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Introduction by the Organisers

Since this was only a “half workshop”, the organisers intended to focus on a rel-
atively small number of topics. We selected scattering from an obstacle and with
primarily the Maxwell equations as the underlying structure. We also wanted to
concentrate on analytic methods where questions of uniqueness and (if appropri-
ate) existence were at the forefront. That is not to say that reconstructive methods
were downplayed and in fact almost all of the talks did show some illustrative re-
constructions, but greater attention was to the analysis of the methods rather
than implementation issues. Even within this structure there was a strong focus
on ideas that were in the spirit of sampling or factorization methods. These tech-
niques work under a wide variety of physical situations and are perhaps optimal
when very little is known a priori about the location, shape or material properties
of the scatterer and where the most accurate solutions are not required.

The participants were the usual geographical blend but what stood out in look-
ing over the audience was the youthful median age. For many in the group this
was their first visit to Oberwolfach and, in some cases, their first time to meet
each other. With the smaller number of participants we were able to have a re-
laxed schedule and yet allow most to speak (about three quarters did so). Thus
talks were scheduled for 9:30am, 11am, 4pm and 5pm except for the Wednesday
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and Friday when we only had morning talks. The duration was scheduled for a
maximum of 40 minutes to allow for comments and discussions (and frequently
the additional post-talk questions and comments took us up to the next speaker).
We also had one evening session where a relatively new topic (the question of exis-
tence and properties of so called “transmission eigenvalues”) was discussed by the
whole workshop. Almost all participants attended all the lectures; the exceptions
were due to interest in talks from the other workshop. We thus conclude that the
format was successful from the perspective of the participants. Another reason
for the high attendance was the excellent overall quality of the talks; it is clear
that most of the speakers had taken great care over the preparation and there
was considerable evidence that talks were modified as the conference progressed
in order to present a fresh set of ideas to the audience.

It should be noted that at the last workshop run by the present organisers
special sessions were held in the evening. One of these considered some new ideas
on one of the oldest conjectures in the area - whether or not a single incident
plane wave is sufficient to recover an arbitrary obstacle. There has been a history
of partial results, but no substantial progress had been made on the problem
for twenty years. Three of the participants at the previous meeting managed to
make substantial progress in the year after the workshop. (The conjecture is still
unproven in the most general setting but a first result proved the conjecture for
convex, polygonal obstacles, a subsequent one removed the need for convexity.
These used very different techniques and further progress is expected.) We think
that devoting part of the time to look at a specific focused topic has enormous
merit at Oberwolfach and we only hope for a similar outcome from the present
workshop.

As usual, the service provided by the staff was exemplary. This plays an enor-
mous part in the “Oberwolfach experience” and allows the participants to concen-
trate on the research aspects.

Finally, we should note that at the previous workshop the organisers complained
about the state of current atmospheric modelling/computation leading to an er-
roneous weather forecast that added a surprise rainstorm to the Wednesday hike.
We are sorry to report that the computational geophysicists still have work to do
as they were again wrong, but we much prefer a forecast of rain yet in fact receive
fine weather.
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Abstracts

Decomposition methods in inverse obstacle scattering revisited

Rainer Kress

The propagation of time-harmonic acoustic waves with frequency ω in a homo-
geneous isotropic medium with constant speed of sound c is governed by the
Helmholtz equation

(1) ∆u+ k2u = 0

with the positive wave number k = ω/c for the space dependent part u of the
the velocity potential. For the scattering of an incident plane wave ui(x) = eik x·d

propagating in the direction of the unit vector d by a sound-soft obstacle repre-
sented through a bounded domain D ⊂ R3 with a connected complement, the
total wave u is given by the superposition u = ui + us of the incident wave ui and
the scattered wave us. The total wave satisfies the Dirichlet boundary condition

(2) u = 0 on ∂D

and the scattered wave the Sommerfeld radiation condition

(3)
∂us

∂r
− ikus = o

(
1

r

)
, r = |x| → ∞,

uniformly for all directions. For the sake of simplicity we only consider the Dirichlet
boundary condition for a sound-soft scatterer. However, our analysis extends to
the case of the Neumann boundary condition for a sound-hard scatterer and the
impedance boundary condition. For simplicity, we assume that the boundary ∂D
of the scatterer D is C2 smooth.

The Sommerfeld radiation condition characterizes radiating solutions to the
Helmholtz equation and, in particular, implies an asymptotic behavior for the
scattered wave of the form

(4) us(x) =
eik|x|

|x|

{
u∞ (x̂) + O

(
1

|x|

)}
, |x| → ∞, x̂ :=

x

|x| ,

uniformly with respect to all directions. The function u∞ is known as the far
field pattern of the scattered wave and is an analytic function of x̂ on the unit
sphere Ω := {x ∈ R3 : |x| = 1}. The inverse scattering problem that we are
concerned with is to determine the shape and location of the scatterer D from a
knowledge of the far field pattern u∞ for one incident plane wave. For detailed
presentations of the current state of research in inverse obstacle scattering we refer
to the monograph [1] and the survey [2].

The main idea of so-called decomposition methods is to break up the inverse ob-
stacle scattering problem into two parts: the first part deals with the ill-posedness
by constructing the scattered wave us from its far field pattern u∞ and the sec-
ond part deals with the nonlinearity by determining the unknown boundary ∂D
of the scatterer as the location where the boundary condition (2) is satisfied in a
least-squares sense. In the potential method of Kirsch and Kress, presented at the
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Oberwolfach Conference on Inverse Problems in 1986 [4], enough a priori informa-
tion on the unknown scatterer D is assumed so one can place a closed surface Γ
inside D. Then the scattered wave us is sought as a single-layer potential

(5) us(x) =

∫

Γ

eik |x−y|

|x− y| ϕ(y) ds(y), x ∈ R
3 \ D̄,

with an unknown density ϕ ∈ L2(Γ). In this case, given the far field pattern u∞,
the density ϕ is now found by solving the integral equation of the first kind

(6) S∞ϕ = u∞

with the compact integral operator

(7) (S∞ϕ)(x̂) :=

∫

Γ

e−ik x̂·yϕ(y) ds(y), x̂ ∈ Ω.

Due to the analytic kernel of S∞, the integral equation (6) is severely ill-posed.
For a stable numerical solution of (6), for example, Tikhonov regularization can
be applied. Given an approximation of the scattered wave us by inserting a regu-
larized solution ϕ of (6) into the single-layer potential (5), the unknown boundary
∂D is then determined by requiring the sound-soft boundary condition (2) to be
satisfied in a least-squares sense, i.e., by minimizing the L2 norm of the defect∥∥ui + us

∥∥
L2(Λ)

over a suitable set of admissible surfaces Λ.

Clearly, we can expect (6) to have a solution ϕ ∈ L2(Ω) if and only if u∞ is the
far field pattern of a radiating solution to the Helmholtz equation in the exterior
of Γ with sufficiently smooth boundary values on Γ. Hence, the solvability of (6)
is related to regularity properties of the scattered wave which, in general, cannot
be known in advance for the unknown scatterer D. Nevertheless, it is possible to
provide a solid theoretical foundation to the above procedure (see [1, 4, 5, 6]). The
method also has been implemented numerically in two and three dimensions with
satisfactory reconstructions (see [1, 3, 7, 11]). Relations of the potential method of
Kirsch and Kress with sampling and probe methods have been pointed out in [13].

The main advantage of the potential method of Kirsch and Kress and other
decomposition methods consists of the fact that their numerical implementation
does not require a forward solver. As a disadvantage, a good a priori information on
the unknown scatterer is needed both for placing the auxiliary surface Γ and for the
iterative solution of the minimization problem in the second part. Furthermore, the
accuracy of the reconstructions is inferior to that of regularized Newton iterations
for the boundary to far field mapping F : ∂D → u∞.

More recently a hybrid method combining ideas of decomposition methods and
regularized Newton iterations has been suggested. In principle, this approach may
be considered as a modification of the potential method of Kirsch and Kress in the
sense that the auxiliary surface Γ is viewed as an approximation for the unknown
boundary ∂D and, keeping ϕ fixed as a regularized solution of (6), update Γ via
linearizing the boundary condition (2) around Γ. Given a far field pattern u∞ and
a current approximation Γ for the boundary surface, we solve the ill-posed integral
equation (6) by Tikhonov regularization and define us by (5). Then we evaluate
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the boundary values of u = ui + us and its derivatives on Γ via the jump relations
and find an update Γh := {x + h(x) : x ∈ Γ} with a sufficiently small C2 vector
field h on Γ by linearizing the boundary condition u|Γh

= 0, that is, by solving

u|Γ + gradu|Γ · h = 0

for h. In an obvious way, these two steps are iterated. Clearly, this approach
does not require a forward solver and connects ideas of Newton iterations and
decomposition methods. From numerical examples (see [8, 9, 10, 14, 15]) it can
be concluded that the quality of the reconstructions is similar to that of Newton
iterations for the boundary to far field operator. For the theoretical foundation
similar to the method of Kirsch and Kress it can be related to a reformulation of
the inverse scattering problem as an optimization problem (see [9, 10, 14]). Fur-
thermore, convergence results can be obtained analogous to those of Potthast [12]
on Newton iterations for the boundary to far field mapping F : ∂D → u∞.
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Detecting corrosion by thermal measurements

Thorsten Hohage

(joint work with M.-L. Rapún, F.-J. Sayas)

Photothermal techniques are suitable means of inspecting composite materials
with non-destructive tests [6]. We are interested in a technique that consists in
heating the accessible side of the material by a defocused laser beam. The goal
is to reconstruct internal properties of the material (to detect structural defects,
reconstruct the size, depth, orientation of the inclusions and/or physical proper-
ties of them) from measurements of the temperature at the side that has been
thermically excited. In this talk we consider the detection of the level of corrosion
at the interface of two materials.

The forward problem is modeled by a heat diffusion problem in the half space
Rd

− := {(x1, . . . , xd) ∈ Rd | xd < 0} with d =2 or 3. We consider an inclusion

Ω− ⊂ Rd
−, which is a bounded open domain whose boundary Γ := ∂Ω− is a C2-

curve/surface. The materials occupying Ω− and Ω+ := Rd
− \ Ω− have different

thermal properties, i.e., their corresponding diffusivities κ−, κ+ > 0 are different.
Then the temperature distribution

U(x, t) :=

{
U−(x, t), in Ω− × (0,∞),

U+(x, t), in Ω+ × (0,∞),

satisfies the heat equation

(1a) ∂tU∓ = κ∓∆U∓, in Ω∓ × (0,∞).

In the exterior domain Ω+ the total temperature U+ +Uhom is a superposition of
U+ and a given source field Uhom which satisfies

∂tUhom = κ+∆Uhom, in Rd
− × (0,∞).

Uhom plays the role of an incident field, and U+ the role of a scattered field. On
the common interface Γ, the temperature satisfies the transmission conditions

U− + f ∂νU− = U+ + Uhom, on Γ × (0,∞),(1b)

α∂νU− = ∂νU+ + ∂νUhom, on Γ × (0,∞),(1c)

where α > 0 is the ratio of the interior and the exterior conductivities. Condition
(1b) is sometimes called an Engquist-Nédélec condition. The function f( · ) ≥ f0 >
0 models a corrosion factor, proportional to the width of the coating at each point
of the interface Γ, and it will be the unknown of the inverse problem. The model
of the time-dependent forward problem is completed by the adiabatic boundary
condition

(1d) ∂νU+ = 0, on Π × (0,∞),

on the upper boundary Π := ∂Rd
− and the initial conditions

(1e) U−( · , 0) = 0, U+( · , 0) = 0.
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We also consider the case of time-harmonic excitations, i.e., incident fields of the
form Uhom(x, t) = Re(uhom(x) exp(−ı ω t)) with a given frequency ω > 0. In this
case we obtain asymptotically time-harmonic solutions

U∓(x, t) = Re(u∓(x) exp(−ı ω t))

to problem (1), and the space-dependent component (u−, u+) ∈ H2(Ω−)×H2(Ω+)
is the solution of an elliptic transmission problem

∆u− + λ2
−u− = 0 in Ω−(2a)

∆u+ + λ2
−u+ = 0 in Ω+(2b)

u− + f ∂νu− − u+ = uhom, on Γ,(2c)

α∂νu− − ∂νu+ = ∂νuhom, on Γ,(2d)

∂νu+ = 0 on Π(2e)

where λ∓ := (1 + ı)
√
ω/(2κ∓). The incident field is typically given by a point

source at some point x0 ∈ Π:

(2f) uhom(x,x0) :=

{
(ı/4)H

(1)
0 (λ+|x− x0|) for d = 2,

exp(ıλ+|x − x0|)/(4π|x − x0|) for d = 3.

The inverse problem is to find f given the incident field and measurements of
u+(x) for x ∈ Πobs ⊂ Π or measurements of U+(x, t) for x ∈ Πobs and t in some
time interval. We refer to [1, 2] for related inverse problems.

For the time-harmonic inverse problem we prove the following uniqueness result:

Theorem 1. Assume that int(Πobs) 6= ∅, let Πsrc be a non-empty subset of Π, let
f (1), f (2) > 0 be two corrosion factors, and denote the corresponding solutions to

(2) by u
(1)
± ( · ,x0) and u

(2)
± ( · ,x0) for all x0 ∈ Πsrc. Suppose that u

(1)
+ |Πobs×Πsrc

≡
u

(2)
+ |Πobs×Πsrc

. Then

(3) f (1) = f (2) on Γ̃ := {x ∈ Γ : ∃x0 ∈ Πsrc ∂νu
(1)
− (x,x0) 6= 0}.

If in addition int(Πsrc) 6= ∅, then Γ̃ = Γ, i.e., f (1) = f (2) everywhere on Γ.

We discuss two methods for the numerical solution of the time-harmonic inverse
problem. The first one is based on the proof of the uniqueness theorem above and
avoids the solution of the forward problem. For this method a convergence result
can be shown as the noise level tends to 0.

As an alternative, we study the iteratively regularized Gauß-Newton method.
For this end, we introduce the operator F mapping the unknown corrosion func-
tion f to the measured data and characterize its Fréchet derivative. The forward
problem is solved by a boundary integral equation method [7]. Although the reg-
ularized Newton method is more time consuming as it involves the solution of
the forward problem in each step, it turns out that it yields considerably more
accurate results.
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The second part of the talk is concerned with the time-dependent problem. We
use the approach proposed and analyzed in [3], which is based on the computation
of the Laplace transform of the solution with respect to time

(4) u(x, s) =

∫ ∞

0

e−st U(x, t) dt, x ∈ R
d
−, Re s > 0.

Note that u( · , s) satisfies (2) with λ2
∓ = −s/κ∓. This system of equations is

uniquely solvable for any s ∈ C \ {t ∈ R : t ≤ 0}. Then, one can recover the
time-dependent solution by the inversion formula

(5) U(x, t) =
1

2πı

∫

C
estu(x, s) ds, t > 0,

C being any path connecting −ı∞ and ı∞. More precisely, following [5] we use
the hyperbolic pathes parametrized by γ(θ) = µ(1 − sin(β + ıθ)), θ ∈ R, where
µ > 0 and 0 < β < π/2 are tuning parameters. Then, U(x, t) is approximated by
a truncated trapezoidal rule

(6) U(x, t) ≈
m∑

j=−m

ωj e
t sj u(x, sj)

with nodes sj := γ
(

log(m)
m j

)
and weights ωj := log(m)

2πım γ′
(

log(m)
m j

)
. This methods

leads to 2m+ 1 stationary problems of the form (2) to compute u(x, sj). Due to
the symmetry with respect to the real axis only m+1 problems have to be solved.
The convergence as m→ ∞ is of order O(exp(−cm/ ln(m))) (see [3, 5]).

For the inverse time-dependent problem one can show a result analogous to
Theorem 1 if data are available on a non-degenerate time interval. However, in
this case the problem is formally overdetermined. Numerical experiments suggest
that at least several measurement points are necessary for a fixed point source to
reconstruct the corrosion function. With a proper choice of the time interval and
the measurement points, time dependent experiments can yield significantly more
accurate reconstructions of the corrosion function than time-harmonic experiments
for the same number of measurements.
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Tangential cone condition for electrical impedance tomography

Andreas Rieder

(joint work with Armin Lechleiter)

In the convergence analysis of Newton-like regularization schemes (see, e.g., [1]
[4], [5]) for nonlinear ill-posed problems the linearization error is often controlled
by the tangential cone condition: an operator F : D(F ) ⊂ X → Y satisfies the
tangential cone condition in x if there is a ball Bρ(x) ⊂ D(F ) of radius ρ centered
about w and a constant ω < 1 such that

‖F (v) − F (w) − F ′(w)(v − w)‖Y ≤ ω‖F (w) − F (v)‖Y for all w, v ∈ Bρ(x)

where F ′ denotes the Fréchet derivative of F . Although the tangential cone con-
dition is meaningfully defined on normed spaces most applications require X and
Y to be Hilbert spaces.

The tangential cone condition is as useful as severe. For instance, it implies
that N(F ′(·)) = N(F ′(x)) in Bρ(x), that is, the null space of F ′(·) is invariant in
Bρ(x). Furthermore, F (v) = F (w) whenever v −w ∈ N(F ′(x)) and v, w ∈ Bρ(x).
Therefore only few meaningful examples of nonlinear operators are known satis-
fying a tangential cone condition. Here we add the forward operator of electrical
impedance tomography (EIT) to the collection of meaningful examples (see [6] for
the missing details).

EIT entails the reconstruction of the conductivity distribution γ : B → ]c0,∞[,
c0 > 0, in a simply connected Lipschitz domain B ⊂ R2 from measurements of the
electric potential u on the boundary ∂B which is induced by applying the electric
current distribution f on ∂B (see, e.g., [3]). Due to the principle of conservation
of charge we prescribe

∫
∂B fdS = 0 and ground the potential u by

∫
∂B udS = 0.

The governing equation in weak formulation is

(1)

∫

B

γ∇u∇vdx =

∫

∂B

fvdS for all v ∈ H1
⋄ (B)

and it has a unique solution u = u(f) ∈ H1
⋄ (B) := {v ∈ H1(B) :

∫
∂B vdS = 0}.

The inverse EIT problem can now be phrased as: given the Neumann-to-
Dirichlet operator

Λ: f 7→ u|∂B

find the conductivity γ. By classical results from the theory of partial differential

equations Λ: H
−1/2
⋄ (∂B) → H

1/2
⋄ (∂B) is bounded. Thus, we have to solve the

nonlinear equation F (γ) = Λ where

F : D(F ) ⊂ L∞(B) → L(H
−1/2
⋄ (∂B), H

1/2
⋄ (∂B)), γ 7→ Λ,

with D(F ) := L∞
+ (B) = {γ ∈ L∞(B) : γ ≥ c0}. Note that F (γ)f = u|∂B.

Since we are interested in a Hilbert space setting we restrict both, the pre-image
and the image space of F . Henceforth we consider

F : Hq
+(B) ⊂ Hq(B) → H

(
L2
⋄(∂B)

)
, q > 1,
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where H
(
L2
⋄(∂B)

)
is the space of Hilbert-Schmidt endomorphisms on L2

⋄(∂B) (for
a proof that F (γ) is indeed Hilbert-Schmidt see, e.g., [2]). Technical reasons require
certain regularity of the conductivities, which explains the choice of Hq(B), q > 1.

Let γ ∈ int(Hq
+(B)). Then, F ′(γ) ∈ L

(
Hq(B),H

(
L2
⋄(∂B)

)
is given by

F ′(γ)[h]f := w|∂B ∈ L2
⋄(∂B)

with w = w(h, f) ∈ H1
⋄ (B) such that

(2)

∫

B

γ∇w∇ϕ dx = −
∫

B

h∇u∇ϕdx for all ϕ ∈ H1
⋄ (B).

Moreover,
∥∥(
F (γ + h) − F (γ) − F ′(γ)[h]

)
f
∥∥

L2(∂B)
≤ C ‖γ‖Hq(B)‖h‖Hq(B)‖∇w‖L2(B)

1

for h ∈ Hq(B) small enough: γ + h ∈ Hq
+(B). Inspecting the latter estimate we

conclude: if

(3) ‖∇w(h, f)‖L2(B) ≤ C ‖w(h, f)‖L2(∂B)

uniformly in h and f then, by an inverse triangle inequality,

‖F (γ + h) − F (γ) − F ′(γ)[h]‖H(L2(∂B))

≤ C ‖γ‖Hq(B)‖h‖Hq(B)‖F (γ + h) − F (γ)‖H(L2(∂B)).
(4)

For h so small that C ‖γ‖Hq(B)‖h‖Hq(B) < 1, inequality (4) is a tangential cone
condition locally about γ.

A first step to prove (3) is the following lemma.

Lemma 1. Let h ∈ Hq(B), q > 1, and let f ∈ L2
⋄(∂B). If w|∂B = 0 then w|B = 0.

Proof. Plugging ϕ = u into (2) and taking into account the defining equation (1)
for u and that w|∂B = 0 we find

−
∫

B

h|∇u|2 dx =

∫

B

γ∇w∇u dx =

∫

∂B

fw dS = 0.

If h does not change sign then u|supph = 0 and

0 = −
∫

B

h∇u∇ϕdx =

∫

B

γ∇w∇ϕ dx for all ϕ ∈ H1
⋄ (B)

yielding w = 0 in B. In case h changes sign the argument is much more involved
(see [6] for details). �

Finally, we outline how the lemma implies (3). As w depends bilinearly on h
and f we may assume that ‖h‖Hq(B) = ‖f‖L2(∂B) = 1. Further, assume (3) not to
hold. Then, there is a sequence {(hj, fj)} with ‖hj‖Hq(B) = ‖fj‖L2(∂B) = 1 such
that

(5)
‖w(hj , fj)‖L2(∂B)

‖∇w(hj , fj)‖L2(B)
→ 0 as j → ∞.

1
C always denotes a generic constant possibly attaining different values at each instance it

appears.
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By boundedness we may assume the whole sequence {(hj , fj)} to converge weakly

to (h̃, f̃) in Hq(B)×L2
⋄(∂B). Further, by compact embedding we may assume the

whole sequence {(hj , fj)} to converge strongly to (h̃, f̃) in Hq−ǫ(B)×H−1/2(∂B)
(ǫ > 0 such that q − ǫ > 1).

Since both mappings H−1/2(∂B) ∋ f 7→ u ∈ H1(B) and Hq−ǫ(B) ×
H−1/2(∂B) ∋ (h, f) 7→ w ∈ H1(B) are continuous we obtain that

lim
j→∞

‖u(fj) − u(f̃)‖H1(B) = 0 and lim
j→∞

‖w(hj , fj) − w(h̃, f̃)‖H1(B) = 0.

Hence, the limits u(f̃) and w(h̃, f̃) are related via (2):

(6)

∫

B

γ∇w(h̃, f̃)∇ϕ dx = −
∫

B

h̃∇u(f̃)∇ϕ dx for all ϕ ∈ H1
⋄ (B).

Furthermore,

‖w(h̃, f̃)‖L2(∂B) = 0

which is a consequence from (5) (‖∇w(hj , fj)‖L2(B) is uniformly bounded). As

(h̃, f̃) ∈ Hq(B) × L2
⋄(∂B) we may apply our lemma resulting in w(h̃, f̃) = 0 in B.

In view of (6),

0 = −
∫

B

h̃∇u(f̃)∇ϕ dx for all ϕ ∈ H1
⋄ (B),

so that h̃∇u(f̃) = 0 in B. However, ∇u(f̃) can only vanish on a set of measure

zero (unique continuation property). Thus, h̃ = 0 contradicting ‖hj‖Hq(B) = 1,
that is, the crucial bound (3) holds true.
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Regularization of the factorization method

and an application in impedance tomography

Armin Lechleiter

(joint work with Nuutti Hyvönen, Harri Hakula)

The factorization method is a well established tool to recover the support of inho-
mogeneities in inverse problems for partial differential equations. Through many
sophisticated ideas and successive technical refinement the method has evolved
during the last decade, starting from the first formulation of the linear sampling
method by Colton and Kirsch in [4] and the fundamental paper of Kirsch [9].
Applications of the method include inverse acoustic and electromagnetic scatter-
ing [11], inverse problems for periodic structures [2], inverse elliptic problems such
as impedance or optical tomography [6, 8] and inverse problems in elasticity [3],
this list being certainly incomplete and still rapidly growing. We refer to [5] for
a concise overview of the method’s state of the art and the many open questions
related to it.

From both the analytical and computational point of view, the formulation
of the method is probably most attractive when Picard’s criterion can be used.
Suppose to begin with that F = GTG∗ is a factorization of the compact data
operator F of some inverse problem at hand and that G characterizes the searched-
for inclusion D ⊂ Rd, d = 2 or 3, in the following way: A point y ∈ Rd belongs to
D if and only if φy ∈ Range(G), where φy is a special testfunction (usually related
to the Green’s function of the problem), given for any point y ∈ Rd. Moreover, we

assume that the ranges of F
1/2
♯ and G equal each other. The modified version F♯

of F is defined as |ReF |+ImF and possesses a complete orthonormal eigensystem
(λj , ψj)j∈N, see [10] for details. Using Picard’s criterion we conclude that

(1) y belongs to D ⇔
∞∑

j=1

|〈φy, ψj〉|2
λj

<∞.

The question we are concerned with is how the Picard criterion in (1) behaves
when only an approximate version F δ of the data operator F is accessible where
‖F − F δ‖ = δ. Our aim is to show that the characterization in (1) holds asymp-
totically as δ → 0, that is, there is a cut-off index N(δ) (which can be given
explicitely) such that N(δ) → ∞ as δ → 0 and

(2) y belongs to D ⇔
N(δ)∑

j=1

∣∣〈φy, ψ
δ
j 〉

∣∣2

λδ
j

is bounded as δ → 0.

From (2) we conclude that evaluating the finite sum on the right-hand side for
δ > 0 small enough and y 6∈ D results in considerably larger numerical values than
evaluation for y ∈ D.

For the asymptotic analysis as δ → 0 we note that the estimate
∥∥|F | −

∣∣F δ
∣∣∥∥ ≤ C(1 + ln ‖F − F δ‖)‖F − F δ‖
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from [14] yields that closeness of F and F δ implies closeness of F♯ and F δ
♯ . There-

fore we can also assume that ‖F♯ − F δ
♯ ‖ = δ and denote an eigensystem of F δ

♯ by

(λδ
j , ψ

δ
j ).

Obviously, the characterization in (2) relies on perturbation theory. First, we
note that dist(σ(F♯), σ(F δ

♯ )) ≤ ‖F♯ − F δ
♯ ‖, where σ(F♯) denotes the spectrum of

F♯. Second, the Picard criterion (1) also necessitates to carefully investigate the
behavior of the eigenspaces of F δ

♯ . Therefore we define the spectral projection on

the eigenspaces of the jth eigenvector of F♯ and F δ
♯ ,

Pj =
∑

λn=λj

(·, ψn)ψn and P δ
j =

∑

λδ
n=λδ

j

(·, ψδ
n)ψδ

n,

respectively. Cauchy’s theorem states that

Pj =
1

2πi

∫

γ

(ξ − F♯)
−1 dξ

for any contour γ around λj such that the rest of σ(F♯) is outside of γ. This
representation formula allows the following estimate: If dist(λj , σ(F♯)\{λj}) = 2d
and ‖F♯ − F δ

♯ ‖ ≤ δ < d, then

∥∥Pj − P δ
j

∥∥ ≤ δ

d− δ
.

The latter tools and some tedious estimates principally yield the asymptotic char-
acterization (2). For the details as well as for a definition of the truncation index
N(δ) we refer to [12]. Two comments are in order: The truncation index N(δ)
implies regularization of the series criterion and the analysis shows that this regu-
larization is crucial. Moreover, as it was remarked by Rainer Kress in the discussion
after the talk, norm convergence of F −F δ can be replaced by supposing pointwise
convergence together with collectively compactness of {F δ}0≤δ≤δ0

. This relies on
perturbation theory studied in the monograph [1].

The above theory can be used to construct a factorization method for the com-
plete electrode model of impedance tomography. This problem has been tackled
first in [7] using an inf-criterion. By stronger convergence results between different
electrode models than in [7], together with the above analysis, we are able to show
that in fact the series criterion of the factorization method, which is easier to deal
with, is also applicable in this situation [13].

More precisely, consider first the continuum model in a bounded domain Ω ⊂ Rd

for a conductivity γ and a boundary current f ∈ H
−1/2
♦ (∂B). The direct problem

is then to find a potential u ∈ H1
♦(Ω) solving −∇(γ∇u) = 0 in Ω subject to the

co-normal boundary condition ∂γu = f on ∂B. If γ has the form

γ =

{
γ0 + γ1 in D ⋐ Ω

γ0 in Ω rD

for uniformly positive smooth functions γ and γ1, the inverse problem of deter-
mining D from the Neumann-to-Dirichlet operator Λ : f 7→ u|∂Ω is well known to
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be solvable via factorization, see e.g., [6]. The complete model takes into account
p discrete perfect conducting electrodes where current is injected and voltage is
measured and moreover a contact impedance effect with resistivity z = (z1, . . . , zp)
underneath the electrodes: Given a discrete current vector I ∈ C

p
♦ we want to find

a pair (u, U) ∈ H1(Ω) × Cp
♦ such that

−∇(γ∇u) = 0 in B u+ zj∂γu = Uj on Ej∫

Ej

∂γu dS = Ij ∂γu = 0 on ∂B r ∪jEj .

Let us denote by Σp : I 7→ U the discrete Neumann-to-Dirichlet operator for the
complete model and by Pp an appropriately chosen projector from L2

♦ into C
p
♦

when p electrodes are used in the measurements. Moreover, denote by Λ0 and
Σ0p the Neumann-to-Dirichlet operators for the continuous and discrete case with
conductivity γ0 instead of γ, respectively. Under some further geometric conditions
on the sequence of electrode configurations one can prove that ‖(Λ−Λ0)− (Σp −
Σ0p)‖L2→L2 → 0 as p → ∞. We refer to [13] for details as well as for numerical
examples for the thereby constructed factorization methods which underline the
validity of our results.
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On uniqueness in inverse scattering with finitely many incident waves

Johannes Elschner

(joint work with Masahiro Yamamoto)

The inverse scattering problem of determining a bounded obstacle by its far field
pattern is fundamental for exploring bodies by acoustic or electromagnetic waves,
and its uniqueness presents important and challenging open questions since many
years. The first part of the talk gives an overview on recent uniqueness results,
due to Alessandrini and Rondi [1], Liu and Zou [6], Yamamoto and the speaker [2],
for the problem of determining sound-soft and sound-hard polygonal/polyhedral
obstacles by a finite number of incident waves. These results can be extended to
scatterers with impedance and mixed type (Dirichlet/Neumann) boundary condi-
tions [7], [8].

Then the problem of recovering a two-dimensional perfectly reflecting diffraction
grating from measurements on a horizontal line above the structure is considered.
This occurs in several applications in diffractive optics and leads to the inverse
Dirichlet and Neumann problems for the periodic Helmholtz equation in 2D. We
present uniqueness results within the class of polygonal grating profiles by a min-
imal number of incident plane waves [3], which improve those of [5] where the
Rayleigh frequencies were excluded and the profiles were assumed to be graphs of
piecewise linear functions.

Finally, these results are extended to inverse transmission problems for the
Helmholtz equation in 2D (work in progress with M. Yamamoto). In particular,
it can be shown that uniqueness in the inverse TE and TM transmission problems
for diffraction gratings with one incident wave holds within the class of piecewise
linear profile functions. In the case of more general grating profiles (given by the
graph of a periodic Lipschitz function), only local uniqueness results are known [4].
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The linear sampling method for inverse rough surface scattering

Simon N. Chandler-Wilde

(joint work with Peter Monk)

In this talk we first recall results over the last ten years on the direct rough
surface scattering problem, the problem of calculating the field scattered by an
unbounded surface that is the graph of a function. We then move on to consider
the following specific two-dimensional inverse problem: a point source moves along
a finite horizontal line above the rough surface and, for every position along this
line, measurements of the scattered waves are made, also on a (possibly identical)
finite horizontal line. We discuss uniqueness and present some theoretical and
computational results for a version of the linear sampling method.

Locating transparent cavities in

optical absorption and scattering tomography

Nuutti Hyvönen

In optical absorption and scattering tomography (OAST), a physical body is illu-
minated by a flux of near-infrared photons and the out coming flux is measured
on the surface of the body. The idea is to reconstruct the optical properties, such
as absorption and scatterer, inside the body by using the measured pairs of input
and output fluxes. OAST has a few possible clinical applications, the most impor-
tant of which are, arguably, screening for breast cancer and the development of a
cerebral imaging modality for mapping structure and function in newborn infants.
For more medical and instrumental details we refer to [1, 2, 6].

Since brain consists of strongly scattering tissue with embedded cavities filled
with nearly transparent cerebrospinal fluid, a forward model of OAST for the hu-
man head can be constructed by sewing up the diffusion approximation of the
radiative transfer equation with geometrical optics [8]. As noted in [5], a current
disadvantage with this radiosity-diffusion model is that the boundaries of the trans-
parent cavities must be known in advance when reconstructing the physiologically
interesting quantities, i.e., the absorption and the scatterer in the strongly scatter-
ing tissue. Although the ultimate goal is to develop algorithms for simultaneous
reconstruction of the transparent cavities and the optical properties in the brain
tissue, in this work we tackle a preliminary inverse problem: We assume that the
absorption and the scatterer in the diffusive background of the examined body are
known and try to locate the transparent regions through boundary measurements.

Let Ω ⊂ Rn, n = 2 or 3, be the body under investigation and assume that the
symmetric and uniformly strictly positive definite diffusion tensor κ : Ω → Rn×n

and the strictly positive absorption coefficient µ : Ω → R are known in advance.
If the boundary measurements are static in time, the radiosity-diffusion forward
problem of OAST can be formulated as follows [7, 8]: Find the photon density ϕ
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that satisfies the elliptic boundary value problem

(1)

∇ · κ∇ϕ− µϕ = 0 in Ω \D,
ν · κ∇ϕ = f on ∂Ω,

Gϕ+ ν · κ∇ϕ = 0 on ∂D,

where ν is the unit normal pointing out of Ω\D and D consists of the transparent
cavities. Furthermore, the operator G : L2(∂D) → L2(∂D), appearing in the
nonlocal ’inner’ boundary condition of (1), is defined through G = 2γ(I−G)−1(I+
G), where γ is a dimension-dependent positive constant and

(GΦ) (x) =
n− 1

|Sn−2|

∫

∂D

v(x, y)
(ν(x) · (x− y))(ν(y) · (x− y))

|x− y|n+1
×

e−µ̃|x−y|Φ(y)dS(y).

Here the constant µ̃ is the absorption coefficient in D and v : ∂D × ∂D → {0, 1}
is a visibility function,

v(x, y) =

{
1, if tx+ (1 − t)y ∈ D for 0 < t < 1,
0, otherwise.

Under suitable smoothness conditions, the forward problem (1) has a unique so-
lution ϕ ∈ H1(Ω \D) that depends continuously on the input f ∈ L2(∂Ω) [8].

When considering reconstruction of the transparent cavities D, we assume that
the operator mapping the conormal derivative of the photon density to its Dirichlet
boundary value can be measured on ∂Ω, i.e., we assume to know the map

Λ : f 7→ ϕ|∂Ω, L2(∂Ω) → L2(∂Ω),

where ϕ is the unique solution of (1). Since κ and µ are known in the whole of Ω,
we can, in addition, compute the Neumann-to-Dirichlet map corresponding to Ω
with no embedded cavities:

Λ0 : f 7→ ϕ0|∂Ω, L2(∂Ω) → L2(∂Ω),

where ϕ0 is the solution of the problem obtained by deleting the ’inner’ boundary
condition in (1) and letting the diffusion equation be satisfied everywhere in Ω.

By applying the factorization method of Andreas Kirsch [12, 13] to our problem
setting, we get an explicit (but conditional) characterization of the transparent
cavities D through the boundary measurements of OAST [11]. Notice that the
factorization technique has been used within OAST in [3, 4, 9, 10], as well. To be
able to describe our result in more detail, we need to introduce the photon density
hy corresponding to a point source at y ∈ Ω and the homogeneous Neumann
boundary condition on ∂Ω:

∇ · κ∇hy(x) − µhy(x) = δ(x− y) in Ω,

ν · κ∇hy = 0 on ∂Ω.
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Under somewhat restrictive conditions on the transparent cavities and on the
background optical parameters κ and µ, one can show that [11]

(2) y ∈ D ⇐⇒ hy|∂Ω ∈ R
(
|Λ − Λ0|1/2

)
,

where R
(
|Λ − Λ0|1/2

)
denotes the range of the self-adjoint and positive definite

square root |Λ−Λ0|1/2 : L2(∂Ω) → L2(∂Ω). Since hy|∂Ω and Λ0 can be computed
and Λ can, in principle, be measured, the validity of the relation on the right hand
side of the above equivalence can be tested. As a consequence, (2) provides an
explicit characterization of D.

With the help of Tikhonov regularization, one can build a reconstruction al-
gorithm based on the characterization (2). This matter is considered in detail
in [11].
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Optical tomography on simple Riemannian manifolds

Stephen R. McDowall

Optical tomography refers to the use of near-infrared light to determine the optical
absorption and scattering properties of a medium. One prescribes a distribution
of particles (photons in this case) entering the body at its boundary and measures
the resulting flux of particles leaving the body. One then seeks to determine the
absorption and scattering properties interior to the medium from knowledge of
the “albedo” operator, the map from the incoming to the outgoing distributions
of particles. In the stationary Euclidean case the dynamics are modeled by the
radiative transport equation which assumes that, in the absence of interaction,
particles follow straight lines. We are concerned here with the situation of particles
moving in an ambient field represented by a Riemannian metric. The consequence
is that in the absence of interaction a particle will now follow the geodesics of the
metric.

We first describe the problem in some generality. Let M be a bounded open
domain in Rn with smooth boundary and let g be a Riemannian metric on M . If
f(x, v) represents the density of particles at position x with velocity vector v in
the unit tangent sphere at x, ΩxM , then the stationary linear transport equation
is

−Df(x, v) − σa(x, v)f(x, v) +

∫

ΩxM

k(x, v′, v)f(x, v′) dv′x = 0.(1)

The operator D is the derivative along the geodesic flow which in the case of
g being Euclidean is simply Df(x, v) = v · ∇xf(x, v). The coefficient σa is the
absorption coefficient and k is the scattering kernel; σa describes the probability
of a particle with position x and velocity v being absorbed and k describes that
of a particle with position x and velocity v′ being “scattered” to velocity v. We
restrict ourselves to the case where all particles travel at unit speed and hence use
the unit sphere bundle ΩM rather than the full tangent bundle TM . The measure
dv′x in (1) is the Euclidean volume form on the tangent sphere ΩxM determined
by the metric g at x. Define the incoming and outgoing bundles

Γ± = {(x, v) ∈ ΩM : x ∈ ∂M, ±〈v, ν〉 > 0}
on the boundary ∂M of M , where ν is the outward unit normal vector to ∂M
and 〈·, ·〉 = 〈·, ·〉gx is the inner product with respect to the metric g at x. If f−
is a distribution of particles defined on Γ− let f be the solution to (1), should it
exist, with boundary condition f |Γ−

= f−. Then the albedo operator is the map
A which maps f− to the outgoing flux of particles,

Af− = f |Γ+
.

The inverse problem, the problem of optical tomography, is to determine uniquely
σa and k from knowledge of A.

The case when the ambient metric is Euclidean is treated in [2] where it is
shown that the albedo operator determines the x-ray transform of the absorption
coefficient in all dimensions and determines the collision kernel k in dimensions 3
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and greater (see also [1]. In [7], a more precise analysis results in unique determi-
nation of k in dimension two, under the assumption that k is small relative to σa,
with an explicit constant given. In [3] the author of this note proved the analogous
result to that of [2], namely that in the presence of a known Riemannian metric
A uniquely determines σa and k in dimensions three and greater, and only σa

in dimension two. In [4] the author used the approach of [7] to show that under
similar smallness assumptions, k is uniquely determined, as is also the metric, on
(simple) Riemannian surfaces. The determination of the metric follows from the
results of [5], [6].

A precise statement of the result in [4] follows. We make the following assump-
tions on the geometry of (M, g):

M1. The sectional curvature of (M, g) is bounded above by κ0.
M2. If κ0 > 0 we assume that (M, g) has no focal points, that is, for every

geodesic γ : [a, b] → M and every non-zero Jacobi field J(t) along γ
satisfying J(a) = 0, we have ‖J(t)‖ is a strictly increasing function on
[a, b]. Note that if κ0 ≤ 0 then (M, g) necessarily has no focal points.

M3. In the case that κ0 > 0 we assume that the diameter A of (M, g) satisfies
A < π/(2

√
κ0). There is no restriction on the diameter of (M, g) when

κ0 ≤ 0, other than it is finite.

It follows that (M, g) is “simple.” In particular, for any x ∈ M̄ the exponential map
Expx : Exp−1

x (M̄) → M̄ is a diffeomorphism. Consequently M is diffeomorphic to
a disk. We make the following assumptions on (σa, k):

A1. Even in the Euclidean case and when k = 0, A does not uniquely determine
σa (see [2], [7]) and so for the inverse problem we assume that σa depends
only on x.

A2. σa ∈ L∞(M), k ∈ L∞({(y, v′, v) ∈ M × ΩyM × ΩyM}), and ‖k‖L∞ ≤
(2π diam(M))−1.

We define the class

(2) UΣ,ε =
{(
σa(x), k(x,w′, w)

)
: ‖σa‖L∞ ≤ Σ, ‖k‖L∞ ≤ ε,

and (σa, k) satisfy A1, A2
}
.

Theorem 1. Let (M, g) be a two dimensional Riemannian manifold with smooth,
strictly convex boundary, satisfying assumptions M1–M3: (M, g) has curvature
bounded above by κ0, has no focal points, and in the case that κ0 > 0 has diameter
bounded by π/(2

√
κ0).

(1) If (σa, k) satisfy A1, A2 then the metric g is uniquely determined by the
associated albedo operator A.

(2) Given Σ > 0 there exists ε > 0 such that any pair (σa, k) ∈ UΣ,ε is uniquely
determined, within UΣ,ε, by the associated albedo operator A. Furthermore,
ε can be chosen to be ε = Ce−2AΣ where C depends only on (M, g) and
A = diam(M, g).
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Towards convergence of the linear sampling method

Tilo Arens

(joint work with Armin Lechleiter)

In an inverse scattering problem, the aim is to obtain a reconstruction of a scatterer
or value of a refractive index from the knowledge of the far field pattern of the
scattered wave for one or several known incident fields. For the purpose of this talk,
we consider the simplest type of a scattering problem, where a scalar (i.e. acoustic)
field ui is incident on a bounded obstacle D ⊂ R3. The total field is assumed to
vanish on the boundary of D.

Mathematically, the problem is formulated as an exterior boundary value prob-
lem for the Helmholtz equation, i.e. the total field u is a solution of

∆u+ k2u = 0 in R
3 \D, u = 0 on ∂D,

and the scattered field us = u−ui must satisfy the Sommerfeld radiation condition

lim
|x|→∞

|x|
(
∂us

∂|x| − ik us

)
= 0

uniformly for all directions of observation x/|x|.
The scattered field us can, by Rellich’s Lemma, be uniquely associated with its

far field pattern u∞ which is the leading order behavior of the expansion of us in
inverse powers of |x| for |x| → ∞. In the case of a plane wave

ui(x) = exp(ikd · x), x ∈ R
3, d ∈ S

2,

as incident field, we shall denote the far field pattern of the corresponding scattered
field by u∞(x̂, d), where x̂ ∈ S2 denotes the direction of observation and d ∈ S2 the
direction of incidence of the plane wave. Then, the far field operator F : L2(S2) →
L2(S2) may be defined by

Fg =

∫

S2

u∞(·, d) g(d) ds(d), g ∈ L2(S2).
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The Linear Sampling Method attempts to reconstruct the scatterer D directly
from the knowledge of F . For all z ∈ R3, the ill-posed far field equation

(1) Fg = Φ∞(·, z)

is approximately solved using a regularization strategy and the norm of the com-
puted approximate solution serves as an indicator for whether z is inside D or not.
Here,

Φ∞(x̂, z) =
1

4π
exp(−ikx̂ · z), x̂ ∈ S

2,

denotes the far field pattern generated by a point source at z ∈ R3 in free field
conditions. The method was first published in the papers [4, 5] and has since been
successfully applied to a large number of related problems. A recent review of the
results available can be found in [3].

However, these results only represent reports that this method numerically re-
liably produces good reconstructions. An existence theorem for an approximate
solution of (1) with certain additional properties is usually given, but no guarantee
is provided that this is the solution computed. Only for the Dirichlet scattering
problem above has a convergence analysis been given in [1] which is based on the
Factorization method first introduced in [6].

In [1], Tikhonov regularization of F is combined with applying a further oper-
ator H : L2(S2) → H1/2(∂D) to obtain a regularization strategy for the operator
G = H−1F , i.e. the operator family Rα = H (α + F ∗ F )−1F ∗, α > 0, is studied.
A first issue is the influence of noise on the reconstruction. The standard theory
for regularizations defined using spectral decompositions as used in [1] cannot be
employed directly in this case, as the operator itself is perturbed.

Consider a perturbed operator F δ such that ‖F −F δ‖ ≤ δ. Taking into account
the perturbation of the eigenvalues and eigenvectors of the operator and using
estimates from [8] yields that an admissible choice of the regularization parameter
α(δ) is obtained under the condition that

α(δ) → 0 and
δ

α(δ)3/2
→ 0 (δ → 0).

An open question remains in that it is unclear whether this condition may be met
by an a priori choice of the regularization parameter.

Furthermore, in [1] convergence was only proved for z ∈ D. The case z /∈ D
may be approached by considering a perturbed domain Dδ which is the union of
D and a ball of radius δ centered at z. In this case, the far field operator for Dδ is
also only a small perturbation of F . Making use of recent results on the behavior
of the Factorization method in the case of noisy data [7], it is possible to show that
the indicator function used in [1] applied for Dδ is close to the the one applied for
D. Hence, the behavior observed for the indicator function outside of the domain
D is explained. A simpler version of the proof of this result as the one given in
the talk is contained in the paper [2].
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An asymptotic factorization method

for inverse electromagnetic scattering

Roland Griesmaier

We consider a simple but fully three dimensional model problem for the electro-
magnetic exploration of perfectly conducting objects within an unbounded two-
layered background medium. This model problem is motivated by the project
[13] of the German Federal Ministry of Education and Research; cf. also [9, 16]
for further studies in this direction. It leads to an inverse scattering problem
for Maxwell’s equations which is well-known to be nonlinear and ill-posed. Re-
cently new solution methods for inverse scattering problems such as linear sampling
methods, introduced first by Colton and Kirsch in [7], and factorization methods,
proposed first by Kirsch in [15], have been developed which avoid the issue of
nonlinearity. In order to handle the ill-posedness it is generally advisable to incor-
porate all available a priori knowledge about the unknown inclusions and to try
to determine very specific features. Commercial off-the-shelf metal detectors used
for humanitarian demining work at relatively low frequencies, e.g. the “Foerster
Minex 2FD 4.500” works at 2.4 kHz and 19.2 kHz; cf. [11, pp. 82]. In vacuum this
corresponds to wave lengths of more than 15 km. Therefore we may assume that
the size of the scatterers is small with respect to the wavelength of the incident
field. So we try to reconstruct the centers of finitely many perfectly conducting
small scatterers that are well separated from each other, from the interface, and
from the measurement device. Here, general purpose reconstruction methods are
likely to fail, since due to the smallness of the inhomogeneities the associated scat-
tered fields are very small. Hence, unless one knows exactly the patterns that
should be looked for, noise will largely dominate the information contained in the
measured data.

We decompose the space R
3 = R

3
− ∪Σ0 ∪ R

3
+ in a hyperplane Σ0 correspond-

ing to the surface of ground, and the two halfspaces R
3
± above and below Σ0
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representing air and ground, respectively. We assume that both half spaces are
filled with homogeneous materials with dielectricity ε and permeability µ given by

ε(x ) :=

{
ε+, x ∈ R

3
+,

ε−, x ∈ R
3
−,

µ(x ) :=

{
µ+, x ∈ R

3
+,

µ−, x ∈ R
3
−.

The associated (discontinuous) wave number is denoted by k. Measurements and
excitations are restricted to a bounded sheet M ⊂ Σd, where Σd ⊂ R

3
+ is the

hyperplane parallel to the surface of ground at height d > 0. We suppose that
the scatterers are of the form Dδ,l = zl + δBl, 1 ≤ l ≤ m, where Bl is a bounded

domain containing the origin, the points zl ∈ R
3
− indicate the positions of the

“centers” of the scatterers, and the “average” inhomogeneity size is specified by
the parameter δ > 0. In order to study the inverse problem we first examine
the corresponding direct scattering problem in detail and derive an asymptotic
expansion of the scattered field in terms of the incident field, the centers of the
scatterers and their geometry, as the size of the inhomogeneities tends to zero.
We define the (near-field) measurement operator Gδ which maps magnetic dipole
densities on the measurement device M onto the corresponding scattered fields
H s|M on M,

Gδ : L2(M; C
3) → L2(M; C

3), Gδϕ := H s|M.

We derive a factorization of Gδ similar to the one developed in [9]. Next we
use layer potential techniques to describe the three operators occurring in this
factorization, expand them separately as the size of the inhomogeneities tends to
zero, and use these expansions to calculate the leading order term in the asymptotic
formula for the scattered field. This generalizes the approach we used in [1] for
an inverse obstacle problem in electrostatics and yields the following asymptotic
formula. Let ϕ ∈ L2(M; C

3) and let

H i = k2
+

∫

M
G

m(·,y)ϕ(y) dσ(y)

be the corresponding incident field, where Gm denotes the magnetic dyadic Green’s
function for the Maxwell’s equations in two-layered background medium. Then

Gδϕ = δ3
m∑

l=1

(
k2
−G

m(·, zl)M
0
Bl

H i(zl)+
µ−
µ+

curlxG
e(·, zl)M

∞
Bl

curlH i(zl)
)
+O(δ4)

in L2(M; C
3), as δ → 0. Here Ge denotes the electric dyadic Green’s function for

the Maxwell’s equations in two-layered background medium, and M0
Bl

and M∞
Bl

are so-called polarization tensors. Similar formulas have been derived formally in
[2, 3, 4] for homogeneous background medium and in [14] for two-layered back-
ground medium; see also the prior work of Ammari, Vogelius, and Volkov [5] for a
rigorous derivation in the case of small inhomogeneities in a bounded homogeneous
reference domain.
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Using this asymptotic expansion we can study the inverse problem of recovering
the centers of the small scatterers from magnetic near-field scattering data corre-
sponding to an incident field due to a magnetic dipole distribution on the measure-
ment device, i.e. from the knowledge of Gδ. Inspired by [6], see also [12], we design
a direct reconstruction algorithm that is closely related to factorization methods,
and also MUSIC-type methods developed by Devaney [8]. We denote the leading
order term in the asymptotic expansion of Gδ by T : L2(M; C

3) → L2(M; C
3),

Tϕ :=
m∑

l=1

(
k2
−G

m(·, zl)M
0
Bl

H i(zl) +
µ−
µ+

curlxG
e(·, zl)M

∞
Bl

curlH i(zl)
)
.

Then we can prove that the range of T is finite dimensional and its dimension is
6m, wherem is the number of unknown scatterers. Furthermore, for a polarization
d = (d1,d2) ∈ C

3 × C
3 \ {(0, 0)} and a sampling point z ∈ R

3
− we define the

test function

g z ,d := (Gm(·, z )d1 + curlxG
e(·, z )d2)|M.

Then we can show that g z ,d ∈ R(T ) if and only if z ∈ {z1, . . . , zm}. So, if we
denote the angle between the test function g z ,d and the (finite dimensional) range
space R(T ) by β(z ), we find that

z ∈ {zl | l = 1, . . . ,m} ⇐⇒ β(z ) = 0 ⇐⇒ cotβ(z ) = ∞.

Approximating the singular value decomposition of T by the singular value decom-
position of the (compact) measurement operator Gδ we obtain an approximation
βδ(z ) of β(z ). If we plot cotβδ(z ), we expect to see large values for points z

which are close to the positions zl, l = 1, . . . ,m. This leads to a simple and
efficient visualization method for the solution of our inverse scattering problem.

A complete derivation of these results for homogeneous background medium
including numerical reconstructions can be found in [10]. A corresponding work
for two-layered background medium is in preparation.
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[6] M. Brühl, M. Hanke and M.S. Vogelius, A direct impedance tomography algorithm for lo-
cating small inhomogeneities, Numer. Math. 93 (2003), 635–654.



736 Oberwolfach Report 13/2007

[7] D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the
resonance region, Inverse Problems 12 (1996), 383–393.

[8] A.J. Devaney, Super-resolution processing of multi-static data using time reversal and MU-
SIC, preprint.

[9] B. Gebauer, M. Hanke, A. Kirsch, W. Muniz and C. Schneider, A sampling method for
detecting buried objects using electromagnetic scattering, Inverse Problems 21 (2005), 2035–
2050.

[10] R. Griesmaier, An asymptotic factorization method for detecting small objects using elec-
tromagnetic scattering, submitted.

[11] D. Guelle, A. Smith, A. Lewis and T. Bloodworth, EUR 20837 Metal detector handbook for
Humanitarian Demining, European Commission, Luxembourg: Office for Official Publica-
tions of the European Communities, 2003.
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Herglotz, Helmholtz, and far field support

John Sylvester

In practical remote sensing, faraway sources radiate fields that, within measure-
ment precision, are nearly those radiated by point sources. Algorithms like MUSIC
[1, 2] correctly identify their number, their locations, and their strengths based on
monostatic observations of the near or far fields they radiate. Our motivation in
this lecture is to locate sources which are supported on larger sets.

For any compactly supported source, F , v+ below denotes the unique outgoing
solution to

(∆ + k2)v+ = F (x).

The asymptotics of v+ are of the form:

v+ ∼ eikr

√
2πr

β(Θ)

and β is called the far field radiated by F .
A source for which β = 0 is called a non-radiating source. In [4] we showed that

there were many non-radiating sources, and classified those that arose from single
and double layer potentials.

Theorem 1. Suppose that ω is a distribution in H−2+(Rn) and that suppω has
measure 0. The source ω is non-radiating, if and only if, there is a bounded open
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set B and a u ∈ H0+(Rn) satisfying the free Helmholtz equation in B, such that
suppω = ∂B and ω = C∂Bu.

The notation C∂Bu means the Cauchy data of u restricted to ∂B. For smooth
u and ∂B, it is a combination of single and double layer potentials with densities
given by u and its normal derivative.

A consequence is that a far field of a solution to the inhomogeneous Helmholtz
equation does not determine the source, or its support, uniquely. A second con-
sequence is that it is also impossible to find an upper bound for the support of
a source based solely on the far field it radiates (just add a non-radiating source
with arbitrarily large support). While not as apparent, it is also impossible to
associate a lower bound. That is, there is no smallest compact set which supports
a source that radiates a given far field.

In this talk we describe how to associate with any far field a unique smallest
compact convex set [3], and, more generally, a unique smallest compact union
of well-separated-convex sets (UWSC sets) that is both big enough to support a
source that can radiate that far field, and small enough that it must be contained
in the UWSC-support of any source that radiates the same far field. This means
that it makes theoretical sense to look for not only the number and the locations,
but also the convex geometry of sources based on the far field they radiate. The
only requirement is that sources be well-separated — the diameter of each convex
component is strictly smaller than the distance to the other components.

We also give examples to illustrate the extent to which both the convexity and
well-separated properties in UWSC are necessary, i.e. we exhibit far fields with
which it is not possible to associate a unique smallest compact set or, in R

2, a
unique smallest disjoint union of convex sets.
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Identifying scattering obstacles by the

construction of nonscattering waves

Russell Luke

(joint work with Anthony Devaney)

The inverse scattering literature abounds with methods to determine the shape of
scatterers from far field data. Of principal concern here are the MUSIC algorithm
[5], the Linear Sampling Method [3], the Point Source Method [13] and the connec-
tions between these methods. The connection between the MUSIC algorithm and
Kirsch’s Factorization Method [9] has been detailed by Cheney [2] and Kirsch [10]
for scattering from point-like inhomogeneities. More recent studies [1, 8, 6, 7] ap-
proach an application of the MUSIC algorithm to scatterers of some specified size,
relative to the wavelength, and are based on the finite-dimensional multi-static
response matrix for point-like scatterers. Our goal here is to provide a rigorous
analysis in the continuum for scatterers of arbitrary size illuminated by fields of
arbitrary frequency.

Our central result, Theorem 1, is built upon the Linear Sampling Method of
Colton and Kirsch [3] and shows that, on the boundary of a scatterer with Dirichlet
boundary conditions, there is a unit-magnitude incident field with respect to the
H1/2-norm that has arbitrarily small pointwise magnitude. With the help of the
Point Source Method of Potthast [13] we show in Corollary 2 that such an incident
field does not generate a scattered field. Theorem 3 combines these results as the
foundation for a MUSIC algorithm [5] for determining the shape and location of
an obstacle. The technique indicates intriguing possibilities for the construction
of nonscattering fields that might be used to shield obstacles from interrogating
waves. To our knowledge this is the first rigorous analysis in the continuum and
our application of the linear sampling method appears to be novel.

In the following statements, F : L2(S) → L2(S) denotes the far field operator
corresponding to illumination of sound-hard obstacles with incident plane waves
(S is the unit sphere in Rm for m = 2 or 3), B : H1/2(∂D) → L2(S) denotes the
mapping of radiating solutions to the Helmholtz equation from the boundary data
to the far field pattern, and H : L2(S) → H1

loc(R
m) is the Herglotz wave operator.

A key tool is the factorization of the far field pattern as −BH = F .

Theorem 1 (normalized Linear Sampling). Let D be a domain with smooth bound-
ary and assume that k2 is not a Dirichlet eigenvalue for the negative Laplacian on
D. If z /∈ D, for ǫ > 0 and δ > 0, there exist solutions f(·; z) and g(·; z) to

‖Bf(·; z) + Φ∞(·; z)‖L2(S) < δ(1a)

‖Fg(·; z)− Bf(·; z)‖L2(S) < ǫ(1b)

such that

(1c) lim
δ→0

‖F ĝ(·; z)‖L2(S) = 0 and lim
δ→0

‖Hĝ(·; z)‖H1/2(∂D) = 1
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where

(2) ĝ(·; z) ≡ g(·; z)
‖f(·; z)‖H1/2(∂D)

.

Since the far field pattern is zero if and only if there is no scattered field,
the above theorem implies that the incident Herglotz wave function Hĝ does not
scatter. That is,

Corollary 2 (nonscattering incident fields). The scattered field, vs
ĝ(·; z), corre-

sponding to the incident Herglotz wave function vi
ĝ(·; z) = Hĝ(·; z) in Theorem 1

has the behavior

lim
δ→0

vs
ĝ(x; z) = 0 and lim

x→∂D

lim
δ→0

vi
ĝ(x; z) = 0 for x ∈ D

o.

The MUSIC algorithm is based on the observation that the set of Green’s func-
tions

(3) Φ∞(z, η̂) ≡ lim
r→∞

Φ(z, rη̂) = βeik(−η̂)·z

for z near ∂D and all η̂ ∈ S, are nearly orthogonal to the noise subspace of F .
We discuss what we mean by the noise subspace in more detail below. In precise
terms we have

Theorem 3 (MUSIC). Let D be a domain with smooth boundary and assume that
k2 is not a Dirichlet eigenvalue for the negative Laplacian on D. Let (σn, ξn, ψn),
n ∈ N, be the singular system for the far field operator F with σn ≤ σm for n > m.
Given any γ > 0 there is a vector a ∈ l2 with ‖a‖2 = 1 and a ρ > 0 such that for
any x ∈ D

o satisfying dist (x,D) < ρ we have

(4)

∞∑

n=1

∣∣an〈ξn(·),Φ∞(x, ·)〉L2(S′)

∣∣ < γ.

Our main results show that there is a density ĝ that approaches, nontrivially, the
null space of the far field operator corresponding to some fixed, smooth scatterers.
A superposition of plane waves weighted by such a density is a nonscattering
incident field for these scatterers. The density can be constructed from the singular
functions of the far field operator and the nonscattering phenomenon understood as
the orthogonality of the singular functions to the far field pattern of a point source
with sources located on the boundary of the scatterer. Since the image of this
density acted upon by the far field operator vanishes, we arrive at the seemingly
counterintuitive conclusion that it is the noise subspace of the far field operator
that renders the shape and location of the obstacle, not the signal subspace.

The point source method of Potthast [11, 12] rests on the approximation of
the scattered field us by computing the correct density for the construction of
a backpropagation operator. As already noted, constructing such a density is a
nontrivial task since this requires some knowledge of the boundary of the scatterer
which we assume is unknown. The linear sampling method approaches the problem
of finding the shape and location of the scatterer by looking for points where the
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fundamental solution far field pattern is not in the range of the far field operator,
but still, one must solve an ill-posed linear integral equation at each point to be so
tested in some computational domain. What we have shown, however, is that it
is unnecessary to create an approximate domain as with the point source method,
nor is it necessary to solve many ill-posed linear integral equations as in the linear
sampling method. We need only work with incident plane waves and the known
singular functions of the far field operator.

These results have intriguing implications for inverse scattering and signal de-
sign. The method works very much like the Linear Sampling Method for inverse
scattering in that the proposed incident field is constructed from the measured far
field data and the scatterer is identified by those points in the domain where the
incident field (and scattered field) are small. For signal design the method opens
the door to the possibility of constructing signals that avoid certain known obsta-
cles while irradiating others. Our application of the linear sampling method to the
MUSIC algorithm is novel and clarifies the connections between many different
inverse scattering approaches.
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Inequalities in Inverse Scattering for Anisotropic Media

Fioralba Cakoni

(joint work with David Colton, Houssem Haddar, Peter Monk)

We consider the scattering of electromagnetic waves by a (possibly) partially
coated anisotropic dielectric with support D at fixed frequency. For a particu-
lar polarization and geometry the corresponding forward problem in R2-case is
given by the following set of equations

∇ ·A∇w + k2 w = 0 in D

∆u+ k2 u = 0 in De

w − u = 0 on Γ1

w − u = −iη ∂u
∂ν

on Γ2

∂w

∂νA
− ∂u

∂ν
= 0 on ∂D = Γ1 ∪ Γ2

u = us + ui

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0,

where us is the scattered field, ui is the given incident field and ν is the outward
normal vector to the (piecewise smooth) boundary ∂D of D. In the case of plane
waves the incident field is given by ui := eikx·d, d ∈ Ω := {x : |x| = 1}. We assume
that A is a real valued 2 × 2 matrix-valued function whose entries are piecewise
continuously differentiable functions in D with (possible) jumps along piecewise
smooth curves such that A is symmetric and ξ̄ · Aξ ≥ γ|ξ|2 for all ξ ∈ C2 and
x ∈ D where γ is a positive constant. Furthermore we assume that η ∈ L∞(Γ2) is
such that η(x) ≥ η0 > 0 and that R2 \D is connected. It can be shown [5] that
the scattered field us has the asymptotic behavior

(1) us(x) =
eikr

√
r
u∞(x̂, d) +O

(
r−3/2

)

as r → ∞ uniformly in x̂ where u∞ is the far field pattern.
The inverse scattering problem we are concerned with is to determine D, η and

A from a knowledge of u∞(x̂, d) for all x̂, d ∈ Ω. In [1], [4] it is proven that D is
uniquely determined from the above data. Furthermore for a fixed D and A, η is
also uniquely determined from the data provided that for an arbitrary choice of Γ2,
A and η there is at least one incident plane wave such that the corresponding total
field u satisfies ∂u/∂ν|Γ0

6= 0 where Γ0 is an arbitrary portion of the boundary.
However, it is also know that the matrix A is not uniquely determined from the
far field patterns for all d even if they are known for a range of frequencies k.

We now define the far field operator F : L2(Ω) → L2(Ω) by

(2) Fg(x̂) :=

∫

Ω

u∞(x̂, d)g(d) ds(d)
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and introduce the far field equation

(3) (Fg)(x̂) = γe−ikx̂·z g ∈ L2(Ω), z ∈ D

where γ = eiπ/4

√
8πk

and γe−ikx̂·z is the far field pattern of the fundamental solution

Φ(x, z) := i
4H

(1)
0 (k|x − z|) to the Helmholtz equation in R2 with H

(1)
0 being a

Hankel function of the first kind of order zero. A reconstruction of D can be
obtained by using the linear sampling method which characterizes the support D
from a solution of the far field equation (3) (see e.g. [1]). Assuming that D is
known our next goal is to provide a lower bound for η in terms of the solution
of the far field equation (3). We recall that a Herglotz wave function with kernel
g ∈ L2(Ω) is an entire solution of the Helmholtz equation defined by

(4) vg(x) =

∫

Ω

eikx·dg(d)ds(d), x ∈ R
2.

It can be shown (see [1], [4]) that for z ∈ D and ǫ > 0, there exists a Herglotz
wave function vgz

ǫ
with kernel gz

ǫ ∈ L2(Ω) such that

(5) ‖(Fgz
ǫ )(x̂) − γe−ikx̂·z‖L2(Ω) ≤ ǫ

and

(6) ‖wz − vgz
ǫ
‖H1(D) ≤ ǫ

where (wz , vz) solves the interior transmission problem

∇ ·A∇vz + k2 vz = 0 in D

∆wz + k2 wz = 0 in D

vz − (wz + Φ(·, z)) = 0 on Γ1(7)

vz − (wz + Φ(·, z)) = −iη ∂
∂ν (wz + Φ(·, z)) on Γ2

∂vz

∂νA
− ∂

∂ν (wz + Φ(·, z)) = 0 on ∂D.

Applying Green’s formula to (7) we obtain that

(8) η ≥ −2kπ|γ|2 − Im (wz0
(z0))

‖ ∂
∂ν (wz0

+ Φ(·; z0))‖2
L2(Γ2)

≥ −2kπ|γ|2 − Im (wz0
(z0))

‖ ∂
∂ν (wz0

+ Φ(·; z0))‖2
L2(∂D)

.

Note that wz(z) is approximated by the Herglotz wave function vgz
ǫ

with kernel

gz
ǫ ∈ L2(Ω), the regularized solution of the far field equation (3).

The linear sampling method for determining D and the above estimate for η
hold true if k is not such that the homogeneous interior transmission problem, i.e
(7) with Φ(·, z) = 0, has non trivial solutions. It is easy to see that the latter
values of k are subset (possibly empty set) of the set of transmission eigenvalues
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i.e. the set of values of k for which the following problem has non trivial solutions

∇ ·A∇vz + k2 vz = 0 in D

∆wz + k2 wz = 0 in D

vz − (wz + Φ(·, z)) = 0 on ∂D(9)
∂vz

∂νA
− ∂

∂ν (wz + Φ(·, z)) = 0 on ∂D.

We remark that, except for the case of spherically stratified medium [5], it is not
know whether transmission eigenvalues exist.

Our aim is to use transmission eigenvalues to provide inequalities that are sat-
isfied by all matrix valued index of refractions A that give raise to the same far
field data. In [2] it is shown that, provided that ‖A−1(x)‖2 ≥ δ > 1 for all x ∈ D
and some constant δ, then

(10) sup
D

‖A−1‖2 ≥ λ(D)

k2

where k is a transmission eigenvalue, λ(D) is the first eigenvalue of −∆ on D and
‖ · ‖2 is the Euclidean norm of A. Hence, if k is the first transmission eigenvalue,
(10) provides a lower bound for the Euclidean norm of A. It is important to
notice that the transmission eigenvalues (if they exit) can be seen in the far field
equation. In particular, due to the lack of injectivity and the denseness of the
range of the far field operator F , when k is a transmission eigenvalue the L2-norm
of the (regularized) solution to the far field equation (3) can be expected to be
large for such values of k. (This expectation are numerically verified for several
examples in [2] and [3]). This provides a method for determining the smallest
transmission eigenvalue from the far field data for a range of frequencies.
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A variational approach for the solution of the electromagnetic

interior transmission problem for anisotropic media

Houssem Haddar

(joint work with Fioralba Cakoni)

The electromagnetic scattering problem for anisotropic media presents difficulties
that are not present in the isotropic case. These difficulties are all connected to
the fact that the (tensor) index of refraction is not uniquely determined from the
scattering data and hence the basis inverse scattering problem to be considered is
different from the corresponding isotropic case. In particular, it has been shown
that only the support of the inhomogeneous media can be uniquely determined
[1] and this fact has led to the problem of deriving reconstruction algorithms to
recover the support from the measured scattering data [2, 3, 4, 10]. Central to
the derivation of both uniqueness theorems and reconstruction algorithms has
been the Interior Transmission Problem (itp) and a better understanding of the
behavior of solutions to this problem is basic to further developments in the inverse
scattering problem for anisotropic media. Since all materials exhibit some degree
of anisotropy and many, such as human tissue, to a large degree, such problems
in inverse scattering are not only of considerable mathematical interest but also
of also of central importance in numerous applications.

One possible approach to solve itp is the use of an integral-type method. For
instance, this type of method has been successfully applied to the case of an
inhomogeneous medium if one assumes that the index of refraction is smooth inside
the medium and has no jump across the boundary [9]. However, as presented in
[7], it gives only partial answers in the case of anisotropic media (where the index
of refraction N is a matrix-valued function). One needs to further assume that the
imaginary part of N is definite positive but sufficiently small (without knowing
how small it should be).

Our approach to treat the problem uses a variational framework where minimal
regularity for N is required and where the entries of this matrix can have a jump
across the boundary of the medium. A variational treatment of itp has been
proposed in [2] for the acoustic case. It is based on the study of a modified
coercive itp obtained from the original one by adding some appropriate zero order
terms. This modified problem can be seen then as a compact perturbation of the
original one. However, it turns out that in the Maxwell case the modified itp is no
longer a compact perturbation of the original one and therefore this approach does
not apply any more. Let us however mention that in the cases where the relative
permeability and permittivity are greater than one, and applying ideas from [8]
that combines the use of integral equation method and a variational approach, one
can overcome this difficulty. The approach in [8] could in principle be generalized
to anisotropic cases.

Our alternative method follows [10] and is based on a reformulation of the
problem as a fourth order boundary value problem. This procedure applies when
the permeability or the permittivity is equal to one. It leads in particular to
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optimal existence results in the sense that in general the interior transmission
problem has only L2 solutions. The idea of transforming the problem into a
fourth order partial differential equation goes back to [11] where the acoustic case
is studied (see also [6]). However their technique to solve the obtained boundary
value problem cannot be transposed to Maxwell’s equations due to the lack of
compactness of H(curl)-like spaces into L2.

The known results on the electromagnetic interior transmission problem for
anisotropic media are contained in [10]. In this paper it was shown that if the
real part of the index of refraction is positive definite and greater then one then
in an appropriate function space there exists a unique solution to the interior
transmission problem provided the wave number is not a transmission eigenvalue.
This work is continued in [5] where the case when the real part of the index of
refraction is less then one is taken into account and the countability of transmission
eigenvalues is proved. These results are also generalized to the class of problems
when the anisotropic media is partially coated by a thin highly conducting layer
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On the convergence of the no-response test

Roland Potthast

The no-response test suggested by Luke-Potthast [1] is a recent scheme for the
location of inhomogeneities for scattering problems from the knowledge of the
far field pattern or the trace of the scattered field for one incident wave. The
method does not depend on the particular physical structure of the inclusion, i.e. it
does not depend on the boundary condition or whether the scatterer is penetrable,
inhomogeneous or anisotropic. Here, we provide new results [3] on the convergence
of the method.

We consider the scattering of some time-harmonic acoustic wave ui by an im-
penetrable scatterer D in two or three dimensions. The scattered field is denoted
by us and the total field u = ui + us is a solution to the Helmholtz equation

(1) △u+ κ2u = 0

in Rm \D with m = 2 or m = 3, where κ denotes the wave number. The scattered
field is assumed to satisfy the Sommerfeld radiation condition

(2) r
m−1

2

(∂us

∂r
− iκus

)
→ 0, r = |x| → ∞,

uniformly in all directions x̂ = x/|x|. A radiating scattered field us has the as-
ymptotic behavior

(3) us(x) =
eiκ|x|

|x|m−1

2

{
u∞(x̂) +O

(
1

|x|

)}
, |x| → ∞,

where u∞ is known as far field pattern of us. By S we denote the boundary of the
unit disk or unit ball, respectively. Via Green’s representation formula the field
us in the exterior of D can be represented as

us(x) =

∫

∂D

(
Φ(x, y)

∂us

∂ν
(y) − ∂Φ(x, y)

∂ν(y)
us(y)

)
ds(y), x ∈ R

m \D,(4)

u∞(x̂) = γ

∫

∂D

(
e−iκx̂·y ∂u

s

∂ν
(y) − ∂e−iκx̂·y

∂ν(y)
us(y)

)
ds(y), x̂ ∈ S,(5)

where Φ is the free space fundamental solution to the Helmholtz equation and

(6) γ :=






eiπ/4

√
8πκ

, m = 2,

1

4π
, m = 3,

For the inverse problem we assume that u∞ is given on an open subset Λ of the
unit sphere. The task is to determine the location, shape and properties of some
scattering object D.

The idea of the no-response test is to study superpositions of incident waves

(7) (Hg)(x) :=

∫

Λ

eiκx·dg(d) ds(d)
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with some density g ∈ L2(Λ). Consider test domains G ⊂ R
m with boundary of

class C2, where we assume that the homogeneous interior Dirichlet problem for G
does have only the trivial solution. The technique here is also denoted as domain
sampling in contrast to point sampling carried out by other sampling methods.
Then, for ǫ > 0 we investigate the set M(G, ǫ) of densities g with the condition

(8) ‖Hg‖C1(G) ≤ ǫ.

For the case D ⊂ G via Green’s theorem we calculate

µ(g) :=

∫

Λ

u∞(−x̂)g(x̂)ds(x̂)

=

∫

Λ

γ

∫

∂D

(
eiκx̂·y ∂u

s

∂ν
(y) − ∂eiκx̂·y

∂ν(y)
us(y)

)
ds(y) g(x̂) ds(x̂)

= γ

∫

∂D

{(∫

Λ

eiκx̂·yg(x̂) ds(x̂)

)
∂us

∂ν
(y)

−
(∫

Λ

∂eiκx̂·y

∂ν(y)
g(x̂) ds(x̂)

)
us(y)

}
ds(y)

= γ

∫

∂D

{
(Hg)(y)

∂us

∂ν
(y) − ∂Hg(y)

∂ν(y)
us(y)

}
ds(y)

and derive

(9) |µ(g)| ≤ cǫ→ 0, ǫ→ 0,

with some constant c. The no-response test calculates some estimate for

(10) µ(G, ǫ) := sup
g∈M(G,ǫ)

|µ(g)|, ǫ > 0.

The behaviour of general case is resolved in the following convergence theorem [3].

Theorem 1. Let G be a domain which is homotopic to a ball BR, R > 0 suffi-
ciently large, in the sense that there exists a continuous mapping [0, 1] ∋ λ 7→ Gλ

with G0 = BR, G1 = G and Gλ ⊂ Gη for λ > η, where ∂Gλ is of class C2. Then

(11) |µ(G, ǫ)| → 0, ǫ→ 0,

if and only if us can be analytically extended into BR \G.

The proof is based on analyticity arguments, approximation of multipoles and
Taylor series. We show that the response is small if and only if the scattered field
can be analytically extended into the exterior of the test domain G. Thus, the no-
response test in fact tests for analytic extensibility. For the multiwave situation
where the far field pattern is known for all or many directions of incidence we show
convergence to the support of the scatterer under consideration for basic situations
in acoustics.
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Sampling methods for low-frequency electromagnetic imaging

Bastian Gebauer

(joint work with Martin Hanke, Christoph Schneider)

For the detection of buried landmines the most frequently used devices are stan-
dard off-the-shelf metal detectors. These detectors exhibit (and measure) an elec-
tromagnetic field which changes in the vicinity of metallic or magnetic objects.
From this change the detectors decide (on a heuristical basis) whether there is a
landmine underneath them or not. To improve the reliability of these devices it
is desirable to extract from the signal as much information as possible about the
shape and position of magnetic, dielectric or conducting inhomogeneities. How-
ever, standard metal detectors work with very low frequencies around 20kHz, which
corresponds to a wavelength of approximately 15km, while the typical objects of
interest are only a few centimeters in size. The problem can therefore be ex-
pected to be severely ill-posed and to show close relations to electrical impedance
tomography (EIT), which can also be considered as a problem of detecting imho-
mogeneities using waves of infinite wavelength. We consequently study a relatively
new class of non-iterative methods that have been used with some success in EIT,
namely the Linear Sampling and the Factorization Method.

As a simplified model for a metal detector we consider

S

Ω

a two-dimensional device S, in which time-harmonic sur-
face currents with complex amplitude J and frequency ω
are being generated and on which the tangential compo-
nent γτE

ω|S of the resulting electric part of the scattered
electromagnetic field can be measured. Idealistically we as-
sume that we have access to full measurements, i. e. to the
whole operator

Mω
s : J 7→ γτE

ω|S .
Mω

s can be factorized into Mω
s = LG, where L is the virtual measurement

operator, that maps a tangential magnetic field, that is applied on the surface
of some object Ω, to the resulting electric field on S. The range of this virtual
measurement operator determines Ω, more precisely with Eω

z,d being the electric
field of a point current in a point z below S with arbitrary direction d one has that
γτE

ω
z,d ∈ R(L) if and only if z ∈ Ω. An immediate consequence is that a (possibly

empty) subset of Ω can be found by checking for every z below S whether γτE
ω
z,d

is in R(Mω
s ) or not. This is the so-called Linear Sampling Method, developed by

Colton and Kirsch in [4].
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Numerical examples (cf. e. g. [6]) show a much better performance than can be
explained theoretically. The method seems to find the object itself and not only a
subset. An explanation for this good performance is that for low frequencies

Mω
s ≈ − 1

iω
∇SΛs∇∗

S ,

where −∇∗
S is the surface divergence, which maps a given current to the corre-

sponding surface charges, Λs is the electrostatic measurement operator, mapping
a surface charge to the generated (scattered) electrostatic potential, and ∇S is
the surface gradient, that maps the electrostatic potential to the (tangential com-
ponent of the) corresponding electrostatic field. Under certain conditions on the
object Ω it is known that

R(|Λs|1/2) = R(LES)

(see [8] for grounded or [7] for more general objects), with LES being the electro-
static analogue to the virtual measurements L. It follows that

R(|∇SΛs∇∗
S |1/2) = R(∇SLES).

Using the electrostatic field Ez,d of a dipole in a point z below S with direction
d one can show that z ∈ Ω if and only if γτEz,d ∈ R(∇SLES). Thus Ω can be
found by considering −iωMω

s as an approximation to ∇SΛs∇∗
S and testing for

every z below S whether γτEz,d ∈ R(|Mω
s |1/2). This is the so called Factorization

Method, which was developed by Kirsch in [9] as a rigorously justified variant of
the LSM and generalized to EIT by Brühl and Hanke in [2, 3]. Since for small
ω also γτE

ω
z,d ≈ 1

ωγτEz,d and the effect of taking the square root is somewhat
compensated by choosing different threshold in the numerical implementation, the
good performance of the LSM can therefore be explained by the fact that the mea-
surements are essentially electrostatic measurements for which the Factorization
Method works.

However, in practice, currents are only applied and electric fields are only mea-
sured along closed coils, so that only the Galerkin projection j∗Mω

s j to the space of
divergence-free currents can be measured. In particular traces of gradient fields like
γτE

ω
z,d ≈ 1

ωγτEz,d integrate to zero if measured along closed coils. Low-frequency
asymptotics for this case show that

j∗Mω
s j ≈ −iωMs,

where Ms maps an applied current to (a vector potential of) the generated magne-
tostatic field. Magnetostatic measurements are closely related to harmonic vector
fields for which Kress derived the Factorization Method in [11]. Indeed, using the
general theory in [7] one can show that

R(|Ms|1/2) = R(LMS),

with the magnetostatic analogue LMS to the virtual measurements L. Using a
vector potential Gz,d of the magnetostatic field of a magnetic dipole in a point z
below S one then obtains that z ∈ Ω if and only if γτGz,d ∈ R(LMS). Thus for this
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practically relevant case of divergence free currents, one can also use the Factor-
ization Method by considering the measurements as magnetostatic measurements
and using the appropriate singular function Gz,d.

We finally note that for the case of objects with finite conductivity, the Maxwell’s
equations degenerate in the low-frequency limit to an equation that is (in the time-
domain) parabolic in the objects Ω and elliptic outside (see [1]). For the scalar
parabolic-elliptic model problem of detecting objects with a high heat capacity in
a domain with low heat capacity by thermal measurements, it was shown in [5]
that the Factorization Method still works when the object’s heat conductivity is
larger than that of the background. We therefore expect the Factorization Method
also to work for the detection of diamagnetic, conducting objects.
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