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Abstract. This workshop gathered 45 participants from 16 countries and
had a correspondingly multifaceted program covering various infectious dis-
eases, public health applications, and methodological innovations. The dis-
cussions and presentations focused on the importance of mathematical models
and statistical analyses in understanding the complex transmission systems
of infectious diseases and in planning effective intervention strategies. Many
different statistical and mathematical approaches were covered. The general
unifying theme is that the analyses and models take into account the un-
derlying transmission of the infectious agent among the hosts and/ or vector
populations.
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Introduction by the Organisers

At the time of the workshop, the novel influenza A (H1N1) pandemic had passed
through the southern hemisphere and was in the acute phase of its second wave
in the northern hemisphere. Thus several presentations focused on mathematical
and statistical methods for assessing the pandemic and planning interventions.
Other infectious disease applications included pneumococcus, multiple drug resis-
tant streptococcus, HIV, malaria, and citrus disease, among others.

In recent years network theory and graph theory have provided methodology
for understanding the spread of infectious diseases and interventions. A full day of
presentations was devoted to network and graph theory, including the role of serial
or generation interval in conjunction with network models. Bayesian computation,
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in particular Markov chain Monte Carlo (MCMC) methods are quite useful in
analyzing infectious disease data where much of the underlying infectious and
contact processes are unobserved and generally unobservable. A day was devoted
to presentations of developments in these methods and applications.

Viral and bacterial phylodynamics and genomics are integral to infectious dis-
ease studies. Several presentations covered the development of statistical methods
integrating genetic analysis with dynamic transmission systems. Other topics in-
cluded statistical methods for analyzing vaccine studies, history of fitting epidemic
models to data, and power analyses for hospital based studies of interventions.

A poster session on Monday evening gave participants not giving a talk the
opportunity to discuss their current research with others. One evening two discus-
sion groups were formed, one around the topic of the basic reproductive number,
particularly within networks, the other around aspects of inference methods. Two
early afternoon interactive tutorials were held for junior participants. One was on
different aspects of vaccine efficacy and how they are measured. The other was an
introduction to MCMC methods.

On Thursday evening, several participants provided a performance of classical
music of piano, flute, and viola by Stravinsky, Donizetti, Debussy, Handel, and
Mozart, and songs by Schumann and Schubert, followed by more contemporary
songs with guitar accompaniment. Readings of poetry and a short story preceded
a group song. The evening ended with everyone engaged in a Belgian dance.
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Abstracts

Models of vaccine efficacy for Streptococcus pneumoniae

Kari Auranen

Streptococcus pneumoniae (pneumococcus) is major cause of mortality and mor-
bidity which is at least partly vaccine-preventable. The current pathway to li-
cense new pneumococcal conjugate vaccines against severe pneumococcal disease
is based on immunological criteria. This approach may be sub-optimal in that
use of immunogenicity at the current protective thresholds may not truly reflect
the potential of a vaccine to protect. The aim of the PneumoCarr project is to
optimize pneumococcal vaccines, their evaluation and their impact. The key to
this is nasopharyngeal pneumococcal carriage that precedes disease and is the
reservoir for spread of pneumococci between people. One of the particular aims
of the project is to introduce statistical tools to estimate vaccine efficacy against
pneumococcal carriage in vaccine trials.

There are several obstacles in establishing carriage as and endpoint in vaccine
trials. First, there are 91 known pneumococcal serotypes. Between-type competi-
tion in the nasopharynx means that the biological efficacy on (e.g.) susceptibility
may not be the same as the observed efficacy if such interaction is not taken into
account. Second, carriage is common, unlike disease, so that any rare disease
assumption cannot be readily made in proposing estimators for vaccine efficacy.
Third, carriage is recurrent, even on the serotype level, which means that in prin-
ciple longitudinal data are required. Finally, carriage is asymptomatic and is
therefore only observed in its prevalent state.

For all these reasons, it is not straightforward to define and measure vaccine ef-
ficacy against pneumococcal carriage. In this work I review the current knowledge
about the vaccine effect on pneumococccal carriage. I then propose an easy-to-use
estimator for the (biological) efficacy, applicable in real-life trial settings. The
approach is based on cross-sectional measurement of the relative reduction in sus-
ceptibility to pneumococcal carriage. It requires employment of a mechanistic,
conditional model for the biological efficacy (relative reduction in the rate of ac-
quisition) but is not confined to any particular type of model.

Epidemics on random networks incorporating household structure

Frank Ball

(joint work with David Sirl, Pieter Trapman)

We consider a stochastic SIR (susceptible → infective → removed) model for the
spread of an epidemic amongst a population of individuals, with a random network
of social contacts, that is also partitioned into households (Ball et al. [1, 2]). The
behaviour of the model as the population size tends to infinity in an appropriate
fashion is investigated. A threshold parameter which determines whether or not
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an epidemic with few initial infectives can become established and lead to a major
outbreak is obtained, as are the probability that a major outbreak occurs, the
expected proportion of the population that are ultimately infected by a major
outbreak and the distribution of the within-household final size in the event of
a major outbreak. Monte Carlo simulations demonstrate that these asymptotic
quantities accurately reflect the behaviour of finite populations, even for only
moderately sized finite populations. The model is compared and contrasted with
standard household and standard network models. The effect of the amount of
clustering present in the overall population structure on the outcomes of the model
is explored. Vaccination is also studied and an example demonstrates that an
acquaintance-based vaccination strategy can outperform appreciably one that is
household based.

References

[1] F. G. Ball, D. Sirl and P. Trapman, Threshold behaviour and final outcome of an epidemic
on a random network with household structure, Advances in Applied Probability 41 (2009),
765–796.

[2] F. G. Ball, D. Sirl and P. Trapman, Analysis of a stochastic SIR epidemic on a random
network incorporating household structure, under revision for Mathematical Biosciences.

Power analyses for cluster-randomized trials for infectious diseases in

hospital settings

Martin Bootsma

Clinical studies in small (size=N) hospital units, e.g., intensive care units, with a
high turnover of patient are common. Power analyses provide a rational criterion
to assess how many patients should be included in study arms to have a pre-
specified chance to detect a statistical significant difference between study arms.
For infectious disease randomization at the patient level may not be the appropri-
ate way to perform infectious disease studies as the indirect effect that prevention
of colonization in one patient lowers the acquisition risk of other patients. Ran-
domization at the unit level is needed to observe the full effect of an intervention.
Here we determine how long study periods should be for infectious diseases with
randomization at the unit level in case of perfect observation and compare the
results with non-infectious diseases. We consider an SI-model with demographic
turnover of which a fraction f of the patients is colonized on admission and con-
stant (small) population size, i.e., there are N + 1 states distinguished by the
number of colonized patients in the unit. We assume that the process is perfectly
observed, i.e., we know the colonization status from each patient on admission
and we know the exact moment of acquisition if acquisitions occurs. Suppose that
in the time interval (0, T ), n acquisitions occurred at times {t1, t2, . . . tn} and let
t−j be the time just before the jth acquisition occurred. The likelihood of these
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acquisitions is proportional to:

L ∝ e−
∫

T

0 (α+β
C(t)
N )(N−C(t))dt

n
∏

j=1

(

α+ β
C(t−j )

N

)

For a non-infectious disease (β = 0), and the infectious case ( α = 0), the

likelihood can be written as L ∝ θne−τθ with θ = α and τ =
∫ T

0 (N − C(t))dt

for non-infectious diseases and θ = β and τ =
∫ T

0
C(t)
N

(N − C(t))dt for infectious

diseases and the MLE for θ equals θ̂ = n
τ
. The Fisher-information can be written

as:
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Asymptotically, the 95% confidence interval for the MLE for the mean preva-
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1+α
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for an infectious disease) equals
(

p− 1.96√
NT (p(θ)−f)

p′(θ)θ, p+ 1.96√
NT (p(θ)−f)

p′(θ)θ

)

If we choose β and α for an in-

fectious disease and a non-infectious disease such that pα(α) = pβ(β),
(

p′

β(β)β

p′

α(α)α

)2

determines how much longer study periods for infectious diseases should be to
have the same accuracy for the mean prevalence. Infectious diseases always re-
quire longer study periods and the ratio for clinically relevant parameters typically
exceeds 3. Numerical simulations suggest that the asymptotic expression works
fine unless the admission prevalence is low and the unit size is large. A simple
method for the ratio with imperfect observations (admission and discharge data
are known, but information on the colonization status is imperfect and depends
on the scheme at which patients are tested for colonization) is an open problem.

Respondent driven sampling: a survey

Tom Britton

The traditional way of estimating a population mean or fraction is to take a random
sample in the community and to take the corresponding sample mean/fraction as
the estimate. Some populations are however not possible to take a random sample
from, so-called ”hidden” or ”sensitive” populations (e.g. intraveneous drug-users).
An alternative way is then Respondent Driven Sampling, in which a few seeds are
selected. They report their response anonymously and also pass on the questionaire
to some of their ”friends” in the population of interest. The sample is hence
obtained by randomly walking around in the population network. In the talk we
present this method and how estimates can be obtained. We also illustrate why
the method does not work when the network is directed (as is often the case).
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Epidemics: the fitting of the first dynamic models to data

Klaus Dietz

Among the models with discrete time I concentrate on the chain-binomial models
of Enko (1889), of Reed and Frost (1976) and of Greenwood (1931). The most
important deterministic model with continuous time is proposed by Kermack and
McKendrick (1927). Finally I consider the stochastic general epidemic model of
McKendrick (1926). After a brief introduction of each of these models I provide
examples of fitting them to observed epidemics and shall discuss the problems of
interpreting the estimated parameters, especially if several models are fitted to the
same data.

Individual heterogeneity: effects and estimation from multivariate

serological survey data on directly transmitted infectious diseases

Conor Patrick Farrington

The estimation of contact patterns between individuals in a population is a central
preoccupation of infectious disease modelling of directly transmitted infections.
Much work has been done on estimating the effect of fixed covariates such as age,
using data from serological surveys, contact surveys and other means. These reveal
a strongly assortative age-related contact structure ([1] - [4]).

However, in contrast to sexually transmitted infections for which relevant indi-
vidual heterogeneity is perhaps more easily defined and measured, relatively little
work has been done on estimating the effects of individual heterogeneity on the
transmission of close-contact and airborne infections ([5, 6]).

As shown in ([6]), information on individual heterogeneity in contact rates may
be obtained from multivariate serological survey data, using frailty models and
information on route of transmission. This basic frailty model can be extended to
allow for age-variation in heterogeneity.

A simple framework in which such age-varying heterogeneities may be investi-
gated will be presented and illustrated using multivariate serological survey data.
Some ideas for future work in this area will be presented.

References

[1] M. N. Kanaan and C. P. Farrington, Matrix models for childhood infections: a Bayesian
approach with applications to rubella and mumps, Epidemiology and Infection 133 (2005),
1009-1021.
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[3] J. Mossong, N. Hens, M. Jit et al. Social contacts and mixing patterns relevant to the spread

of infectious diseases, PLoS Medicine 5 (2008), e74 0381-0391.
[4] C. P. Farrington, H. J. Whitaker, J. Wallinga and P. Manfred Measures of disassortativeness

and their application to directly transmitted infections, Biometrical Journal 51 (2009), 387
407.

[5] F. A. B. Coutinho, E. Massad, L. F. Lopez et al. Modelling heterogeneities in individual
frailties in epidemic models, Mathematical and Computer Modelling 30 (1999), 97-115.
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[6] C. P. Farrington, M. N. Kanaan and N. J. Gay Estimation of the basic reproduction num-
ber for infectious diseases from age-stratified serological survey data, Applied Statistics 50

(2001), 251-283.

Hybrid strategies for model selection and assessment in infectious

disease studies

Gavin J. Gibson

The challenge of fitting stochastic dynamical models to imperfect observations is
becoming increasingly tractable in a Bayesian frameworks and the recent liter-
ature includes numerous examples. Data augmentation, that is the imputation
of unobserved information, x, from the course of an epidemic in addition to the
observed information, y, is a key, relevant technique. In essence, if the extended
data vector (x, y) specifies a likelihood for the model parameter vector θ which
is analytically tractable, then by treating the imputed x as additional unknown
parameters, it becomes feasible to explore the joint posterior density π(θ, x, |y)
using standard Markov Chain Monte Carlo (MCMC) simulation techniques and
to recover posterior inferences on θ through marginalisation.

However, the problem of testing the adequacy of models fitted using this ap-
proach, or selecting between competing models, is not straightforward. Extend-
ing the Bayesian approach, by embedding competing models within an expanded
model with model index as a further parameter, can be problematic. Reasons
for this include computational complexity, difficulty in designing suitable Markov
chains samplers, and the sensitivity of posterior model inferences to the prior
densities assigned to the parameters of the respective models. This talk explores
alternative approaches to assessing model adequacy that operate by applying clas-
sical tests to the extended data vector (y, x) and by investigating the posterior
distribution of the associated p-value. Through this hybrid approach, which em-
beds classical analyses within a Bayesian framework, it is possible, via the posterior
distribution of the p-value, to elicit evidence of model inadequacy. Moreover, if the
embedded tests are selected to be likelihood ratio tests, then the approach offers
the potential to assess one model in direct comparison to a competing formulation.

The approach is illustrated in two scenarios. In the first of these (Streftaris
and Gibson, Proc. Roy. Soc. B 271, 1111–1117, 2004) the imputations chains
of infection in experimental populations of sheep infected with FMD virus is used
to investigate a hypothesis regarding the variation of infectivity with depth in
the chain, by investigating the posterior distribution of the p-value arising in an
ANOVA test applied to population partitioned by depth in the chain. In the
second example (Gibson et al., Statistics and Computing 16, 391-402, 2006) spatio-
temporal models for the spread of a fungal pathogen of radish in experimental
populations are assessed by imputing exponentially infection thresholds for each
individual (with sampling distribution independent of θ). The imputed thresholds
are then assessed using a Kolmogorov-Smirnov test for consistency with a random
sample from the Exp(1) distribution. For this latter example it is shown that the
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analysis shows clear evidence of lack of fit, whereas simpler posterior checks based
on the time-course of the number of infections do not reveal lack of fit.

Current work is focussing on applying the techniques to compare spatio-temporal
models for arboreal pathogens in larger-scale studies, and on the theoretical un-
derstanding of how the extent of imputation affects the sensitivity of the tests.

Influenzanet

Gabriela Gomes

Influenzanet is an internet-based system that monitors influenza-like illness (ILI)
in cohorts of self-reporting volunteers. Data collected over six years are presented,
analysed and used to parameterize mathematical models of influenza transmission.
The system warrants consistency in epidemic monitoring across countries and sea-
sons and is currently tracing the H1N1 pandemic. The recorded epidemic curves
were reproduced by models that include time-dependent transmission and host
heterogeneities. In addition to previous modelling studies, we detect significant
rates of influenza reinfection during the epidemic decay phase.

Reconstructing transmission trees from partially observed epidemic

trees: an illustration of H1N1

Niel Hens

(joint work with Jacco Wallinga)

Emerging epidemic outbreaks of infectious diseases are often reported as a trans-
mission tree. In a transmission tree all cases are represented, and when infection
is transmitted from one case to another, a link (arrow) is drawn between the two
cases to indicate that they form a transmission pair. The advantage of such a
tree is that key variables, such as the reproduction number and the generation
interval, are easily inferred. However, such a transmission tree ignores that some
transmission pairs may be missing, and that some transmission pairs may be mis-
classified (that is, they actually reflect two cases that did not infect one another).
Here, we point out that the missingness and misclassification can result in biased
estimates of both the reproduction number and generation interval. We present
statistical methods for dealing with missing transmission pairs and for identifying
misclassified, unlikely, transmission pairs; these methods are adapted from missing
data techniques (the so-called EM algorithm) and from case deletion measures (so-
called global influence measures). We apply the methods to a reported outbreak
of pandemic influenza A/H1N1v, and we show that the generation interval has to
be corrected from 2.43 to 2.20 days.
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Structured populations: Epidemics on finite networks

Valerie S. Isham

The General Epidemic (SIR) model is the fundamental model for epidemics in
a homogeneously-mixing population. In this talk, we consider the spread of in-
fection or information through a structured population, combining an extension
of an SIR epidemic model with a random network to represent population struc-
ture. The envisaged application is to the spread of infection/information on social
networks. The talk will discuss a) the effect of the population size on thresholds
for epidemic/rumour spread; b) the effect of different network structures; c) the
adequacy of approximations to the final size distribution.

Survival analysis of epidemic data via infectious contact intervals

Eben Kenah

We argue that the time from infection to infectious contact, which we call the
infectious contact interval, is a better basis for inference in epidemic data than the
generation or serial interval. Since only the first infectious contact with a given
susceptible leads to infection, many infectious contact intervals are right-censored
and survival analysis is the natural approach to estimation. We derive a likelihood
for stochastic SIR models in close-contact groups. For fully-mixed models, we
obtain an asymptotic likelihood that requires data only on infected persons, and
the estimated infectious contact interval distribution provides a description of the
time course of infectiousness and a novel estimator of R0. This approach avoids
some of the restrictive assumptions necessary for an analysis based on generation
or serial intervals. It also points to the usefulness of data on the duration of
infection and uninfected contacts of cases. An important extension of this work
will be the analysis of partially-observed epidemics, for which Bayesian MCMC is
a promising tool.

Statistical Analysis of Hospital Infection Data: Models, Inference and

Model Choice

Theodore Kypraios

High-profile hospital ”superbugs” such as methicillin-resistant Staphylococcus au-
reus (MRSA) etc have a major impact on healthcare within the UK and elsewhere.
Despite enormous research attention, many basic questions concerning the spread
of such pathogens remain unanswered. For instance what value do specific con-
trol measures such as isolation have? how the spread in the ward is related to
“colonisation pressure“? what role do the antibiotics play? how useful it is to
have new molecular rapid tests instead of conventional culture-based swab tests?
A wide range of biologically-meaningful stochastic transmission models that over-
come unrealistic assumptions of methods which have been previously used in the
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literature are constructed, in order to address specific scientific hypotheses of inter-
est using detailed data from hospital studies. Efficient Markov Chain Monte Carlo
(MCMC) algorithms are developed to draw Bayesian inference for the parameters
which govern transmission. The extent to which the data support specific scientific
hypotheses is investigated by considering and comparing different models under
a Bayesian framework by employing a trans-dimensional MCMC algorithm while
a method of matching the within-model prior distributions is discussed how to
avoid miscalculation of the Bayes Factors. Finally, the methodology is illustrated
by analysing real data which were obtained from a hospital in Boston.

Dynamic random networks

Mathias Lindholm

(joint work with Tom Britton)

A simple Markovian time dynamic random network model is considered where
nodes as well as edges are created and removed continously in time. Moreover,
when a node is created it is assigned a random social index which affects its
possibility of creating edges and which may affect the rate at which edges are
attached to it. Some fundamental model properties are analysed and discussed.
In particular it is shown that the asymptotic degree distribution is of mixed Poisson
type.

Analysis of Influenza Vaccines and Vaccination Strategies: Statistics

and Models

Ira M. Longini

In this talk, I give a summary on the large body of work on pandemic influenza A
(H1N1) transmission and control. I first describe the pandemic in the US. I then
give the statistical estimates of the key parameters that govern transmission and
severity, including R0, the generation interval, and the case fatality ratio. After
this, I describe estimates of influenza vaccine efficacy in general and then the
estimates of pandemic H1N1 vaccine efficacy based on immunogenicity from early
phases I and II vaccine trials. I then show modeling results for the mitigation of
the pandemic in the US based on the current statistics for the US vaccine supply
over time. I show that the later the epidemic peak, the more effective current
planned vaccine supply will be on reducing cases. If epidemic peak is late October,
the current vaccination strategy will have little effect on attack rates but could
prevent many H1N1-related deaths. Vaccinating children early will reduce the
attack rate, mortality, and hospitalizations, although it is important to vaccinate
the essential workforce and high-risk individuals first. If the epidemic peaks early,
non pharmaceutical interventions may be a necessary component of the response.
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The dynamics of seasonal influenza

Mick Roberts

The single strain model. Assume that the influenza season starts at time t = 0.
We measure time in units of the mean infectious period, and neglect demographic
changes (births, deaths, immigration, etc.) within a season. Let the proportion
of the population infected at time t be y(t), and the proportion that has been
infected be z(t). An epidemic is described by:

dy

dt
= R0 (1− z) y − y

dz

dt
= R0y (1− z)

with 0 < y(0) ≪ 1 and z(0) = z0. The proportion of the population infected over
the course of the epidemic is P = z∞ − z0, where

z∞ = lim
t→∞

z(t) = 1 +
1

R0
W
(

−R0 (1− z0) e
−R0(1−z0)

)

The function W is the Lambert W-function [4], defined by y = W(x) if yey = x
for x > − 1

e
. In-between seasons a proportion b of the population is replaced

with newborn susceptibles, and the protection from infection is reduced due to
antigenic drift. Hence the initial condition at the start of the next season is found
from z0 = pz∞ = (1− b)dz∞ where d < 1. We define an inter-season map which
relates the value of z at the beginning of one season to the value at the beginning of
the following season. To do this it is effective to transform the variables to effective
reproduction numbers at the beginning of each season, setting νn = R0 (1− z0).
The between-season map is

νn+1 = (1− p)R0 + pΦ (νn)

where Φ (νn) = −W (−νne
−νn). This map has a unique fixed point, which is stable

[1,5]. It is illustrated in Figure 1A, where it is seen that for νn < 1 no epidemic
takes place, and νn+1 > νn due to host replacement and antigenic drift; and for
νn > 1 an epidemic occurs.

The two strain model. Since 1978 two subtypes of influenza A, H1N1 and H3N2,
have been represented in seasonal epidemics [2,3]. In our model we assume that
exposure to influenza (any subtype) this season may provide non-specific immunity
to infection for this season only, exposure to a strain of the same subtype in a
previous season provides a degree of protection this season, and previous exposure
to the same strain this season provides complete protection. The dynamics of
the proportions of the population infected with subtype S, and the proportions
immune due to previous exposure to subtype S, are described by the equations:

dyS
dt

=RS
0 xSyS − yS(1)

dzS
dt

=RS
0 yS (1− zS)
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where S = 1, 2. The function xS(t) is the susceptibility of the population to the
predominant strain of subtype S this season.

Let the proportion of the population that has a degree of immunity to subtype
S due to exposure to either subtype be uS , where

(2)
duS

dt
=
(

R1
0y1 +R2

0y2
)

(1− uS) uS(0) = zS(0)

If the degree of non-specific protection between subtypes is q, with q = 0 for no
cross-protection and q = 1 for complete cross-protection, we have

xS(t) = (1− q) (1− zS) + q (1− uS)

It follows from equations (1&2) that

1− uS(t) =
(1− zS(t))

(

1− z
Ŝ
(t)
)

1− z
Ŝ
(0)

where Ŝ signifies the alternative subtype. Hence the dynamics are specified by the
four-dimensional system (1) with

xS(t)

1− zS(t)
= 1− q + q

1− z
Ŝ
(t)

1− z
Ŝ
(0)

The equations can be solved numerically for a representation of the within-season
epidemics of the two strains. It is necessary to specify zS(0) for S = 1, 2, and
initial values of yS(0), with 0 < yS(0) ≪ 1.

With a slight abuse of notation, let the proportion of the population infected
with subtype S over the course of the epidemic be PS = zS(∞) − zS(0), which
may be estimated from equations (1) by noting that

RS
0

∫ zS(∞)

zS(0)

xS(t)

1− zS(t)
dzS(t) + log

(

1− zS(∞)

1− zS(0)

)

= 0

We therefore have a final size equation

RS
0MSPS + log

(

1− PS

1− zS(0)

)

= 0

where

(3) MS =
1

PS

∫ zS(∞)

zS(0)

xS(t)

1− zS(t)
dzS(t)

The integrand in equation (3) is non-increasing, and we can use the mean value
theorem to approximate

MS =
xS(t̄)

1− zS(t̄)
= 1− q + q

1− z
Ŝ
(t̄)

1− z
Ŝ
(0)

for some t̄ > 0. If there is no hetero-subtype protection, q = 0 and MS = 1.
In the same way as for the single-strain model, the initial conditions at the

start of the next season are found from zS(0) = pSzS(∞) = (1− b) dSzS(∞)
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where dS < 1. Now set ξn = R1
0 (1− z1(0)) and ηn = R2

0 (1− z2(0)) to obtain a
two-dimensional nonlinear between-season map defined by

ξn+1 = (1− p1)R1
0 +

p1
M1

Φ (M1ξn)(4)

ηn+1 = (1− p2)R2
0 +

p2
M2

Φ (M2ηn)

This is illustrated in Figure 1B,where the value of ξn is varied from 0 to R1
0, but ηn

is kept fixed. Three distinct types of behaviour can be seen. For ξn below the first
threshold (left-hand shaded region) there is no epidemic of H1N1, but there is an
epidemic of H3N2. For ξn above the second threshold (right-hand shaded region)
there is an epidemic of H1N1, but not of H3N2. In the intermediate (unshaded)
region there is an epidemic of both subtypes. The value of ηn was chosen to
correspond to the fixed point, which is seen to be unstable. Numerical results
have confirmed periodic solutions, with the period depending on the assumed
parameter values [5].

Figure 1. A: The map νn → νn+1 with the fixed point ν∗ shown
in red, for R0 = 2.0 and p = 0.8. B: The map (ξn, ηn) →
(ξn+1, ηn+1) with ηn = η∗ (green broken line and black diamond);
ξn+1 and ηn+1 are shown as blue and green lines respectively, and
the fixed point ξ∗ as a red dot. Parameter values are p1 = 0.74,
p2 = 0.55 and R1

0 = R2
0 = 2.0.
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What can the historic record tell us about modern infectious disease

epidemics?

Lisa Sattenspiel

The historic record contains a wealth of information on infectious diseases, and
it is a resource that is relatively untapped by epidemic modelers. Historical data
can provide detailed data sources that can be used in conjunction with models
to explore questions about the spread of infectious diseases and, in addition, they
can provide more qualitative information about a variety of social and biological
factors that influence disease transmission patterns. Specific kinds of information
the historic record can provide include aggregate and individual-level data on
mortality and morbidity, census and vital statistics data, sources of information on
the responses of governments and the public to epidemics (e.g., newspaper articles
or government correspondence), and sources of information on other situations
that might be relevant to the epidemic experience, such as general nutritional
levels, adequacy of health care, or other health conditions that might influence
outcomes during an epidemic.

A number of questions about infectious disease transmission and spread have
been addressed using epidemic models and historic data. These include major
insights that have been derived from the numerous studies of the cycling of measles
in England and Wales prior to the availability of vaccination (see [1] and [2] for
recent reviews of these studies), the value of historic data for assessing models of
the long-term demographic impact of infectious disease epidemics, how historic
epidemics such as the 1918-19 flu epidemic can aid in understanding the extent to
which epidemic patterns may vary across space, and the potential of historic data
to identify and help understand possible interactions among different pathogens,
illustrated with data from a 1916-17 measles epidemic and the 1918-19 flu epidemic
on the island of Newfoundland.

It is important to keep the limitations of historic data in mind. however. For
example, diagnostic criteria may change over time, which happened in the 1980s
once AIDS began to be better understood, or records may be incomplete or in-
accurate. There may also be incomplete understanding of the relevant biology of
microorganisms, as occurred during the 1918-19 flu epidemic when many scien-
tists thought the underlying cause was bacterial rather than a virus. Ideally, for
infectious disease models, one would like to know about both mortality and illness
(morbidity), but the latter data are very rare. The collection of historic data is
also very time consuming. Nonetheless, much has been learned by analyzing epi-
demics of the past and given the amount of existing data and the variety of other
kinds of information, much remains to be learned in the future.
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Observing generation times, in theory

Gianpaolo Scalia Tomba

(joint work with Ake Svensson, Tommi Asikainen, Johan Giesecke)

The aim of this work is to study the effects of various observation schemes on the
generation time distribution during an epidemic outbreak and to propose some
statistical methods to achieve unbiased estimation of various aspects of the gener-
ation time distribution.

There are two main variants of observation scheme: forward observation, start-
ing from a given infected person and observing his secondary cases, if any, and
the corresponding generation times and backward observation, starting from an
infected person, his infector is identified and the corresponding generation time
observed.

These two approaches have been implemented on the same simulation of a
simple Markov SIR epidemic with infectious intensity β = 2, average infectious
period 1/µ = 1, i.e. R0 = 2, in a population of 10000 individuals, with 1 initial
infective. As can be seen from the two graphs, the behaviour of forward and
backward observations is quite different.

Figure 1. Local average of generation times plotted at time of
infectee (backward observation)

In homogeneous models, the distribution seen at a given time, if backward
sampling is assumed, is the age of infection of potential infectors at that time
and that distribution lenghtens as the epidemic progresses. During the initial
exponential phase, the observed GT distribution is not g(a) but R0e

−rag(a)...In
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Figure 2. Local average of generation times plotted at time of
infector (forward observation)

our simulation, the average is 1/2 in the beginning and then grows to about 2. The
forward procedure is the one corresponding to the ”standard GT distribution”, but
the values of generation times become shorter the faster susceptibles decline, thus
the standard distribution can only be observed at the start and end of an epidemic,
in theory, when numbers of susceptibles are relatively stable. Theoretical analysis
suggests that the average should be 1, but it is slightly lower near the peak of the
epidemic.

If more features, such as latent periods, different infectious period distributions
and variable infectivity, are incorporated in the spread model, the phenomena de-
scribed above always remain to some extent (except in the Reed-frost model...).
It is thus complicated to get a ”nice” sample of generation times in order to infer
about the GT distribution,but one can try to use knowledge about the statisti-
cal properties of the system to one’s advantage... E.g., in the early exponential
phase of an epidemic, with an estimate of r and backward tracing, exp(rT) is
approximately unbiased for R0... Åke Svensson has several ideas for non paramet-
ric, martingale based estimators... One may also resort to parametric inference,
see e.g. Cauchemez on household data, for estimation of infectious period and
infection intensity separately...

Exploration of the Dynamics of Network Topologies during Epidemic

Outbreaks

Markus Schwehm

Looking at the epidemic graphs of the currently ongoing influenza pandemic, a
clear pattern is visible: most outbreaks have a very steep ascent while petering
out slowly. The graphs are right-skewed. The SEIR-Type models used to model
influenza can produce right-skewed graphs, but only for large R0 > 4. The current
estimates for R0 are around 2.0 and most researchers have revised their estimates
to much lower values around 1.5. Standard SEIR models with R0 < 2 produce
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almost symmetric epidemic graphs and therefore fail to explain the current in-
fluenza pandemic. In this contribution I have explored a network-based modelling
approach. Networks with heterogeneous degree distribution like the scale-free net-
works can generate right-skewed epidemic curves even for very low R0. However,
the scale-free network fails to explain another characteristic of the ongoing pan-
demic. After a first wave of the pandemic, all of the high-degree individuals (the
super-spreaders) have become infected and are immune and it is not possible to
observe a second and third wave of the epidemic, as currently observed in Mex-
ico. A simple modification of the scale-free network solves this problem. If the
long tail of the degree distribution of a scale-free network is cut off, the resulting
truncated scale-free network still produces right-skewed epidemic graphs, but the
high-degree individuals are not removed in their entirety and a second and third
epidemic wave becomes possible. Moreover the outbreak size distribution matches
the observed outbreak sizes in Switzerland this summer. While there may be other
networks possible that can explain the right-skewed epidemic curves of the current
pandemic, at least we have a model that can explain the observed outbreak data.
The analysis of the shape of epidemic graphs provides more information than just
R0 and generation time.

Genetic control of vector-borne diseases - Artificial selection and

heterogeneity of the immune response

Claudio J. Struchiner

(joint work with Eduardo Massad, J.M.C. Ribeiro)

The malaria model developed in association with the Garki Project in Nigeria
by Dietz, Molineaux and Thomas (DMT) explicitly addressed the implications of
the human immune response on the transmission dynamics of this mosquito-borne
disease. Although this contribution was originally conceived for discussing inter-
vention strategies based on the use, alone or in combination, of house-spraying
with propoxur (a residual insecticide) and universal distribution of anti-malarial
drugs (sulfalene and pyrimethamine), the presence of this human immune response
component also made the model suitable as a starting point for discussing the de-
velopment of the various malaria vaccines made possible by the new molecular
biology paradigm that became widespread in the 80’s. Expansions to the Garki’s
DMT model have shown to be useful to uncover the complex implications of in-
tervention programs against mosquito-borne diseases by focusing on the changes
in immune profile of the target human population and the evolution of pathogen
virulence and resistance as a result of selection pressures imposed by a vaccine or
drug.

The original paradigm described above addresses within-vertebrate host stages
of the parasite’s life history and was motivated by the possibility of developing
vaccines that elicit stage-specific immune responses in humans. Recent advances
in molecular genetics and mosquito ecology motivates the expansion of the original
paradigm to also encompass those stages of the pathogen that take place in the
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vector. These genetic methods for controlling vector transmissions are designed
to reduce or eliminate vector populations, to selectively kill only those vectors
infected by the pathogen, or to modify (replace) natural vector populations by
introgressing genes that eliminate vector competence. However, as became evident
from the Garki data since the 70’s, the genetic diversity of traits that modulate
vector competence posed an important challenge to control programs based on
domiciliary spraying of residual insecticides as evidenced by the degree of exophily
among the population of individual vectors members of the gambiae complex.
More recently, the diversity of the immune response exhibited by vectors, i.e., the
means whereby they are able to kill invading pathogens, has been well established
by the availability of the genome sequences of vectors, hosts and parasites that
enabled genome wide comparative studies. Those advances provide new tools to
monitor diversity among the three players, pathogens, vertebrate and invertebrate
hosts. In particular, important issues, such as parasite virulence and resistance,
are not fixed properties of infection but are affected by the genetic diversity of
the players involved, and the environmental conditions under which those players
interact.

An expanded paradigm that accounts for the vector-pathogen systems explicitly
can contribute to avoid a large underestimation of the pathogen polymorphism as
well as polymorphisms of traits that modulate the invertebrate host competence.
These two processes together contribute to genetic drift and selection since the
higher the pathogen diversity within a host, the greater is the expected genetic
change between the original host and the load delivered to the next host. Within-
vector competition adds one more level of selective differences affecting the local
pathogen diversity since resistance genotypes in vectors could select against some
pathogen genotypes more than others.

By using population-genetic models, we explore the evolutionary epidemiologic
dimension of genetic strategies currently being proposed to control mosquito-borne
diseases. In our three-players system, reciprocal selection pressures determine the
distribution of each player’s polymorphism. In our work, we focus on the forces
that determine the current distribution of traits associated with dimensions of
epidemiologic importance such as vertebrate and invertebrate immune response,
and pathogen virulence and resistance to drugs. By explicitly describing the forces
that determine the current distribution of traits, we hope to add to the discussion of
gene drive mechanisms and their relative chances of success in changing the current
distribution of traits by the introgression of new genes into the vector population.
Finally, we validate our models against the empirical information collected so far
from the genome wide studies comparing vectors of medical importance as well as
other insects.
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Phylodynamics of Infectious Disease Epidemics

Erik M. Volz

Background: Virus phylogenies have been used in many recent studies to infer
properties of epidemics. However, these approaches rely on coalescent models that
may not be appropriate for infectious diseases. Our aim was to develop a coalescent
theory for viral populations whose dynamics fit standard epidemiological models.
Our approach allows us to describe the cluster size distribution within a sample or
the entire population, as well as predict the patterns of clustering among acutely
and chronically infected individuals. Approximations are also derived for epidemics
in heterogeneous populations and contact networks, which allows us to determine
the effect of network structure on phylogenetic clustering.

Methods: Our coalescent theory uses a standard model from mathematical
epidemiology to reproduce epidemic incidence and prevalence. We then calculate
the rate of coalescence for a sample taken from the population at any time. Our
model was applied to a sample of HIV-1 sequences. The model was fit to the size
distribution of clusters by deriving a likelihood function for epidemic parameters,
and best-estimates of epidemic parameters were found by Bayesian importance
sampling. A ’relaxed clock’ approach was used to estimate coalescence times. We
checked our results and the efficiency of our fitting algorithm using simulated data,
generated by individual-based stochastic models.

Results: We verified by simulation that our model accurately reproduces the
cluster size distribution in commonly-used SI, SIR, and SIS epidemic models.
When compared to the skyline plot of effective population size from the ACTG
data, our best-fit SIR model reproduces consistent growth rates in the exponential
phase and a tapering of epidemic prevalence in the early nineties. The estimates
of epidemic parameters are also consistent with the known etiology of HIV. When
applied to heterogeneous populations, our model predicts that clustering of acute
infecteds is largely dependent on host population structure, and does not directly
indicate higher transmission probabilities in the acute stage.

Conclusions: The relationship between the effective population size and the
absolute number of infected individuals is complex, depending on the details of the
epidemiological model. Our mathematical model successfully characterizes aspects
of this complexity and explains observed clustering of acute HIV cases. Work
is underway to quantify the effect of non-exponential distributions of infectious
periods, variability in infectiousness over time, and heterogeneous contact rates.
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Modeling Competing Infectious Pathogens from a Bayesian

Perspective: with Application to Influenza Studies with Incomplete

Laboratory Results

Yang Yang

(joint work with M. Elizabeth Halloran, Michael J. Daniels, Ira M. Longini)

In seasonal influenza epidemics, pathogens such as respiratory syncytial virus
(RSV) are often found co-circulating with influenza and cause influenza-like illness
(ILI) in human hosts. However, it is often impractical to test for each potential
pathogen or to collect specimens for each observed ILI episode, making inference
about influenza transmission difficult. In the setting of infectious diseases, missing
outcomes impose a particular challenge because of the dependence among indi-
viduals. We propose a Bayesian competing-risk model for multiple co-circulating
pathogens for inference on transmissibility and intervention efficacies under the
assumption that missingness in the biological confirmation of the pathogen is ig-
norable. Simulation studies indicate a reasonable performance of the proposed
model even if the number of potential pathogens is misspecified, and show that
a moderate amount of missing laboratory test results has only a small impact on
inference about key parameters in the setting of close contact groups. Using the
proposed model, we found that a non-pharmaceutical intervention is marginally
protective against transmission of influenza A in a recent study conducted in ele-
mentary schools.

Reporter: Martin Eichner
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