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Introduction by the Organisers

The workshopVery High Dimensional Semiparametric Models, organised by Arnold
Janssen (Düsseldorf), Aad W. van der Vaart (Amsterdam) and Jon A. Wellner
(Seattle) was held October 2nd– October 8th, 2011. It was well attended with
52 participants from 11 countries from different continents. This workshop was a
nice blend of researchers with various statistical backgrounds.
The talks covered a broad spectrum from modern statistical theory for very high
dimensional problems. During the week 27 talks were given including 5 extended
morning talks about outstanding topics. Throughout much time was spent for
long and lively discussions. Special topics were:

• The sparsity in high dimensions with applications in medicine, biology and
astronomy.
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• Bayesian methods and reduction of dimension including regularisation
methods, computation and penalty functions for estimation problems.

• Qualitative assumptions about monotonicity and convexity.

• Beyond the parametric boundary topics about estimation and the bias-
variance trade-off.

It was also very successful to bring more applied researchers together with col-
leagues from mathematical statistics. This combination was very stimulating for
further research and discussion. In particular a lot of young researchers attended
the conference. The meeting was a great success. As always the stimulating at-
mosphere of the Forschungsinstitut led to an extensive exchange of ideas. A lot of
new scientific contacts were formed, initiating quite a number of collaborations.
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Abstracts

Estimating a composite function by Model Selection

Yannick Baraud

(joint work with Lucien Birgé)

We consider an n-sample X1, . . . , Xn with values in [−1, 1]k of common density
s2. Our aim is to estimate the function s with the L2-loss when k is large and, to
do so, look for some best approximation by composite functions of the form g ◦ u.
Our solution is based on model selection and leads to a very general approach
to solve this problem with respect too many different types of functions g, u. In
particular, we handle the problems of approximating s by additive functions, single
and multiple index models. We also investigate the situation where s = g ◦ u for
functions g and u belonging to possibly anisotropic smoothness classes. In this
case, our approach leads to a completely adaptive estimator with respect to the
regularity of s.

References

[1] J. Horowitz; E. Mammen, Rate-optimal estimation for a general class of nonparametric
regression models with unknown link functions., Ann. Statist. 35 (2007).

[2] A. Juditsky; O. Lepski; A. Tsybakov Nonparametric estimation of composite functions,
Ann. Statist. 37 (2009).

High-dimensional causal inference

Peter Bühlmann

We discuss causal inference when the number of variables may be much larger
than sample size. Sparsity of the underlying directed acyclic graph is crucial
for estimation accuracy and improved identifiability. We illustrate potential and
limitations of high-dimensional causal inference, and we show some applications
in genomics.
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Minimax and Adaptive Estimation of Large Covariance Matrices

Tony Cai

Covariance structure is of fundamental importance in many areas of statistical
inference and a wide range of applications, including genomics, fMRI analysis, risk
management, and web search problems. In the high dimensional setting where the
dimension p can be much larger than the sample size n, classical methods and
results based on fixed p and large n are no longer applicable. In this talk, I discuss
some recent results on minimax and adaptive estimation of covariance matrices in
the high-dimensional setting.

The sample covariance matrix is the most commonly used estimator of the
population covariance matrix in the classical fixed p, large n setting and enjoys
certain optimality. When the dimension p is large, it is known that the sample
covariance matrix often performs poorly. A number of regularization methods have
been introduced recently for estimating large covariance matrices. Asymptotic
properties and even explicit rates of convergence have been given. However, it is
not clear whether any of these rates of convergence are optimal.

In this talk we begin with minimax estimation of large bandable covariance
matrices. Bickel and Levina (2008a) introduced a banding estimator for estimat-
ing this class of covariance matrices and derived a rate of convergence for the
banding estimator. Cai, Zhang and Zhou (2010) established the optimal rates of
convergence for estimating the covariance matrix under both the operator norm
and Frobenius norm. It is shown that optimal procedures under the two norms are
different and consequently matrix estimation under the operator norm is funda-
mentally different from vector estimation. The minimax upper bound is obtained
by constructing a special class of tapering estimators and by studying their risk
properties. A key step in obtaining the optimal rate of convergence is the deriva-
tion of the minimax lower bound. The lower bound is established by using a testing
argument, where at the core is a novel construction of a collection of least favorable
multivariate normal distributions and the application of Assouad’s lemma and Le
Cam’s method.

The rate optimal tapering estimator given in Cai, Zhang and Zhou (2010) crit-
ically depends on the parameter α which is the rate of decay of the off-diagonal
entries and is thus not practical in applications. A natural goal is then to con-
struct a single procedure which is minimax rate optimal simultaneously over each
parameter space in a large collection. Cai and Yuan (2011) considered adaptive
estimation of bandable matrices and proposed a block thresholding procedure.
The estimator is constructed by carefully dividing the sample covariance matrix
into blocks and then simultaneously estimating the entries in a block by thresh-
olding. The estimator is shown to be optimally rate adaptive over a wide range of
bandable covariance matrices.

Besides bandable covariance matrices, sparse covariance matrices also arise nat-
urally in many applications. In this talk we also discuss minimax and adaptive
estimation of sparse covariance matrices considered in Cai and Zhou (2010 and
Cai and Liu (2011). In particular, Cai and Liu (2011) introduced a thresholding
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procedure that is adaptive to the variability of individual entries. The estimators
are fully data-driven and demonstrate excellent performance both theoretically
and numerically. It is shown that the estimators adaptively achieve the optimal
rate of convergence over a large class of sparse covariance matrices under the spec-
tral norm. In contrast, the commonly used universal thresholding estimators are
shown to be suboptimal over the same parameter spaces.

The results and technical analysis of these high-dimensional matrix estimation
problems reveal some new features that are quite different from the conventional
low-dimensional or sequence estimation problems.
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Annals of Statistics, 36, 199-227.
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How to analyze many contingency tables simultaneously?

Thorsten Dickhaus

Motivated by applications in the field of genetic association studies, we study exact
tests for (2 × 2) and (2 × 3) contingency tables, in particular exact chi-squared
tests and exact tests of Fisher-type. In practice, these tests are typically carried
out without randomization, leading to reproducible results but not exhausting the
significance level. We discuss that this can lead to methodological and practical
issues in a multiple testing framework when many tables are simultaneously under
consideration.

Realized randomized p-values are proposed as a solution which is especially
suitable for usage in data-adaptive (plug-in) procedures. Although they were orig-
inally derived in terms of randomized tests, we define them in a more general way
as follows.

Definition 1 Let a statistical model (Ω,F , (Pϑ)ϑ∈Θ) be given. Consider the
two-sided test problem H : {ϑ = ϑ0} versus K : {ϑ 6= ϑ0} and assume the decision
is based on the realization x of a discrete random variate X ∼ Pϑ with values
in Ω. Moreover, let U denote a uniformly distributed random variable on [0, 1],
stochastically independent of X. A realized randomized p-value for testing H versus
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K is a measurable mapping pr : Ω× [0, 1] → [0, 1] fulfilling that

Pϑ0
(pr(X, U) ≤ t) = t for all t ∈ [0, 1].

We derive convenient formulas for computing realized randomized p-values based
on the chi-squared and Fisher testing strategies mentioned above. Moreover, we
address the problem of positively correlated p-values for association by considering
techniques to reduce multiplicity by estimating the ”effective number of tests”
from the correlation structure. In particular, we present and discuss the methods
of Cheverud and Nyholt (cf. [1] and [5]), X. Gao et al. (see [3]) and Moskvina and
Schmidt (see [4]).

An algorithm taken from [2] bundles the three aspects (i) utilization of realized
randomized p-values, (ii) estimation of the proportion of true null hypotheses, (iii)
estimating the effective number of tests, and we exemplify it with real data.

References
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[2] T. Dickhaus, K. Straßburger, D. Schunk, C. Morcillo-Suarez, T. Illig and A. Navarro, Refined
statistical inference methods for contingency table analyses in genetic association studies,
under review.

[3] X. Gao, J. Starmer and E. R. Martin, A Multiple Testing Correction Method for Genetic
Association Studies Using Correlated Single Nucleotide Polymorphisms, Genetic Epidemi-
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ciation Studies, Genetic Epidemiology 32 (2008), 567–573.
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Comments on Projection Pursuit and Empirical Processes

Lutz Dümbgen

(joint work with Perla Zerial)

Let P be a probability distribution on q-dimensional space. The so-called Diaconis-
Freedman effect means that for a fixed dimension d << q, most d-dimensional
projections of P look like a scale mixture of spherically symmetric Gaussian dis-
tributions. In this talk we present necessary and sufficient conditions for this
phenomenon in a suitable asymptotic framework with increasing dimension q. It
turns out that the conditions formulated by Diaconis and Freedman (1984) are
not only sufficient but necessary as well. To achieve this we use a variation of a
nice trick introduced already by Hoeffding (1952) in a different context.

In the second part we consider the empirical distribution P̂ of n independent
random vectors with distribution P . We investigate the behavior of the empirical
process

√
n(P̂ − P ) under random projections, conditional on P̂ .
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On FDR Control, Expected Number of False Rejections and Issues

under Dependence

Helmut Finner

(joint work with Veronika Gontscharuk, Sandra Landwehr, Marsel Scheer, Klaus
Strassburger)

We give a brief introduction on concepts of error rate control in multiple hypothe-
ses testing and review some recent advances and test procedures with respect to
familywise error rate (FWER) and false discovery rate (FDR) control. Thereby,
we restrict attention to the class of step-up-down (SUD) tests based on p-values
p1, . . . , pn for testing n hypotheses H1, . . . , Hn. Such tests can be visualized in
terms of a suitable rejection curve r : [0, b] −→ [0, 1] and the empirical distribution

function (ecdf) F̂n of all p-values. Typically, a hypothesis Hi is rejected if pi ≤ τ ,
where τ denotes the (random) threshold for the test procedure. Thereby, the

threshold τ can be taken as one of the crossing points between r and F̂n, that is,
τ satisfies r(τ) = F̂n(τ). For example, for a step-up test, τ is the largest crossing

point between r and F̂n.
We briefly review recent results for linear plug-in tests based on estimates for the

number of true null hypotheses. An early reference on this issue is [11]. Meanwhile,
considerable progress has been made on proving the validity of such procedures, cf.
e.g. [13], [9], [3], [8], [10]. At first, we discuss finite and asymptotic (n→ ∞) FDR
control under some basic independence assumptions (BIA) for multiple tests based
on the asymptotically optimal rejection curve (AORC) introduced in [2]. Then we
give a brief review concerning least favorable configurations with respect to FDR
and issues appearing under dependence. We present a counterexample that even
weak dependence is not sufficient to guarantee asymptotic FDR control if the so-
called null-problem appears where the asymptotic threshold of a test procedure
tends to 0. Weak dependence applies for example if the ecdf of p-values under true
null hypotheses converges stochastically to the cdf of a uniform random variable
for n→ ∞.

Under dependence, FWER and FDR controlling procedures often lead to a
highly inflated number of false rejections, cf. e.g. [5] for FWER and [1] for FDR
control. In order to bound the number of false rejections, we introduce a new
and more flexible criterion for error rate control based on the expected number of
false rejections (ENFR). The aim is to control the ENFR at some level function
g depending on the number n1 of false hypotheses, e. g., g(n1) = (n1 + κ)γ for
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suitable constants γ, κ. Hence, conceptually similar to FDR control, we allow more
false rejections if the number of false hypotheses increases. This is in contrast to
[12], where ENFR control with g ≡ γ was investigated which typically leads to
conservative Bonferroni tests with τ = γ/n. In this talk we show that there
is a strong link between FDR and ENFR control under (BIA) for suitable level
functions. For example, for a step-up test ϕ based on the critical values αi:n =
r−1(i/n), i = 1, . . . , n, induced by the adjusted AORC r(t) = (1 + βn/n)t/[(1 −
α)t + α] introduced in [2], martingale and stopping time arguments yield the
striking identity

FDRϑ(ϕ) =
1

n+ βn
[(1− α)ENFRϑ(ϕ) + αn0] .

This identity leads to the statement

FDRϑ(ϕ) = α′ iff ENFRϑ(ϕ) = (n1 + βn)α
′/(1− α′).

Under (BIA), some further new results on the ENFR behavior of various multiple
test procedures are presented, cf. e.g. [4] and [6] for some earlier results.

Very recently, A. Gordon, cf. [7], presented bounds for the ENFR under general
dependence which can be utilized to construct SUD procedures controlling the
ENFR. However, such procedures are typically very conservative.

Finally, we illustrate dependency issues arising in gene expression data from
the KORA study (a cooperation of the German Diabetes Center Düsseldorf with
the Helmholtz Center Munich). Clearly, in comparing the expression levels of
about 32000 gene transcripts between different groups of individuals (e.g. diabetics
versus non-diabetics), p-values cannot be assumed to be independent. Among
others, we illustrate the null-problem and investigate whether weak dependence
may apply by studying the correlation structure in the data.
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Fast Bayesian model assessment for nonparametric additive regression

with many predictors

Subhashis Ghoshal

(joint work with S. Mckay Curtis, Sayantan Banerjee)

We consider a Bayesian approach for nonparametric additive regression model with
many predictors. We expand the functions in the additive model in a B-spline basis
and put a mixture of point mass at zero vector and a multivariate Laplace prior on
coefficients of each basis function. The indicators of non-null coefficients are given
a suitable prior based on the dependence structure of the predictor variables. It is
observed that conditionally on these indicators, the posterior mode can be viewed
as a group LASSO estimator. The posterior density can be expanded around
the posterior mode to yield Laplace approximations of posterior probabilities of
various submodels generated by predictor selection. This leads to extremely fast
assessment of posterior probabilities of various submodels of interest, and can be
used for model averaging and prediction.
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Penalized estimation of high dimensional models under a generalized

sparsity condition

Joel Horowitz

This talk is about estimation of a linear or nonparametric additive model in which
the number of regression coefficients or additive components may exceed the sam-
ple size. Motivated by applications in economics, we assume that a few coefficients
or additive components are large and objects of interest, whereas many others are
small but not necessarily zero. The large coefficients or additive components can
be estimated more accurately if the small ones can be identified and the covariates
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associated with them dropped from the model. We show that this can be done
with a two-step procedure in which the first step is the LASSO or group LASSO
and the second step is a form of penalized least squares. Monte Carlo experiments
and an empirical application illustrate the usefulness of the procedure.

UPS delivers optimal phase diagram in high dimensional variable

selection

Jiashun Jin

(joint work with Pengsheng Ji)

Consider a linear regression model

Y = Xβ + z, z ∼ N(0, In), X = Xn,p,

where both p and n are large but p > n. The vector β is unknown but is sparse
in the sense that only a small proportion of its coordinates is nonzero, and we
are interested in identifying these nonzero ones. We model the coordinates of β
as samples from a two-component mixture (1 − ǫ)ν0 + ǫπ, and the rows of X as
samples from N(0, 1

nΩ), where ν0 is the point mass at 0, π is a distribution, and
Ω is a p by p correlation matrix which is unknown but is presumably sparse.

We propose a two-stage variable selection procedure which we call the UPS.
This is a Screen and Clean procedure, in which we screen with the Univariate
thresholding, and clean with the Penalized MLE. In many situations, the UPS
possesses two important properties: Sure Screening and Separable After Screening
(SAS). These properties enable us to reduce the original regression problem to
many small-size regression problems that can be fitted separately. As a result, the
UPS is effective both in theory and in computation.

We measure the performance of variable selection procedure by the Hamming
distance, and use an asymptotic framework where p → ∞ and (ǫ, π, n,Ω) depend
on p. We find that in many situations, the UPS achieves the optimal rate of
convergence. We also find that in the (ǫp, πp) space, there is a three-phase diagram
shared by many choices of Ω. In the first phase, it is possible to recover all signals.
In the second phase, exact recovery is impossible, but it is possible to recover most
of the signals. In the third phase, successful variable selection is impossible. The
UPS partitions the phase space in the same way that the optimal procedures do,
and recovers most of the signals as long as successful variable selection is possible.

The lasso and the subset selection (also known as the L1- and L0-penalization
methods, respectively) are well-known approaches to variable selection. However,
somewhat surprisingly, there are regions in the phase space where neither the lasso
nor the subset selection is rate optimal, even for very simple Ω. The lasso is non-
optimal because it is too loose in filtering out fake signals (i.e. noise that is highly
correlated with a signal), and the subset selection is non-optimal because it tends
to kill one or more signals in correlated pairs, triplets, etc..
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Testing monotonicity of a hazard rate

Geurt Jongbloed

(joint work with Piet Groeneboom)

In reliability theory and survival analysis, the hazard rate h is a natural function to
characterize the distribution of a nonnegative random variable X with probability
density function f . It is defined by

h(x) =
f(x)

1− F (x)
,

where F is the distribution function of X . If X describes the time a typical
electrical component from a batch can be effectively used, monotonicity properties
of h indicate whether the components in the batch become more / less reliable
during a time period in which these are used (decreasing / increasing h on time
interval).

Let X1, X2, . . . be i.i.d. random variables with hazard rate h. In this presenta-
tion, the problem of testing the null hypothesis that h is increasing on a certain
time interval will be considered, based on X1, . . . , Xn. An L1-type test statistic
based on an L2-projection estimator will be introduced. The asymptotic distribu-
tion of this statistic will be given, as well as an outline of its derivation. Moreover,
a practical bootstrap-based procedure will be described and simulation results will
be presented, comparing the procedure with natural competitors introduced in the
literature ([1],[4]). The talk is based on [2] and [3].
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Occupancy problems in high-dimensional space

Estate Khmaladze

A. Consider a block of unit mass which we split into k smaller blocks of sizes,
following some distribution F ; each of these smaller blocks are again split in the
same manner, each into k smaller blocks; etc..

After d steps we will have N = kd small pieces of sizes ξ1d, . . . , ξNd. Consider
empirical distribution function of ”magnified“ sizes

HN (z) =
1

N

N∑

i=1

1{Nξid>z}.
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For a very wide class of splitting distributions F , we show that HN (z) → 0 for
every z > 0, and moreover, as d→ ∞,

(1) HN (z) ∼ Cn
1

zu
, 0 < u < 1, Cn → 0.

B. Suppose each particle emitts (or is occupied by) a Poisson process with intensity
Nξid. For a fixed time t, let µt(k) be the number of these Poisson processes, which
are equal k and µt be a number of Poisson processes which are positive.

Then we show that, as d→ ∞,

(2)
Eµt(k)

Eµt
−→ u

Γ(1− u)

Γ(k − u)

Γ(k + 1)

and the limit does not depend on t. The convergence in (2) is a corollary of the
convergence in (1).

Aspects of the Bernstein-von Mises theorem

Bas Kleijn

We consider a LAN model P = {Pθ,η : θ ∈ Θ ⊂ R
k, η ∈ H} where H is ∞-

dimensional with a prior Π and ask whether the θ-posterior converges to a normal

limit distribution N(θ̂n, n
−1Ĩ−1

0 ) where θ̂n is the MLE and Ĩ−1
0 is the efficient

Fisher information. If the prior Π = ΠΘ × ΠH satisfies Schwartz’s consistency
conditions (Schwartz (1965)) and the marginal posterior for θ converges at n−1/2-
rate, the Bernstein-von Mises limit holds. The latter condition can only be satisfied
if the bias is controlled. We propose to “regularize” the prior by introduction of
a density of the form eIn , where In : H → R is the penalty one would add to the
log-likelihood in penalized MLE procedures known from point-estimation, as in
van de Geer (2000).

Modelling extremes observed in space and time

Claudia Klüppelberg

(joint work with Richard A. Davis and Christina Steinkohl)

Often, in modelling complex systems such as wind fields, statistical methodology
can be applied to reconcile the physical models with the data. For an adequate
risk analysis, the statistical modelling of extreme events, such as severe wind gusts
or storms is essential; cf. [4].

Historically, Gaussian random fields play a central role in modelling spatio-
temporal data. When it comes to extremes and extremal dependence, Gaussian
processes are not appropriate, since observations at two different locations and
time points are in Gaussian models independent at high levels. A natural extension
from uni- and multivariate extreme value theory is formed by so-called max-stable
random fields. We suggest new statistical models for extreme data measured in
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space and time. We present the basic aspects and challenges of simulation and
estimation of max-stable spatio-temporal processes.

Our simulation method is based on limit results for Gaussian models derived
originally by [3] for bivariate models. It requires a certain limiting property of the
correlation structure, which extends to the much more general space-time setting;
see also [7]. Our construction extends also [8], who works in a pure spatial setting.

We calculate the bivariate distribution functions of the max-stable spatio- tem-
poral process, which involves the underlying Gaussian dependence structure. Es-
timation can now be based on the pairwise likelihood; cf. also [5]. Finally, we
prove strong consistency of the pairwise maximum likelihood estimators.

We test our procedure by first simulating a specific max-stable spatio-temporal
process, based on an underlying Gaussian field with a correlation function of the
Gneiting class [2]. We use our pairwise likelihood estimation, which turns out to
work very well in practice.
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A Framework For Estimating Convex Functions

Mark Low

The problem of estimating a function assumed to be convex is an important special
case of a large collection of problems focused on estimation under order constraints.
We consider a white noise with drift model where the drift is assumed to be convex
and focus on estimating the drift function at a given point under squared error
loss. The main goal is to develop a general framework for the evaluation of specific
procedures. This framework develops a benchmark tied to each convex function by
considering the hardest alternative for this function. A local modulus of continuity
is introduced to express this benchmark. The lower bound is also expressed in
an easily computable way through the introduction of a new function which we
term the k function. A procedure is constructed which is almost optimal for each
function.
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Integrative analysis of cancer genomic studies

Shuangge Ma

(joint work with Jian Huang)

In high-throughput cancer prognosis studies, markers identified from the analysis
of single datasets often suffer a lack of reproducibility because of the small sample
sizes. A cost-effective remedy is to pool data from multiple existing studies and
conduct integrative analysis. In this study, we describe cancer survival using AFT
(accelerated failure time) models. A weighted least squared criterion is proposed
for estimation. We propose a group MCP penalization approach for integrative
analysis of multiple heterogeneous prognosis studies and marker selection. We
establish the asymptotic selection consistency properties under the condition p =
exp(o(n)), where p is the number of covariates and n is the combined sample size.
Simulations and analysis of breast cancer studies show that the proposed approach
outperforms individual-dataset analysis and meta-analysis.

Asymptotic equivalence of functional linear regression and a white

noise inverse problem

Alexander Meister

We consider the statistical experiment of functional linear regression (FLR) under
normal regression errors. Furthermore, we introduce a white noise model where
one observes an Ito process, which contains the covariance operator of the cor-
responding FLR model in its construction. We prove asymptotic equivalence of
FLR and this white noise model in LeCam’s sense under known design distribu-
tion. Moreover, we show equivalence of FLR and an empirical version of the white
noise model for finite sample sizes. As an application, we derive sharp minimax
constants in the FLR model which are still valid in the case of unknown design
distribution. The talk is based on the paper [1].
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Statistical Multiscale Methods and Biophotonic Imaging

Axel Munk

(joint work with K. Frick, Z. Kabluchko, P. Marnitz, H. Sieling, A. Egner, S.
Hell, A. Schönle)

A central goal in statistical signal detection and imaging is to recover an unknown
(gray-valued) signal/image u defined on some domain Ω ⊂ R

d from data Y . We
shall denote the collection of all images on Ω by U and assume that U is a linear
space. A common model which serves as a proxy for many practical situations is
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that the measurement takes place on some finite grid X = {1, . . . ,m}d of size n
and that for each multi-index ν ∈ X

(1) Yν = (Ku)ν + εν ,

where εν are i.i.d. centered Gaussian random variables with presumably known
variance σ2 > 0 and K : U → R

n is a linear operator that encodes the functional
relation between the quantities that are accessible by experiment and the under-
lying signal/image. A typical example for K is convolution, leading to a blurred
version Ku of u.

In practical situations most of the images contain features of different scales and
modality, i.e. constant and smooth portions as well as oscillating patterns both
of different sizes. Thus, a minimum claim for modern reconstruction methods is
to allow for such spatially varying characteristics. In the recent literature on such
methods one can roughly distinguish between two approaches

• Sparse Dictionary based Multiscale Methods aim for representing
an estimator û ∈ U w.r.t. some given dictionary of “localizing” functions
and determine the corresponding coefficients according to the extreme
value behaviour of the residual values Y − Kû (thresholding methods)
or refined risk calculations [1]. Standard examples are wavelet- or curvelet
dictionaries (see [2, 7] among many others).

• Variational Methods typically compute estimators as minimizers of pe-
nalized likelihood functions, where the penalty encodes a priori knowledge
on the regularity (smoothness, sparsity, . . . ) of the unknown function u.
Prominent examples are total-variation based methods ([11, 5, 4])

û = argmin
u∈U

∑

ν∈X

(Ku− Y )2ν + λ

∫

Ω

|∇u|.

Here the parameter λ > 0 governs the trade-off between data-fit and
smoothness and it is claimed that locality is expressed through

∫
Ω |∇u|.

In the following we aim for unifying these to seemingly different approaches. To
this end we introduce the following class of estimators. Let S be some index
set and W = {ωS , S ∈ S} be a set of given weight-functions on the grid X .
A statistical multiresolution estimator (SMRE), is defined as a solution of the
constrained optimization problem

(2) J(u) → inf! s.t. max
S∈S

∣∣∣∣∣
∑

ν∈X

ωS
ν (Λ(Y −Ku))ν

∣∣∣∣∣ ≤ q.

Here, J : U → R denotes a regularization functional that incorporates a priori
knowledge on the unknown true signal u0 (such as smoothness, sparsity or texture
information) and Λ : Rn → R

n a possibly non-linear transformation. The constant
q can be considered as a regularization parameter that governs the trade-off be-
tween regularity and data-fit of the reconstruction. In most practical situations q
is chosen to be the (asymptotic) α-quantile qα of the multiresolution (MR) statistic
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T (ǫ), where T satisfies the inequality constraint in (2) and is defined as

(3) T (v) = max
S∈S

∣∣∣∣∣
∑

ν∈X

ωS
ν (Λ(v))ν

∣∣∣∣∣ , v ∈ (Rm)d.

The regularization parameter q admits a universal and sound statistical interpre-
tation: each solution ûα of (2) satisfies

P
(
J(ûα) ≤ J(u0)

)
≥ α

i.e. the estimator ûα is more regular (in terms of J) than u0 with a probability of
at least α.

For a given estimator û of u0, the set W is assumed to be rich enough in order
to catch all relevant non-random signals that are visible in the residual Y −Kû.
Put differently, the MR-statistic T (Y −Kû) is bounded by q, whenever Y −Kû
is accepted as white noise according to the resolution provided by W .

Summarizing, the optimization problem in (2) amounts to choose the most
parsimonious among all estimators û for which the residual Y − Kû resembles
white noise according to the statistic T . If Y − Kû contains some non random
signal, T (Y − Kû) is likely to be larger than q and u happens to lie outside
the admissible domain of (2). Thus, the multi-resolution constraint prevents too
parsimonious reconstructions due to the minimization of J .

In fact, this general SMRE approach is applicable to numerous application
areas. The examples we have primarily in mind are mainly from signal detection
and statistical imaging, where the index set S is often chosen to be an overlapping
(redundant) system of subsets of the grid X and ωS is the normalized indicator
function on S.

Therefore, we obtain a reconstruction method that can be combined with any
variational functional J and locally adapts the amount of regularization according
to the underlying signal or image features.

The multiscale approach in conjunction with variational regularization has been
advocated for dimension d = 1 by several authors, see e.g. [8] for testing for local
monotonicity and [4] for the case of total variation (see also [6]). In [9] this is
extended to general convex functionals J , and for higher dimensions (d ≥ 2) as well
as to deconvolution problems. To this end an algorithmic framework is presented
which allows to decompose the minimization problem in (2) into an unconstrained
mimimization of J and a separate projection step onto the convex multiresolution
constraint by an augmented Lagrange approach. This reveals these optimization
problems as computationally feasible even in large scale deconvolution problems
as they arise in nanoscale biophotonic imaging [10].

Finally, this also generalizes prominent regularization techniques in high dimen-
sional statistics to multi scales, including the Danzig selector [3], which originally
has been defined on a single scale.
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Finite Approximation of VC Classes

Andrew B. Nobel

(joint work with Terrence M. Adams)

Let (X ,S, µ) be a probability space and let C ⊆ S be a given family of measurable
sets. The Vapnik-Chervonenkis dimension of C is a measure of its combinatorial
complexity. Given a finite set D ⊆ X , let {C ∩ D : C ∈ C} be the collection of
subsets of D selected by the members of C. The family C is said to shatter D if its
elements can select every subset of D, or equivalently, if |{C ∩D : C ∈ C}| = 2|D|.
The Vapnik-Chervonenkis (VC) dimension of C, denoted dim(C), is the largest
integer k such that C is able to shatter some set of cardinality k. If C can shatter
arbitrarily large finite sets, then the dimension of C is infinite.

Let π be a finite, measurable partition of X . For every set C ∈ C, the π-
boundary of C, denoted ∂(C : π), is the union of all the cells in π that intersect
both C and its complement with positive probability. Formally,

∂(C : π) = ∪{A ∈ π : µ(A ∩C) · µ(A ∩ Cc) > 0}.
Note that ∂(C : π) depends on µ, though this dependence is suppressed in our
notation. We will call a family C finitely approximable if for every ǫ > 0 there
exists a finite, measurable partition π of X such that µ(∂(C : π)) ≤ ǫ for every
C ∈ C. The principal subject of the talk, established in [1], is the following.
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Theorem: If C has finite VC dimension, then C is finitely approximable for every
probability measure µ on (X ,S).

The theorem does not impose any cardinality or regularity constraints on the
family of sets C beyond the purely combinatorial requirement that C have finite VC
dimension. Immediate corollaries of the theorem include the fact that pointwise
separable classes with finite VC dimension have finite bracketing numbers, and
satisfy uniform laws of large numbers for every ergodic process. Details, and
extensions to families of real-valued processes, can be found in [1].
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Estimation of the Lévy measure: statistical inverse problem and a

Donsker theorem

Markus Reiss

(joint work with Richard Nickl)

Given n equidistant observations of a Lévy process (Lt, t ≥ 0) with Lévy measure ν
we construct estimators ν̂n of ν and assess their performance by looking at integrals∫
fdν for integrands f of smoothness s. The nonlinear estimator attains rates as

for estimating regular functionals in statistical inverse problems. The ill-posedness
is – like in deconvolution – prescribed by the decay of the characteristic function
φ (joint work with Michael Neumann, Jena [1]). In a second step we construct a

natural estimator N̂n of the generalised distribution function N(t) = ν((−∞, t])

for t < 0 such that
√
n(N̂n −N) satisfies a functional central limit theorem in the

space of bounded functions. The limit distribution is a generalised Brownian bridge
with a covariance structure that is minimal in the Cramér-Rao sense. The class
of Lévy processes covered includes several concrete examples, such as compound
Poisson, Gamma and self-decomposable processes whose characteristic functions
obey a natural decay restriction. Mathematical tools include pseudo-differential
operator calculus and smoothed empirical processes.
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Bayesian non-parametric estimators in high dimension

Ya’acov Ritov

(joint work with Peter J. Bickel, Anthony Gamst)

In this talk we considered the possibility of having a honestly non-parametric
Bayesian procedure in the context of a very high model. We considered this
problem in the context of the white noise model with heavy tails, Yi = βi + ǫi,∑
i2αβ2

i < ∞, α ∈ (1/4, 1/2). We show that any Bayesian procedure under

quadratic loss function, β̂ = (β̂1, β̂2, . . . ), is going to fail to achieve the efficient
convergence rate either as a non-parametric estimator of β = (β1, β2, . . . ), or as a
parametric estimator of some functional h(β) =

∑
hiβi, with

∑
h2i = 1. We argue

that in some sense, this would happen for most relevant functionals h, and this
is follow that any non-parametric Bayes estimator of β is necessarily biased, and
hence this bias would make the estimator of h(β) biased as well. We argue that
in many situations, a Bayes estimator can be efficient both as a non-parametric
estimator and as a parametric estimator of specific functionals, but this can be
achieved only if the prior is tuned to these functionals (and hence is not a subjective
prior).

Minimax Inference Using Higher Order Influence Functions

James Robins

(joint work with Lingling Li, Eric Tchetgen, Aad van der Vaart)

Perhaps the most common model used in analyzing observational studies of the
causal effect of a binary treatment A on a continuous response Y, in the presence of
a vectorX of continuous pretreatment confounding variables is the semiparametric
regression model

(1) E [Y |A,X ] = βA+ ν(X),

where β is an unknown parameter and ν (·) is an unknown function of X. This
model arises whenever we assume (i) no unmeasured confounders (i.e., ignorability
of treatment A within levels of X) and (ii) a constant additive effect of treatment
A on the mean of Y. The parameter β in model (1) equals the ratio

τ ≡ E [cov(Y,A|X)] /E [var(A|X)]

of the expected conditional covariance of Y and A to the expected conditional
variance of A. Model (1) assumes that the treatment effect function

γ (x) = E(Y |A = 1, X = x)− E(Y |A = 0, X = x)

does not depend on x. When model (1) is misspecified and thus β is undefined,
many semiparametric estimators of β continue to converge in probability to τ.

Therefore, we will study nonparametric point and interval estimation of the
functional τ, both with and without imposing the often unrealistic assumption
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that model (1) holds. When A is binary, τ is also the variance-weighted average
treatment effect functional E [var(A|X)γ (X)] /E [var(A|X)].

For any τ∗ ∈ R, it is useful to define Y (τ∗) = Y − τ∗A and the corresponding
functional

ψ (τ∗) = E [{Y (τ∗)− E [Y (τ∗) |X ]} {A− E (A|X)}] .

ψ (τ∗) is of interest because τ = E [cov(Y,A|X)] /E [var(A|X)] is the unique so-
lution to the equation ψ (τ∗) = 0. Thus inference on τ is easily obtained from
inference on ψ (τ∗) . In particular a (1−α) confidence set for τ is the set of values
taken by τ∗ such that a (1 − α) confidence interval for ψ (τ∗) contains zero. Op-

timality results we obtain for our proposed estimators ψ̂ (τ∗) of ψ (τ∗) extend to

the estimators τ̂ of τ satisfying ψ̂ (τ̂) = 0.
Thus our goal is to construct point and interval estimators of the functional

ψ (τ∗) for a fixed τ∗. Moreover, without loss of generality, we can take τ∗ = 0, so
our statistical problem becomes point and interval estimation of the parameter of
interest, the expected conditional covariance ψ (0) ≡ ψ ≡ E [cov {Y,A|X}]. Note
that ψ is the expected conditional variance of Y in the special case that Y and A
are equal with probability one.

A number of authors have considered nonparametric estimation of expected
conditional covariances and/or variances. The paper by Cai et al. (2009) is most
relevant.

We assume we observeN iid copies of O = (Y,A,X) sampled from a probability
measure FO with X a d−dimensional vector with compact support in Rd and
marginal density g (x) that is absolutely continuous on its support wrt to Lebesgue
measure. Without loss of generality, we take the support of X to be the unit

hypercube [0, 1]
d
. We assume FO is contained in a non or semi-parametric model

M (Θ) = {F (·; θ); θ ∈ Θ} , indexed by the parameter θ ∈ Θ. In the following,
b : x 7→ b (x) = E [Y |X = x] , p : x 7→ p (x) = E [A|X = x] , and g : x 7→ g (x)
denote the components of θ corresponding to the conditional expectations of Y
and A given X = x and the density of the marginal distribution FX of X.

Denote the expected conditional covariance functional by

ψ (θ) = Eθ [covθ(Y,A|X)] .

Assume:
Each h ∈ {b, p, g} belongs to a Hölder class of smooth functions H(βh, Ch)

with known Hölder exponent βh and radius Ch.
We have proposed a novel class of estimators for ψ (θ). Our novel estimators are

higher order U-statistics. They are based on the theory of higher order influence
functions for smooth nonlinear functionals in high dimensional semi/nonparametric
models introduced in Robins et al. (2008).

In our case the semiparametric model is the model that assumes covθ(Y,A|X)
does not depend on X.

Define

β = (βp + βb) /2
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Results for the ”regular” case are:

Theorem

(i) If β/d ≥ 1/4 then minimax rate is n1/2 for estimating ψ (θ) in both semi and
nonparametric models even if no smoothness on g is assumed.

(ii) If β/d > 1/4, efficient (regular, AL, attains SVB) adaptive estimator available
in either non or semiparametric model regardless of smoothness of g.

We are more interested in the irregular case β/d < 1/4. For simplicity assume
βp = βb = β. Note

n−1/2 < n− 4β/d
1+4β/d < n−2β/d when β/d < 1/4

n−1/2 > n− 4β/d
1+4β/d when β/d > 1/4,

with equality at β/d = 1/4. The following table summarizes our results and
conjectures concerning optimal rates of convergence for either of the functionals
Eθ [Covθ {Y,A|X}] or Eθ [varθ {Y |X}]

NP SP
X Non-Random, ES n−2β/d (U + L) n−2β/d (U + L)

X Random, g=AC and known n− 4β/d
1+4β/d (U + L) n− 4β/d

1+4β/d (U + L∗)

X Random,
βg

d > {β/d}(1−4β/d)

1+2β/d +8(β/d)2
n− 4β/d

1+4β/d (U + L) n− 4β/d
1+4β/d (U + L∗)

X Random, g=AC, β ≤ 1 n−2β/d (U + L∗) n− 4β/d
1+4β/d (U+L∗)

X Random, g some rate, β > 1 n−2β/d (U + L∗) n− 4β/d
1+4β/d (U+L∗)

where:
g=density of X
AC: absolutely continuous wrt uniform measure on the d-dimensional unit cube
ES: equally spaced design.
SP model assumes varθ {Y |X} or varθ {Y |X} do not depend on X
U an upper bound on the rate obtained by Cai et al (2009) in the nonrandom
case and with our higher order U-statistic estimators in the random case.
L a lower bound proved by Cai et al. in the nonrandom case and Robins et al
in the random case.
L∗ means a lower bound that is conjectured but not proved.

Alternation and semiparametric efficiency

Vladimir Spokoiny

The talk discusses the problem of efficiency for sequential procedures in semipara-
metric estimation. The use of the ’modern’ version of the Le Cam’s theory of
statistical experiments allows to reduce this problem to be a linear one. We show
that under weak identificability conditions, linear alternation leads to the efficient
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procedure. This allows to state similar results in general situations under some
regularity conditions.

Matrix Uncertainty Selector under Random Noise in the Matrix

Alexandre B. Tsybakov

(joint work with Mathieu Rosenbaum)

We consider the regression model with observation error in the design:

y = Xθ∗ + ξ,

Z = X + Ξ.

Here the random vector y ∈ R
n and the random n × p matrix Z are observed,

the n × p matrix X is unknown, Ξ is an n × p random noise matrix, ξ ∈ R
n is a

random noise vector, and θ∗ is a vector of unknown parameters to be estimated.
We consider the setting where the dimension p can be much larger than the sample
size n and θ∗ is sparse. For example, the case where the entries of the matrix X
are missing at random can be boiled down to this model.

It has been shown in Rosenbaum and Tsybakov (2010) that the presence of
observation noise has severe consequences on the usual estimation procedures in
the high-dimensional setting. In particular, the Lasso and Dantzig selector turn
out to be inaccurate and fail to identify the sparsity pattern of the vector θ∗.

In the same paper, the authors provide an alternative procedure, called Matrix
Uncertainty selector (MU selector for short), which is robust to the presence of

noise. The MU selector θ̂MU is defined as a solution of the minimization problem

min{|θ|1 : θ ∈ Θ,
∣∣∣ 1
n
ZT (y − Zθ)

∣∣∣
∞

≤ µ|θ|1 + τ},

where |·|p denotes the ℓp-norm, 1 ≤ p ≤ ∞, Θ is a given subset of Rp characterizing
the prior knowledge about θ∗, and the constants µ and τ depend on the level of
the noises Ξ and ξ respectively.

Here we suggest a modification of the MU selector in the case where Ξ is a
random matrix with independent and zero mean entries Ξij such that the sums of
expectations

σ2
j =

1

n

n∑

i=1

E(Ξij)

are finite and admit data-driven estimators. This is for example the case in the
model with missing data:

Z̃ij = Xijηij , i = 1, . . . , n, j = 1, . . . , p,

where for each fixed j = 1, . . . , p, the factors ηij , i = 1, . . . , n, are i.i.d. Bernoulli
random variables taking value 1 with probability 1−πj and 0 with probability πj ,
0 < πj < 1. This model can indeed be rewritten under the form

Zij = Xij + Ξij ,



Very High Dimensional Semiparametric Models 2769

where Zij = Z̃ij/(1 − πj) and Ξij = Xij(ηij − (1 − πj))/(1 − πj). Therefore, in
this model, the σ2

j satisfy

σ2
j =

1

n

n∑

i=1

X2
ij

πj
1− πj

,

and it is easily shown that they admit good data-driven estimators σ̂2
j , see Rosen-

baum and Tsybakov (2010).
The construction of our new estimator is based on the following idea. We cannot

use X in our estimation procedure since only its noisy version Z is available.
In particular, the MU selector involves the matrix ZTZ/n instead of XTX/n.
Compare to XTX/n, this matrix contains a bias induced by the diagonal entries
of the matrix ΞTΞ/n whose expectations σ2

j do not vanish. Therefore, if the σ2
j can

be estimated, a natural idea is to compensate this bias thanks to these estimates.

This leads to a new estimator θ̂ called Compensated MU selector and defined
as a solution of the minimization problem

min{|θ|1 : θ ∈ Θ,
∣∣∣ 1
n
ZT (y − Zθ) + D̂θ

∣∣∣
∞

≤ µ|θ|1 + τ},

where D̂ is the diagonal matrix with entries σ̂2
j , which are estimators of σ2

j , and
µ ≥ 0 and τ ≥ 0 are constants chosen according to the level of the noises and the
accuracy of the σ̂2

j .
In particular, this modification of the MU selector enables us to obtain bounds

for the estimation errors which are decreasing with n. This is in contrast to the
case of the MU selector, where the bounds are small only if the noise Ξ is small.

These estimation bounds for the Compensated MU selector are determined by
the intensity of the noises, the accuracy of the σ̂2

j and by the properties of the
Gram matrix

Ψ =
1

n
XTX.

For a vector θ, we denote by θJ the vector in R
p that has the same coordinates as

θ on the set of indices J ⊂ {1, . . . , p} and zero coordinates on its complement Jc.
We denote by |J | the cardinality of J .

To state our results, following Gautier and Tsybakov (2011), we use the sensi-
tivity characteristics related to the action of the matrix Ψ on the cone

CJ = {∆ ∈ R
p : |∆Jc |1 ≤ |∆J |1} ,

where J is a subset of {1, . . . , p}. For q ∈ [1,∞] and an integer s ∈ [1, p], we define
the ℓq sensitivity as follows:

κq(s) = min
J: |J|≤s

(
min

∆∈CJ : |∆|q=1
|Ψ∆|∞

)
.

We will also consider the coordinate-wise sensitivities

κ∗k(s) = min
J: |J|≤s

(
min

∆∈CJ : ∆k=1
|Ψ∆|∞

)
,

where ∆k is the kth coordinate of ∆, k = 1, . . . , p. We will assume in the fol-
lowing the positivity of κq(s) (or κ∗k(s)). This requirement is weaker than the
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usual assumptions related to the structure of the Gram matrix Ψ, such as the Re-
stricted Eigenvalue assumption and the Coherence assumption, see Gautier and
Tsybakov (2011).

We have the following estimation bounds for the Compensated MU selector.
Theorem 1. Assume θ∗ ∈ Θ is s-sparse. Then, with probability at least 1− ε, we
have

|θ̂ − θ∗|q ≤ ν(ε)

κq(s)
, ∀ 1 ≤ q ≤ ∞,

|θ̂k − θ∗k| ≤
ν(ε)

κ∗k(s)
, ∀ 1 ≤ k ≤ p,

1

n
|X(θ̂ − θ∗)|22 ≤ min

{ν2(ε)
κ1(s)

, 2ν(ε)|θ∗|1
}
.

Moreover, in the model with missing data, if the components of ξ and Ξ are sub-
gaussian, ν(ε) is of order O(n−1/2) up to some logarithmic factor.

We also consider a variation of the Compensated MU selector. We set

W0 = {(θ, u) : | 1
n
ZT (y − Zθ) + D̂θ + u|∞ ≤ c1τ},

where c1 ≥ 1 is a suitably chosen constant. Then we consider (θ′, u′) a solution of
the minimization problem

min{|θ|1 +
1

λ
√
µ
|u|∞ : (θ, u) ∈W0},

where λ is a tuning parameter. Eventually, our second estimator θ̃ is defined such
that (θ̃, ũ) is a solution of

min{|θ|1 : (θ, u) ∈W0, |u|∞ ≤
( |θ′|1 + c2τ

1− c3
√
µ

)
}.

Asymptotically, this estimator essentially shares the same properties as the Com-
pensated MU selector.
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Asymptotic behaviour of empirical Bayes procedures

Harry van Zanten

(joint work with Botond Szabó, Aad van der Vaart)

In recent years we have seen increasing use of Bayesianmethods in high-dimensional
or nonparametric statistical problems. It is by now well known that the (asymp-
totic) performance of such methods is sensitive to the fine properties of the priors
that are used. Even seemingly reasonable choices may lead to inconsistent or sub-
optimal procedures. Priors used in Bayesian nonparametrics typically depend on
one or more tuning parameters, so-called hyperparameters. In the case of function
estimation such parameters can for instance describe the degree of regularity of a
prior, a length scale, or a bandwidth. As a consequence of the general sensitivity
of nonparametric Bayes procedures to the choice of the prior, hyperparameters
must be tuned very carefully in order to ensure good performance of the resulting
procedure.

Using a fixed value for a hyperparameter is generally undesirable, since it makes
it likely that the prior is not properly matched to the true parameter of interest.
Therefore practitioners typically favour data-driven choices. Two big classes of
methods are widely used. The first is to endow the hyperparameters with a prior
distribution as well. This leads to fully Bayesian procedures using so-called hierar-
chical priors. The frequentist behaviour of such methods has recently been studied
in number of papers, and it was found that, if the priors are carefully constructed,
they can yield adaptive, rate-optimal procedures for a range of nonparametric sta-
tistical problems. A second possible approach is to estimate the hyperparameters
from the data, for instance using a likelihood-based method. This approach is not
fully Bayesian, and commonly called empirical Bayes, but is often computationally
convenient and therefore widely used in practice.

The theoretical performance of empirical Bayes methods in nonparametric prob-
lems has only been studied in a limited number of special cases. A general perspec-
tive on the frequentist behaviour of empirical Bayes methods has however been
lacking until now. In the paper [1] we study the theoretical performance of empir-
ical Bayes in the setting of the signal-in-white noise model and using a Gaussian
prior involving a multiplicative scaling hyperparameter. We investigate in detail
how the performance of the empirical Bayes method compares to an asymptotically
optimal oracle procedure.

In general our results are favourable to the empirical Bayes method. However,
the situation is delicate and we exhibit some surprising behaviour. For certain
combinations of true parameters and (unscaled) priors the empirical Bayes ap-
proach yields a rate-optimal, adaptive procedure, whereas for other combinations
it performs sub-optimally. In the language of function estimation we find that
an empirical Bayes procedure works optimally if the unscaled prior oversmoothes
or only slightly undersmoothes the unknown function of interest. If the initial
prior is chosen too rough however, we obtain sub-optimal convergence rates. This
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shows that for empirical Bayes methods as well, great care needs to be taken when
designing procedures for high-dimensional statistical problems.
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Joint variable and rank selection for parsimonious estimation of high

dimensional matrices

Marten H. Wegkamp

(joint work with Florentina Bunea, Yiyuan She)

This talk is devoted to optimal dimension reduction methods for sparse, high di-
mensional multivariate response regression models. Both the number of responses
and that of the predictors may exceed the sample size. Sometimes viewed as com-
plementary, predictor selection and rank reduction are the most popular strategies
for obtaining lower dimensional approximations of the parameter matrix in such
models. We show that important gains in prediction accuracy can be obtained by
considering them jointly. For this, we first motivate a new class of sparse multi-
variate regression models, in which the coefficient matrix has both low rank and
zero rows or can be well approximated by such a matrix. Then, we introduce esti-
mators that are based on penalized least squares, with novel penalties that impose
simultaneous row and rank restrictions on the coefficient matrix. We prove that
these estimators indeed adapt to the unknown matrix sparsity and have fast rates
of convergence. Our theoretical results are supported by a simulation study.
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Statistical inference for high-dimensional data

Cun-Hui Zhang

(joint work with Tingni Sun, Stephanie Zhang)

We propose a semi low-dimensional (LD) approach for statistical analysis of certain
types of high-dimensional (HD) data. The proposed approach is best described
with the following model statement:

model = LD component + HD component.(1)

The main objective of this semi-LD approach is to develop statistical inference
procedures for the LD component, including p-values and confidence regions. This
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semi-LD approach is very much inspired by the semiparametric approach [1] in
which a statistical model is decomposed as follows:

model = parametric component + nonparametric component.

Just as in the semiparametric approach, the worst LD submodel gives the minimum
Fisher information for the LD component in (1), along with an efficient score
function [6]. The efficient score function, or an estimate of it, can be used to
derive an efficient estimator for the LD component. The efficient estimator is
asymptotically normal with the inverse of the minimum Fisher information as
its asymptotic covariance matrix. This asymptotic covariance matrix may be
consistently estimated in a natural way. Consequently, approximate confidence
intervals and p-values can be constructed based on the asymptotic theory.

Suppose we observe iid data with log-likelihood ℓi(β) = ℓi(β|datai) with an HD
unknown β. The Fisher information operator at β is

F = −Eβ ℓ̈i(β), ℓ̈i(β) = (∂/∂β)(∂/∂β)T ℓi(β).

For the estimation of a real parameter θ(β), consider one-dimensional submodels
{β + uφ, |φ| < ǫ∗} with ǫ∗ → 0+ slowly. Let a0 = (∂/∂β)θ(β). We impose the
restriction aT

0 u = 1 so that θ(β + uφ) − θ(β) ≈ φ. The least favorable submodel
at β is then given by β + u0φ with

u0 = argmin
u

{
uTFu : aT

0 u = 1
}
= F−1a0/(a

T
0 F

−1a0).

The minimum Fisher information for the estimation of θ(β) at β is

F0 = uT
0 Fu0 = 1/(aT

0 F
−1a0).

Suppose we have the knowledge that β ≈ b0. We write the semi-LD model as

β − b0 = u0φ+ ν, aT
0 ν = 0,

with unknown φ = aT
0 (β− b0) and ν = (β− b0)−u0a

T
0 (β− b0). For small φ and

ν, the maximum likelihood estimator (MLE) in the least favorable submodel is a
natural candidate as an efficient estimator of φ, just as in linear regression with an
orthogonal design. This leads to the following LD projection estimator (LDPE),

θ̂ = θ(β̂
(init)

) + argmax
φ

n∑

i=1

ℓi
(
β̂
(init)

+ uφ
)
,(2)

with suitable β̂
(init) ≈ β and a u ≈ u0. The LDPE (2) is efficient in the sense of

√
nF0(θ̂ − θ) → N(0, 1),(3)

provided an analysis of the log-likelihood in the local semi-LD model up to the
order of oP (n

1/2). This analysis has been carried out in linear regression in [7, 8].
In linear regression, we observe (X ,y) ∈ R

(n+1)×p with y|X ∼ N(Xβ, σ2In×n).
The following scaled Lasso has been proposed in [7],

{β̂, σ̂} = argmin
b,σ

{‖y −Xb‖22
2nσ

+
σ

2
+ λ0‖b‖1

}
,(4)
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with λ0 = 2
√
(log p)/n. The asymptotic efficiency of σ̂, σ̂2/σ2 = χ2

n/n+o(n
−1/2),

has been proved there under an ℓ2-regularity condition on X [9] and the following
capped ℓ1 sparsity condition on β:

p∑

j=1

min
(
|βj |/(σλ0), 1

}
≤ s

with s log p≪ n1/2. Under the same set of regularity conditions, methodologies for
the statistical inference of regression coefficients has been developed in [8] based
on the LDPE

β̂j = β̂
(init)
j + {zT

j (y −Xβ̂
(init)

)}/(zT
j xj).(5)

This can be viewed as bias correction from the initial estimator. The success of
the LDPE hinges on finding appropriate zj with zT

j X/(zT
j xj) ≈ ej , where ej is

the unit vector in the j-th coordinate. We break the error as ‖zT
j X/(zT

j xj) −
ej‖∞‖β̂(init) − β‖1 to take advantage of the assumed sparsity of β. The scaled

Lasso is used in [8] to find β̂
(init)

, σ̂ and zj . More recently, we proved the asymp-

totic efficiency of an LDPE β̂j in linear regression with random design under the
weaker condition s log p≪ n. In our analysis, all quantities are allowed to depend
on n and p≫ n≫ s→ ∞ is permitted.

The above results essentially turn the regression problem into a much better
understood Gaussian sequence problem with an N(β, (σ2/n)V ) observation, a
known covariance structure V = (Vjk), with Vjk = nzT

j zk/{zT
j xj)(z

T
k xk)}, and a

consistent estimator of the noise level σ.
The LDPE (5) is not sparse but can be used as a raw estimator for post process-

ing for purposes depending on specific applications. Such post processing, possibly
taking advantage of the sparsity of β, will typically have a much clearer effect on

each β̂j , compared with existing methods. For example, approximate p-values for
individual βj based on the LDPE theory will still be valid after thresholding the

raw β̂j .
Among existing results, variable selection consistency is most relevant to sta-

tistical inference. We refer to recent reviews in [4, 9] and the recent book [2].
Consistent variable selection allows a great reduction of the complexity of the anal-
ysis from a large-p-smaller-n problem to one involving the oracle set of nonzero
regression coefficients only. Consequently, taking the least squares estimator on
the selected set of variables if necessary, statistical inference can be justified in the
smaller oracle model. However, statistical inference based on selection consistency
theory typically requires that all nonzero regression coefficients be greater than
a noise level inflated to take model uncertainly into account. This assumption
of uniform signal strength is, unfortunately, seldom supported by either the data
or the underlying science, especially in biological and medical applications. In
comparison, the capped ℓ1 sparsity allows β to have many small elements.

The above semi-LD approach is parallel to the familiar semiparametric one [1].
In both cases, the main technical difficulty is to control the effect of the error of
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the initial estimator, possibly jointly with the effect of the error in the estimation
of the efficient score [3, 5, 7, 8]. The main difference between a semi-LD analysis
and existing semiparametric analyses is the lack of the knowledge of a manageable
subspace for the approximation of the nuisance parameter. In a semiparametric
analysis, the nonparametric component is typically well approximated by a known
subspace of substantially smaller dimension than n. In a semi-LD analysis, the
HD component is typically only known to be sparse, so that the noise is inflated
by the uncertainty of not knowing the approximating subspace.
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Model Selection and Sharp Asymptotic Minimaxity

Huibin Zhou

We study model selection for Gaussian Sequence model. The mean parameter is
in a sparse lp ball. Penalized procedures of the type ck log n

k are considered. We
show c = 2 leads to sharp asymptotic minimaxity. As a consequence we proved
a conjecture in Abramovich, Benjamini, Donoho and Johnstone (2006, Annals of
Statistics).
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