithm.

Applications

The algorithm described above is practical and has been implemented by the author.
However, probabilistic methods for solving (1) usually run faster, except in the case that
q is about as large as n2, because here the Weil bound says nothing about the minimum
number of solutions.

It may be interesting to note that the algorithm favours solutions with many zero com-
ponents, although it is not clear whether the solutions it finds are always minimal in this
respect.

(This work is part of my ongoing thesis project under supervision of Prof. H.W. Lenstra,
Jr.)

Arithmetic of Calabi–Yau Varieties and Mirror Symmetry

Noriko Yui

1. Introduction

Definition 1.1. A smooth projective variety X of dimension d over C is a Calabi–Yau
variety if

(1) H i(X,OX) = 0 for every i, 0 < i < d, and
(2) the canonical bundle of X is trivial.

Introduce the (i, j)-th Hodge number hi,j(X) := dimHj(X, Ωi
X). Then (1) simply says

that hi,0(X) = 0 for every i, 0 < i < d and (2) says that the geometric genus pg(X) :=
hd,0(X) = 1. There is the Hodge diamond encoding all Hodge numbers of a Calabi–Yau
variety of dimension d.

1Suggestions for a better name are welcome!
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Examples 1.1. For d = 1, the dimension one Calabi–Yau varieties are nothing but elliptic
curves.

For d = 2, the dimension two Calabi–Yau varieties are K3 surfaces, where h1,1(X) = 20.
For d = 3, we have Calabi–Yau threefolds if h1,1(X) > 0. The Euler characteristic of elliptic
curves and K3 surfaces are given, respectively, by the fixed constants 0 and 24. However,
this is no longer the case of Calabi–Yau threefolds. In fact, the Euler characteristic of a
Calabi–Yau threefold X is given by χ(X) = 2(h1,1(X)−h2,1(X)). There is a conjecture (by
physicists) which asserts the existence of the absolute constant C such that |χ(X)| ≤ C.
(The current record is C = 960.) However, there is also a counter-conjecture by M. Reid
asserting the contrary.

A naive version of the mirror symmetry conjecture for Calabi–Yau threefolds can be
formulated as follows.

Conjecture 1. Given a family of Calabi–Yau threefolds X, there is a mirror family of
Calabi–Yau threefolds X∗ such that

h1,1(X∗) = h2,1(X), h2,1(X∗) = h1,1(X)

(so that χ(X∗) = −χ(X)).

There are about 60, 000, 000 examples of Calabi–Yau threefolds obtained by Batyrev’s
method (i.e., corresponding to reflexive polytopes). They were plotted by H. Skarke (Ox-
ford).

Our Goal: To understand the mirror symmetry phenomena by means of the zeta-
functions and L-series of mirror pairs of Calabi–Yau threefolds.

This will lead us to massive computations of the zeta-functions and L-series, and ac-
cordingly, it will fit in the main theme of this workshop.

2. The modularity questions of Calabi–Yau varieties over Q

Let X be a Calabi–Yau variety of dimension d defined over Q. Let

L(X, s) := L(Hd
et(X), s)

be the (cohomological) L-series of X. (Since L-series of algebraic varieties over Q were
defined by an earlier talk in the workshop, I will not repeat the definition here.) The
computation of the L-series L(X, s) for a Calabi–Yau variety X over Q is the main topic
here. For this we will address the modularity question.

d = 1 : For d = 1, we have the celebrated theorem due to Wiles et al. Let E be an
elliptic curve over Q with conductor N . Then the L-series L(E, s) can be determined
locally by counting the number of Fp-rational points on E (mod p) for good primes p.
That is,

L(E, s) =
∏

p

1

1− t1(p)p−s + ε(p)p1−2s

where the product runs over all primes p. If p 6 | N , t1(p) = p + 1 − #E(Fp) (which is
the trace of the Frobenius on H1

et(E, Q`)) and ε(p) = 1; if p | N , t1(p) = 0, or ±1, and
ε(p) = 0. The celebrated theorem of Wiles et al. asserts that there is a global object which
determine the L-series L(E, s).

Theorem 2.1. Every elliptic curve E over Q is modular. That is, there is a cups form
f ∈ S2(Γ0(N)) such that

L(E, s) = L(f, s).

13



In Wiles’ proof, the prime 3 played prominent roles, backed up by the prime 5.

d = 2 : Now we pass onto Calabi–Yau varieties of dimension 2, namely, K3 surfaces.
The second Betti number of any K3 surface is equal to 22, and H2(X, Z) is a lattice of rank
22 isometric to U3

2 ⊕ (−E8)
2. Let NS(X) be the Néron–Severi group X parametrized by

algebraic cycles on X. NS(X) is a free finitely generated abelian group. Let ρ(X) be its
rank (called the Picard number of X). Since NS(X) ⊂ H2(X, Z) ∩H1,1(X, R), it follows
that ρ(X) ≤ 20. We let T (X) be the orthogonal complement of NS(X) in H2(X, Z) (with
respect to the intersection pairing). We call it the group of transcendental cycles on X.

Now assume that X is defined over Q. Let L(X, s) = L(H2
et(X), s) be the L-series of X.

Then the L-series L(X, s) factors (over Q`, and hence over Q) as L(NS(X), s) ·L(T (X), s).
The Tate conjecture (which is a theorem for any K3 surface in characteristic 0) asserts that
the order of zeros of the L-series at s = 2 is equal to the Picard number ρ(X).

We restrict to a special class of K3 surfaces.

Definition 2.1. A K3 surface X is called extremal (or singular) if ρ(X) = 20.

Note that if X is an extremal K3 surface over Q, then T (X) corresponds bijectively to a
positive definite even binary quadratic form, and hence X is of CM type. The modularity
of any extremal K3 surface over Q follows from a theorem of Livné.

Theorem 2.2. Let X be an extremal K3 surface defined over Q. Then the transcendental
part of X is modular. That is, there is a cups form f ∈ S3(Γ0(M), ε) for some M ∈ N and
a quadratic character ε such that

L(T (X), s) = L(f, s).

d = 3 : Now we consider Calabi–Yau threefolds.

Definition 2.2. A Calabi–Yau threefold X is called rigid if h2,1(X) = 0 (so that B3(X) =
2). If h2,1(X) 6= 0, X is said to be non-rigid.

Remark 2.1. The Hodge number h2,1(X) is the dimension of the deformation space of
X. So any rigid Calabi–Yau threefold has no deformation parameters. One implication
of this is that rigid Calabi–Yau threefolds have no mirror partners which are Calabi–Yau
threefolds. In other words, the mirror symmetry conjecture fails for rigid Calabi–Yau
threefolds. However, physicists suggest that mirror partners of rigid Calabi–Yau threefolds
might be Fano varieties in P8.

We now address the modularity of rigid Calabi–Yau threefolds over Q. Let L(x, s) be
the L-series of a rigid Calabi–Yau threefold X over Q. It is given by taking the product of
the local zeta-function for every prime p:

L(X, s) = L(H3
et(X, Q`), s) = (∗)

∏
p:good

1

1− t3(p)p−s + p3−2s

where (∗) corresponds to bad primes. Let ti(p) denote the trace of the Frobenius on
H i

et(X, Q`). Then the Lefschetz fixed point formula gives t3(p) = 1 + p3 + (1 + p)t2(p) −
#X(Fp) with t2(p) ≤ ph1,1 and the equality holds if all cycles in H1,1(X) are defined over
Q.

Conjecture 2. Let X be a rigid Calabi–Yau threefold defined over Q. Then X is modular.
That is, there is a cusp form f ∈ S4(Γ0(N)) such that

L(X, s) = L(f, s).

Here N is divisible only by bad primes.

14



Evidence: Up to date, there are “about” 40 rigid Calabi–Yau threefolds over X for
which the modularity is established.

Some of these 40 rigid Calabi–Yau threefolds may be birationally equivalent over Q. We
have not yet checked the existence of such morphisms, and this is the reason for “about”
in the statement.

Methods: There are several methods for proving the modularity of rigid Calabi–Yau
threefolds:

(a) Serre–Faltings’ criterion (to establish the equivalence between two 2–dimensional
Galois representations).

(b) Geometric structure, that is, given a rigid Calabi–Yau threefold X over Q, find a
birational transformation (or a correspondence) defined over Q to a known rigid Calabi–
Yau threefold.

(c) Wiles’ method recently obtained by Dieulefait and Manoharmayum: Suppose that
X satisfies one of the following two conditions: (1) X has good reduction at 3 and 7, or
(2) X has good reduction at 5 and some prime p ≡ ±2 (mod 5) with 5 6 | t3(p), then X is
modular.

There was no time to discuss non-rigid Calabi–Yau threefolds and their modularity, nor
the computations of the zeta-functions and L-series of mirror pair families of Calabi–Yau
threefolds.

If you are interested in arithmetic aspects of Calabi–Yau varieties and mirror symmetry,
please take a look at a conference proceedings will be published in the Fields Commu-
nication Series Vol. 38 Calabi–Yau Varieties and Mirror Symmetry from the American
Mathematical Society in October 2003. (ISBN 0-8218-3355-3).

Edited by Bill Allombert
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Université Claude Bernard
43, Bd. du 11 Novembre 1918
F-69622 Villeurbanne Cedex

Prof. Dr. Fernando Rodriguez Vil-
legas
villegas@math.utexas.edu

Department of Mathematics
University of Texas at Austin
1 University Station C/200
Austin, TX 78712-1082 – USA

Prof. Dr. Mike Rubinstein
miker@math.utexas.edu

American Institute of Mathematics
360 Portage Ave.
Palo Alto, CA 94306 – USA

Prof. Dr. Rene Schoof
schoof@science.uva.nl

Dipartimento di Matematica
Universita di Roma 2
Tor Vergata
I-00133 Roma

Dr. Bart de Smit
desmit@math.leidenuniv.nl

Mathematisch Instituut
Universiteit Leiden
Postbus 9512
NL-2300 RA Leiden

18



Dr. Chris J. Smyth
c.smyth@edinburgh.ac.uk

School of Mathematics
University of Edinburgh
James Clerk Maxwell Bldg.
King’s Building, Mayfield Road
GB-Edinburgh, EH9 3JZ

Prof. Dr. Harold M. Stark
stark@math.ucsd.edu

stark@euclid.ucsd.edu

Dept. of Mathematics
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0112 – USA

Peter Stevenhagen
psh@math.leidenuniv.nl

Mathematisch Instituut
Universiteit Leiden
Postbus 9512
NL-2300 RA Leiden

Dr. Michael Stoll
m.stoll@iu-bremen.de

School of Engineering and Science
International University Bremen
Postfach 750561
D–28725 Bremen

Ulrich Vollmer
uvollmer@cdc.informatik.tu-darmstadt.de

Technische Universität Darmstadt
Fachbereich Informatik
Alexanderstr. 10
D–64283 Darmstadt

Christiaan van de Woestijne
cvdwoest@math.leidenuniv.nl

Mathematisch Instituut
Universiteit Leiden
Postbus 9512
NL-2300 RA Leiden

Prof. Dr. Noriko Yui
yui@mast.queensu.ca

Department of Mathematics and
Statistics
Queen’s University
Kingston, Ontario K7L 3N6 – Canada

Prof. Dr. Don B. Zagier
zagier@mpim-bonn.mpg.de

Max-Planck-Institut für Mathematik
Vivatsgasse 7
D–53111 Bonn

19


