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ABSTRACT. Random Schrodinger operators are a topic of common interest in
Mathematical Physics that connects to both Functional Analysis and Proba-
bility theory. It is believed in Physics that these operators possess a spectral
regime with localised states, which do not contribute to electrical transport,
and another regime with delocalised or electrically conducting states. While
the first regime is understood well in mathematical terms, it is a major chal-
lenge for analysts to shed light on the delocalised phase. It is only very re-
cently that some results have been obtained on electrical transport described
by random Schrédinger operators. The meeting gathered nearly all main
protagonists involved in recent advances in the theory of random Schrédinger
operators and provided a forum for intensive discussion.

Mathematics Subject Classification (2000): 47B80, 60H25, 82B44.

Introduction by the Organisers

This (half-size) workshop was attended by 25 participants. About fifty per cent
of the attendees could be considered as “non-senior” researchers, among them
also two PhD-students. The level of the workshop was high and nearly all main
protagonists of the field were present. The organisers feel that the special focus and
the familiar atmosphere of a small-size meeting found great appreciation among
the participants.

The programme of the workshop consisted of short talks, long talks and some
distinct series of lectures. The purpose of having such series — given by MICHAEL
A1ZENMAN, ABEL KLEIN, LEONID PASTUR and CLAUDE-ALAIN PILLET — was to
underline important recent developments and stimulate new ideas.
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Random Schrodinger operators play an important role in our understanding of
electronic properties in disordered materials, such as random alloys, doped semi-
conductors or amorphous substances. It is well known from Physics that these
materials exhibit a metal-insulator transition in three or more space dimensions,
separating a conducting phase with a non-zero direct-current conductivity from
an insulating phase where the direct-current conductivity vanishes. Furthermore,
physicists argue that the conducting (resp. insulating) phase occurs, if the Fermi
energy of the system falls into a region corresponding to delocalised (resp. lo-
calised) states of the quantum-mechanical energy operator. It was ANDERSON’s
achievement in 1958 — rewarded by the 1977 Nobel Prize in Physics — to have
given the first heuristic evidence for the existence of both localised and delocalised
states for a discrete random Schrodinger operator in three or more space dimen-
sions. For these very reasons, random Schrédinger operators (both discrete and in
the continuum) have also attracted a great deal of attention in Mathematics over
the past decades with research taking place at the interface of Functional Analy-
sis and Probability theory. Yet, our mathematical understanding of the physical
picture is still unsatisfactory.

The workshop covered a broad selection of topics of current interest in the theory
of random Schrodinger operators. These include absolutely continuous spectrum
on tree graphs, Anderson localisation for two interacting particles in a random
environment, an extension of the fractional-moment method in the continuum,
persistence of Anderson localisation for models with decaying randomness, spectral
properties of random band matrices, localisation and control of Sobolev norms, an
extension of Minami’s estimate, linear response theory for random Schrodinger
operators and Mott’s law for the low-temperature behaviour of conductivities.
Despite a focus on truly multi-dimensional phenomena, there were also two talks on
recent interesting developments related to transport in one-dimensional systems.
In addition to the above, the topics of the lecture series, which are summarised
very briefly in the next paragraph, received particular attention.

In his lectures, MICHAEL AIZENMAN gave an overview on facts and conjectures
which relate spectral types and level statistics for a variety of different models.
Particular attention was directed at tree graphs, in the context of which some
surprises were presented and elucidated. ABEL KLEIN presented a concentration
inequality for functions of random variables. It is the main novel ingredient in a
Bourgain-Kenig-like multi-scale analysis to prove localisation at extremal energies
for alloy-type random Schrodinger operators with an arbitrary single-site distribu-
tion of the random coupling constants. Electrical conductivities and higher-order
density correlations in disordered materials stood in the centre of the lectures
delivered by LEONID PASTUR. He reviewed a multitude of their characteristic
properties, which are expected or known in Physics, thus stimulating many differ-
ent directions for future mathematical research. Finally, CLAUDE-ALAIN PILLET
presented an operator-algebraic formalism for a mathematical description of trans-
port in quasi-free fermionic systems.
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It is the organisers’ great pleasure to thank the Oberwolfach institute for pro-
viding such a stimulating atmosphere and excellent research infrastructure. Both
contributed to the overall success of the meeting.
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Abstracts

On the Level Statistics for Random Operators
MICHAEL AIZENMAN
(joint work with Simone Warzel)

For operators with homogeneous disorder, it is generally expected that there
is a relation between the spectral characteristics of a random operator in the
infinite setup and the distribution of the energy gaps in its finite volume versions,
in corresponding energy ranges. Whereas pure point spectrum of the infinite
operator goes along with Poisson level statistics [14, 13], it is expected that purely
absolutely continuous spectrum would be associated with revel repulsion, spectral
rigidity, and gap distribution resembling the corresponding random matrix (RM)
ensemble. The RM conjecture echoes the broad numerical evidence and some
theoretical arguments indicating that random-matrix gap statistics (GOE/GUE)
are of relevance in a wide range of situations [5, 11], including the spacing of zeros
of the Riemann zeta function [15]. One may add that also other statistics were
noted to appear in situations of interest [4, 12, 6, 7, 9] and the explicit RM form
of this conjecture is not universally embraced. At present the only examples of
random operators with extensive disorder, of homogeneous strength, which are
proven to exhibit ac spectrum are associated with trees [10, 1, 2, 8]. We have
therefore undertaken to analyse the gap statistics for that case. The result, which
is established under an auxiliary assumption (which for certain cases is proven
to be satisfied) is that on finite regular rooted trees the eigenstate point process
has Poissonian limit at all energies, even where the infinite regular tree exhibits
absolutely continuous (ac) spectrum [3]. Though at first site this may appear to
contradict the conjecture described above, we also find that this is not so — if its
statement is carefully interpreted. Upon inspection, one finds that the relevant
limit of finite trees is not the infinite homogenous tree graph from which they are
‘carved out’, but rather a single-ended canopy graph. For this tree graph, which
corresponds to a horoball as a subset of the regular tree, we prove that the random
Schrodinger operator has only pure-point spectrum at any strength of the disorder.
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Multi-Particle Anderson Localisation
VICcTOR CHULAEVSKY
(joint work with Yuri M. Suhov)

We study spectral properties of a system of two quantum particles on an integer
lattice Z with a bounded short-range two-body interaction, in an external random
potential field z +— V' (z,w) with independent, identically distributed values. The
main result is that if the common probability density f of random variables V' (z, - )
is analytic in a strip around the real line and the amplitude constant g is large
enough (i.e. the system is at high disorder), then, with probability one, the spec-
trum of the two-particle lattice Schrédinger operator H(w) (bosonic or fermionic)
is pure point, and all eigen functions decay exponentially. The proof given in this
paper is based on a refinement of a multiscale analysis (MSA) scheme proposed by
von Dreifus and Klein [2], adapted to incorporate lattice systems with interaction.
The model:

AN 4 g(V(ajiw) + U, 22)

Mw

3:1
Assumptions:
o {V(r;w),r € Z'} is an ii.d. random field with analytic probability density
function (PDF) py(z):
[y ()] < be=el"

e |g| > 1; in particular, 1-particle AL holds
e The interaction potential U is of finite range d > 0 and bounded; however, a
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hard core component can be allowed (then a minor modification is required)
e quantum statistics: any (Fermi or Bose).

The strategy of the proof of exponential localisation is as follows:
(1) We prove that density of states (DoS) for a given volume A C Z? is analytic
(in a strip around real line). This is a direct analog of the Wegner estimate for
interacting systems. We also prove that the DoS in a volume A’ of linear size
2L conditioned by the potential in another volume A7 with dist(A}, A7) > 8L is
analytic, although potential samples in A} and in A7 are not independent at any
distance. Pairs of volumes at distance > 8L are called L-distant (L-D, for short).
(2) Results of (1) allow to prove that

P {dist(S(Ha, ), E) <€)} < CL?e.

and that
P {dist(S(Hy, ), S(Hay) <€)} < CL%e.

(3) Following the strategy of [2], we analyse pairs of volumes A}, A} of sizes

L, = Lg‘k, a = 3/2, and show by induction in scale Lj that with sufficiently
high probability volumes of any size Lj feature an exponential decay of Green’s
functions (such volume are called non-singular, or NS). In addition,

P { both A} and A7 are singular} < L. p>1.

Compared to [2], the main technical difference of our model is that we have to
treat separately pairs A’, A" C Z? where, respectively, 0, 1, or 2 volumes among
A, A" are subject to interaction.

Finally, we show that the above mentioned extensions of Wegner estimate to
interacting particle systems, combined with detailed analysis of pairs of singular
volumes, imply exponential decay of Green’s functions of operator H with proba-
bility one. A fairly general result of [2], [4] shows then that, with probability one,
all generalised eigenfunctions of H decay exponentially at infinity.
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Hyperbolicity, Fractal Dimension, and Quantum Dynamics for the
Fibonacci Hamiltonian

DAvVID DAMANIK
(joint work with Mark Embree, Anton Gorodetski, Serguei Tcheremchantsev)

We consider the Fibonacci Hamiltonian, which is the discrete one-dimensional
Schrodinger operator

[Hul(n) = u(n+1) + u(n — 1) + Axp—¢-1,1)(n¢~ "+ 6 mod 1)u(n)

in ¢2(Z), where A > 0 is the coupling constant, ¢ = \/5;1, 0 € [0,1) is the phase,
and describe several results obtained in [2] for this operator family.

It follows by minimality of irrational rotations and strong convergence of opera-
tors that the spectrum of H is independent of the phase. That is, for every A > 0,
there is a compact subset 3y of R such that ¥y = o(H) for every 0 € [0,1). Siit6
showed in 1989 that the Lebesgue measure of the spectrum is zero [3],

Leb(Xy) =0 for every A > 0.

It is therefore natural to study the dimension of this set. Recall that for S C R
bounded and infinite, the following two dimensions are of interest. For a € [0, 1],
let

h*(S) =lim inf ) " |L,[*
m>1

0—0 d—covers
and then define the Hausdorff dimension of S byﬁ
dimg () = inf{a : h*(5) < 0o} = sup{a: hY(S) = co}.
The lower box counting dimension of S is given by

log N
dimj(S) = lim inf Og—sl(g)
e—0 log =

where Ng(e) = #{j € Z : [je,(j + 1)e) NS # 0}. The upper box counting
dimension, dim}(9), is defined with a limsup in place of the liminf. When the
lower and upper box counting dimensions coincide, we say that the box counting

dimension exists and denote it by dimp(S).
Our first result is the following.

Theorem 1. Suppose that A > 16. Then, the box counting dimension of X exists
and obeys dimp (X)) = dimg(Xy).

The key to this result is the hyperbolicity of the so-called trace map as estab-
lished by Casdagli [1] in 1986.

In order to describe the large coupling asymptotics of the dimension of the
spectrum, let us introduce the function

) = % (2= 32)log2 + (1 — 2)log(1 — z) — (22 — 1) log(2z — 1)
—(2 — 3z) log(2 — 3x)]
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on (3,2). f takes its maximum at a unique point z* € (3, 2). Write f* = f(z*) =
max,e 1 2y f(z). Numerics show that 2* ~ 0.5395 and f* ~ 0.88137. Moreover,
let

Su(N) = 2) + 22

and

1
S = 3 (()\ /42— 12) .
Theorem 2. (a) Suppose A > 4. Then, we have

. f*
dims(32) 2 5 5.

(b) Suppose A > 8. Then, we have
: I
d Yy < ————.
(%) < o5
As an immediate consequence, we obtain the following exact asymptotic result.
We write dim for either dimyg or dimp, which is justified by Theorem 1.

Corollary 1. We have
lim dim(Xy) - log A = f*.

A—00

Next, we present an application of the dimensional lower bound to the rate
of wave packet propagation in this model. The time-averaged moments of the
position operator are given by

2 [ _ i
(XBNT) = 5 [ 2™ Sl W80, 6 P .

nez
To describe their power-law behavior, let

_ . og(| XI5 (T
B5,(p) = lim inf ) logOT

and

log (| X[§)(T)
(p) =i I LA
Jon (B) = TS = T
Both functions ﬂgf) (p) are nondecreasing in p and hence the following limits exist,
oy = lim 3 (p).

Thus, the exponents o correspond to the rate of propagation of the fastest (poly-
nomially small) part of the wave packet.

Theorem 3. For every A > 0 and every 0 € [0,1), we have that
of > dimE ().
Consequently, for X > 4 and every 0, we have

+ L
“ " logSi(\)°

(0%
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An Evolution Equation as the WKB-Correction in Long-Time
Asymptotics of Schrodinger Dynamics

SERGUEI DENISSOV

The purpose of the talk is to discuss a recent development of the scattering
theory for multidimensional Schodinger operators. There is a hope to build suitable
tools to eventually treat the cases when the potential V' (x) is random and decays
slowly. For instance, an interesting case is V(z) = Vgna(z)(x)~7, where Vapa(x)
is an Anderson potential. The case v > 1/2 was treated in earlier papers by
J. Bourgain and the author. Going below the critical value 1/2 is interesting since
one might expect that the spectrum remains a.c. at least for high dimension (recall
that for 1-dim case the spectrum is pure point almost surely for any v < 1/2).

Current paper deals with a three-dimensional non-random model in which the
potential V' (x) satisfies the following conditions:

V(@)] < Clx) ™7, [Va(@)] < Cla) 1, [V ()] < Ca) ™7

where V,. denotes the radial derivative. We prove existence of modified wave-
operators and present nontrivial WKB-correction to the long-time Schrodinger
dynamics. This correction is described by a certain evolution equation which
generalizes earlier results (e.g. [1, 2]).

Acknowledgement: author’s participation in the workshop was supported by
Wisconsin Alumni Research Foundation (WARF).

REFERENCES

[1] D. Yafaev, Wave operators for Schrédinger equation, Theoret. and Math. Phys. 45, no. 2,
(1981), 992-998.

[2] D. Yafaev, Scattering theory: some old and mew problems, Lecture Notes in Mathematics,
1735, (2000), Springer-Verlag, Berlin.



Transport in Multi-Dimensional Random Schrodinger Operators 679

Persistence of Anderson Localization in Schrodinger Operators with
Decaying Random Potentials

ALEX FIGOTIN
(joint work with Frangois Germinet, Abel Klein, Peter Miiller)

We consider Schrodinger operators with a negative and decaying random po-
tential. Our goal is to study the discrete spectrum created by this potential below
zero, and to show that a persistence of Anderson localization, and even dynamical
localization, occurs. We first prove that if the envelope decays faster than |z|~2
at infinity, then the operator possesses infinitely many eigenvalues below zero. For
envelopes decaying as |x|~% at infinity, we then determine the number of bound
states below a given energy E < 0, asymptotically as « | 0. To show that bound
states located at the bottom of the spectrum are related to the phenomenon of
Anderson localization that occurs for the corresponding homogeneous model, we
prove: (1) that these states are exponentially localized with a localization length
that is uniform in the decay rate o and that (2) dynamical localization holds
uniformly in a.

Details can be found in [9].
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A Variant of an Estimate by Minami
GIAN MICHELE GRAF
(joint work with Alessio Vaghi)

We consider the Anderson model in the form
(1) H=K+YV

acting on £2(Z%), where V' = {V,},cza consists of independent, identically dis-
tributed real random variables, whose common density p is bounded. The opera-
tor K = K* describes short-range hopping of a particle moving on the lattice Z¢.
It may be the discrete Laplacian or, more generally, have matrix elements which
need not be real or, equivalently, symmetric:

(2) K(z,y) # K(y, z),
as it is e.g. the case in presence of a magnetic field.

Let G(z) = (H — 2)~! be the resolvent and Im G(z ) (G(z) — G*(2))/2i. We
observe that in view of (2) (ImG(2))(x,y) # Im(G(z;x,y)), unless x = y. The
estimate 1s

(3) E det((Im G(2))(i,25)); ,_; < 7"[lpll%

for any points 1,...,z, € Z¢ and for Im z > 0. It also holds for the Hamiltonian
Hy on ¢%(A) obtained by truncating H to A and for z1,...,z, € A.

The estimate was established in [3] and independently in [1] with a different
proof. For n =1 it is due to [2], where its relation to Wegner’s bound was pointed
out; for n = 2 and in the case of equality in (2) it was established by Minami for
the purpose of proving Poisson distribution of eigenvalues of Hy in the localization
regime. More precisely, the eigenvalue statistics near an energy E € R is described
by the point process

|A]
E(N E)(dx) =) ayp,—p)(d)
7j=1
where E; are the eigenvalues of Hy. In the expression |A|(E; —E) they are rescaled
by the volume |A[, so as to allow for a limiting distribution as A grows large. For
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E in the localization regime Minami showed that £(A; E') converges in law weakly
to the Poisson point process {(F) of intensity n(FE)dz,

E(ASE)(de) 2 €(E)(da), (A TZY),

where n is the density of states.
A consequence of (3) derived in [1] is about the number of eigenvalues contained
in an interval I:

P E; € I} > n) < —([lpllool TI|AD™ -

o
n!

The proof of (3) relies on Krein’s formula, as did the above mentioned works
in the cases n = 1, 2. Let G(z) be the resolvent of the Hamiltonian (1) in which
V., (i = 1,...,n) have been set to zero; let A be the n x n matrix defined by
—(A™Y) = @(z;xi,xj). Then the dependence of G(z;x;,z;) on v; = V, is
explicit:

(G(z;xi,xj))zjzl = (Im[diag(v1,...,v) — A]71).

Further ingredients of the proof, which proceeds by induction, are the Schur com-
plement formula and the inequality (related to Hadamard’s) applying to positive
n X n matrices C:

detC’Scnn~det6,

where the r.h.s. refers to the (n — 1, 1)-block decomposition

_(C ¢
C_<CT cnn)'

The proof given in [1] is by means of a representation of the Lh.s. of (3) in terms
of a Gaussian integral.
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Estimates for Spectral Moments of Random Schrodinger Operators
PETER D. HisLop

(joint work with Jean Bellissard, Jean-Michel Combes, Frédéric Klopp, Olivier
Lenoble, Peter Miiller)

The moments of spectral densities and covariant observables are important in
the theory of transport for random quantum systems. The first moment of the
spectral density describes the density of states measure (DOS) and the second mo-
ment of the velocity operator describes the current-current correlation measure.
This talk summarizes recent progress on the existence and regularity of these mo-
ments. The basic one-particle Hamiltonian describes a charged particle interacting
with a disordered environment. The Hamiltonian has the form H, = Hy+ V,, act-
ing on L%(R%) or £2(Z%), for the continuum or lattice models, respectively. The
background operator Hy = L + Vj is a deterministic, periodic Schrodinger opera-
tor, where L is the nonnegative Laplacian for the continuum case, of the discrete
Laplacian for the lattice case. In the continuum case, we assume that H satisfies
the classical unique continuation principle (UCP). The random potential V,, is
Anderson-type having the form

(1) Vo(z) = ) wjule - ).

jezs

For X = R%, the single-site potential u > 0 and u € L°(R?), and for Z¢, we have
u(j — k) = ;5. The random variables {w; | j € Z?} form a real-valued, bounded
process on Z®*. The most common example is the case when the random vari-
ables are independent and identically distributed (iid) with a common probability
measure fo with a density ho € L§°(R).

The spectral density operator p,(E) is defined as the boundary-value of the
imaginary part of the resolvent:

(2) pw(E) = 1iII(l) S(H, — E —ie)h

On the lattice, the N*» moment of the spectral density is defined by
(3) Kn(Er, ..., En) = IE{(0]pu(E1)Ar - - pn (En)AN|0) ],

with a similar expression for operators on the continuum. These moments de-
fine Radon measures on RY, and arise in the transport theory of the quan-
tum system described by the one-particle Hamiltonian H,. Among the families
{A;} of covariant observables, a special role is played by the velocity operator
Vj = (=i/2)[Has X,

First Moment: The Density of States
The DOS measure for lattice operators is defined by (3) with N =1 and A = I,
so that

(4) du(E) = IE{(0]p,(E)|0)} dE.
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When it exists, the density of the measure p, n(E), is defined by the expectation
of the matrix element on the right in (4). If the random variables are iid with a
probability density ho € Li°(R), Wegner [15] proved n(E) exist almost surely and
is a bounded function. For additional information about the DOS measure u for
lattice models, we refer to [2]. Much less is known about this nonnegative measure
for continuum models. The DOS measure is related to the integrated density of
states (IDS) which is the distribution function of the DOS measure v(A),
E

(5) N(E) = / ().

— 00
The DOS and the IDS can be defined by a Pastur-Shubin formula that expresses
these objects as the thermodynamic limit of objects defined for the system in a
finite volume. Let A € R% or A C Z? be a cube. We define a finite-volume
Hamiltonian Hy = H,|A, with periodic boundary conditions. We then have

(6) N(E) = lim —— #{\(A) < B},

A—X |A]

where )\;(A) are the eigenvalues of Hy, and X = R% or X = Z?. The IDS is known
to exists almost surely and is a monotone increasing function. One basic question
is: Does the positive measure v have a density? When the operator H,, is ergodic,
the IDS exists almost surely. We assume the existence in the general case treated
in the first theorem. We define the Levy concentration for the process {w;} as
follows. For any j € Z<, the conditional probability measure y; is defined, for any
measurable K C R, by

(7) pi(K) = IP{w; € K [ (wi)i;}-
We then define
(8) s(e) = sup IE{sup u;([E, E +¢€])}.

jEZ4 E€R

Notice that in the iid case, if the probability measure pq is Holder continuous with
exponent 0 < a < 1, then s(e) ~ €%, as € — 0.

Theorem 1. [5] For X = R?, and for all intervals I C R, there is a finite constant
Cr > 0 so that for all E € I and € > 0 small, we have

9) 0< N(E+¢)— N(E)<Crs(e).

As a corollary, we note that if the process is iid with a density hg, as above, then
the IDS is uniformly, locally Lipschitz continuous. In this case, the DOS exists as
a locally bounded function. This theorem follows from a Wegner estimate of the
form:

(10) IE{TrEA([E,E + €])} < Cgs(e)|Al.

Wegner estimates such as (10) play an important role in some approaches to An-
derson localization. There have been several recent results on the Holder continuity
of the IDS using bounds on the spectral shift function, see, for example, [4, 10, 11].
When the potential V, is a Gaussian process on R?, the Lipschitz continuity of
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the IDS was proved in [12]. See also [14] for addition situations for which the
continuity of the IDS has been studied. We remark that similar results are known
for Landau Hamiltonians perturbed by Anderson-type random potentials.

The proof of this theorem requires a refined spectral averaging theorem and a
quantitative UCP. A basic spectral averaging bound, see [3], states that if Hy =
Hy + AB?, where B? > 0 is a bounded operator, then for any compactly support
density gg, there exists a finite constant Cy > 0 so that

(11) sup
e>0
The quantitative UCP was proven in [4]. It basically states that if W > 0 is a
nonnegative periodic function and if Ej(-) is the spectral family for the periodic
Schrodinger operator Hy restricted to a cube A compatible with the periodicity,
then for any interval I € R, there is constant C; > 0, independent of A, so that

(12) E}DWEMNI) > CoER ().

Lower bounds on the DOS n(E) are important in Minami’s proof [13] that the
energy level statistics are Poissonian in the strong localization regime. Although
discussed in [15], it is only recently that a proof is given for the lattice model by the
author and P. Miiller. The result for continuum models is work in progress. On the
lattice, the spectrum of the discrete Laplacian L is [—2d, 2d], and we assume that
the random variables are iid with a density hg > ¢o > 0 on its support [W_, W,].

/ dX go(N\) B(Ho+ AB? — E—z’erlBH < Collgolloo-

Theorem 2. [9] For each § > 0, there is a finite positive constant Cs > 0 such
that n(E) > Cs > 0 for Lebesque almost every E € [—2d,2d] + [W_ + 6, W4 — §].

Second Moment: Current-Current Correlation Measure

Among the second moments, the second moment of the velocity operator V; H,,
= (—i/2)[Hy, X;| is important in the theory of conductivity. The current-current
correlation measure can be defined, in analogy with the DOS formula (6), as

(13) dm;;(E,E") = IE{(0|V;H,Fn,(dE)V,;H,Ey_ (dE")[0)},
where Epy_(-) is the spectral family for H, and i,7 = 1,...,d. We define the
positive current-current correlation measure as dm = Zle dm;;. It 1s known

that this measure exists and can be obtained through a Pastur-Shubin formula
expressing it as a thermodynamic limit (see [8] and references therein). One of
the open problems is to determine if this measure has a density m(FE, E’). Partial
progress was recently made for energies outside of the diagonal E = E’. It is
expected that in the strong localization regime, the density m(FE, E’) vanishes as
E — FE’, and in the transport regime, the density is bounded from below by a
positive constant when E — E’. For the lattice model with a disorder parameter
A in from of the potential, we have the following result.

Theorem 3. [1] If random variables in the Anderson-type random potential have
a probability density hg that admits an analytic continuation to a strip of width
r > 0 in the complex plane, then there is a constant ag > 0, depending on ri and
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d, so that for all |\| > 0 large enough, the current-current correlation measure has
a density m(E, E') that is real analytic in {(E,E') € R?* | |E — E'| > ap|\|"'}.

The proof of this theorem uses the random walk expansion of the Green’s function
as utilized in [7], for example, for proofs of regularity of the DOS under similar
conditions.

Higher-Order Correlations

In [1], higher-order correlation measures for covariant observables were studied.
Higher-order moments appear, for example, in the study of the time-evolution
of powers of the position operator. The main result for lattice models is the
following. Suppose we have iid random variables with a probability density having
a continuation to a strip about the real axis. Then, for strong disorder, and any
family of N-covariant operators A;, the moment Ky (E1,...,Eyn), defined in (3),
defines a Radon measure that has a real analytic density away from a |A|-dependent
neighborhood of the coincident planes E; = E}, j # k. The behavior near and at
the coincident planes is an open problem.

REFERENCES

[1] J. Bellissard, P. D. Hislop, Smoothness of correlations in the Anderson model at strong
disorder, Ann. H. Poincaré 8, 1-26 (2007).

[2] R. Carmona, J. Lacroix, Spectral theory of random Schréidinger operators, Boston:
Birkhaiiser, 1990.

[3] J. M. Combes, P. D. Hislop, Localization for some continuous, random Hamiltonians in
d-dimensions, J. Funct. Anal. 124, 149 - 180 (1994).

[4] J. M. Combes, P. D. Hislop, F. Klopp, Hdlder continuity of the integrated density of states
for some random Schrodinger operators at all energies, IMRN 2003, no. 4, 179-209.

[5] J. M. Combes, P. D. Hislop, F. Klopp, An optimal Wegner estimate and its application
to the integrated density of states for random Schrédinger operator, to appear in Duke
Mathematics Journal.

[6] J. M. Combes, P. D. Hislop, S. Nakamura, The LP-theory of the spectral shift function, the
Wegner estimate, and the integrated density of states for some random operators, Commun.
Math. Phys. 218, 113-130 (2001).

[7] Constantinescu, J. Frohlich, T. Spencer, Analyticity of the density of states and replica
method for random Schrdédinger operators on a lattice, J. Statist. Phys. 34, 571-596 (1984).

[8] P. D. Hislop, O. Lenoble, Basic properties of the current-current correlation measure for
random Schrodinger operators, J. Math. Phys. 47, 112106-11228 (2006).

[9] P. D. Hislop, P. Miiller, Lower bounds on the density of states for random Schrodinger
operators, preprint.

[10] D. Hundertmark, R. Killip, S. Nakamura, P. Stollmann, I. Veselic, Bounds on the spectral
shift function and the density of states, Commun. Math. Phys. 262, 489-503 (2006).

[11] D. Hundertmark, B. Simon, A diamagnetic inequality for semigroup differences, J. Reine
Angew. Math. 571, 107-130 (2001).

[12] T. Hupfer, H. Leschke, P. Miiller, S. Warzel, The absolute continuity of the integrated density
of states for magnetic Schrodinger operators with certain unbounded random potentials,
Commun. Math. Phys. 221, 229-254 (2001).

[13] N. Minami, Local Fluctuation of the Spectrum of a Multidimensional Anderson Tight Bind-
ing Model, Commun. Math. Phys. 177, 709-725, (1996).

[14] 1. Veselié, Wegner estimate and the density of states of some indefinite alloy type
Schrodinger operators, Lett. Math. Phys. 59, 135-158 (2002).



686 Oberwolfach Report 12/2007

[15] F. Wegner, The density of states for disordered systems, Zeit. Phy. B 44, 9-15 (1981).

Linear Response Theory for General Ergodic Magnetic Schrodinger
Operators

YANG KANG
(joint work with Abel Klein)

Let H(t) > 1 be a time-dependent self-adjoint operator on a Hilbert space H
with quadratic form domain Q(H (t)). If Q(H(t)) is independent of ¢, along with
other suitable conditions, we construct a unitary propagator that solves weakly
the corresponding time-dependent Schrodinger equation. Using this extension of
Yosida’s Theorem, we justify the linear response theory for an ergodic magnetic
Schrodinger operator defined as a quadratic form, and derive a Kubo formula for
the electric conductivity.
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Concentration Inequalities and the Universal Occurrence of Anderson
Localization

ABEL KLEIN
(joint work with Francois Germinet)

The Anderson Hamiltonian is the random Schrodinger operator

(1) H,:=-A+V, on L*RY),

with

(2) Vo(x) =) weulz —¢),
¢ezd

where

e The single-site potential u is a nonnegative bounded measurable function
on R? with compact support, uniformly bounded away from zero in a
neighborhood of the origin.
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o w = {wc}ceze is a family of independent, identically distributed random
variables with common probability distribution w, such that
— 1 is non-degenerate with compact support C [0, 0o].
— 0 € supp p.

Without loss of generality we may just assume

(3) {0,1} € supp p C [0, 1].

The Anderson Hamiltonian H, is an R%ergodic family of random self-adjoint
operators. It follows from standard results that there exists fixed subsets of R so
that the spectrum of H,,, as well as the pure point, absolutely continuous, and
singular continuous components, are equal to these fixed sets with probability one.
It follows from our assumptions on u and p that o(H,,) = [0, +oo[ with probability
one.

We prove that the Anderson Hamiltonian with single-site probability distribu-
tion p as in (3), but otherwise arbitrary, always exhibits Anderson and dynamical
localization at the bottom of the spectrum.

We use x, to denote the characteristic function of the cube of side 1 centered

at 0. We write (z) = /1 + ||,

Theorem 1. Let H,, be the Anderson Hamiltonian on L2(RY) with single-site
probability distribution i as in (3), but otherwise arbitrary. Then there exists
Ey > 0 such that v exhibits Anderson localization as well as dynamical localization
in the energy interval [0, Ey]. More precisely, we prove

e (Anderson localization) There exists m > 0 such that, with probability one
the operator H,, has pure point spectrum in [0, Eg] with eigenvalues of
finite multiplicity and exponentially localized eigenfunctions with rate of
decay m, i.e., if ¢ is an eigenfunction of H, with eigenvalue E € [0, Ey]
we have

(4) Ix2®]] < Cue e~™l for all x € RY.

e (Dynamical localization) For all s < 3d— we have

2s

(5) E {SUP H<l’>%€itH‘”X[O’EO] (Hw)XO
teR

m}<oo for all m > 1.
2
The theorem is proved by using the Bourgain-Kenig multiscale analysis [2] with
the following concentration estimate for function of independent random variables.
The (Levy) concentration function of a probability measure p on R is the func-
tion on [0, oo] defined by

(6) Qu(s) = maxp{[z,z +s]}.

Given a random variable X with probability distribution pux, we define its con-
centration function by

(7) Qx(s) = Qux (s).
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If 14 is as in (3), we have
(8) 0<Qu(s) <1l forall s€]0,1], Qu(s)=1 forall s>1.

Write t = (¢1,...,%,) € R" and let {e; := {53-1}1-:17.”,”}3.:1 . denote the stan-
dard basis in R".

Theorem 2. There exists a universal constant T < oo with the following property:
For all random variables X with probability distribution p as in (3), and all random
variables Y = F (X1, Xo,...,X,), where n > 3, {Xi}izl,...,n are independent
copies of X, and F is a real-valued Borel function on [0,1]™ for which there exist
constants 0 < a < b < oo such that

(9) at < F(t + te;) — F(t) < bt
for allt >0, t,t+te; €[0,1], j=1,2,...,n, we have
T (logn)?
(10) QY(S) S ’
(1-Qx (maps)” VO
where
logn

3 [ 2nb 2
(11) Tmah = = (i 4 2)

a\ a

To prove this theorem, we prove explicit bounds on the maximal probability of
antichains in multisets. Given k € N, let My, := {0,1,2...,k}, a poset with the
usual order. Let p = (po,p1,...,pr) € (0,1)*! with Z?:o p; = 1, and consider
the positively weighted poset (My, p), a probability space. We set

12 = max i _:= min .
(12) P+ j:0717...,k:p‘77 p j:o,1,...,k;p7

Given n € N, consider the multiset M = My, := {0,1,2...,k}". Elements
of M will be denoted by x = (x1,%2,...,%,). Given x,y € M, we let x <y if
and only if z; < ys for all s = 1,2,...,n. This makes the multiset M a poset,
the direct product of n copies of the poset Mj. (Note My = My ;.) (M,P) is a
probability space with the product measure P, the weight of x is is

(13) px = P(x) = [[ b

The function r(x) := >.I_, x5 € [0,kn] is a a rank function on M. We consider
the level sets L, := {x € M; r(x)=r} for r € [0, kn], and set W, = P(L,), the
weighted r-th Whitney number. (See [1, 3].)

A subset A C M is called an antichain if it consists of incomparable elements,
ie., x,y € Aand x <y imply x =y. We define

(14) S(M,P) :=max{P{A}; A C M antichain}.

For fixed k and p, Engel [3, Theorem 7.2.1] gave an asymptotic estimate for
S(Mpm, P):

(15) lim ov2mn S(Mg,,P) = 1.

n—oo
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We derive explicit estimates on S(Mp ,,P), the constants depending on &k and
p. We prove:

Theorem 3. Suppose

(16) 1" >4kmax{i,p—+2}.
ogn P = pr)
Then
S(Mpgn, P) §C’min{ ! : i }
Viknp_ \/n(l—py)
c . log n 2
(17) + WT min {k:log n, kp%} + —iknp_ logn.

In particular, we have two useful bounds:

Corollary 1. For all n such that np_ > 4klogn,

1 klogn
18 S(Mgn,P)<C + ;
(8) (Man,P) (W (k:p>2n)
and for all n such that n(kp_)? > 4klogn,
k 1 logn 2
19 S(Mgn,P) < C + T
(19) (Micin, ) Vn (x/(l—er) \/ﬁp—> knp_logn
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Renormalization of Certain Exponential Matrix Cocycles
FREDERIC KLOPP
(joint work with Alexander Fedotov)

We consider the family of Schrodinger equations with a sparse potential
(1) —"(t)+a) S(ts(l) —t) e(t) = Ev(t), t>0,
1>0
t¢(l) = l(l — 1)/2 +1lp1 + ¢ forl € N
and with Dirichlet boundary condition at zero. Here, A\ is a positive coupling

constant, and 0 < ¢1, ¢2 < 1 are parameters indexing the equations of the family.
The analysis of the solutions of (1) can be reduced to the analysis of an ergodic
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matrix cocycle that we describe now. Pick | € Z. On the interval t4(I — 1) <t <
(1), any solution of (1) has the form
w(t) — a?—ei\/ﬁt 4 al—e—z’\/Et

where aljE are constant coeflicients. The jump conditions at ¢4(/) imply the follow-
ing relations between the coefficients (ail) and (af):

§ l § L et

Vi1 (z) = M(T,(z), A) (), = (al—> , 1>0,

l

where = (21, 12) is a point on T?, the two dimensional torus which is identified
to [0, 1]2,

E E 1
x1:<£¢1> mod 1, $2:<\/—_¢2—|——> mod 1,
s s 4
T,, is the skew shift on the torus,
r1\ _ [(T1t+w
Lo (ﬂﬂz) B (xz +CU1)
where the frequency w given by

w = <\/—E> modl, 0<w<1,

™

and M is the unimodular matrix

_ A Be (—1’2) def oriz
@) M) = (5, D) ™
where the constants A and B are defined by

A=1—1

Q
, B>0, B*=|AP”-1.

wE P2 A

We see that the analysis of the spectrum (1) is reduced to the analysis of the

matrix cocycle

(3) M(T,(x), A) ... M(T(x), A) M (z, A).

When w is irrational, the skew shift and, so, the cocycle itself is ergodic. We give
a constructive description of the set £ of all the values of the ergodic parameter
x, for which the Lyapunov exponent

v= Jim o [M(T!(@), 4) ... M(T(z), 4) M(z, 4)]

exists. For L =0,1,2..., define

1
W1 = — ( modl), wy=uw.
L

and
1

As1= A, Ao =4
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Furthermore, for a given x = (z1,22) € [0, 1]2, let
S 1
SL+1:—L( mod 1), Syp=x1 —w—1/2— —argA.
Wi, T
One has

Theorem 1. Let A\pwy, — oo. For x as above, the Lyapunov exponent exists if and

only if, there exists a sequence sequence {cr,}7>_, of positive numbers that tends to
zero such that, for all L € Z, for allm =1,2... [i} ,one has

°L

|Sp — 1+ mwr| >wpe “o“r-<L-1 if L even
and
S, — mwp| > wre °F log AL if L odd .

Moreover, when the Lyapunov exits, it is equal to log A

The proof of this characterization relies upon a monodromization method deve-
loped for skew-shift cocycles [5], which happens to be exact in the special case of
the above cocycle. This method should also lead to a description of the self-similar
structure of the solutions to (1), in particular, in the case when the Lyapunov
exponent does not exist.

We now shortly describe the monodromization (see also [1, 2, 3]). The analysis
of the cocycles (3) is equivalent to the analysis of the equation

(4) U (Tow) = M(2)¥(x)

for a matrix valued function ¥ defined on R x T. We now define a monodromy
matriz for this equation. On the cylinder R x T, the skew shift 7,,, and the
translation Sy : (1, 22) — (21 + 1, x2) commute. So, (4) is invariant with respect
to the transformation ¥ +— Wo S;. Let ¥ be a fundamental matrix solution to (4)
(i.e., det W(z) # 0 for all z € R). Clearly, any other solution to (4), say ¥, can be
represented in the form

U(x) = U(z)P(z),

where P is a matrix-valued function satisfying P o T,,, = P.
Now, assume that det ¥(x) = 1. The last two observations imply

U(Sy(x)) = W(x)M!(x), VYreRxT,
where * denotes the transposition, and M : R x T — SL(2,) satisfies
M o T,, = M.

We call the matrix function M the monodromy matrix associated to the funda-
mental solution W.
The main result of our monodromization method is
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Theorem 2. There erists a quadratic change of variable in R?, say R.,,, depending
only on the parameter wg, such that, if one sets My = M o R;()l and, for ng € N
and 2° = x € T?, one defines

ny = [2¥ +wong] and ' = R, (2°) mod T?,

then,
(5) Mo(T5o~"(2°)) - Mo(Tiuy(2")) Mo(2")
=0 ((T°2°) mod T?)oM; (T, ™ (z")) - My NI, (")) o U1 (2?)

w1

and
(6) My (T, (2°)) --- My (T} (2°))

= U((T,,," (")) mod T*)o M (T3 (1)) -+ My(To, (1)) M (a') 0 01 (a?),

0 i
where o = (—i 0).

Let us now underline two important facts. First, in this theorem, we do not make
use of the special structure of M given in (2); it holds for any skew-shift cocycle
of unimodular matrices. The reduction is quite similar to and was inspired by the
one done in [4] for exponential sums.
Second, the main gain provided by Theorem 2 is that, as in general w; is smaller
than 1, the number of terms in the products on the right hand sides of (5) and (6)
contain much less terms than those in the left hand sides. One can iterate the
procedure and thus further reduce the number of terms.

Clearly, this method can only be effective if one is able to compute ¥ and Mj.
In the case when M is given by (2), this can be done exactly and one gets

Theorem 3. Consider the cocycle (3). There exists a fundamental matriz solution
to (4) (that is explicitly computable) such that the renormalized monodromy matriz
(i.e. the one defined in Theorem 2) is

Mi(z) = M(z, A1), Ay = Aw.

Again, this exact renormalization is very similar to the renormalization found for
quadratic exponential sums in [4].
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Low-Frequency Conductivities and Correlation Functions in
Disordered Systems

LEONID PASTUR

We present a short review of physical and mathematical facts on the Kubo
conductivity and binary (density-density and current-current) correlators of the
ideal Fermi gas in external random field. An emphasis is made on the low-frequency
conductivity and binary correlators for close energies. We discuss, in particular,
asymptotically exact results for one-dimensional disordered systems for high and
low Fermi energies, stressing their universal form. We also present a method
that allows us to find the asymptotic form of various characteristics of disordered
systems for any dimension in the strong localization regime, i.e., when either the
random potential is big or the energy is close to a spectrum edge. The method
is based on the hypothesis that the relevant realizations of the random potential
in the strong localization regime have the form of deep random wells that are
uniformly and chaotically distributed in space with a sufficiently small density.
Assuming this and using the density expansion, we show first that the density
of wells coincides in leading order with the density of states. Thus the density
of states is in fact the small parameter of the theory in the strong localization
regime. Then we derive the Mott formula for the low frequency conductivity and
the asymptotic formulas for certain two-point correlators when the difference of
the respective energies is small.

Transport in Quasi-Free Fermionic Systems
CLAUDE-ALAIN PILLET
(joint work with Walter Aschbacher, Vojkan Jaksi¢, Yan Pautrat)

Equilibrium statistical mechanics is a beautiful piece of knowledge sitting on
firmly established conceptual foundations and leaning on a highly developed math-
ematical framework. In principle, it allows to understand thermodynamic prop-
erties of matter and radiation at thermal equilibrium. In contrast, the status
of nonequilibrium statistical mechanics is far from being satisfactory both at the
conceptual level and regarding its mathematical structure. Even basic issues like
linear response theory near equilibrium are still outside the scope of currently
available analytic techniques.

Ideas inspired by the mathematical theory of turbulence have recently shed a
new light on the mathematical structure of nonequilibrium statistical mechanics
(see the nice exposition by D. Ruelle in [1]). In particular the emerging con-
cept of natural nonequilibrium state provides a basis for a mathematical analysis
of nonequilibrium phenomena and transport properties. Two mathematical ap-
proaches to the construction of nonequilibrium steady states (NESS) of quantum
systems have been proposed. The first one by Ruelle [2] is based on the scatter-
ing theory of C*-dynamical systems. The second one, developed in [4], associates
NESS to spectral resonances of a new type of “Liouvilleans” which generate the



694 Oberwolfach Report 12/2007

dynamics in a GNS representation of the system. These two approaches are partic-
ularly well adapted to the study of open quantum systems, i.e., spatially confined
systems in contact with extended ideal reservoirs (see [5] for a review). Mod-
els of this kind are commonly used in physics to describe transport processes in
mesoscopic electronic devices.

In order to make contact between the new NESS approach and more formal
techniques routinely used by solid-state physicists we have investigated the sim-
plest possible class of open quantum systems: free Fermi gasses or, in the language
of solid state physics, independent electrons models [6]. Our result shows that,
for such systems, Ruelle’s scattering approach is equivalent to the well known
Landauer-Biittiker formalism (see e.g. [3]). More precisely, expectation values of
thermal and electric currents in the NESS coincide with steady currents computed
from the Landauer-Bittiker formula. I will also discuss linear response theory
based on this result.
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Spectral Statistics and Localization of Eigenfunctions in Random
Band Matrices

JEFFREY SCHENKER

Consider an N x N random band matrix Xy .y with distribution

w 2
—5 TrX

e W?Nde;N

with d Xy . ny the Lebesgue measure on the vector space of N x N matrices of band
width W. Thus

din a2 aw

*
az;  dap

1 .
. — — 9
Xw:N W o :

NXxN
with d; and a; ; independent families of i.i.d. real and complex Gaussian variables,
respectively. (More generally we might take d; and a; ; to be i.i.d. families with a
suitably nice distribution.)
As shown in [1] the density of states of Xy .n converges to the semi-circle law
as W and N tend jointly to infinity, provided W/N — 0 or 1. That is, if W(N) is
any diverging sequence with W(N)/N — 0 or 1 then

2

N—o0

This describes the asymptotic density of states, however, because the convergence
is in the weak sense, we have very little information about the density of states
at finite N. For instance, an interesting open question, whose solution would be
useful, is to find a good constant C' in the bound

b
E (Tr f(Xwvyn)) < C/ f(t)dt

for functions f supported in an interval (a, b). Exploiting the diagonal terms, as in
the Wegner estimate for random Schrodinger operators [7], one obtains this bound
with C' o v'W. However, it seems to the author the bound should hold with C of
order one.

Now, fix an energy A € R and consider the scaled and shifted eigenvalue process

(1) GHL = Ny =Y

i=1
with A; the (random) eigenvalues of Xy, n. With W fixed equal to one, the matrix
is diagonal, {\;} = {d;;}, and {\;} converges in distribution (as N — o0) to a
Poisson process. Conversely, with W = N the matrix Xy, n is sampled from the
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Gaussian Unitary Ensemble and the scaled, shifted eigenvalue process converges
in distribution to an explicit determinantal point process as shown by Dyson [3].
Based on numerical evidence [2] and a saddle point analysis of a sigma model
approximation [4] it is believed these two extremes characterize the behavior in
each of the regimes W2/N ~ 0 and W?2/N ~ oo.

Part of this picture can be confirmed by rigorous analysis. What I have obtained
is the following theorem

Theorem 1. There exists v > 0 such that if W = W(N) is any sequence with
WY /N — 0 then the scaled, centered eigenvalue process converges in distribution
to a Poisson process.

Of course, the value of v given by the proof is larger than 2 (larger than 5,
in fact), so it remains an open question to establish Poisson statistics in the full
regime W?2/N ~ 0.

The nature of eigenvalue statistics is expected to be related to localization
properties of the eigenfunctions — Poisson statistics corresponding to localized
eigenfunctions and GUE statistics corresponding to extended eigenfunctions. This
is borne out in the extreme cases mentioned above: for W = 1 each eigenfunction
is completely localized on a single basis vector while for W = N, as is well known,
the eigen-basis is uniformly distributed ortho-normal frame, so each eigenfunction
is typically roughly uniformly distributed over the basis vectors. (To quantify this,
one could compute the entropy > i |9;]% In |1;]? of an eigenfunction.)

One must be a little careful with this heuristic, however, since it is certainly
possible to concoct random matrices with arbitrary statistics and arbitrary local-
ization properties of the eigenfunctions. Nonetheless, the above result is consis-
tent with the picture as it stems from a localization result for eigenfunctions of
the matrices Xy,w, which is most conveniently stated in terms of the resolvent
(Xn.w — )71, a well defined (though unbounded) random matrix for A € (—2,2).
To state the result, let e; denote the standard basis vectors e;(j) = d; ;.

Theorem 2. Given s € (0,1), there are As < 0o and ps > 0 such that
=]
E (|<ei7 (XN7W - A)_lej>|s) < ASWS/QG_HS wo o,

One expects based on [2, 4] this result should hold with W? in place of W5 in
the denominator in the exponent. That remains an open problem, however, as the
proof gives W?.

The first theorem follows from the second by an adaptation of an argument of
Minami [6]. The proof of the second theorem is based on the Kunz-Souillard proof
of localization [5] in 1D systems adapted to a block matrix setting.
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Transfer Matrix Methods for Discrete Random Schrodinger Operators
HERMANN SCHULZ-BALDES
(joint work with Christian Sadel)

We give an overview over recently developed complements to the transfer matrix
techniques for one-dimensional and quasi-one-dimensional random Schrédinger op-
erators (random Jacobi matrices). For the strictly one-dimensional case, this con-
cerns in particular the perturbative calculation of the Lyapunov exponents at
anomalies and the band edges, which involves the use of a certain Fokker-Planck
operator on the space of modified Pruefer phases. For the quasi-one-dimensional
situation, particular focus is on a Sturm-Liouville type oscillation theorem for Ja-
cobi matrices with matrix entries, namely self-adjoint block tridiagonal matrices
with positive definite blocks on the off-diagonals. This gives a new rotation num-
ber calculation for the eigenvalues. The three universality classes of time reversal
invariance are dealt with by implementing the corresponding symmetries. Using
this theorem one obtains a new formula for the integrated density of states which
can be calculated perturbatively in the coupling constant of the randomness with
an optimal control on the error terms.
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Mott Law for a Random Walk in a Random Medium
DOMINIQUE SPEHNER
(joint work with Alessandra Faggionato, Hermann Schulz-Baldes)

We consider a random walk on the support of an ergodic stationary simple
point process on R%, d > 2, which satisfies a mixing condition with respect to
translations. Furthermore the point process is furnished with independent ran-
dom energy marks in the interval [—1,1]. The transition rates of the random walk
decay exponentially in the jump distances and depend on the energies through a
factor of the Boltzmann-type. This is an effective classical model for the phonon-
induced hopping of electrons in disordered solids within the regime of Anderson
localization. We show that the random walk converges to a Brownian motion after
the usual rescaling in time and position. Moreover, the low-temperature behavior
of the (logarithm of the) diffusion constant D is given up to a multiplicative con-
stant by Mott’s law for the variable range hopping conductivity at zero frequency
of disordered solids. A lower bound on D has been proven in [1]. It involves
estimates for the supercritical regime of an associated site percolation problem.
More recently, an upper bound with roughly the same low-temperature behavior
has been established in [2].
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Absolutely Continuous Spectrum on some Tree Graphs
WOLFGANG SPITZER
(joint work with Richard Froese, David Hasler)

We study here the Anderson model on trees, 7, i.e., connected graphs without
loops, and we are primarily interested in tracing its absolutely continuous (ac)
spectrum. It was Abel Klein [7] who first proved ac spectrum on the Bethe tree.
Recently and by different methods, Aizenman, Sims, and Warzel [1] also proved
(the existence of) ac spectrum in a yet slightly more general situation.

In our first paper [4], we constructed deterministic potentials on the Bethe tree
that yield ac spectrum using a geometric approach where hyperbolic contractions
are the essential tool to control the Green’s function. The same idea was also
successful [5] for the Anderson model which we sketch here. We want to point out
that the proof below is simpler and more direct than our original proof and works
much better for large values of the connectivity of the graph (see [6]).

In order to define the Anderson model let us start with the Laplacian A defined
by (Af)(x) = Z@’y) f(y); (z,y) means that x and y are nearest neighbours. The

potential V' is random in the sense that {V(x)},c7 are iid random variables with
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common probability distribution (measure) v, which, for simplicity, has compact
support I. The Anderson model under consideration here is H = A + V.

Our first example concerns the Bethe tree where the number of forward neigh-
bours is constant, say K. In this case, the spectrum of the Laplacian is equal to
[—2V K, 2V K] and purely ac. The following is our main result.

Theorem: For any 0 < E < 2\/K there exists an interval I around 0 such that
for all probability distributions v with support in I, the spectrum of H is purely ac
n [—E, E] with probability one.

Sketch of Proof: For simplicity we set K = 2. Our main task is to bound a
certain moment, M, (p), of the Green’s probability function p (see below) from
which one can conclude by a separate argument that the spectrum is ac. As usual,
for x € 7, the Green’s function G(z,\) = (H — X\)~!(z,x). Since H is random,
this kernel is a random variable. By p we denote the probability distribution of
G(xz,A) induced by v. Le., for A C H, p(A) = prob(G(z,A) € A). In the Bethe
tree we have translation invariance so that p is independent of x € 7 but, of
course, depends on A\ which we suppress.

For A € (—2v/2,2v/2) we have that (A — \)"!(z,2) = 2, = -3 + 3V8 — 2.
Note that for real A\, z) is in the upper half plane H iff A is in the above interval.
This is our reference point for p. To measure distances in H we use the function

cd(z) = |Zh_n?2)‘2 ,z € H. Then we define the moments,

1) M, (p) = /H ed"(z)dp(z), n>1.

In order that everything is well-defined we should add some positive imaginary
part ie to A but our estimates below will be uniform in e. We will continue with
n =1 but n > 1 is needed to show that the spectrum is pure ac.

The simplicity of the Anderson model on the tree is based upon the recurrence
relation for p; in fact, this relation only holds for the truncated Green’s probability
distribution but we will not make this distinction here. To this end we introduce

the function ¢ : H? x H x I — H, ¢(z21, 22, A, q) = —m. Then, p =

O (p X pXUX V), where ¢, is the pull-back operation (see below). This is utilized
to rewrite the first moment,

M) = [ ed)dplc)

= / Cd( (21, 22, A, q) (z1)dp(z2)dv(q)
H2 x T

Cd( (21, 22, A, Q)>
/]I-]I2><I\%Cd(2’1) + 1ed(z 2) (zed(z1) + ged(z2)) dp(z1)dp(z2)dr(g)

w2 (z1,22,X,q9)

A simple convexity argument shows that ps(z1, 22, A,0) < 1 with equality iff z; =
zo = z). So in that sense ¢ is a contraction. Let us assume for a moment that
pa(z1, 22, A, q) < 1—pg < 1 for 21, z3 near the boundary of H? with some constant
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po and ¢ in some small interval I around 0. Then for some fixed (hyperbolic)
compact ball around (zy, zy) in H?,

Mip) = [ jierza da) (ed(en) + ded(z2) dp(endp()dv )
b (g (ed(a) + ded(z2) dp(an)dp(z2)do (o)
(H2\ B)x I

< O+ (1- ) /(HQ\B) (Bed(a1) + ed(z2)) dp(a0)dp(e2)iv o)

< Crl—mw) [ (Fed(e) + hed(en) dolen)dp(ea)iv()

= C+ (1 —po)Mi(p),

where C' is some finite constant. Consequently, M;(p) < C/pg. Our assumption
that pa(z1,22,A,q) < 1—po < 1is not true (there are exceptional points even for
g = 0). But if we apply once more the recurrence relation to the variables z; and
z9 (so that we have then three variables z1, 22, 23 to integrate over) we can define
an analogous function pg that is strictly less than 1 near the boundary (and small
q), and the above argument goes through. O

Remarks:

(1) By a slight extension we cannot only bound the moment M, (p) for any
n > 1 but we can also show that p(z) decays exponentially fast to 0 as z
approaches the boundary of H.

(2) The function ue, respectively us, is a rational function that can be ana-
lyzed numerically to plot a phase-diagram for the region where us < 1 and
thereby locate ac spectrum as a function of the spectral parameter A and
the strength of the disorder.

It is interesting to study trees where the connectivity is not constant, in partic-
ular hybrids of the binary Bethe tree with the one-dimensional lattice where we
have complete localization. So let us consider a radially symmetric tree and let
k= (kn)n € {1,2}" be a binary sequence that determines the number of forward
neighbours at any vertex in the n-th sphere. If k # 1 then this sequence k,, deter-
mines a unique sequence k,,n > 0 (of binary branching points) so that ki, = 2
and the sequence ¢,, = k,,+1 — k, — 1 for all n > 0. The standard one-dimensional
half-line corresponds to setting x,, = 1, and the usual binary tree is given by
kn =2k, =n,¢, =0.

Breuer [2] proved that if £,, = "™ (a so-called sparse tree) for some constant y >
0, then the Anderson model has no ac spectrum a.s. for any non-zero disorder like
in the one-dimensional case. This is not surprising since already the Laplacian [3]
has purely singular spectrum, a fact which is surprising to us. We have analyzed
the case when /¢,, = 1 and proved pure ac spectrum for v/2 — 1 < 1A < V2 +1
and small disorder. We believe that all constant sequences ¢ should also have pure
ac spectrum on the spectral set of the free Laplacian. However, we do not know
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whether there exists an increasing sequence ¢ for which there is still ac spectrum
in the Anderson model.

The reason why there is no ac spectrum even for the free Laplacian on sparse
trees is that by radial symmetry we are effectively in a situation of a sparse poten-
tial in dimension one. We can break this symmetry by inserting one extra vertex
on each top branch of the binary Bethe tree. In this case, already the function
p2 < 1 — pp < 1 (this constitutes the hard part of the whole analysis) and thus
one [6] proves ac spectrum for the Anderson model on such a tree as outlined
above.

Acknowledgement: We thank Hajo Leschke for comments.
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Localization near Fluctuation Boundaries via the Fractional Moment
Method

PETER STOLLMANN
(joint work with Anne Boutet de Monvel, Serguei Naboko, Giinter Stolz)

We report on work that can be accessed as eprint mparc 05-324 and will appear
in J. Anal. Math. Building on ideas of the recent adaptation [1] of the Aizenman-
Molchanov [2] or Fractional Moment method, we present a version of the FMM
that can be applied in situations under fairly general conditions as far as the
geometry is concerned.

Therefore, we can treat models without the covering condition, like surface
models and models with displacement.

Here are some details: On RY we often consider the supremum norm |z| :=
max;—1,. .. q4|z;| and write

A (z) == {yeRd Ce—y| < g}
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for the d-dimensional cube with side length r centered at x. For an open set
G C R? we denote the restriction of the Schrédinger operator H to L?(G) with
Dirichlet boundary conditions by H®. In our results we assume d < 3 and rely
upon the following assumptions, which guarantee self-adjointness and lower semi-
boundedness of the operators in question:

(A1) The background potential Vo € Li . .;¢(R?) is real-valued, Hy := —A+Vj.

(A2) The set T C R%, where the random impurities are located, is uniformly
discrete, i.e., inf{la — | :a £ B €I} =:rr > 0.

(A3) The random couplings 74, o € Z, are independent random variables sup-
ported in [0, Nmax| for some 7ymax > 0 and with absolutely continuous
distribution of bounded density p, with a uniform bound sup,, ||pa|lc =:
M, < oo.

The single site potentials U,, o € 7 satisfy

CUXAry () < Ua < CUXAgy, (a)

for all a with ¢y, Cy,ry, Ry > 0 independent of a.

V() = Z Na(w)Ua ()
acel
and
H := H(w) := Hy + V, in L*(R%).
The most important condition expresses the fact that the ground state energy
comes from those realizations of the potential that vanish on large sets:

(A4) Denote Ej := info(Hp) < inf o(H(w)) and let

Hrp .= Hj + Mmax Z Ua,
acl

the subscript F' standing for full coupling.
Assume that Ej is a fluctuation boundary in the sense that
(i) Ep :=info(Hp) > Ey, and
(ii) There is m € (0,2) and L* such that for mg :=42-d, all L > L* and
A

P(o(H* ") (w) N [Eg, Eg + L™™] #£0) < L™™<,
By x. we denote the characteristic function of the unit cube centered at =x.
In the following it is understood that x,(HY — E —ie)~ty, = 0 if A1(z) NG or

A1 (y) N G have measure zero.
Our main result is

Theorem 1. Let d < 3 and assume (A1)-(A4). Then there exist§ > 0,0 < s < 1,
>0 and C < oo such that for I := [Ey, Eq + 6], all open sets G C RY and
z,y € RY,

(1) sup  E([[xa(HY — E —ie) "'y ||*) < Cetlvl,
Eecl, e>0
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Exponential decay of fractional moments of the resolvent as described by (1)
implies spectral and dynamical localization in the following sense:

Theorem 2. Let d < 3, assume (Al)-(A4) and let I be given as in Theorem 1.
Then:

(a) For all open sets G C RY the spectrum of HS in I is almost surely pure
point with exponentially decaying eigenfunctions.
(b) There are > 0 and C' < oo such that for all x,y € R? and open G C RY,

(2) E (supl|x2g(H)Pr(H)xy||) < Ce#le=vl,

where the supremum is taken over all Borel measurable functions g which satisfy
lg| <1 pointwise and P;r(H®) is the spectral projection for HY onto I.

Dynamical localization should be considered as the special case g(\) = ei** in
(b), with the supremum taken over ¢ € R.

The proof of Theorem 1 is done by a self-contained presentation of a new version
of the continuum fractional moment method. While we use many of the same
ideas as [1], due to the lack of a covering condition we can not rely any more
on the concept of “averaging over local environments”, heavily exploited in [1].
It is interesting to note that, in some sense, we instead use a global averaging
procedure. Technically, this actually leads to some simplifications compared to
the method in [1], as repeated commutator arguments can be replaced by simpler
iterated resolvent identities. We also mention that exponential decay in (1) will
follow from smallness of the fractional moments at a suitable initial length scale
(the localization length) via an abstract contraction property.

As technical tools we need Combes-Thomas bounds (in operator norm as well
as in Hilbert-Schmidt norm) and a weak-L!-type bound for the boundary values
of resolvents of maximally dissipative operators, which is based on results from [5]
and was also central to the argument in [1].

As applications we mention surface models, in a form a little more general than
what had been studied in [4] and models including displacements that are more
general than those treated in [3, 6].
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Localization and Control of Sobolev Norms
WEI-MIN WANG

The purpose of this talk is to manifest the close relationship between Anderson
Localization (A. L.) and control of Sobolev norms for Schrodinger equations.

1. Linear time-independent Schrodinger equations.
We consider the Schrodinger equations:

(1) o= (A VY,

where V(x,t) = V(z), on L*(T?), the periodic Schrédinger or on L?(R?) when
V — 00 as ¢ — 00, e.g., V = x2, the quantum harmonic oscillator. We also
consider the above equation on ¢2(Z%) when V is a family of random variables.

The L? norms of solutions to (1) are conserved. Therefore the first non-trivial
norms to study are the Sobolev norms H?®, s = 1,2,.... In general there are
no conservation laws for Sobolev norms. For the linear Schrédinger (both time
independent and dependent), there is the a priori bound that the H® norm cannot
grow faster than t® as ¢ — oco. In order to get better bounds, one usually needs to
study the details of the solutions.

Since the RHS of (1) is independent of time, this reduces to the study of dynam-
ical localization properties of eigenfunctions in the Fourier space when we consider
(1) on L?. When V is periodic, assume moreover V is analytic, boundedness of
H? norms follows from exponential localization properties of the eigenfunctions
with respect to the exponentials. When V' = 22, boundedness of H*® norms follows
from the fact that all the solutions to (1) are periodic in time. When V is large
and random and under appropriate conditions on the probability distribution, we
have dynamical localization for (1) in Z¢. The first 2 cases are the analogues of
A. L. in the Fourier space.

As is well known, (1) is a Oth order approximation to a real quantum sys-
tem, which consists of many particles. A first order approximation is a nonlinear
Schrédinger, e.g.,

) iy = (CA V)4 P, p e N,

where the nonlinear term models the particle-particle interactions. The L? norms
are conserved. But what about the H® norms? We note that here contrary to the
linear case, there is no a priori bound on H?® as t — oo.

Assume the nonlinearity is small and the linear Schrodinger operator has pure
point spectrum. Linearizing (2) and using eigenfunction decomposition lead nat-
urally to study time dependent Schrodinger equations. So I first mention results
on time dependent Schrodinger equations.

1I. Linear time-dependent Schrodinger equations.
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Aside from motivations coming from nonlinear equations, time dependent Schro-
dinger equations occur naturally in physics, where the time-dependence models ra-
diation. The control of H® norm is essentially about the stability of bound states
under radiation.

In [1], we prove that the one dimensional quantum harmonic oscillator is sta-

ble under nonresonant time quasi-periodic perturbations of the form: e~ Zzzl
cos(wit + 0), where w = {wy} belongs to a subset of Diophantine frequencies of
positive measure. In [2], we prove that the bound states of periodic Schrodinger
operator are stable under resonant perturbations. The motivations for both prob-
lems come from nonlinear Schrodinger.

III. Nonlinear Schrodinger equations.

For the tempered nonlinear random Schrodinger equation:
(3) iy = viq; + e(gj-1 + gj+1) + Njgilgs)?
where |\;| < €(|j| +1)7, 7 > 0, we prove in [3] that the H' norm cannot grow
faster then t*, k > 0, as t — oco. Finally we remark that for the standard nonlinear
random Schrodinger, ie., A\; = 9§, § < 1, Vj, time quasi-periodic solutions were
constructed in [4].
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