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Abstracts

On volumes of arithmetic locally symmetric spaces
M. BELOLIPETSKY

Let G be a semi—simple algebraic group defined over a number field k, K C Gg — a
maximal compact subgroup, I' C G(k) — an arithmetic subgroup of G'. We are interested
in computing the volumes of the locally symmetric spaces

p(I\Gr/K)

with respect to a naturally normalized Haar measure p on the group G . This problem
has a long history which goes back to the work of Minkowski and Siegel.

There are two approaches which can give closed formulas for the volumes in a general
situation. One is to use Eisenstein series, concerning this we would like to mention the
papers of G. Shimura from 1997 — 1999. The second approach uses the Tamagawa measure
on G(A) and Bruhat-Tits theory. A recent breakthrough in this direction is due to G.
Prasad who gave a closed formula for the co-volume of a principal arithmetic subgroup of
G in his article in Publ. THES, 1989.

The aim of my lecture is to discuss the second approach and to show how to use Prasad’s
volume formula for the actual computations. As an application we present the following
result:

Theorem (B). For any n = 2r > 4 there exists a unique compact orientable arithmetic
hyperbolic n—orbifold O" . of the smallest volume. It is defined over k = Q5] and has

FEuler characteristic -
NG .
noy = V) I I 1—2
|X( mzn)| N(’f’)4r71 L |Ck( 'l)|

where (i is the Dedekind zeta function of k, N(r) € Z and A(r) € Q are constants such
that 1 < N(r) <4, X(r) =1 for evenr and 1 < N(r) <8, \(r) =2714" — 1) for r odd.

The methods of Bruhat-Tits theory and results of G. Prasad appear to be effective in
proving this theorem. We do not know how to get it using the first approach. Considering
this, it could be interesting to see how far one can proceed with this method. In particular,
we would like to ask whether it is possible to apply it to the problems of counting integer
points on the affine symmetric spaces.

Explicit versions of the (global) Gross—Prasad conjecture
S. BOCHERER
(joint work with M. Furusawa, R. Schulze-Pillot)

Very little is known so far about the Gross-Prasad conjecture, so it seems worthwhile to
study explicitly low-dimensional cases (beyond those in the papers by Gross/Prasad) using
isomorphisms of low-rank orthogonal groups with other linear groups.



We consider the case SO(5) D SO(4), when translated into a Sps C SLgy X SLy - setting.

We study integrals
0\ —, . — o
// <Z1 22> f1(21) fa(20)d 21d* 2

(T\H)2
where F' is a holomorphic Siegel modular form and f;, fo are elliptic cusp forms. The
Gross—Prasad conjecture in this version would predict that the nonvanishing of this in-
tegral (for Hecke-eigenforms) should be related to the nonvanishing of the L -function
L(Spin(F) x fi x fa,s) at the centre (modulo local conditions).

We verify this for the special case that F'is a Yoshida lift, using results on central values of
triple L-functions (by Gross/Kudla for weight 2 and by Bocherer /Schulze-Pillot for higher
weights).

In the case at hand we can write down an explicit relation connecting the square of the
integral above to the central L-value in question.

Gaussian weighted L,—cohomology
S. BUuLLOCK

Let M =T'\G/K a locally symmetric space, complete, finite volume, noncompact, with
K <0. Let X =G/K, E= ExrX = (I'\G) xg E a coefficient system, and Hp, , (M, E)
the unreduced w-weighted Ls cohomology for w: M — (0, 00).

Let P be a minimal @ parabolic of G . We recall Franke’s construction (AENS, vol 31,
pg. 181) of wy € O(a) on each Siegel set:

e P=UMA the (Q-Langlands decomposition

e H(—) the height function: (H = logom,) : [G = (UMA)K] — a = R’ for
¢ =rankg G

e (—,—) the pairing of a to Killing dual a

e y:R — R is a smooth cutoff of bounded gradient, 0 on (—oo0,7 —1] and 1 on
T, o0)

e > " (g,a) the simple restricted @Q-roots

o {¢;}5_, is a set of representatives of I'\G(RQ)/P(R).

Then for A € @ and careful choice of 7'(§2.1), Franke defines

A([gK) = Z > {exp(Q,H(vqflg))) 11 X((a,H(vqflgD)}-

i=1 [yle(TNUM)\UM ey T (g,a)

Suppose instead @ € a® a a quadratic form, —@Q < 0. Relabel Q(H, H) as —(Q, H) for
emphasis. Put

o(TgK) = Z S {eXP(—(Q,H(qug») II X((a,H(vqﬂg»)}-
i=1 [y]e(CNUM)\UM aey ¥ (g,a)

Henceforth let —@Q replace w_g in all notations.

Lemma. On the reductive Borel-Serre compactification M, let L*o(E) be the sheafi-
fication of the w_q - Ly presheaf and A*(E) the special form presheaf (Inventiones, vol



116, pg 139). For j: M — M open inclusion, j,Q*(E) < Sh(A*(E)) — L2 4(E) is a
quasi-isomorphism of sheaves.

Theorem. For —Q <0, HS) o(M,E)= H*(M,E) the de Rham cohomology.

We may choose —@Q as B|qxq on each Siegel set. Then for the Gaussian e, w_g € O(e‘rg).
Corollary. M as above, Gaussian weight w . Then HY, (M) = H*(M,E).

Eisenstein series for geometrically finite groups
U. BUNKE

We first introduced the class of geometrically finite subgroups I' of Liegroups of real rank
one G . The Plancherel theorem has the general form L*(I\G) = [, M, ® Vip(dx) .
The main objection of the construction of Eisenstein series is to understand the spaces
M, C "V, We gave an overview of the geometric scattering theory framework involving
the objects 7., ext’ and res' . The main result reported on is that ext! and 7L have

meromorphic continuations as operators acting on appropriate functions spaces related to
the family of (non-)unitary principal series representations.

Cycles with coefficients and automorphic forms
J. FUNKE
(joint work with J. Millson)

Let X be an arithmetic quotient of the symmetric space associated to O(p,q). Then

Kudla—Millson constructed a map from H¥ ™?(X), the (de Rham) cohomology of X with
compact support, to the space of classical holomorphic Siegel modular forms of genus n
and weight (p + ¢)/2. Moreover, the Fourier coefficients are given by periods over certain
special cycles in X, arising naturally from embedded O(p — n,¢). This map is realized by
an explicit construction of a theta-function as kernel.

This project is concerned with the generalization of this work to non-trivial coefficient
systems. As coefficient systems we consider the tensor powers with n factors of Sym*(V),
where V' is the underlying rational quadratic space of signature (p, ¢). Note the irreducible
constituents of these representations have highest weight vectors with at most n nonzero
entries. The special cycles naturally define homology classes with these coefficients. We
develop an analogous theory to the scalar-valued one of Kudla—Millson. In particular,
we explicitly construct a theta kernel with values in the coefficient system W, giving rise
to a new lift from H¥ ™%X, W) to (in general) vector-valued Siegel modular forms. If
the input takes (pluri)-harmonic values, the lift is holomorphic, while the general case
can be described in terms of the raising operators for the symplectic group. The Fourier
coefficients of the lift are given by periods over the cycles with coefficients.

This work will play a major role in the extension of the original Kudla—Millson lift to
the full cohomology, as the restriction of the scalar-valued theta kernels to the Borel-Serre
boundary of X gives rise to the above theta kernels with coefficients (for smaller orthogonal

groups).



Congruences between modular forms of genus 1 and of genus 2
G. HARDER

This was a report on some computer experiments. We consider the two modular cusp
forms foo and fo of weight 22 (resp. 26) for SLy(Z). Since in both cases the dimension of
the space of cusp forms is 1 they are unique if the first coefficient is normalized to one, so
they have the expansion

f=a+aq+asq’. ...

For the same reason they are eigenforms for the Hecke operators, we have T,,(f) = a,f in
both cases.

We consider their L-function

L(f,s) = ['(s) an _ I'(s) H 1

(277')2 ns (271-)2 » 1— app—s +p2k—1—25

here k = 22 or 26.

By a theorem of Manin we know that we can define two periods Q. (f), Q_(f) such that
for v € [%,...,k — 1] the values

L(f,v)
Qa(u)(f) © Q

and after a suitable normalization of the periods we can arrange that the values
{L(ﬁ V)} {L(ﬁ V)}
Q+(f) v even Q- (f> v odd

We look at large primes ¢ (¢ > k) and ¢ f((1 — k) which divide such an L-value and find
the following divisibilities

are coprime each.

L(fa2,14) 13| L( fa6,23) o7 | L( fa6,21) 2| L(fa6,19)

Qi (fa2) Q_(foe) O (fa)

For any such incident, we define the numbers m, t by

41|

Q_(fee)

k=t4+m+4, v=t+3

and consider the spaces Si_y, m+s of vector valued, holomorphic modular cusp forms for
Spa(Z) (they are attached to the representation Sym'™"(C?) ® det™). In all four cases we
have dim S;_, +3 = 1 and we have the sequences ( indexed by the primes ) of eigenvalues

M (F,p), A2(F,p) for the two Hecke operators T,Sl), Tp(2) on Sps(7Z) .
For some reasons I believe that we must have congruences

M(F,p) =p"™ +a,(f) +p** mod £

Mo (F,p) = a,(f) ("™ +p'™) mod .

Using the programs written by C. Faber and G. v.d. Geer these congruence have been
checked in the four cases above for all p < 37.

For a more detailed exposition I refer to my homepage in www.math.uni-bonn.de. In my
ftp-directory in the folder Eisenstein one finds a file kolloquium.ps or kolloquium.pdf.



Period functions for congruence subgroups
J. HILGERT
(joint work with D. Mayer and H. Movasati)

We report on a surprising relation between the transfer operators for the congruence sub-
groups ['g(nm),n, m € N, and some kind of Hecke operators on the space of vector valued
period functions for the groups I'g(n). For this we study special eigenfunctions of the
transfer operators for the groups I'y(nm) with eigenvalues F1 which are also solutions of
the Lewis equations for these groups and which are determined by eigenfunctions of the
transfer operator for the congruence subgroup I'g(n). In the language of the Atkin-Lehner
theory of old and new forms one should hence call them old eigenfunctions or old solu-
tions of the Lewis equation for I'y(n). It turns out that certain linear combinations of the
components of these old solutions for the group I'o(nm) determine for any m a solution
of the Lewis equation for the group I'g(n) and hence also an eigenfunction of the transfer
operator for this group.

Our construction gives linear operators T,, in the space of vector valued period functions
for the group I'g(n) which are rather similar to the Hecke operators. Indeed, in the case
of the group I'g(1) = SL(2,Z) these operators are just the well known Hecke operators on
the space of period functions for the modular group derived previously using the Eichler-
Manin-Shimura correspondence between period polynomials and modular forms for this
group and its extension to Maass wave forms by Lewis and Zagier.

Large scale geometry of arithmetic groups and the integral Novikov
conjecture

L. J1

The original Novikov conjecture concerns the homotopy invariance of the higher signature,
which is equivalent to the rational injectivity of the assembly map in the algebraic surgery
theory, i.e., the L-theory. There are also assembly maps in other theories, such as the
algebraic K-theory, C*-algebras. In each such theory, the rational injectivity of the assem-
bly map is called the Novikov conjecture, and the integral injectivity is called the integral
Novikov conjecture.

In this talk, we proved the K-theoretic integral Novikov conjecture for torsion free arith-
metic subgroups of any linear algebraic group defined over @ which is not necessarily
reductive. Besides the class of arithmetic groups, another important one is the class of S-
arithmetic groups. We also proved the integral Novikov conjecture in both K-, L-theories
for torsion free S-arithmetic subgroups of reductive algebraic groups G defined over a
number field k with the k-rank less than or equal to 1.

To prove the conjecture for arithmetic groups, we showed that they have finite asymptotic
dimension and finite classifying spaces; and the conjecture follows from a result of Bartels,
Carlsson—-Goldfarb that the integral Novikov conjecture in K-theory holds for groups of
finite asymptotic dimension and finite classifying spaces.

To prove the conjecture for S-arithmetic groups I', we used the approach of Carlsson—
Pedersen, refined by Goldfarb, via a suitable compactification of the universal covering
ET = BT of a compact classifying space BI" of I'.



On scattering theory on geometrically finite hyperbolic manifolds
A. JUHL

Let I € SO(1,n)° be a discrete subgroup without (non-trivial) elliptic elements such that
the quotient X™ = I'\H" (H™ = real hyperbolic n-space) is a geometrically finite hyperbolic
manifold. The lengths of closed geodesics in X™ and their monodromies define the Selberg
zeta function of X. The natural perspective here is to consider { as being associated to
the periodic orbits ¢ of the geodesic flow ®; : SX — SX on the sphere bundle of X. In

these terms
C(s) =] I det(id =SV (P, )e "), R(s) > 4(I),
¢ N>0
where |c| is the period of the prime periodic orbit ¢ and P, its monodromy on the con-
tracting part of the tangent bundle of SX. The central problem is to prove the meromorphy
of ¢ on C and to find uniform cohomological characterizations of its divisor (zeros and poles
with multiplicities). Such results are now known for cocompact and convex-cocompact I'.

However, the geometrically finite case is still far from being understood.

With the latter problem as motivation we haven undertaken a detailed analysis of Eisenstein
series on cylindrical (n + 1)-spaces X" with a finite volume hyperbolic manifold (with at
least 1 cusp) X™ as cross-section. X" then only has cusps of lower (i.e., non-maximal)
rank n. We prove that the Eisenstein kernel

E™(z, G A) =) MmO RN > (1), € HY, ¢ € 0:\A(T)
~el

has a meromorphic continuation to C. The proof provides explicit information on poles
and singular parts in terms of data associated to X™. It rests on spectral theory of X™ and
hypergeometric functions. Moreover, we determine a complete asymptotics of the above
kernel for ¢ near the cusps. The structure of the latter asymptotics is crucial in connection
with the theory of Eisenstein series associated to I'-invariant functions on the proper set
Q(T). Although the results show that generic poles of the Eisenstein kernel correspond to
generic zeros of ((s) the complete relation is more involved and not yet understood. The
results will serve as test cases for future general theories.

Cycles of surfaces and modular forms
S. Kupra

(joint work with J. Millson and S. Rallis (section 1),
and with M. Rapoport and T. Yang (section 2))

1. COMPLEX SURFACES

For V, (, ) a quadratic space over Q of signature (2,2), let G = SO(V), D ~ $ x $,
the symmetric space associated to G(R) and, for K C G(Ay), a compact open subgroup,
Sk = GQ\( D x G(Ay)/K). Suppose that V is anisotropic over Q and that K is
sufficiently small. Then Sk is a smooth projective surface over C. We consider two
generating functions for algebraic cycles on Si. Forr =1, let 7 =u+iv € $;, ¢ =e(7) =
e*™™ and let p € S(V(A;))X be a K-invariant weight function. Define the generating

function
or(r,0) = [ Z(t9)]d",

t>0



where Z(t, ) is a combination of curves on Sk analogous to Hirzebruch—Zagier curves,
and [Z(t,¢)] € H*(Sk) is the corresponding cohomology class. Then ¢;(7) is a modular
form of weight 2. The modularity of ¢;(7, ) results from the fact that

$1(1, ) = [01(7, )] € H*(Sk),

where 60, (7, ) is a nonholomorphic theta function valued in closed (1, 1)—forms on Sk. For
r = 2, there is an analogous theta function 0y(7, ¢) where, now, 7 = u+iv € £, the Siegel
space of genus 2, ¢ € S(V(A;)?)%, valued in (2,2)forms on Sx. Then

da(r ) = [0a(1,0)] = Y [ Z(T.9) 14",

T>0

for ¢ = e(tr(T'7)), T € Sym,(Q), and, for T > 0, Z(T, ) is either empty or is a O—cycle
on Sk. Thus ¢o(7) is a Siegel modular form of weight 2 and genus 2. Finally, there is an
Eisenstein series Fs(7, s, ) of weight 2 and genus 2 such that

E(1,3,0) = ¢2(7).

These objects are related by an cup product identity
T T
(1(71, 1), O1(T2,02)) = ¢2(( ! 7_2>7901 ®902) = E2(( ' 7_2)7%7901 ®<P2)-

2. ARITHMETIC SURFACES

The main point is that there are analogues of the identities of the previous section for
cycles of codimensions 1 and 2 on the arithmetic surface associated to a Shimura curve
over Q.

Let B be an indefinite division quaternion algebra over Q. Let Op be a maximal order in
B and let C(C) = Cp(C) = O\ (HT U $H7) be the (complex points of the) Shimura curve
over Q. Let S be the Drinfeld model of C' over Spec (Z). For r = 1 and 2, we construct

. —~1
generating functions ¢;(7) valued in CH (S§), the first arithmetic Chow group of S, and

A ~2
¢2(1) valued in CH (S) ~ C, the second arithmetic Chow group of S, and, in addition, a
normalized Eisenstein series & (7, s; B) of weight % and genus 2. Our recent results are the
following;:

Theorem 1: ¢:(7) is a modular form of weight 3 valued in 61\{1(8)

Theorem 2:
bo(1) = EL(7,0; B).

~ —~2
In particular, ¢2(T) is a Siegel modular form of weight % valued in CH (S).
Finally, there is a height pairing identity:

Theorem 3:
nmhintr) = (") = al(™ ) )

where ( , ) is the Gillet-Soulé height pairing on él\{l(S).
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Geometric approach to trace formula stabilization
J.P. LABESSE

The stabilization program was started 30 years ago by Langlands with in view the study
of the Zeta function of Shimura varieties. The Jacquet-Langlands correspondence between
automorphic forms for quaternion algebras and automorphic forms on GL(2) can be seen
as the first instance of this program: the transfer between groups and their inner forms.
Next was the study by Langlands and myself of the stabilization of the trace formula for
SL(2). We were trying to detect representations 7 of GL(2) such that 7 ® w >~ 7 for some
character w. Another instance of stabilization (in the modern sense) is the base change for
cyclic Galois extensions; there one tries to detect representations s.t. mwo 6 ~ 7.

The general setting is as follows. One considers a twisted space L over a group G i.e.
a principal homogeneous space L under G together with a G-equivariant map from L to
Aut(G). On a twisted space one has a left and a right G-action, hence one can consider
conjugacy etc... If L is defined over a number field F' one can define a right action of L(Af)
on G(F)\G(Ar) provided there is a rational point 6y € L(F'). Now, given f € C°(L(AF))
the contribution of elliptic elements to geometric side of the trace formula is the integral

T.(f,w) = / K (z,x)dx
AcG(F)\G(AF)

K (z,z) = w(x) Z fH(z o) with fi(z) = / f(zzx)dz

d€Le g
and L. is the subset of elliptic elements in L(F). Then, using abelianized Galois hyper-
cohomology, one can show that

T(fw)= Y al€)STE(fe)

Eeé(w)

where

under the transfer assumption. This is the stabilization of the elliptic terms of the geometric
side twisted trace formula. This is a generalization of results of Kottwitz and Shelstad that
have treated only the strongly regular elliptic terms. The next step will be to remove the
ellipticity condition and to stabilize both sides (geometric and spectral) of the full trace
formula.
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Cohomology of arithmetic groups, parabolic subgroups and the special values
of L-functions on GL,

J. MAHNKOPF

Let M/FE be a motive; a conjecture of Deligne determines the values of the L—function
L(M, s) at points n which are critical for M as element of C*/E* (i.e. up to multiplication
by E*). Conjecturally, L(M, s) coincides with an automorphic L-function L(m, s) attached
to an algebraic automorphic representation m of GL,(A). We explained an analogue of
Deligne’s conjecture for L—functions attached to the smaller class of cohomological cuspidal
automorphic representations ™ = 1y ® 7o, on GL,(A). More precisely let € X*(T),) be
a dominant weight and denote by Cohg(p) the set of cuspidal automorphic representations
on GL,(A) whose relative Lie-Algebra cohomology with respect to the coefficient system
given by the highest weight module M l does not vanish. Let Crit(r) denote the set of
all idele class characters, which are critical for 7, , i.e. the values L(7s ® Xoo,0) and
L(my ®@x), 1) are regular. We denote by E, the field of definition of 7, (a finite extension
of Q). There are complex "numbers” (7, xoo) € C*/EX such that the following holds

Theorem. Assume p € X+ (T,) dominant and reqular and let ™ € Coho(p) .

1.) For all x € Crit(m)
L(r @ x,0) = (7, Xoo)  mod E7(x).

Moreover the ratios Q(7, Xoo) /27, X)) do not depend on 7.
2.) For all o € Gal(Q/Q)

n L(7T®X,O))U o L(77 @ x7,0)
G227 ) gyl 2= A
(T ) = G0
(G(x) = Gauf-sum attached to x, [ | = Gaufi~bracket).

The theorem is only valid under a certain local non—vanishing assumption.

The proof is by induction over the rank n and combines the method of Zeta—Integrals
with the method of Langlands—Shahidi and the cohomology theory of arithmetic groups.

Cycles and homology with local coefficients
J. MILLSON

We prove by an elementary geometric argument that HP(I', W) # 0 for certain I' C
SO(n, 1) a cocompact lattice, W an irreducible finite dimensional representation of SO(n,1)
and p in a certain interval determined by the highest weight of TW. We obtain all non-
vanishing results for local coefficients compatible with the vanishing results of Vogan and
Zuckerman [VZ].

THE MAIN THEOREM

To make the above statement precise, let m be a square-free positive integer and let I" be a

congruence subgroup of the group of units of the quadratic form f(z) = 22 + 23 +--- 22, —

vma?_ . Let W be the irreducible representation with highest weight u = (a1, , @) =

S e, = [2£1]. Here we use the notation of [Bo], pg. 252-253, for the coordinates of
a weight (so the second fundamental weight has coordinates (1,1,0,---,0)).

11



Definition. We define () to be the number of nonzero entries in p.
The main theorem of [M2] is the following
Theorem.

Let W be the irreducible representation of SO(n, 1) with highest weight p.

(1) If n = 2m—1 and all entries of i are nonzero then HP(®, W) = 0 for all cocompact
lattices ® and all p.

(2) Suppose either n is even or i(u) > 0. Then p < i(p) orp > n —i(u) = for all
cocompact lattices ® we have HP(®, W) = 0.

(3) Let p € {i(u),i(p) +1,--- ,n —i(u)}. Then exists an ideal b in the integers of
Q(y/m) depending on W and p such that if T is the congruence subgroup of level b
of the group of units of the form f then we have

HP(T, W) # 0.

The theorem is proved by extending the techniques of [MR] which were used to prove nonva-
nishing results in the trivial coefficient case. We replace the technique of intersecting pairs
of totally-geodesic submanifolds considered there by intersecting the same submanifolds
but now each is equipped with a local coefficient, i.e. a parallel section of the restriction of
the associated local coefficient system W restricted to the cycle (or equivalently a nonzero
vector in W fixed under the fundamental group of the submanifold).The key fact that it
can be arranged that the two manifolds intersect in a single connected component we bor-
row from the earlier papers [MR], [JM] and [FOR]. The remaining problems are to find for
which W the required local coefficients exist and then to verify that the coefficient pairings
applied to the local coefficients are nonzero. The first we solve by an elementary argu-
ment from finite-dimensional representation theory and the second by a (Zariski) density
argument.
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On the cuspidal spectrum for GL,
W. MULLER

Let G be a connected reductive algebraic group over Q@ and let I' C G(Q) be an arithmetic
subgroup. An important problem in the theory of automorphic forms is the question of
existence and the construction of cusp forms for I'.

In this talk we will address the problem of existence for G = SL,, n > 2. Let I' be a
congruence subgroup of SL,(7Z). Let L2 (T'\ SL,(RR)) be the closure of the span of cusp
forms for I'. Let (0, V) be an irreducible unitary representation of SO(n). Set

LT\ SL,(R),0) = (L*(T\ SL.(R)) @ V)™,

and define L2 (T'\ SL,(R), o) similarly. Let Q € Z(sl(n,C)) be the Casimir element of
SL,(R). Then —Q ® Id induces a self-adjoint operator A, in the Hilbert space
L*(T\ SL,(R), o) which is bounded from below. The restriction of A, to the subspace
L2, (T\ SL,(R), o) has a pure point spectrum consisting of eigenvalues A\g(0) < A\j(0) < -+
of finite multiplicity. Let £(\;(c)) be the eigenspace corresponding to the eigenvalue \;(o).

For A > 0 set
NL o) = 3 dimEOy(0)).

Then our main result is the following theorem.

Theorem For n > 2 let X,, = SL,(R)/SO(n). Let d, = dimX,,. For every principal
congruence subgroup I' of SL,,(Z) and every irreducible unitary representation o of SO(n)
we have

vol(T\ X,,) dn /2

NE (), 0) ~ dim(o) (47)4n/2T(d,, /2 + 1)

cus

as A — o0.

This is Weyl’s law for principal congruence subgroups of SL,(Z). Especially, this result
establishes the existence of cusp forms for the full modular group SL,(Z) for all n > 2,
which was not known before.

For the trivial representation ¢ = 1, the above theorem was announced by the author on a
previous Oberwolfach conference. The extension to arbitrary o is based on recent results of
E. Lapid, B. Speh and the author on the absolute convergence of the Arthur trace formula
for GL,,.

We also note that for n = 2 and the trivial representation Weyl’s law was first proved by
Selberg. For I' = SL3(7Z) and o the trivial representation, Weyl’s law was proved by S.
Miller.

It has been conjectured by Sarnak and the author that Weyl’s law holds for every arithmetic
subgroup of a reductive group G. The above theorem supports this conjecture.
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Intersection cohomology, Shimura varieties and motives
A. NaAIR

Main results. Let (G, X) be a pair satisfying Deligne’s axioms for Shimura data. For a
small enough compact open subgroup K C G(Ay) the Shimura variety Sk = G(Q)\X X
G(Ay)/K is a smooth projective variety defined over a number field E independent of
K. Tts (Betti, de Rham, étale) cohomology has an action of the Hecke algebra Hy =
CX(G(Ay)//K). Assume that Sk is noncompact. The minimal (or Satake-Baily-Borel)

compactification Sk is a normal (but usually singular) projective variety over E in which
Sk is Zariski-dense and open. Combining results of Looijenga—Saper-Stern and Borel-
Casselman we have a natural Hecke-equivariant isomorphism

IH' (Sk, Q) ® C = @D m(r) 7f @ H(g, Koo, Too)-

The sum is over 7 appearing discretely in L?(G(R)Zg(R)°\G(A)) with multiplicity m(r).
So intersection cohomology is the cohomology of the discrete L? spectrum of G.

Mumford et. al. constructed noncanonical desingularizations of §K For each choice
of combinatorial datum X, they construct a toroidal compactification Sk — Sk y with
boundary a normal crossings divisor and defined over E (Pink). There is a projective

morphism 7 : Sk — Sk extending the identity. The possible Sk 5, form a directed set
and the direct limit (=union) lim H'(Sk s, Q) is a Hecke module.

Theorem 1. There is a canonical Hy-module decomposition
lim H'(Skyx, Q) = IH(Sk, Q) & Wi
It is compatible with Poincaré duality. The induced decomposition in étale cohomology

15 Hg X Gal(@/E)—equivam’ant, and with C-coefficients is a decomposition of (-Hodge-
structures.

For a fixed suitable ¥, this gives a canonical decomposition Hl(g K5, (Q) = IH1(§ K, (Q) P
iy with Wi = Wi N H(Skx, Q). For each g € G(Ay) the algebraic cycle Cy :=
(closure of C; in §K,g X §K72> gives an endomorphism 6’; : Hi<§K’2 Q) — Hi(§K7g, Q).

(These do not always generate an action of the Hecke algebra on H'(Sk 5, ®).)

Theorem 2. There exist g1,...,9, € G(Af) and My,..., Ay € Q such thatp =", \; 6’91.
gives a projector in the Betti (or de Rham or (-adic for any {) cohomology of Sk s with
image the Betti (or de Rham or (-adic for any () intersection cohomology of Sk .

Theorem 2 implies that there is a Grothendieck motive zh(§ K) over E/ with coefficients in
( with intersection cohomology realizations, i.e. intersection cohomology is a motive. The
motive has an action of the Hecke algebra Hx by endomorphisms. There is a decomposition
ih(Sk) = @, ih(Sk)[o] (with o running over irreducible Hx-modules) where ih(Sk)[o],
in any realization, is the o-isotypic component of intersection cohomology. Arthur’s con-
jectures on the discrete spectrum describe the decomposition.

The proofs of theorems 1 and 2 use perverse sheaves and the Beilinson-Bernstein-Deligne-
Gabber decomposition theorem, Deligne’s theory of weights, and the explicit geometry of
compactifications of Shimura varieties. The methods generalize to Pink’s setting of mixed
Shimura varieties and to homogeneous coefficient systems. Theorems 1 and 2 have several
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applications to the arithmetic and geometry of Shimura varieties. Two applications are:
(1) To associate Grothendieck motives to non-CAP non-endoscopic cohomological cusp
forms for GSp(4), improving slightly work of Taylor, Harder, Laumon, Weissauer (1990s)
who associated Galois representations (2) To injectivity results for Oda restriction maps
(in ordinary cohomology) to Shimura subvarieties in the noncompact setting.

All the contiguous relations in the principal series (g, K)-modules of Sp(2,R)
T. OpA

Firstly we reviewed the state of arts on the generalized spherical functions on G = Sp(2,R)
and other related groups. Among others Ishii’s result on the class one Siegel-Whittaker
functions and Moriyama’s application to Spinor L—functions of automorphic forms GSp(4)
are reviewed. An application of the branching rule of cohomological representations by
Toshiyuki Kobayaski: a vanishing theorem of certain Hodge component is also reviewed.
We reviewed also our construction of Green currents for modular cycles, which is a joint
work with Masao Tsuzuki. A remarkable fact is that this procedure resembles to the theory
of Eisenstein cohomology.

As shown in the first part of the talk, special functions, or (generalized) spherical functions
on semisimple Lie groups play an important role in the theory of automorphic forms. There
are two reasons at least:

1) the theory of automorphic L-functions at infinite places;
2) the seeds (= the secondary spherical function) for construction of Green currents
for modular symbols by the procedure of regularisation using Poincaré series.

Here the secondary spherical functions are "bad” spherical functions, which satisfy the
same differential equations on the Lie groups as the usual spherical functions, but have
some singularities along the subgroup R to define the spherical model.

As a case study the affine symmetric space (G x G, AG) with G = Sp(2,R) seems to be
quite interesting, to consider a higher rank symmetric pair.

Recently the author found an explicit description of (g, K')-module structure of the prin-
cipal series representations of G : these consist of 12 different contiguous relations, which
are an abstract system of differential-difference equations. As an application of this, we
can embed a large discrete series representation of G into a generalized principal series
representation associated with the maximal parabolic subgroups P; corresponding to the
long root 2e, in the simple roots {e, —e9,2e2} of Sp(2,R). By this, we can reduce the
problem of determination (i.e. integral expression, powerseries expression, etc.) of the
spherical function with minimal K-type in the large discrete series, to a similar problem
for the spherical function with the corner K—type in the P;—principal series.
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Cohomology of convex cocompact groups
M. OLBRICH

Let Y = T'\G/K be a Riemannian locally symmetric space of the non—compact type, and
let F' be a finite-dimensional irreducible representation of G. One of the central questions
in the theory of automorphic forms is to describe the cohomology groups

H*(T,F) = H*(Y,F)

in terms of automorphic forms on Y. This amounts to develop a type of Hodge theory.
This question has been intensively investigated for finite volume quotients.

In the talk I described an answer to this question for a class of infinite volume hyperbolic
manifolds and indicated implications for the singularities of twisted Selberg zeta functions.
This work was motivated by conjectures of Patterson (presented at a talk in Warwick in
1993). Complete results can be found in M. Olbrich, ”Cohomology of convex cocompact
groups ...” | arXiv:math.DG/0207301.

Let us describe one of the main results. Let G/K be the real hyperbolic space, and let
I' C G be a convex cocompact discrete subgroup. The role of automorphic forms is played
by the space

C™(A, VT (o))"
of T'-invariant distribution vectors of (thickend) principal series representations which are
supported on the limit set. It has a distinguished subspace FE} (o)) formed by boundary
values of singular parts of Eisenstein series. Then

a) dim C=(A, V(o)) < cc.

b) If the infinitesimal character x, : Z(g) — C is not regular integral, then
O (A, V¥ (03)] = Ef (o).

c) If X, 1is regular and integral, then (o,\) determines an irreducible finite-
dimensional representation F of G and an integer p € {1,...,n} such that
there is an exact sequence

0 — E{(0z) — C™(A,VF(on))" — HP(T,F) — 0.

Cohomology of locally symmetric spaces and their compactifications
L.D. SAPER

Let X = I'\ D be a locally symmetric space, where D = G/ K is a symmetric space, G is the
group of real points of a reductive algebraic group defined over @), K is a maximal compact
subgroup, and I' C G is an arithmetic subgroup. (To simplify this report we assume that
G has no Q-split torus in its centre.) Let X be the reductive Borel-Serre compactification
of X introduced by Zucker (1982) and let X* be a Satake compactification (1960). In
the case where D is Hermitian symmetric an important example is the Baily-Borel Satake
compactification (1966). Any Satake compactification X* may be realized as a quotient
of X (Zucker, 1983), but it is easier to do local computations on X due to its relatively
simple local structure in distinction to the more singular X*.

Let [E is a local coefficient system on X associated to a representation E of G. We study
the relationships between three cohomology theories: the ordinary cohomology H(X;[E),

Goresky-MacPherson’s (1980, 1983) intersection cohomology I, H(X;E) and I,H(X*;E)
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for either middle perversity p = m or n, and Goresky-Harder-MacPherson’s weighted
cohomology (1994) W"(X; E) for either middle weight profile n = p or v.

Theorem 1. Assume that all real boundary components of X* are equal-rank locally sym-
metric spaces. (In particular this applies if X* is the Baily-Borel-Satake compactification.)

Then I,H(X; E) = [,H(X*; E) = W"H(X; E).

The first isomorphism was conjectured in the Hermitian case by Goresky-MacPherson
(1988) and Rapoport (1986). The second isomorphism was proved in the Hermitian case
by Goresky-Harder-MacPherson (1994). The full result was proved in (S., 2001).

Theorem 2. If E is irreducible with regular highest weight, then H*(X;E) = 0 for
< +(dim X — (C-rank G/Ag — rank K)).

In the equal-rank case, this was proved in (S., 2001); as noted in (S., 2003), the same proof
applies in general. The result has also been proven by completely different methods by Li
and Schwermer (2003).

Theorem 3. If £* = E and the QQ-root system of G does not have any factor of type D,
E,, or Fy, then [, H(X E) = W“H(X FE) and [ H(X E) = W”H(X E).

This result is recent (2003) and not yet written up. We expect the condition on the QQ-root
system will be removed. If E* % E, there is a more complicated result that expresses
I,H ()? ;) as the direct sum of weighted cohomology groups of certain singular strata of
X with certain coefficients.

All these results may be proved using the theory of £L-modules and their micro-support (S.,
2001); an L-module M is a combinatorial analogue of a constructible complex of sheaves

on X and its cohomology is determined by its micro-support.

On the automorphic cohomology of arithmetic groups
J. SCHWERMER

The cohomology H*(T', E) of an arithmetic subgroup I' of a connected reductive algebraic
group G defined over some algebraic number field F' can be interpreted in terms of the
automorphic spectrum of I'. With this frame work in place there is a sum decomposi-
tion of the cohomology into the cuspidal cohomology (i.e. classes represented by cuspidal
automorphic forms for G) and the so called Eisenstein cohomology constructed as the
span of appropriate residues or derivatives of Eisenstein series attached to cuspidal auto-
morphic forms on the Levi components of proper parabolic F—subgroups of G. The talk
had two objectives: (1) a discussion of the regular Eisenstein cohomology classes attached
to cuspidal automorphic representations whose archimedean component is tempered. It
was indicated that the cohomological degree of these classes is bounded from below by the
constant ¢o(G(R)) = (1/2)[dim Xgmw) — (tkG(R) — 1k K')] where K denotes a maximal
compact subgroup of the real Lie group G(R), X¢ ) the associated symmetric space. One
of the consequences of this result is a vanishing theorem for the cohomology H*(I', E) in
the generic case (i.e. where the representation determining the coefficient system FE has
regular highest weight). This is a sharp bound only depending on the underlying real Lie
group G(R): one has HI/(T,E) =0 for j < qo(G(R)). This result is supplemented by
a qualitative structural result in the description of the cohomology in higher degrees by
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means of regular Eisenstein cohomology classes. (2) A discussion of some recent vanishing
theorems for the cuspidal cohomology of congruence subgroups in classical groups. The
approach is based on R. Howe’s notion of rank for irreducible representations of G(F,), F,
the local field attached to the place v of F, a global property of cuspidal automorphic
representations and explicit calculations of the rank for irreducible unitary representations
of G(F,),v an archimedean place. [(1), (2) are joint work with Jian-shu Li (Hong Kong)].

Functoriality: From symmetric powers to non-classical groups
F. SHAHIDI

This is a report on new cases of Langlands Functoriality conjecture. While the results on
symmetric powers for GL(2) were published a year ago, there are quite recent results
on functoriality for groups whose L-groups are of classical type, i.e. either classical or

similitude classical (*G = Sp, SO, GSp, GSO).

In the case that the second group is GL,,, Langlands Functoriality conjecture demands
that every homomorphism p : LG — GL,,(C) x Gal(F/F), where G is a connected
reductive group over a number field F' with L-group *G, must lead to a correspondence
sending an automorphic representation m = ®,m, of G(Ar) to 7’ = ®,7, an automorphic
representation of GL,,(Ar), in such a way that the Hecke-Conjugacy classes in GL,,(C)
which parametrize unramified components 7/, are generated by the images of those in G
parametrizing 7,’s.

When p is either Sym?® or Sym? representation of G'Ly(C), this conjecture has been fully
established by Kim and Shahidi in papers published recently. They are consequences of
establishing functoriality for p = p2 ® p3 : GL2(C) x GL3(C) — GLg(C) and p =
A% GLy(C) — GLg(C) sending cusp forms on GLy(Ar) x GL3(Ar) and GL4(Af) to
automorphic forms on GLg(Af) , respectively, which were established in the same papers.
Due to the work of Harris—Taylor and Henniart, the candidate at every other finite place
as well as archimedean ones (Langlands), are well-defined and our transfers agree with the
local Langlands correspondence everywhere. The estimates 1/9 and 7/64 which are due to
Kim—Shahidi ad Kim—Sarnak for forms over arbitrary number fields and Q, respectively,
are proved as exponents for estimates for Hecke—eigenvalues towards Ramanujan—Selberg
conjectures at every prime as consequences of these results. The best estimate for Selberg’s
conjecture on the smallest positive eigenvalue of Laplacian on a hyperbolic Riemann surface
at present is = 0.238... and follows from 7/64.

When G is a classical group, either split or quasi split unitary, and p: 'G — GLy(C) x
Gal(F/F) is the natural embedding, the functoriality is proved by Cogdell-Kim-Piatetski-
Shapiro—Shahidi for the generic spectrum of G(Ar). (The unitary case is the subject matter
of a forthcoming paper of Kim and Krishnamurthy). As a consequence CKPSS show that
the Ramanujan Conjecture for the generic spectrum of split classical groups reduces to that
of GL,,(Afp) for all m < N. When the Langlands-Shahidi method and these transfers
are fully developed for function fields, the Ramanujan Conjecture for classical groups will
immediately follow from Lafforgue’s results.

When £G = GSO,,(C) or GSps,(C) and p is their natural embeddings in G Ly, (C), the
transfer of generic cusp forms from the corresponding GSpin—groups has now also been
established by Asgari-Shahidi.
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The main technical obstacle in establishing these last two results, that of stability of root
numbers under highly ramified twists, has now been established of by combining a recent
result of Shahidi with asymptotics of Bessel functions due to Cogdell-Piatetski—Shapiro.
All these results are obtained by applying converse theorems of Cogdell-Piatetski-Shapiro
to analytic properties of automorphic L—functions proved by Langlands—Shahidi method.

Complex methods for real Lie-groups
R. STANTON
(joint work with B. Krotz)

This is a report on two joint papers.

Let G be a connected semisimple Lie group and assume it is contained in a complexification
G¢. Take an Iwasawa decomposition of GG, denoted G = K AN. Define the open set

Ao ={X €U | |a(X)] < 7/2, a arestricted root}.

Theorem: Let (7, H,) be an irreducible Banach representation of G andv € H, a K-finite
vector. Then the map

g — m(g)v
has a holomorphic extension to G expi ;K¢ C Ge.

One can consider = := Gexpi U, 2K /Ke C Go/Ke as a natural domain for the holo-
morphic extension of harmonic analysis on G/K. About the geometry of = we show

(i) = is Stein;
(ii) = has a large supply of Kéhler metrics with associated Riemannian metric complete;
(iii) = contains a subdomain biholomorphic but not isometric to an Hermitian symmetric
space. We give necessary and sufficient conditions for the subdomain to agree with

—
—

An important application of the holomorphic extension is to obtain estimates of Fourier
coefficients of automorphic forms and triple products. This we do by generalizing and
extending ideas on invariant Sobolev norms, introduced by Bernstein—-Reznikov '99. Our re-
presentation theoretic techniques allow us to obtain results on triple products for SL(n, R).

Construction of certain generalised modular symbols
T.N. VENKATARAMANA
(joint work with B. Speh)

We consider a pair (H,G), H a semi-simple Q-subgroup of a semi-simple algebraic group
G, with an inclusion of the symmetric spaces Xy — Xg. Let I' € G(Q) be a congruence
subgroup and consider the finite (proper) map Sy (I') = T'N H\ Xy — I'\Xg. We get a
special cycle, a fundamental class [Sy(I')] € HP~4(T'\ X), where d, D are the dimensions
of Xy and Xg respectlvely Consider the compact dual spaces_ X H — XG € X. We get
a class [Xpy] € HP=%(X(). There exists the Borel map j : H*(Xg) — H*(I\X¢) which is
injective if and only if G is anisotropic over Q. We prove
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Theorem 1: The class j[ Xy is a span of Hecke translates of the class [Sy (). In
particular, if j[Xy] # 0, we obtain the nonvanishing of the generalised symbol [Sy(T)].

The proof uses the fact (proved by J. Franke) that the space of G(Ay) invariants of the
G(Ay)-module H*(S¢), which is the direct limit as I' runs through congruence subgroups
of G(Q) of the cohomology groups H*(S(I')), is a direct summand of H*(S¢) as a G(Ay)-
module. The proof also uses the description of the G(Af)-invariants as a cohomology group

of H*(U) for a certain open subset U of X. As a consequence we deduce

Theorem 2: The modular symbol [Sy(T')] # 0 for some congruence subgroup I' C G(Q),
for the pairs (G, H) below

(1) G = Rgjo(SLyy), H = Rg(Spy,) with E/Q an imaginary quadratic extension,
and Rgq being the Weil restriction of scalars.

(2) G = Rg/o(SLant1), H = Rpjg(SLony1), where E/F is a totally imaginary quadratic
extension of a totally real number field.

(3) G = Spayn, H =[1I;_; Span,, with Y n; =n.

Trace formula and asymptotics for p—form coefficients on real hyperbolic space
F. WILLIAMS

Using the trace formula we analyze the spectral zeta function for twisted p—forms on a
compact real hyperbolic space. Several applications are presented.

(1) Small-time asymptotics of the heat kernel where we compute explicitly all
Minakshisundaram—Pleijel coefficients (= a new proof of results in R. Miatello’s
thesis),

(2) a new proof of Weyl’s law for L?(T'\G)-multiplicities,

(3) computation of the multiplicative anomaly for 2 Laplace operators,

(4) a formula that relates the spectral zeta function to the Selberg zeta function and

(5) various applications to physics — including a proof that the topological component
of the vacuum energy of a hyperbolic Kaluza—Klein space-time is always negative.

Edited by Cornelia Busch
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