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Introduction by the Organisers

The workshop ”Mathematical Statistics of Partially Identified Objects” was
organized by Victor Chernozhukov (Cambridge MA), Wolfgang Härdle (Berlin),
Joel Horowitz (Evanston) and Ya’acov Ritov (Jerusalem) and was attended by
23 participants. The program included 21 talks of 60 minutes each, including
discussions.

The workshop brought together mathematical statisticians, theoretical econo-
metricians, and bio-mathematicians to understand and further develop the math-
ematical core of partially identified objects or structures. Partial identification is
of ubiquitous nature in the analysis of structural models. Such analysis is relevant
in many fields of applied mathematics. For example, when data are generated
as outcomes of optimal discrete choices, moment inequalities do not identify the
parameter, but they can be highly informative about it by restricting it to lie in
the so called identification region. This phenomenon raises a variety of important
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mathematical, statistical, and computational problems that were explored in the
workshop.

Partial identification also arises in clinical trials. If some subjects do not take
the treatments to which they are assigned or if there is attrition from the trial
then the effects of treatment on the outcome variable are not identified unless one
makes untestable assumptions about the attrition process. These identification
problems are frequently explored through sensitivity analysis. A more thorough
mathematical characterization of the described effects can be achieved by com-
puting entire identification regions. Similar problems arise in survey research due
to survey nonresponse. In the analysis of survey data, nonresponse is often dealt
with by modeling the nonresponse process (e.g., assuming nonresponse is random
conditional on observed covariates), but the models are not testable empirically
and can lead to highly misleading conclusions.

Another example of partial identification is the prediction of the effects of a
policy decision following, say, a clinical trial. Even if the results of a trial are not
complicated by attrition or non-conformance to assigned treatments, they do not
provide point predictions of what outcomes will occur in the general population. A
clinical trial, at best, gives the average effect of treatment on a randomly selected
group of individuals with the relevant disease or medical condition. However,
once a drug or device is approved, those who receive are not randomly selected.
Rather, they are chosen through a complicated and poorly understood process
involving advice from medical professionals and the preferences of the patients.
Consequently, the predicted effects of the new drug in the population are not
identified.

The mathematical core problem is the characterization followed by computa-
tion of the identification regions. It is interesting to know whether computable
identification regions can be formulated using modern tools from such seemingly
unconnected fields of mathematics as the theory of the optimal mass transporta-
tion and the theory of random sets. These approaches have recently emerged as
powerful tools in identification analysis, replacing earlier more primitive meth-
ods based on elementary algebraic manipulations. As a result, today, sharp and
highly non-trivial bounds on parameters of games with multiple equilibria can
be formulated using the random set theory and optimal transportation methods,
substantially improving upon earlier non-sharp identification regions obtained for
these models. There are also interesting relations to von Neumann’s method of
alternating projections and maximum entropy methods.

Another challenging problem is estimating and performing inference on iden-
tification regions using available finite data. For example, the properties of the
likelihood and other methods for performing inference on functionals of the param-
eter under partial identification are not yet well understood. Another example is
the statistical theory of these methods and the appropriateness of convergence no-
tions for stochastic programs, such as epi-convergence and related concepts, which
have been developed in variational analysis and operations research. A number of
interesting questions also arises in relation to the failure of conventional inferential
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methods, e.g., bootstrap, due to limit distributions of relevant inferential statistics
failing to be continuous with respect to the underlying probability measures. A
number of methods have been suggested to remedy this failure; discussions around
the theory of such methods with the vision of generating solutions that are both
theoretically sound and practically relevant were at the center of the workshop.
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Workshop: Mathematical Statistics of Partially Identified Ob-
jects
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Remarks on the EPK Puzzle. The (Im)Possibility of Demixing . . . . . . . . 1173
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Abstracts

Specification Tests for Partially Identified Models defined by Moment
Inequalities

Federico A. Bugni

(joint work with Ivan A. Canay, Xiaoxia Shi)

This paper studies the problem of specification testing in partially identified mod-
els defined by a finite number of moment equalities and inequalities (henceforth,
referred to as (in)equalities). The model can be written as follows. For a parame-
ter vector (θ, F ), where θ ∈ Θ is a finite dimensional parameter of interest and F
denotes the distribution of the observed data, the model states that

EF [mj(Wi, θ)] ≥ 0 for j = 1, . . . , p ,

EF [mj(Wi, θ)] = 0 for j = p+ 1, . . . , k ,

where {Wi}ni=1 is an i.i.d. sequence of random variables with distribution F and
m : Rd×Θ → R

k is a known measurable function. This model is partially identified
because the sampling process and the maintained assumptions restrict the value
of θ to a set, called the identified set and denoted by ΘI(F ), which is smaller than
Θ but potentially larger than a single point.

The model is said to be correctly specified (or statistically adequate) when
the moment (in)equalities hold for at least one parameter value, i.e., when the
identified set ΘI(F ) is non-empty. A specification test takes correct specification
of the model as the null hypothesis and rejects if the data seem to be inconsistent
with it, i.e.,

H0 : ΘI(F ) 6= ∅ (i.e. model is correctly specified) ,

H1 : ΘI(F ) = ∅ (i.e. model is incorrectly specified) .

This problem of specification testing in partially identified moment (in)equality
models has not been directly addressed in the literature, although several papers
(e.g. [4], [1], and [2]) have suggested a valid hypothesis test as a by-product of the
construction of confidence sets for the parameter of interest θ. This procedure,
which we refer to as Test BP (for by-product), rejects the specification if and only
if the confidence set for θ is empty, i.e.,

φBP
n = 1 {CSn(1− α) = ∅} ,

where φBP
n indicates the rejection rule for Test BP and CSn(1 − α) is any valid

confidence set of θ with an asymptotic confidence size of (1− α).
In this paper, we propose two new specification tests, referred to as Test RC

and Test RS, which reject the specification of the model when the test statistic
exceeds a critical value. In fact, both of our tests use the following “infimum” test
statistic:

(1) Tn ≡ inf
θ∈Θ

Qn(θ) ,
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where Qn(θ) is the criterion function typically used to construct confidence sets
for θ, much in the spirit of the popular J-test in (point-identified) GMM models.
The difference between our two specification tests lies in the critical value used to
implement the test. That is, we propose

φjn = 1{Tn > ĉjn(1− α)} for j ∈ {RS,RC} ,
where φjn indicates the rejection rule for Test j, Tn is the “infimum” test statistic
defined in Eq. (1), and ĉjn(1− α) is the critical value corresponding to Test j.

We prove that our tests achieve uniform size control (just like Test BP) and
dominate Test BP in terms of power, both in finite samples and in the asymptotic
limit. These findings allow us to conclude that Test RC and RS dominate Test
BP as specification tests for partially identified moment (in)equality models.

We now describe these findings in more detail, starting with results on uniform
size control. Under certain conditions, Theorems 4.1, 5.1, and C.3 show that

(2) lim sup
n→∞

sup
F∈P0

EF [φ
j
n] ≤ α for j ∈ {BP,RS,RC} ,

where α is the significance level of the test and P0 is a relevant set of distributions of
the data in which the moment (in)equality model is correctly specified. According
to Eq. (2), the three specification tests considered in our paper control asymptotic
size uniformly in P0. We now continue with results regarding statistical power.
Under certain conditions, Theorem 6.1 proves that for any sample size n and any
data distribution F ,

(3) φRS
n ≥ φRC

n ≥ φBP
n .

In other words, Test RS rejects more or equal than Test RC which, in turn, rejects
more or equal than Test BP. Eq. (3) is a finite sample result that immediately im-
plies a weak power ranking among the three tests. Under certain local alternatives,
we show that the weak power ranking can become a strict power ranking, even
asymptotically. In particular, Theorem 6.2 indicates that under certain sequences
of local alternative hypotheses {Fn}n≥1, we have that

(4) lim inf
n→∞

(EFn [φ
RC
n ]− EFn [φ

BP
n ]) > 0 .

By combining Eqs.(3) and (4), we conclude that the rejection rate of Test RC is
higher or equal than that of Test BP for all sequences of local alternatives, and
it can be strictly higher for at least some sequences of local alternatives. It is
possible to establish a similar type of comparison between Test RS and Test RC.

Given that our tests dominate Test BP in terms of power, we find it important
to compare these inferential procedures in terms of their cost of computation. The
implementation of Test RC requires little additional work beyond the computation
involved in the confidence set construction, just like in Test BP. In this sense,
Test RC attains better power than Test BP at almost no additional cost. Thus,
we always recommend that it is implemented. On the other hand, Test RS has
even better power than Tests BP and RC, but its computation requires a separate
resampling procedure. For this reason, we recommend its use when one has serious
interest in the statistical adequacy of the model.
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From a methodological point of view, our paper derives the limiting distribu-
tion of the “infimum” test statistic under drifting sequences of data distributions
and provides two methods to approximate its quantiles. These methodological
contributions are relevant in problems that go well beyond specification testing.
In particular, [3] show that hypothesis tests based on the “infimum” test statistic
can be adapted to address a large class of interesting new problems which include,
for example, sub-vector inference (i.e. inference on a particular coordinate of a
multivariate parameter θ).
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Restricted structural equation models and improved bounds for
high-dimensional causal inference

Peter Bühlmann

Our goal is estimation of causal effects based on observational data, see for example
[6] or [9]. In general, or for the case of a multivariate Gaussian distribution,
the problem is ill-posed due to non-identifiability of “causal directions” from the
observational distribution. The usual route to address such non-identifiability
issues is to derive identifiable bounds of causal effects.

One approach to pursue the latter is as follows. We assume that the data
X1, . . . , Xn are i.i.d. from an observational distribution Pobs. The distribution of
Pobs is determined by a structural equation model, or equivalently, from a graph-
ical model with a directed acyclic graph (DAG) D and Pobs satisfying a Markov
property with respect to the DAG D. (For simplicity, we only consider DAGs;
they do not allow for e.g. directed cycles). In general, D is not identifiable from
Pobs but the so-called Markov equivalence class is identified from Pobs, assum-
ing the faithfulness assumption, cf. [9]. From the Markov equivalence class, we
can derive lower and upper bounds for causal effects, as propagated in [5]. Such
an approach is consistent, even in high-dimensional settings where the number of
variables p (the number of vertices in the DAG D) can greatly exceed sample size
n, i.e. p ≫ n, but the underlying structure is sparse, see [3], [5], [1] and [12].
Furthermore, it has been successfully applied in biological systems for predicting
unseen gene intervention effects in the organisms Saccharomyces Cerevisiae (see



1162 Oberwolfach Report 19/2013

[4]) and Arabidopsis Thaliana (see [10]). Limitations of such an approach when
using conditional independence testing are shown in [11].

One can avoid the identifiability problem mentioned above by assuming ad-
ditional restrictions for the structural equation model. Three such restrictions
are as follows: (i) non-Gaussian error terms [8], nonlinear functions and additive
noise [2], and linear Gaussian systems with same error variances [7]. We argue
that under such additional assumptions (additional restrictions), causal inference
from observational data is much more accurate and powerful than in the general
nonparametic or unrestricted multivariate Gaussian case.
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On the Testability of Identification in Some Nonparametric Models
with Endogeneity

Ivan A. Canay

(joint work with Andrés Santos and Azeem M. Shaikh )

Instrumental variables (IV) methods have a prominent role in econometrics due to
their ability to uncover causal effects in observational studies. Though traditionally
parametric in nature, an important literature has extended IV methods to a variety
of nonparametric settings. Among these extensions, of particular prominence is
the additively separable specification in which for an outcome of interest Y , a
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regressor W , and an instrument Z it is assumed that

(1) Y = θ(W ) + ǫ ,

with ǫ mean independent of Z. Under the maintained assumption that the model
is correct, [1] showed identification of θ to be equivalent to the joint distribution
of W and Z satisfying a completeness condition.

Despite the widespread use of completeness conditions in econometrics, little
evidence has been provided about their reasonableness in applications of inter-
est to economists. We note, however, that since completeness conditions impose
restrictions on the distribution of the observed data, it is potentially possible to
provide such evidence by testing the validity of these assumptions. This paper
explores precisely this possibility. Specifically, we study whether it is possible to
test the null hypothesis that a completeness condition does not hold against the
alternative that it does hold. Such a hypothesis testing problem is consistent with
a setting in which a researcher wishes to assert the model is identified and hopes to
find evidence in favor of this claim in the data. This setup is also analogous to tests
of rank conditions in linear models with endogeneity, where the null hypothesis is
that of rank-deficiency.

In this paper we show that, under commonly imposed restrictions on the distri-
bution of the data, the null hypothesis that the completeness condition does not
hold is in fact untestable. Formally, we establish that any test will have power no
greater than size against any alternative. It is therefore not possible to provide
empirical evidence in favor of the completeness condition by means of such a test.
This conclusion is in contrast to the testability of a failure of the rank condition
in linear specifications of θ, for which nontrivial tests do exist under reasonable
assumptions. Thus, while completeness conditions provide an intuitive generaliza-
tion of the rank condition in a linear specification, the empirical implications of
these assumptions are substantially different in this sense.

We additionally derive analogous results in two other prominent nonparametric
models with endogeneity. The first such model follows the specification in (1) with
a pre-specified conditional quantile of ǫ assumed independent of Z. The second
such model follows a specification in which θ is allowed to depend nonseparably
on both W and ǫ, with the dependence on ǫ being monotonic, and all conditional
quantiles of ǫ assumed independent of Z. Due to the nonlinear nature of such
models, simple, global rank conditions such as completeness conditions are un-
available. For this reason, we instead directly consider the testability of the null
hypothesis that identification fails against the alternative hypothesis that it holds.
Analogous to our results concerning the testability of completeness conditions, we
obtain conditions under which no nontrivial tests exist for these hypothesis testing
problems either.

Let {Vi}ni=1 be an i.i.d. sequence of random variables with distribution P ∈ P
and denote by Pn the n-fold product

⊗n
i=1 P . The hypothesis testing problems

we study may then be expressed as

(2) H0 : P ∈ P0 versus H1 : P ∈ P1 ,
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where P0 is the subset of P for which the null hypothesis holds and P1 = P \P0

is the subset of P for which the alternative hypothesis holds. For a sequence of
tests {φn}∞n=1, the corresponding size at sample size n is given by

sup
P∈P0

EPn [φn] .

We show that under commonly imposed restrictions on the set of distributions P,
the three hypothesis testing problems we examine share the property that

(3) sup
P∈P1

EPn [φn] ≤ sup
P∈P0

EPn [φn]

for any sequence of (possibly randomized) tests {φn}∞n=1 and any sample size
n. Equivalently, result (3) establishes that for all tests, the power against any
alternative P ∈ P1 is always bounded above by the size of the test. It also
follows from such an assertion, that any sequence of tests {φn}∞n=1 that controls
asymptotic size at level α ∈ (0, 1) will have asymptotic power no larger than α
against any alternative. Formally, (3) immediately yields that

(4) lim sup
n→∞

sup
P∈P0

EPn [φn] ≤ α =⇒ lim sup
n→∞

sup
P∈P1

EPn [φn] ≤ α .

In this abstract we establish the nonexistence of nontrivial tests for completeness
conditions. Toward this end, we first need to introduce additional notation and
formally define Lq-completeness. Let Vi = (Xi, Zi) ∈ Rdx × Rdz be random

variables distributed according to P ∈ P. For Zi = (Z
(1)
i , Z

(2)
i ), with the subvector

Z
(1)
i possibly empty, let Wi = (Xi, Z

(1)
i ) ∈ Rdw , and for Θ(P ) a set of measurable

functions from Rdw to R, consider the condition on P given by

(5) EP [θ(Wi)|Zi] = 0 P−a.s. for θ ∈ Θ(P ) =⇒ θ(Wi) = 0 P−a.s.

For 1 ≤ q ≤ ∞, the distribution P is said to be Lq-complete with respect to
W given Z if condition (5) holds with Θ(P ) = Lq(PW ). Here, PW denotes the
marginal distribution of W under P and Lq(PW ) denotes the set of measurable
functions from Rdw to R with finite ‖ · ‖Lq(PW ) semi-norm. For the special cases
in which q = 1 or q = ∞, P is sometimes simply said to be complete with respect
to W given Z or bounded complete with respect to W given Z, respectively. See
[3] for further discussion on these conditions.

The definition of the set of possible distributions P plays a fundamental role
in setting up the hypothesis testing problem. We restrict attention to sets of
measures P that have a common dominating measure. Specifically, letting Mx,z

denote the set of all Borel probability measures on Rdx ×Rdz , and defining

(6) Mx,z(ν) ≡ {P ∈ Mx,z : P ≪ ν} ,
for some Borel measure ν on Rdx × Rdz , we let P = Mx,z(ν). In this setting,
we examine the testability of the null hypothesis that the completeness condition
fails, and hence, for a given choice of Θ(P ), we let

(7) P1 = P \P0 = {P ∈ P : (5) holds under P} .
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Defining the null hypothesis in this manner is analogous to testing the null
hypothesis of a failure of the rank condition in a linear specification

Theorem 1. Suppose that (i) ν is a positive σ−finite Borel measure on Rdx×Rdz ,
(ii) ν = νx×νz, where νx and νz are Borel measures on Rdx and Rdz , respectively,
and (iii) νx is atomless on Rdx. If P = Mx,z(ν), for Mx,z(ν) as in (6), and P0

and P1 are as in (7) with Θ(P ) = L∞(PW ), then, for any sequence of tests
{φn}∞n=1

(8) sup
P∈P1

EPn [φn] ≤ sup
P∈P0

EPn [φn] for all n ≥ 1 .

Underlying our arguments is a powerful result originally found in [4], which we
restate due to its importance in our derivations. In the statement of the lemma,
‖P −Q‖TV denotes the Total Variation distance between probability measures P
and Q.

Lemma 1. Let M denote the space of Borel probability measures on a separable
metric space V. Suppose P ⊆ M and that P = P0 ∪P1. If for each P ∈ P1 there
exists a sequence {Pk}∞k=1 in P0 with ‖P − Pk‖TV → 0 as k → ∞, then every
sequence of test functions {φn}∞n=1 satisfies

(9) sup
P∈P1

EPn [φn] ≤ sup
P∈P0

EPn [φn] for all n ≥ 1 .

Two constructive points follow from our results, which we believe have poten-
tially important implications for future research. First, having established the
impossibility of producing empirical evidence in favor of completeness or identi-
fication conditions, our results emphasize the value of alternative arguments for
their plausibility. Recent work that addresses this problem includes [3] and [2],
who argue in favor of completeness conditions on the basis of genericity arguments.
Second, our analysis highlights the significance of both developing inferential meth-
ods that are robust to partial identification and of comparing their performance
to nonrobust inferential approaches. For instance, it would be important to un-
derstand which inferential method is preferable when identification is believed to
hold. We hope the results and arguments in this paper provide motivation for
addressing these challenges in future research.
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Generalized Instrumental Variable Models

Andrew Chesher and Adam M. Rosen

We extend the application of instrumental variable (IV) methods to a wide class
of problems in which multiple values of unobservable variables can be associated
with particular combinations of observed endogenous and exogenous variables.
Like traditional IV models, the class of generalized instrumental variable (GIV)
models studied restricts the impact of exogenous variables on a structural relation-
ship and limits the degree of dependence of observed and unobserved exogenous
variables. However, in contrast to traditional IV models, in GIV models the map-
ping from unobservables to endogenous variables need not admit a unique inverse.

This class of GIV models allows for unobservables to be multivariate and to enter
nonseparably into the determination of endogenous variables, thereby removing
strong practical limitations on the role of unobserved heterogeneity. These models
are typically partially identifying although they include as special cases well-known
point identifying IV models. We draw on results in random set theory, e.g. [1],
[5], and [4], to provide a characterization of the sharp identified sets delivered by
GIV models using distributions of certain random sets in the space of unobserved
heterogeneity.

Important examples include models with discrete or mixed continuous/discrete
outcomes and continuous unobservables, and models with excess heterogeneity
where many combinations of different values of multiple unobserved variables, such
as random coefficients, can deliver the same realizations of endogenous variables.
In previous papers such as [2] and [3] we have given some results for particular cases
in all of which outcomes are discrete. Here we present a complete development
and results for a general class which includes problems in which outcomes may
be continuous or discrete. We demonstrate the application of our analysis to a
continuous outcome random coefficients model with endogeneity and a model with
endogenous censoring of a continuous variable.
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Significance testing in quantile regression

Holger Dette

(joint work with Stanislav Volgushev, Melanie Birke, Natalie Neumeyer)

Let Y , X and Z denote one-, d and q dimensional random variables, respectively,
where Y corresponds to the response and X and Z are the covariates. We as-
sume that the random variables {(Yi, Xi, Zi)}i=1,...,n are independent identically
distributed with the same distribution as (Y,X,Z). Let τ ∈ (0, 1) be fixed. Our
aim is to test whether the predictor Z has influence on the conditional τ -quantile
of Y , given (X,Z), or whether the variable Z can be omitted. Thus for fixed
τ ∈ (0, 1) we formulate the null hypothesis as

(1) H0 : E[I{Y ≤ qτ (X)} − τ | X,Z] = P (Y ≤ qτ (X) | X,Z)− τ = 0 a.s.,

where qτ (X) is defined as the conditional τ -quantile of Y , given X , that is

(2) P (Y ≤ qτ (X) | X) = τ.

It is easy to see that the null hypothesis (1) is equivalent to

T (x, z) ≡ 0

for all (x, z) in the support of the random variable (X,Z), where the functional T
is defined by

T (x, z) = E[(P (Y ≤ qτ (X)|X,Z))− τ)I{X ≤ x}I{Z ≤ z}](3)

= E[(I{Y ≤ qτ (X)} − τ)I{X ≤ x}I{Z ≤ z}].
This functional can be be estimated by the stochastic process

(4) Tn(x, z) =
1

n

n∑

i=1

(
I{Yi ≤ q̂τ (Xi)} − τ

)
I{Xi ≤ x}I{Zi ≤ z}, ,

where (x, z) ∈ RX × RZ , RX and RZ denote the support of the distributions of
the random variables X and Z, respectively, and q̂τ is an appropriate estimate
of the conditional quantile of Y given X , which will be specified below. A test
for the hypothesis of significance of the variable Z for the τ ’s quantile curve of Y
can now easily be obtained by considering a Kolmogorov-Smirnov or Cramer von
Mises type statistic based on Tn and rejecting the null hypothesis for large values
of this statistic.

Throughout this paper we assume that the sets RX and RZ are compact. We
will use an approach proposed by [1] who constructed non-crossing estimates of
quantile curves using a simultaneous inversion and isotonization of a preliminary
estimator of the conditional distribution function FY |X of Y given X . For this

estimator, say F̂Y |X(y|x; p), we will use a smoothed local polynomial estimator of
order p, see e.g. [2]. Following [1] we consider a strictly increasing distribution
function G : R → (0, 1), a nonnegative kernel κ with bandwidth bn, and define the
functional

(5) HG,κ,τ,bn(F ) :=
1

bn

∫ 1

0

∫ τ

−∞
κ
(F (G−1(u))− v

bn

)
dvdu.
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Because F̂Y |X is consistent, it is intuitively clear that HG,κ,τ,bn(F̂Y |X(·|x)) is a
consistent estimate of HG,κ,τ,bn(FY |X(·|x)). If bn → 0, this quantity can be ap-
proximated as follows

HG,κ,τ,bn(FY |X(·|x)) ≈
∫

R

I{FY |X(y|x) ≤ τ}dG(y)

=

∫ 1

0

I{FY |X(G−1(v)|x) ≤ τ}dv = G ◦ F−1
Y |X(τ |x),

and as a consequence an estimate of the conditional quantile function qτ (x) =
F−1
Y |X(τ |x) can be defined by

q̂τ (x) := G−1(HG,κ,τ,bn(FY |X(·|x))).(6)

We will consider a generalization of the test statistic Tn defined in (4), where
the indicator functions I{Xi ≤ x} are replaced by indicators of more general sets
Θ. To be precise let Ξ denote a collection of subsets of Rd and define Dn := {x ∈
RX |[x − hn1, x + hn1] ⊂ RX} (here 1 denotes the d-dimensional vector with all
entries equal to 1), then all theoretical developments will be based on the statistic
(7)

Tn(Θ, z) =
1

n

n∑

i=1

(I{Yi ≤ q̂τ (Xi)}−τ)I{Xi ∈ Θ∩Dn}I{Zi ≤ z}, Θ ∈ Ξ, z ∈ RZ .

The intersection of the sets Θ ∈ Ξ with the set Dn is needed in the theoretical de-
velopments to exclude “residuals” I{Yi ≤ q̂τ (Xi)}− τ corresponding to predictors
close to the boundary of RX . Note that if ∪Θ∈ΞΘ has a positive distance to the
boundary of RX , the collection of sets Ξn will equal Ξ whenever hn is sufficiently
small. The following result is proved in [3]

Theorem 0.1. If the conditions

(A1) The conditional distribution function FY |X(y|x) is p+1 times continuously
differentiable with respect to x, y and all partial derivatives are uniformly
bounded on R×RX . The joint density of (X,Y ) is uniformly bounded on
RX × R. Moreover, p ≥ max(s, d+ 1).

(A2) The density fX of the predictor X is d+1+ nf times continuously differ-
entiable with uniformly bounded partial derivatives on RX and nf > d/2.
Moreover infx∈RX fX(x) > 0.

(A3) There exist constants a, C1 > 0 such that

inf
(x,y):x∈RX,|y−qτ (x)|≤a

fY |X(y|x) ≥ C1

where fY |X denote the conditional density of Y given X.
(A4) The function (z, x) 7→ FZ|X,ε(z|x, 0) is Hölder-continuous of order γ > 0

with respect to z and x uniformly in x ∈ D, i.e.

|FZ|X,ε(s|x, 0)− FZ|X,ε(t|ξ, 0)| ≤ C‖(s, x)− (t, ξ)‖γ∞
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for some finite constant C, where FZ|X,ε(z|x, e) is the conditional distri-
bution function of Z given (X, ε) = (x, e).

(A5) supx∈D,y∈R,z∈Z |f ′
ε|X,Z(y | x, z)| <∞.

(A6) The class of functions F1 = {u 7→ I{u ∈ Θ}|Θ ∈ Ξ} satisfies

N[ ](F1, ε, L
2(PX)) ≤ Cε−a

for any sufficiently small ε > 0 and a constant C, where N[ ] denotes the
bracketing number [see [4]]

(A7) supΘ∈Ξ P (Xi ∈ Θ, ∃j : [Xi(j)− hn, Xi(j) + hn] 6⊂ Θ) = o(1) for hn → 0.

are satisfied, then

Tn(Θ, z) =
1

n

n∑

i=1

(I{εi ≤ 0} − τ)I{Xi ∈ Θn}(I{Zi ≤ z} − FZ|X,ε(z|Xi, 0))

+oP (n
−1/2)

uniformly with respect to z ∈ RZ ,Θ ∈ Ξ, where εi = Yi − qτ (Xi), i = 1, . . . , n,

Corollary 0.2. If the assumptions of Theorem 0.1 and the null hypothesis H0 in
(1) are satisfied, the process

√
nTn converges weakly in ℓ∞(Ξ×RZ) to a centered

Gaussian process T with covariance kernel

k(Θ1, y,Θ2, z) = Cov(T(Θ1, y),T(Θ2, z)) = τ(1 − τ)E
[
I{X ∈ Θ1 ∩Θ2}(8)

×E

[(
I{Z ≤ y} − FZ|X,ε(y|X, 0)

)(
I{Z ≤ z} − FZ|X,ε(z|X, 0)

)∣∣∣X, ε
]]
.

As a consequence of this result we obtain the weak convergence of functionals
such as the Kolmogorov-Smirnov statistic

Kn = sup
Θ∈Ξ

sup
z∈Rz

|Tn(Θ, z)|

by an application of the continuous mapping theorem. In general the asymptotic
distribution of Kn depends on certain features of the data generating process and
bootstrap approximations are discussed in [3]. However, in the case where the pair
(X, ε) and the covariate Z are independent the situation simplifies substantially.
Here the covariance of the limiting process is given by (8) that

Cov(T(Θ1, y),T(Θ2, z)) = τ(1 − τ)P (I{X ∈ Θ1 ∩Θ2})(FZ(y ∧ z)− FZ(y)FZ (z)),

where FZ is the distribution function of the random variable Z and y∧z denotes the
vector of minima of the corresponding coordinates of y and z. If additionally X,Z
are real-valued and Ξ = {(−∞, t]|t ∈ R}, the asymptotic covariance in Theorem
0.1 reduces to

Cov(T((−∞, t], y),T((−∞, s], z)) = τ(1 − τ)FX(s ∧ t)(FZ(y ∧ z)− FZ(y)FZ(z)).

Hence, for univariate independent covariatesX and Z with continuous distribution
functions FX and FZ , respectively, the Kolmogorov-Smirnov test is asymptotically
distribution-free because in this case the statistic

√
n sup

x∈RX ,z∈RZ

|Tn(x, z)| =
√
n sup

s,t∈[0,1]

|Tn(F−1
X (s), F−1

Z (t))|
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converges in distribution to
√
τ(1 − τ) sups,t∈[0,1] |B(s, t)|, where B is the Kiefer-

Müller process on [0, 1]2, i.e. a centered Gaussian process with covariance kernel

Cov(B(s1, t1), B(s2, t2)) = (s1 ∧ s2)(t1 ∧ t2 − t1t2).

References

[1] H. Dette and S. Volgushev, Non-crossing nonparametric estimates of quantile curves, Jour-
nal of the Royal Statistical Society, Ser. B 70(3) (2008), 609-627.

[2] J. Fan and I. Gijbels, Local Polynomial Modelling and its Applications, Chapman & Hall
(1996).

[3] S. Volgushev, M. Birke, H. Dette and N. Neumeyer, Significance testing in quantile regres-
sion, Electronic Journal of Statistics 7 (2013), 105-145.

[4] A.W. van der Vaart and J.A. Wellner, Weak Convergence and Empirical Processes. Springer
Series in Statistics, Springer, New York (1996).

Higher dimensional quantiles and partial identification

Alfred Galichon

(joint work with Victor Chernozhukov and Marc Henry)

Consider a consumer choice problem (hedonic model) with quasilinear utility
of the form:

Ũ(x, z, ε)− p (z)

where, x ∈ R
dx is a vector of observed consumer characteristics, z ∈ R

d is a
vector of observed good characteristics. Pz denotes its distribution, and Pz|x its
distribution conditional on x.
ε ∈ R

d is a vector of unobserved consumer characteristics. Pε will denote the
distribution of ε, whether it is known a priori or not. Pε has positive density
on its domain, which is the closure of a connected open set. ε is assumed to
be independent from x (this assumption may be relaxed as soon as the joint
distribution of (x, ε) is fixed).
p(z) is the observed price of good with characteristics z.

Ũ is an unknown utility function. Our focus is the identification of Ũ , insofar
as possible. We make the following separability assumption:

Assumption 1. Ũ(x, z, ε) = U(x, z) + ζθ(x, z, ε), where ζ is a known function
parameterized by θ.

In the fist part of this talk we shall treat θ as fixed and we shall omit it.

One dimensional case. Here, we assume both z and ε have dimension one
(d = 1) and we recall Matzkin’s (2003) identification strategy. This strategy has
been applied to the identification of hedonic models in Ekeland, Heckman and
Nesheim (2004) and Heckman, Matzkin and Nesheim (2010).

We shall assume:
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Assumption 2. For every x, ζ(x, z, ε) is twice differentiable in z and ε, and

∂2zεζ(x, z, ε) > 0.

Let V (x, z) := p (z)− U (x, z). As p is known, identification of U is equivalent
to identification of V .

Let z (x, ε) be the quality purchased by consumer of type (x, ε), and let ε (x, z)
be its inverse w.r.t. its second variable. ε (x, z) is implicitly defined by the first
order conditions

(1) −∂zV (x, z) + ∂zζ(x, z, ε) = 0

and we have:

Proposition 1. Under the above assumptions, the map z → ε (x, z) is increasing,

ε (x, z) = F−1
ε|X=x

(
FZ|X=x (z|x) |x

)

and
z (x, ε) = F−1

Z|X=x

(
Fε|X=x (x, ε) |x

)
.

We then recover V (and hence, U) by integration of the first order conditions (1)

V (x, z) =

∫ z

0

∂zζ(x, z
′, ε (x, z′))dz′ + c.

Identification with a single market. Under Assumption 1 and recalling our
notation V (x, z) = p(z)− U(x, z), the consumer maximizes

max
z

(ζ(x, z, ε)− V (x, z)) .

The first order condition gives:

(2) ∇zV (X,Z) = ∇zζ(X,Z, ε).

Identification of V is obtained via Optimal Transportation theory and the
Monge-Kantorovich theorem (see Villani 2004, 2009). We need the following reg-
ularity conditions:

Assumption 3. The following hold.
1. ζ satisfies the Twist Condition relative to (z, ε): i.e.,

∇zζ(x, z, ε1) = ∇zζ(x, z, ε2) ⇒ ε1 = ε2.

2. ζ is locally Lipschitz as a function of ε.

We have:

Theorem 1. Under Assumptions 1 and 3, V is identified (up to a constant) as
the solution to the variational problem

inf
V

(
E[V (X,Z)] + E[V ζ(X, ε)]

)
,

where V ζ(x, ε) = supz{ζ(x, z, ε)− V (x, z)}.
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This strategy was proposed in Galichon and Salanié (2012) in the context of
identification of matching games, in the discrete case. It is also used in Chiong,
Galichon and Shum (2013) for identification of dynamic discrete choice models.
We can see this result as a multivariate generalization of the notion of quantile
transform.

Parametric (partial) identification with multiple markets. The above
analysis implies that for a given value of the parameter θ in ζθ(x, z, ε), U (x, z) is
exactly identified provided the assumptions made hold. This implies that:

- the above analysis does not allow us to say anything about the estimation of θ
- if we observe multiple markets, θ will be overidentified.

Conversely, multiple market data may open up new possibilities for the estima-
tion of θ.

Assumption 4. The function ζ and the probability distribution Pε are known up
to a vector θ of unknown parameters and constant across markets.

For the sake of simplicity, we shall consider the case of two markets. In each
market, under Assumptions 1 and 3, we identify a function Um(x, z; θ). Between
markets m1 and m2, the distributions of producer and consumer characteristics
may vary, hence the endogenous distribution of good characteristics and the price
schedule. We assume that the utility function is unchanged and define the identi-
fied set ΘI accordingly.

Proposition 2. The identified set is equal to

ΘI = {θ : Um1
(x, z; θ) = Um2

(x, z; θ), x, z - a.s.}.
We let Q(θ) be defined as Q(θ) = E(Um1

(x, z; θ) − Um2
(x, z; θ))2. Based on

estimators of U in each market, denoted Ûm(x, z; θ), we can base inference on the
identified set on the quantity:

Qn(θ) =
1

n

n∑

i=1

(Ûm1
(xi, zi; θ)− Ûm2

(xi, yi; θ))
2

for some discretization (xi, zi)i=1,...,n of the space of characteristics.
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Remarks on the EPK Puzzle. The (Im)Possibility of Demixing

Maria Grith

(joint work with Wolfgang K. Härdle, Ya’acov Ritov)

The motivation for this research topic are empirical findings on the financial mar-
kets that reveal a puzzling behavior of investors, which cannot be explained by
means of traditional expected utility. The concept that will be used along this
study is the pricing kernel (PK) that relates a continuous version of Arrow-Debreu
pricing rule to the physical measure of the asset prices. Consistent with this, un-
der risk neutral valuation in the arbitrage free models, the price at time t of the
random payoff ψ(ST ) is a martingale

Vt = EQt [ψ(ST )](1)

= EPt [ψ(ST )Kt(ST )](2)

for {St}t∈[0,T ] the price process of a risky asset with continuously distributed

marginals and zero continuously compounded risk free interest rate; Qt the condi-
tional risk neutral measure. By Girsanov theorem we switched to pricing under the
conditional physical measure Pt in (2). If the risk neutral and physical measures
admit probability density functions qt and pt respectively, then

(3) Kt(sT ) =
qt(sT )

pt(sT )
,

for every realization sT of ST .
Preference based asset pricing models exploit the information embedded in the

prices of financial assets to formally derive risk attitude parameters. They assume
the existence of a representative agent whose marginal utility u′ is proportional to
the pricing kernel

Kt(sT ) ∝ u′(sT )

Standard microeconomic theory assumes u : R+ → R to be increasing, concave,
twice continuously differentiable, hence the pricing kernel shall be nonincreasing.
Starting with [1], [2], [3], different econometric methods have been applied to
estimate the RHS of equation 3, with varying underlying models for the financial
markets. It turned out as a common result, that typical estimates have non-
monotonic shape. This is what we call the empirical pricing (EPK) kernel puzzle.

Motivated by these findings, [5] provide an economic model that admits non-
monotone pricing kernels. They retain the expected utility framework in a single
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period model and endow the financial investors with preferences that might be
state sensitive. More technically, investors switch between two utility indexes at a
point called reference point. As a consequence, while the utility indices are concave
in individual wealth, the market utility may have jumps in the aggregate wealth
space. In equilibrium, this may render pricing kernel nonmonotomic.

As an example, we consider i = 1 . . .m investors that maximize a state de-
pendent expected utility EPt

[
ui {ST , y}

]
, subject to a budget constraint B(y),

with

ui {ST , y} = u0 {y} I {ST ∈ [0, xi]}+ u1 {y} I {ST ∈ (xi,∞)}
for u0(y) = b0u(y), u

1(y) = b1u(y), b0, b1 > 0 and

u(y) =

{
y1−γ

1−γ if γ 6= 1

log(y) if γ = 1.

xi denote the reference points and γ > 0 the coefficient of relative risk aversion.
Let F (sT ) denote the cdf of the reference points

F (sT ) = m−1
m∑

i=1

I {xi ≤ sT }.

Under some additional technical conditions, one can show that in equilibrium the
pricing kernel has the following form

(4) Kθ,F (x) =


 x

{1− F (x)} b
1
γ

0 + F (x) b
1
γ

1



−γ

for θ = (γ, b0, b1)
⊤
. If b0 < b1, Kθ,F (x) is not monotone in x; we will consider this

case. Equation (4) may be rewritten as

(5) xK
1
γ

θ,F (x) = b
1
γ

0 +

(
b

1
γ

1 − b
1
γ

0

)
F (x)

The only restrictions are the positivity of the parameter vector θ and F monotone

non-decreasing, bounded between [0, 1]. Thus, xK1/γ
θ,F should be monotone non-

decreasing bounded between (b
1
γ

0 , b
1
γ

1 ). This yields the following restriction for γ:

1

x
+

1

γ

K′
θ,F (x)

Kθ,F (x)
≥ 0, x ∈ (α, β)(6)

For any such γ we can solve

F (x) =
xK1/γ

θ,F (x)− b
1
γ

0

b
1
γ

1 − b
1
γ

0

.
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One case in which γ can actually be identified is when either F (α1) = 0 for α1 > α,
or F (β1) = 1 for β1 < β. Then (6) is actually inequality on (α, α1) and/or (β1, β).
Then

γ =
xK′

θ,F (x)

Kθ,F (x)
, x ∈ (α, α1) or x ∈ (β1, β).

[4] show that the intertemporal pricing kernel is inherently time varying and has
some stable pattern. This justifies the choice of a smooth dynamic model for the
pricing kernel

Kθt,Ft (x) =


 x

{1− Ft (x)} b
1
γt
0t + Ft (x) b

1
γt
1t



−γt

with θt = (γt, b0t, b1t)
⊤

and Ft cdf. We can use a scale/shift model for Ft

Ft(x) = F

(
x− at
dt

)
for at ∈ R and dt ∈ R+

and seemingly F is (partially) identifiable in this model. It is also possible to use
state variables Xt to pin down (γt, b0t, b1t, at, dt) for parametric F .

We consider three situations in which this type of models shall be estimated.
Least squares. In practice, the pricing kernel is not observable and we will use

some preestimate K̂t. If we assume that ytj = K̂t(sj) for observation points sj ,
j = 1, . . . , n, is a sample of noisy curves s.t.

ytj = Kθt,Ft (sj) + εtj with εtj ∼ (0, σ2
t ),

the fitting problem involves finding

(θ̂t, F̂t) = arg min
θt,Ft

T∑

t=1

n∑

j=1

{ytj −Kθt,Ft (sj)}2.

Maximum likelihood. The physical density pt can be recovered from the (known)
risk neutral density qt by means of PK

pt(St+1|θt, Ft) =

qt(St+1)
Kθt,Ft (St+1)∫ qt(x)

Kθt,Ft(x)

Based on paired (qt, st+1)
T−1
t=0 we want to estimate

(θ̂t, F̂t) = arg max
θt,Ft

T−1∑

t=0

log pt(St+1|θt, Ft).

Generalized method of moments. For a price vector At = (A1t, . . . , Akt)
⊤

of k
assets at time t, equation (2) reads as following

At = EPt [Kθt,Ft (St+1)At+1] .
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For a cross section of asset prices (At)
T
t=1 we are interested in

(θ̂t, F̂t) = arg min
θt,Ft

{
g⊤T (θt, Ft)W

−1gT (θt, Ft)
}
.

for some weighting matrix W and

gT (θ, F ) =

T−1∑

t=0

{Kθt,Ft (St+1)At+1/At − 1k} .
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Multidimensional statistical analysis of fMRI data in risk perception
and investment decision study

Wolfgang Härdle

(joint work with Piotr Majer)

Decision making is a complex process of integrating and comparing various as-
pects of choice options. In the past years decision neuroscience has made impor-
tant progress in grounding these aspects of decision making in neural systems, see
[1]. Understanding which parts of the human brain are activated during decisions
under risk and which neural processes underly (risky) investment decisions are
important goals in neuroeconomics. Here, we analyze functional magnetic reso-
nance imaging (fMRI) data on 17 subjects which were exposed to an investment
decision task from [2].We obtain a time series of three-dimensional images of the
blood-oxygen-level dependent (BOLD) fMRI signals.

Most of the fMRI studies used the general linear model (GLM). Though it has
led to important insights into the neurobiological processes underlying cognition
and emotion, the GLM approach has some important limitations. First, it focuses
on task-related changes in the mean BOLD signal. Thereby, the GLM neglects
information that might be carried by the variability of the BOLD signal, see [3].
Second, the GLM is a model-based approach, and can therefore only detect effects
that were previously hypothesized and modeled. We apply a panel version of
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the dynamic semiparametric factor model (DSFM) presented in [4] and identify
task-related activations in space and dynamics in time.

Y i
t,j = m0(Xj) +

L∑

l=1

(
Zt,l + αi

t,l

)
ml(Xj) + εt,j ,

1 ≤ j ≤ J, 1 ≤ t ≤ T, 1 ≤ i ≤ I .

(1)

Here, Zt = (1, Zt,1, . . . , Zt,L)
⊤ is an unobservable (L + 1)-dimensional stochastic

process and m is an (L+ 1)-tuple (m0, . . . ,mL) of unknown real-valued functions
ml. The voxel’s index (i1, i2, i3) is the covariate Xt,j and the normalized BOLD
signal of subject i is the dependent variable Y i

t,j ; j = 1, . . . , J ; t = 1, . . . , T . The

errors εit,j are assumed to be independent of Zt,j and have zero means and finite

second moments. The (common) functions ml are approximated by a space basis
Ψt,j = [ψ1(Xt,j), . . . , ψK(Xt,j)]

⊤ and corresponding (L+1)×K matrix of unknown
coefficients A∗. More precisely, [ψ1(Xt,j), . . . , ψK(Xt,j)]

⊤ denote quadratic tensor
B-splines on K equidistant knots. αi

t,l is the fixed individual effect for subject i on
function ml at time point t. For identification purpose with respect to subjects,
we assume that expectation of the individual effects over all subjects and over all
functions ml sums to zero, e.g.:

(2) E

[
I∑

i=1

(
L∑

l=1

αi
t,lml(Xj)|Xj

)]
= 0.

With the panel DSFM (PDSFM) we can capture the dynamic behavior of the spe-
cific brain regions common for all subjects and represent the high-dimensional time
series data in easily interpretable low dimensional dynamic factors without large
loss of variability. After applying the PDSFM technique we estimated 20 spatial
factors. 6 of them (m̂l , l = 5, 9, 12, 16, 17, 18) correspond to brain areas medial
Orbifrontal Cortex (mOFC) and Parietal Cortex (PC) which were already found
in decision making contexts (see [1] for review). Beside these interesting factors
connected with decision making, we detected other spatial maps that correspond
to brain areas previously associated with motor responses and visual perception.
These maps are likely unrelated to the decision making process within the task
but confirming the activity of regions which were necessary to provide the answer
by pushing a button.

The dynamics and subject specificity are jointly represented by the low-dimensional

time series Ẑi
t,l = Zt,l + αi

t,l, i = 1, . . . , I; l = 1, . . . , L. These subject-specific Ẑi
t,l

correspond to the individual temporal differences of the activated brain regions in
m̂l. We find out that the responses to the stimulus of the weakly risk-averse in-
dividual show a significantly different volatility than the responses of the strongly
risk averse individual. We found this volatility pattern in all factor loadings corre-
sponding to the selected factors, e.g. for l = 5, 9, 12, 16, 17, 18. We classify studied
subjects based on the standard deviation of the data extracted from the BOLD
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signal, without knowing the subject’s estimated risk attitude. Classification anal-
ysis of the subjects was conducted via Support Vector Machines (SVM), see [5].
Very high classification rates (97% for strongly and 75% for weakly risk-averse
subjects) were obtained with the SVM classifier by applying the double cross val-
idation algorithm. Herewith we have shown that our PDSFM approach is able
to detect the neural representations of risk attitude and to classify the weak and
strong averse individuals by their time-dependent factor loadings.
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Indentification and Shape Restrictions

Joel Horowitz

(joint work with Joachim Freyberger)

This talk is about estimation of the linear functional L(g), where the unknown
function g satisfies

Y = g(X) + U(1)

and either

E(U |W = w) = 0(2)

or

P (U ≤ 0|W = w) = q(3)

for some q satisfying 0 < q < 1 for almost every w.
Y is the dependent variable, X is a possibly endogenous explanatory variable,

W is an instrument for X , and U is an unobservable random variable. The data
consists of an independent random sample {Yi, Xi,Wi : i = 1, ..., n} from the dis-
tribution of (Y,X,W ). It is assumed that X and W are discretely distributed
random variables with finitely many mass points. Discretely distributed explana-
tory variables and instruments occur frequently in applied research. When X is
discrete, g can be identified only at mass points of X . Linear functionals that may
be of interest in this case are the value of g at a single mass point and the difference
between the values of g at two different mass points. The model of equations (1)
and (3) includes a class of nonseparable models.
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In much applied research, W has fewer mass points than X does. The function
g is not identified nonparametrically when W has fewer mass points that X . The
linear functional L(g) is unidentified except in special cases. Indeed, except in
special cases, L(g) can have any value in (−∞,∞) when W has fewer points
than X does. Thus, except in special cases, the data are uninformative about
L(g) in the absence of further information. In applied research, this problem
is usually dealt with by assuming that g is a linear function. The assumption
of linearity enables g and L(g) to be identified, but it is problematic in other
respects. In particular, the assumption of linearity is not testable if W is binary.
Moreover, any other two-parameter specification is observationally equivalent to
linearity and untestable, though it might yield substantive conclusions that are
very different from those obtained under the assumption of linearity. For example,
the assumptions that g(x) = β0 + β1x

2 or g(x) = β0 + β1sinx for some constants
β0 and β1 are observationally equivalent to g(x) = β0 + β1x if W is binary.

This talk explores the use of restrictions on the shape of g such as monotonicity,
convexity, or concavity, to achieve partial identification of L(g) when X andW are
discretely distributed and W has fewer mass points than X has. Specifically, the
talk uses shape restrictions on g to establish an identified interval that contains
L(g). Shape restrictions are less restrictive than a parametric specification such
as linearity. They are often plausible in applications and may be prescribed by
economic theory. For example, demand and cost functions are monotonic, and cost
functions are convex. It is shown in this talk that under shape restrictions, such as
monotonicity, convexity, or concavity, that impose linear inequality restrictions on
the values of g(x) at points of support of X , L(g) is restricted to an interval whose
upper and lower bounds can be obtained by solving mathematical programming
problems. The estimated bounds are asymptotically distributed as the maxima of
multivariate normal random variables. Under certain conditions, the bounds are
asymptotically normally distributed, but calculation of the analytic asymptotic
distribution is difficult in general. The bootstrap can be used to estimate the
asymptotic distribution of the estimated bounds in applications. The asymptotic
distribution can be used to carry out inference about the identified interval that
contains L(g) about the parameter L(g).

Empirical Bayesian tuning parameters

Tatyana Krivobokova

Many penalized estimators have counterparts in the (empirical) Bayesian frame-
work, with tuning parameters being an inverse scaling parameter of the prior
distribution put on the mean of the data. Such tuning parameters are estimated
from the corresponding likelihood and known to be sub-optimal in some models.
At the same time, they are proved to be remarkably robust in praxis.
In this talk the empirical Bayesian tuning parameter for spline nonparametric es-
timators is discussed. This tuning parameter can be obtained assuming that the
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underlying regression function is a realisation of a certain integrated Wiener pro-
cess. It is well-known that such a tuning parameter is suboptimal with respect to
L2-risk. In particular, in contrast to an unbiased risk minimizing tuning parame-
ter, the empirical Bayesian tuning parameter is not able to adapt to the unknown
smoothness of the regression function.
Furthermore, estimators of empirical Bayesian and unbiased risk minimizing tun-
ing parameters are studied. Their consistency and asymptotic normality are shown
for the regression function from the Sobolev space of a given order. It is found
that the convergence rate of tuning parameter estimators is very slow and agrees
with known results from the kernel regression. Interesting insights deliver the ob-
tained constants in the variances of both estimators. For the empirical Bayesian
tuning parameter estimator the variance constant is found to be very small and
fast decreasing with the penalty order parameter, while the variance constant of
the unbiased risk minimizing tuning parameter estimator has opposite properties.
Finally, it is discussed how the unknown smoothness of the regression function can
be estimated from the data by comparing the estimating equations of both tuning
parameters. The optimality of this procedure has not been studied yet.
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Testing for a General Class of Functional Inequalities

Sokbae Lee

(joint work with Kyungchul Song, Yoon-Jae Whang)

This paper proposes a general testing method for inequality restrictions on non-
parametric functions. More specifically, let vτ,1, · · ·, vτ,J be nonparametric real-
valued functions on Rd for each index τ ∈ T , where T is a subset of a finite
dimensional space. This paper focuses on the problem of testing the following:

H0 : max{vτ,1(x), · · ·, vτ,J(x)} ≤ 0 for all (x, τ) ∈ X × T , against(1)

H1 : max{vτ,1(x), · · ·, vτ,J(x)} > 0 for some (x, τ) ∈ X × T ,

where we take X × T to be a compact set.
This paper’s framework is general, including many nonparametric testing prob-

lems in a unified framework. Among the examples are as follows:

(1) Testing inequality restrictions for conditional mean functions,
(2) Testing inequality restrictions for conditional quantile functions,
(3) Testing partial monotonicity of conditional distribution functions with re-

spect to one of covariates, and
(4) Testing monotonicity of quantile regressions or interquartile functions.
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Our test is easy to implement in general, mainly due to its recourse to the boot-
strap method. The bootstrap procedure is based on a nonparametric bootstrap
applied to kernel-based test statistics, while estimating “contact sets”. This paper
establishes the general asymptotic validity of the bootstrap procedure under high
level conditions, and provide low level conditions for the examples listed above.
Our bootstrap test is shown to exhibit good power properties. We also provide a
general form of the local power function. In the paper, the asymptotic validity of
the test is established uniformly over a large class of distributions. We support the
usefulness of our testing approach by Monte Carlo experiments and applications
to real-data examples.

Semi-parametric Bayesian Partially Identified Models

Yuan Liao

(joint work with Anna Simoni)

Partially identified models have been receiving extensive attentions in recent
years, due to their broad applications in statistics, economics, education, engi-
neering and many other fields in science and social science. Due to the limitation
of the data generating process, the data cannot provide any information within
the set where the structural parameter is partially identified (called identified set).
One has to seek for “outside-data” information in order to explore more details
inside the identified set. As a result, it should be desirable if a inference procedure
can conveniently combine the information from both the observable data and other
sources, i.e., economical theory, prior knowledge, experience, etc. A Bayesian ap-
proach is very appealing for partially identified models because it is convenient to
take into account the subjective prior information, if any, so-called “outside-data
information”.

Bayesian analysis for partially identified models produces a posterior distri-
bution that will asymptotically concentrate around the true identified set. When
informative (subjective) priors are available for the structural parameter, the shape
of the posterior density may not be flat even inside the identified set, providing
more information about the parameter that cannot be told by the data. When no
a priori information is available, using a uniform prior helps us estimate the true
identified set. Therefore, the asymptotic behavior for the posterior distribution
is different from that of the traditional point identified case; the latter is usually
normally distributed due to the Bernstein von Mises theorem, and hence the in-
formation from the prior is often washed away by the data when the structural
parameter is identifiable.

1. Two existing Bayesian approaches

There are in general two Bayesian approaches for partially identified models.
The first one is based on a known parametric likelihood function (e.g., Moon and
Schorfheide 2012, Poirier 1998), which also involves a a finite dimensional nuisance
parameter, denoted by φ. Then the identified set is completely determined by φ,
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denoted by Θ(φ). Besides known likelihood functions, another important feature
of this approach is that the prior for θ is imposed conditional on φ only (e.g.,
uniform on Θ(φ)), hence it must incorporate the partial identification structure.
The limitation of this approach is that it requires an ad-hoc parametric form of
the likelihood. Econometric models, on the other hand, often only identify a set
of “moment inequalities” instead of a known likelihood function. Therefore once
the function form is incorrectly specified, the posterior can be misleading. Hence
robustness is a big question.

The second approach only requires a set of moment inequalities, and uses a
moment-condition-based likelihood (Liao and Jiang 2010). By doing so it success-
fully avoids assuming the knowledge of the true likelihood function. In addition,
the prior π(θ) can be placed marginally (e.g., N(0, 1)), hence the prior does not
need to take into account the partial identification restriction. However, this ap-
proach does not possess a pure probabilistic interpretation, which only uses a
Bayesian machinery to make quasi-Bayesian inference. How close the calculated
posterior is to the true posterior is largely unknown.

2. A new semi-parametric Bayesian procedure

We propose a semi-parametric Bayesian procedure for inference. The proposed
procedure is pure Bayesian, so it has a well defined probabilistic interpretation.
More importantly, it does not require a known parametric form of the likelihood
function, but only a set of moment conditions. Therefore it solves the robustness
issue. We place a prior π(l) on the unknown likelihood function; the latter can be
either a CDF l = F , or a density l = f . The unknown likelihood can be written
as l(Dn, φ), where φ is point identified but nuisance. The parameter of interest
is θ, and Dn = {Xi}ni=1 are observed data. When l = F , we specify a Dirichlet
process prior π(F ) which then deduces a prior on φ through φ(F ). The Bayesian
experiment is

X |F ∼ F, F ∼ π(F ) : DirichletProcess, θ|φ = φ(F ) ∼ π(θ|φ(F ))
Other priors such as the Polya tree can be used for π(F ) too. Let p(F |Dn) denote
the marginal posterior of F , given by p(F |Dn) ∝ π(F )

∏n
i=1 F (Xi). Then the

marginal posterior density function of θ writes

(1) p(θ|Dn) =

∫
p(θ|φ(F ), Dn)p(F |Dn)dF =

∫

F
π(θ|φ(F ))p(F |Dn)dF.

3. Asymptotic behavior

Let us assume there is a true value of φ, denoted by φ0, which induces a
true identified set Θ(φ0). Define the ǫ-envelope of a set Θ(φ) as Θ(φ)ǫ = {θ :
d(θ,Θ(φ)) ≤ ǫ} where d(θ,Θ(φ)) = infx∈Θ(φ) ‖θ − x‖. We achieve the posterior
consistency for partial identification: for any ǫ > 0,

P (θ ∈ Θ(φ0)
ǫ|Dn) →p 1.
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The large sample property, such as the posterior consistency and concentration
rate, is one of the benchmarks of a Bayesian procedure under consideration, which
ensures that with a sufficiently large amount of data, it is nearly possible to recover
the truth identified set. Therefore lack of consistency is extremely undesirable.

For the true identified set Θ(φ0), the posterior concentration rate is described
under the Hausdorff distance: for some C > 0,

P (dH(Θ(φ),Θ(φ0)) ≤ C

√
logn

n
|Dn) →p 1.

4. Bayesian Analysis for Support Function

In partially identified models, the identified set Θ(φ) becomes one of the impor-
tant objects to study and to make inference. When Θ(φ) is convex, the support
function provides us a convenient way to characterize the identified set, which is
defined as

Sφ(p) = sup
θ∈Θ(φ)

θT p

where p ∈ S
dim(θ), the unit sphere. Any non-empty closed convex set is uniquely

determined by its support function. For example, θ is inside the closure Θ(φ)
if and only if for all ‖p‖ = 1, θT p = Sφ(p). A a result, the support function
has been a useful tool for analyzing partially identified models, e.g., Beresteanu
and Molinari (2008) and Kaido and Santos (2012), Chandrasekhar et al. (2012),
Bontemps et al. (2010), etc.

The posterior of Sφ(·) thus is very useful for inference about the identified set,
which is determined by that of φ. By putting a prior on Sφ(·) via the prior on
φ, we can obtain the posterior. When Sφ(·) is treated as an operator of φ, it
can be highly nonlinear, which is hard to deal with. We derive a local linear
approximation to the support function: There is a vector A(p, φ0) that depends
on p and φ0 only, such that for the ball B(φ0,

C√
n
),

(2) sup
φ1,φ2∈B(φ0,Cn−1/2)

sup
‖p‖=1

√
n|(Sφ1

(p)− Sφ2
(p))−A(p, φ0)

T (φ1 − φ2)| = o(1),

for some C > 0. Equation (2) then implies the Bernstein von Mises theorem for the
support function, which is, the posterior of

√
n(Sφ(p) − Sφ̂(p)) is asymptotically

normal for each p, where φ̂ is the posterior mode of p(φ|Dn). This is the semi-
parametric BvM theorem for Sφ(·), which provides us a useful way to approximate
the posterior of the support function under large sample.

5. Optimality based on Bayesian Decision Making

Unlike the classical identifiable case, the optimality of set estimation for Θ(φ) is
not well studied in the literature, partially due to the lack of proper assessment for
loss. A few important contributions are done from the inference and frequentist
perspective, (e.g., Canay 2010, Kaido and Santos 2012, etc.)
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Optimality for estimating the identified set can be achieved based on Bayesian
decision making. For any estimator Ω of the identified set, let

Θ(φ)∆Ω = (Θ(φ) ∩Ωc) ∪ (Θ(φ)c ∩ Ω)

be the symmetric difference between Θ(φ) and Ω, and µ(Θ(φ)∆Ω) be its Lebesgue
measure. Define the Bayesian loss function

L(Ω) ≡ E[µ(Θ(φ)∆Ω)|Dn],

where the expectation is taken with respect to the posterior of Θ(φ). The following
optimality of estimating the identified set can be shown:

(3) Ω̂ ≡ {x ∈ Θ : P (x ∈ Θ(φ)|Dn) ≥ 0.5} = argmin
Ω
L(Ω).

where P (x ∈ Θ(φ)|Dn) is a probability measure taken with respect to the posterior

of Θ(φ) for a fixed x in the parameter space of θ. Therefore Ω̂ is optimal in the
Bayesian-decision-making sense as it minimizes the Bayesian risk.

6. Bayesian Credible Set

Bayesian inference can be carried out through finite-sample Bayesian credible
sets (BCS), which is a set BCS(τ) such that

P (θ ∈ BCS(τ)|Dn) = 1− τ

at level 1 − τ. Things become more interesting when we construct the BCS for
Θ(φ). Based on the support function, we can construct two-sided credible sets

Θ(φ̂)−qτ/
√
n and Θ(φ̂)qτ/

√
n such that

(4) P (Θ(φ̂)−qτ/
√
n ⊂ Θ(φ) ⊂ Θ(φ̂)qτ/

√
n|Dn) = 1− τ,

which gives the two-sided BCS for the identified set. Here qτ is some quantile

derived based on the posterior of the support function, and φ̂ is still the posterior
mode for φ.

The BCS for θ does not have a correct frequentist coverage when θ is partially
identified, since the BCS tends to be a subset of the interior of the frequentist
confidence set, as shown by Moon and Schorfheide (2012) when the parametric
likelihood is known. In addition, Gustafson (2012) showed that from a frequntist
point of view, there is always a region inside the identified set which Bayesian
credible interval fails to cover.

In contrast, the BCS for the identified set has desired frequentist coverages.
Specifically, for any τ > 0,

(5) P (Θ(φ̂)−qτ/
√
n ⊂ Θ(φ0) ⊂ Θ(φ̂)qτ/

√
n) ≥ 1− τ + op(1).

The rationale behind (5) is that, the identified set itself is “point identified”,
whose posterior will concentration around a neighborhood of the true set. Hence
the support of the posterior of the set is always larger than the set. Since the
Bernstein von Mises theorem now holds on the identified set (through its support
function), the posterior BCS has the correct frequentist coverage probability.
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7. About the authors

Both authors have strong research interests in theoretical and applied Bayesian
econometrics. In addition, the authors are also interested in high-dimensional
sparse modeling, factor analysis and inverse problems.
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Nonparametric Tests for Regression Quantiles

Enno Mammen

(joint work with Ingrid van Keilegom, Kyusang Yu)

Consider a data set of n i.i.d. tuples (Xi, Yi) where Yi is a one-dimensional response
variable, Xi is a d-dimensional covariate. For 0 < α < 1 we denote the conditional
α-quantile of Yi given Xi = x by rα(x). Thus we can write

Yi = rα(Xi) + εi,α (i = 1, . . . , n),(1)

with error variables εi,α that fullfill qα(εi,α|Xi) = 0. Here, qα(εi,α|Xi) is the α-
quantile of the conditional distribution of εi,α given Xi. A kernel estimator r̂α of
the regression quantile rα is given by:

r̂α(x) = argmin
r

n∑

i=1

K

(
x−Xi

h

)
τα(Yi − r),

where τα(u) = αu+ − (1 − α)u− with u+ = uI(u > 0) and u− = uI(u < 0),

is the check function and K(u1, . . . , ud) =
∏d

j=1 k(uj) is a multivariate product

kernel with one-dimensional density functions k defined on [−1, 1] as factors and
d-dimensional bandwidth parameter h = (h1, . . . , hd). For simplicity of notation
we assume h1 = . . . = hd and we write also h = hj .
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The classical mathematical approach for the asymptotic analysis of quantile
estimators is based on Bahadur expansions. The Bahadur expansion r̃α(x) of the
kernel estimator r̂α(x) is given by

r̃α(x) = −
∑n

i=1K
(

x−Xi

h

)
{I(εi,α ≤ 0)− α}

∑n
i=1K

(
x−Xi

h

)
fεα|X(0|Xi)

,

where fεα|X(0|x) is the conditional density of εα given X = x. For the approxi-
mation error of the Bahadur expansion one can show that

sup
α∈A

sup
x∈RX

∣∣∣r̂α(x) − r̃α(x)
∣∣∣ = OP ((nh

d)−3/4Ln),

where Ln is a sequence that is of order O((log n)C) for some C > 0, where the
interval A = [a, b] is a subset of (0, 1), and where RX is the support of X . For
recent discussions of Bahadur expansions in nonparametrics see [1], [2], [3], and
[4].

In this note we will discuss examples where the accuracy of the Bahadur ex-
pansion does not suffice for an asymptotic analysis. Our first example that we
only shortly discuss comes from semiparametrics and it is the estimation of linear
functionals ∫

RX

w(x)rα(x)dx.

Here one needs that the approximation achieves faster rates than the parametric
rate n−1/2: ∫

RX

w(x)(r̂α(x)− r̃α(x))dx = oP (n
−1/2).

This requires (nhd)−3/4 = o(n−1/2) and thus n−1/3 ≪ hd. In particular, it ex-
cludes the case that hd is of order n−1/2. For that case r̃α(x)− r0,α(x) is of order

n−1/4 and the stochastic behavior of
∫
RX

w(x)r̃α(x)dx changes, see [5] for a dis-

cussion of this issue and for the theory of higher order inference functions. In [6]
the case hd ∼ n−1/2 is analyzed for average derivative estimation. For related
discussions on quantile regression we see that approximations based on Bahadur
expansions are too crude to allow such an asymptotic study.

We now come to another example where the accuracy of the Bahadur expansion
is too weak. This is the asymptotic analysis of nonparametric tests of the hypoth-
esis: rα(x) = r0,α(x) for α ∈ A, x ∈ RX . Here, r0,α is some specified function.
In a more general set-up that will be used below it is a parametrically estimated
function. We consider the following test statistic:

∫

A

∫

RX

w(x, α)(r̂α(x)− r0,α(x))
2dxdα

with some weight function w(x, α) or
∫

RX

w(x)(r̂α(x)− r0,α(x))
2dx
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with some weight function w(x) if A = {α}.
An analysis based on Bahadur expansions needs here that

∫

A

∫

RX

w(x, α)
[
(r̂α(x) − r0,α(x))

2 − (r̃α(x) − r0,α(x))
2
]
dxdα

is of lower order, or that
∫

RX

w(x)
[
(r̂α(x) − r0,α(x))

2 − (r̃α(x) − r0,α(x))
2
]
dx

is of lower order, respectively. One can check that this is the case if (nhd)−5/4 =
o((nhd)−1hd/2), or equivalently, if n−1/3 ≪ hd. For twice differentiable functions
this allows to choose bandwidths that are rate optimal for testing or for estima-
tion, respectively, only for the one-dimensional case d = 1. Thus again, a direct
application of Bahadur expansions excludes interesting cases. For this reason, we
will use a more refined approach.

We will consider the following testing problem:

H0 : For all α ∈ A there exists a θ(α) ∈ Θ, such that : rα = rα,θ(α),

where rα,θ is a parametric family for all α ∈ A. We assume that there are para-

metric estimators θ̂(α) of α. We use the following test statistic.

T̂A =

∫

A

∫
m̂2

α(x)w(x, α)dxdα,(2)

for some weight function w(x, α). For the case that A contains only one value α
we use

T̂α =

∫

X
m̂2

α(x)w(x)dx,(3)

where

m̂α(x) = argmin
r

n∑

i=1

K

(
x−Xi

h

)
τα(Yi − rα,θ̂(α)(Xi)− r).

This test statistic is related to similar tests in mean regression for i.i.d. and time
series data, see [7], [8], [9], [10], [11] and [12]. We assume for the quantile regression
function:

rα(x) = rα,θ0(α)(x) + n−1/2h−d/4∆α(x).(4)

For the case ∆α ≡ 0 the function rα lies on the hypothesis. For the bandwidths
we assume that nh3d/2 → ∞. We have the following results.

THEOREM 1. It holds that

nhd/2T̂α − bh,α
d→ N(Dα, Vα),
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where

Dα =

∫

RX

∆α(x)
2w(x) dx,

bh,α = h−d/2K(2)(0)α(1− α)

∫

RX

w(x)

fX(x)f2
εα|X(0|x)dx,

Vα = 4K(4)(0)α2(1 − α)2
∫

RX

w2(x, α)

f2
X(x)f4

εα|X(0|x)dx.

THEOREM 2. It holds that

nhd/2T̂A − bh,A
d→ N(DA, VA),

where

DA =

∫

A

∫

RX

∆α(x)
2w(x, α) dx dα,

bh,A = h−d/2K(2)(0)

∫

A

α(1− α)

∫

RX

w(x, α)

fX(x)f2
εα|X(0|x)dx dα,

VA = 4K(4)(0)

∫

α,β∈A,α<β

α2(1− β)2
∫

RX

w2(x, α)

f2
X(x)f4

εα|X(0|x)dx dα dβ.

Here is a short outline of the proof. Assume for simplicity that A = {α},
rα(x) ≡ 0, ∆α(x) ≡ 0, rα,θ ≡ rα, and w(x) ≡ 1. Then we have that

m̂α(x) = argmin
r

n∑

i=1

K

(
x−Xi

h

)
τα(εi,α − r),

m̃α(x) = −
∑n

i=1K
(

x−Xi

h

)
{I(εi,α ≤ 0)− α}

∑n
i=1K

(
x−Xi

h

)
fεα|X(0|Xi)

,

We have to show that ∆n =
∫
m̃α(x)

2 − m̂α(x)
2 dx = oP ((nh

d)−1hd/2). We write
∆n = ∆n,1 +∆n,2, where

∆n,1 =

∫
[m̃α(x)

2 − m̂α(x)
2]− E∗[m̃α(x)

2 − m̂α(x)
2] dx

∆n,2 =

∫
E∗[m̃α(x)

2 − m̂α(x)
2] dx

with some suitable conditional expectation E∗.
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For the treatment of ∆n,1 we use that m̃α(x1)
2 − m̂α(x1)

2 and m̃α(x2)
2 −

m̂α(x2)
2 are independent for ||x1 − x2|| > h. Thus

∆n,1 =

∫
[m̃α(x)

2 − m̂α(x)
2]− E∗[m̃α(x)

2 − m̂α(x)
2] dx

=

∫
[m̃α(x)− m̂α(x)][m̃α(x) + m̂α(x)] − E∗[m̃α(x)

2 − m̂α(x)
2] dx

= OP (Ln(nh
d)−3/4(nhd)−1/2hd/2).

For the treatment of ∆n,2 note that

m̂α(x) ≤ u if and only if
∑

K
(x−Xi

h

){
I(εi,α ≤ u)− α

}
≥ 0.

The essential idea here is to use Edgeworth expansions of the right hand side to
get expansions of E∗[m̂α(x)

2].
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Min-wise hashing for large-scale regression analysis. Computational
limits of identifiability

Nicolai Meinshausen

(joint work with Rajen Shah)

We study large-scale regression analysis in a ”large p, large n” context for
a linear regression model Y = Xβ∗ + δ + ε, where Y ∈ R

n is the response,
X ∈ {0, 1}n×p a sparse binary predictor matrix, β∗ ∈ R

n an optimal regression
vector and δ, ε ∈ R

n are the structural error and the independent noise term.
While we have to make sparsity assumptions on β∗ in the high-dimensional setting
of ”large p, small n” settings, no such assumptions are typically required for large-
scale regression analysis where the number of observations n can (but does not
have to) exceed the number of variables p. The main difficulty is that computing
an OLS or ridge-type estimator is computationally infeasible for n, p > 105 and
we need to find computationally efficient ways to approximate these solutions
without increasing the prediction error by a large amount. Both n and p are often
in the millions or larger for many recent applications such as text analysis, drug
safety studies and web-scale prediction tasks. Trying to find interactions amongst
millions of variables seems to be an even more daunting task. We study a small
variation of the b-bit minwse-hashing scheme (Li and Konig, 2011) and show that
the regression problem can be solved in a much lower-dimensional setting as long
as q‖β∗‖22/n→ 0 for n→ ∞, where q is the average number of non-zero entries in
each row of the predictor matrix. We get finite-sample bounds on the prediction
error. The min-wise hashing scheme is also shown to fit interaction models. Fitting
interactions does not require an adjustment to the method used to approximate
linear models, it just requires a higher-dimensional projection. We show some
examples for simulated data and an application to detection of malicious URLs.
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Selected topics on selections of random sets

Ilya Molchanov

The partially identified objects can be represented as random sets, whereas the
full identification setting corresponds to a random singleton viewed as a selection
of this random set. This relation between random sets and random elements is
similar to the relationship between subadditive set functions (capacities or non-
additive measures) on one hand and σ-additive functions (probability measures)
on the other one.

The two main settings typical for partially identified problems are

• The distribution (theoretical or empirical) of random set X is known and
one is looking for its selections, possibly satisfying some extra properties.
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• Selections of X are observed and the goal is to make inference about the
distribution of X .

In any case the relationship between selections and random sets plays the crucial
rôle. In the following we consider only random closed sets in the Euclidean space
R

d, see [7] for a comprehensive presentation of the theory of random sets.
Recall that random vector ξ is called a selection of random set X if ξ ∈ X a.s.

One often speaks about the ordered coupling of ξ and X . The probability measure
µ is a distribution of a selection of a random closed set X if and only if

(1) µ(K) ≤ T (K) = P{X ∩K 6= ∅}

for all compact sets K, see [1]. Equivalently,

P{ξ ∈ F} ≥ P{X ⊂ F}

for all closed sets F . It is well known that each a.s. non-empty random closed set
admits a selection and the set can be represented as the convex hull of a countable
family of its selections. Furthermore, a characterisation of subsets of Lp(Rd) that
can be interpreted as selections of a random closed set is available (for p ∈ [1,∞]).
A characterisation in the case of p ∈ [0, 1) is still unknown.

The family of all compact sets in (1) can be replaced by the so-called core-
determining class M [6]. A core determining class is distribution determining, but
not the other way, e.g. if X is a convex compact random set, then the family of
convex compact sets is distribution determining but not core determining.

Let w be a covariate. Then (ξ, w) can be realised as a selection of X × {w} if
and only if

P{ξ ∈ K|B} ≤ P{X ∩K 6= ∅|B} ,
where B is generated by w. In particular, µ is the distribution of a selection
independent of w if and only if

µ(K) ≤ essinf P{X ∩K 6= ∅|B} .

see [2] in relation to treatment response. The talk further discusses the selections of
set-valued processes and relationships to the no-arbitrage problem in proportional
transaction costs models, see [8].

Taking the mean of all integrable selections yields the selection expectation of
a random closed set. The advantage of using the selection expectation lies in
its rather easy computation and has been used in [3] in relation to identification
of the model from the observed equilibria in games with mixed strategies. The
key argument is that the selection expectation is a convex set EX whose support
function equals the expected support function of the random set X .

The talk addresses the existence issues for selections with given moments. For
instance, let X be a random subset of the line. Then it possesses a selection ξ
with Eξ = m1 and Eξ2 = m2 if and only if the auxiliary random set

Y = {(x, x2) : x ∈ X}
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satisfies EY ∋ (m1,m2). The idea of auxiliary random sets appeared first in [4].
This can be generalised for the infinite moment sequence or values of characteristic
functions and enables to determine if X possesses, e.g. a Gaussian selection.

Along the same line, it is possible to find the selection ξ = (ξ1, ξ2) of square
integrable random set X ⊂ R

2 with maximum correlation between ξ1 and ξ2. For
this, create an auxiliary random set

Y = {(x1, x2, x21, x22, x1x2) : (x1, x2) ∈ X} ⊂ R
5

and maximise
y5 − y1y2√

y3 − y21
√
y4 − y22

, (y1, . . . , y5) ∈ EY .

Exploring all selections of a random set is also important in view of applica-
tions to multivariate risk measures. Let X be a random set that represents all
possible portfolios that may be realised after admissible transactions at a terminal
time. Then X is called acceptable if it possesses a selection with all individually
acceptable (under certain law invariant coherent risk measures) marginals, see [5].
It is shown that the obtained set-valued risk measures admit a dual-representation
akin to the classical case of univariate coherent risk measures.
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Computation of Sets Via Data Augmentation and Support Vector
Machines

Francesca Molinari

(joint work with Haim Bar)

A growing body of literature in econometric theory focuses on estimation and
inference in partially identified models such that the identified set of the parameter
vector of interest, denoted θ, can be expressed as the zero level set of a non-negative
criterion function Q, see [3]:

ΘI = {θ ∈ Θ : Q(θ) = 0}.
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In particular, much work has been devoted to develop methodologies that yield
confidence sets for the identification region of the model parameters that satisfy
various desirable properties, including coverage of each element of the set, see [5],
or coverage of the entire set [3] with a prespecified asymptotic probability, possibly
uniformly, see [1]. Nonetheless, empirical applications of these methodologies have
been hampered by the substantial burden associated with computing the estimated
regions and their confidence sets. The only exception is for the case in which the
identified set is convex, in which case estimation and inference can be easily carried
out using the support function of the set, see [2].

This talk aims at extending the empirical applicability of the partial identifica-
tion approach, including to cases where the parameter vector θ is high dimensional
and the identified set is not convex, by providing a simple procedure for computing
the regions that exploits learning theory in ways that have not been previously
applied in econometrics.

The key insight that leads to our approach is the observation that computing
the identification region or its confidence set –with some abuse of notation both
denoted ΘI in what follows– is conceptually a problem of pattern recognition, see
[7]. We therefore assume that the set ΘI is regular closed, and propose to use the
following steps:

• Draw θi according to a marginal distribution chosen by the user, Pθ on
Θ–hence yielding a data augmentation step;

• Obtain its label as

yi = 2× 1(Q(θi) = 0)− 1;

This yields an i.i.d. sample (”training data”) D = (θi, yi)
n
i=1 defined on

(Θ× Y )n, with Y := {−1, 1}, and where P (y|θ) is degenerate because the
relation between θ and y is deterministic;

• Obtain a decision function that classifies new instances of θ, i.e., predicts
the label y of a new sample (θ, y) drawn from P independently of D, by
minimizing an expected loss function (risk);

• Use Support Vector Machines (SVM, see [7]) to obtain the decision func-
tion, thereby obtaining a functional form representation of the boundary
of ΘI that can be computed efficiently (via quadratic programming), has
good generalization performance, and can be ”kernelized” to allow for
nonlinear boundaries, see [4].

Using results of [6], we show that the computed identified set converges to the
true identified set with respect to the distance in measure, as the training sample
size grows to infinity. Under the assumption that the function Q is continuous, we
also show that if one slightly modifies the problem by inserting a tolerance δ into
the accuracy of the boundary, the convergence rate is of the order of 1/n. This is
achieved by redefining the labels as

yi = 1(Q(θi) = 0)− 1(Q(θi) ≥ δ);
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and training the SVM only on the data such that yi 6= 0. Intuitively, this modifi-
cation of the problem puts positive geometric distance between the two classes to
be separated and as such makes the task of separation easier.

Preliminary Monte Carlo exercises indicate that the method performs very well
in practice, thereby illustrating another application where SVM can be useful in
practice.
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Individual Heterogeneity and Average Welfare

Whitney Newey

(joint work with Jerry A. Hausman)

Demand functions can vary across individuals in general ways. Thus, it is impor-
tant to allow for general heterogeneity in demand analysis. We consider hetero-
geneous demand where preferences and linear budget sets are statistically inde-
pendent. We find that the dimension of heterogeneity and the individual demand
functions are not identified. An important purpose of demand analysis is to carry
out economic welfare comparisons. Here we find that the exact consumer surplus
of a price change, averaged across individuals, is not identified, motivating bounds
analysis. We use bounds on income effects to derive relatively simple bounds on
the average surplus, including for discrete/continuous choice. We also sketch an
approach to bounding surplus that does not use income effect bounds. We apply
these results to gasoline demand. We find little sensitivity to the income effect
bounds in this application.



Mathematical Statistics of Partially Identified Objects 1195

Identification and critical dimension in semiparametric estimation

Vladimir Spokoiny

(joint work with Bill E. Xample, Max Muster)

Many statistical tasks can be viewed as problems of semiparametric estimation
when the unknown data distribution is described by a high or infinite dimensional
parameter while the target is of low dimension. Typical examples are provided by
functional estimation, estimation of a function at a point, or simply by estimating
a given subvector of the parameter vector. The classical statistical theory provides
a general solution to this problem: estimate the full parameter vector by the max-
imum likelihood method and project the obtained estimate onto the target sub-
space. This approach is known as profile maximum likelihood and it appears to be
semiparametrically efficient under some mild regularity conditions. We refer to the
papers [Murphy and Van der Vaart, 2000, Murphy and Van der Vaart, 1999] and
the book [Kosorok, 2005] for a detailed presentation of the modern state of the the-
ory and further references. The famous Wilks result claims that the likelihood ratio
test statistic in the semiparametric test problem is nearly chi-square with p degrees
of freedom corresponding to the dimension of the target parameter. Various ex-
tensions of this result can be found e.g. in [Fan et al., 2001, Fan and Huang, 2005,
Boucheron and Massart, 2011]; see also the references therein.

This study revisits the problem of profile semiparametric estimation and ad-
dresses some new issues. The most important difference between our approach
and the classical theory is a nonasymptotic character of our study. A finite sample
analysis is particularly challenging because most of notions, methods and tools in
the classical theory are formulated in the asymptotic setup with growing sample
size. Only few finite sample general results are available; see e.g. the recent paper
[Boucheron and Massart, 2011]. The results of this paper explicitly describes all
“small” terms in the expansion of the log-likelihood. This helps to carefully treat
the question of applicability of the approach in different situations. A particularly
important question is about the critical dimension of the target p and the full
parameter dimension p∗ for which the main results are still accurate.

We apply the recent bracketing approach of [Spokoiny, 2012] and demonstrate
its power on the considered case of semiparametric estimation. Let Y denote
the observed random data, and P denote the data distribution. The parametric
statistical model assumes that the unknown data distribution P belongs to a given
parametric family (P υ). The maximum likelihood approach in the parametric
estimation suggests to estimate the whole parameter vector υ by maximizing the
corresponding log-likelihood L(υ) = log dPυ

dµ0
(Y ) for some dominating measure µ0:

[c]υ̃
def
= argmax

υ∈Υ
L(υ).

In the semiparametric framework, the target of analysis is only a low dimensional
component θ of the whole parameter υ. The profile maximum likelihood approach
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defines the estimator of θ∗ by projecting the obtained MLE υ̃ on the target space:

[c]θ̃ = P υ̃.

Below we define

[c]L̆(θ)
def
= max

υ∈Υ
Pυ=θ

L(υ).

The famous Wilks result can be rewritten as

[c]2
{
L̆(θ̃)− L̆(θ∗)

} w−→ χ2
p.

The local asymptotic normality (LAN) approach by Le Cam leads to the most
general setup in which the Wilks type results can be established. The recent paper
[Spokoiny, 2012] offers a new look at the classical LAN theory. The basic idea is to
replace the local approximation by local bracketing. In this paper we show that the
local bracketing approach of [Spokoiny, 2012] can be used for obtaining a version
of the Wilks Theorem in a quite general semiparametric setup avoiding any special
construction like “the hardest parametric submodel”; see [Kosorok, 2005].

Theorem 2. Let θ∗ be the true target parameter. It holds

[c]
∣∣2L̆(θ̃)− 2L̆(θ∗)− ‖ξ̆‖2

∣∣ ≤ C τǫp
∗,

where p∗ is the full parameter dimension, τǫ is a small constant, and ξ̆ is a random

p-vector satisfying Eξ̆ = 0 and E‖ξ̆‖2 ∼= p. Moreover, deviation properties of ‖ξ̆‖2
resemble the ones of a chi-square random variable with p degrees of freedom.

In the i.i.d. case this implies

Theorem 3. Let Y1, . . . , Yn be i.i.d. P υ∗. If

[c]βn
def
= p∗3/2/n1/2,

then it holds with a dominating probability:

[ccl]
∥∥(nF̆)1/2

(
θ̃ − θ∗)− ξ̆

∥∥2 ≤ Cβn,∣∣2L̆(θ̃)− 2L̆(θ∗)− ‖ξ̆‖2
∣∣ ≤ Cβn.

Moreover, the p-vector ξ̆
def
= F̆

−1/2
(
∇θ − FθηF

−1
ηη∇η

)
is asymptotically standard

normal as n→ ∞. Here Fθη and Fηη are blocks of the Fisher information matrix,

while F̆ is the relative Fisher information matrix for θ. This yields the asymptotic
efficiency of the profile MLE θ̃.

A special example for a Poisson model shows that the condition β2
n = p∗3/n→ 0

is necessary for the Wilks result and cannot be relaxed or dropped.
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Principal Component Analysis in an Asymmetric Norm

Ngoc Mai Tran

(joint work with Maria Osipenko, Wolfgang Härdle)

Principal component analysis (PCA) is a widely used dimension reduction tool in
the analysis of many kind of high-dimensional data. However, in many of the above
applications, one is interested in capturing the tail of the data rather than the
mean. In this paper, we develop an analgoue of PCA for quantiles and expectiles.
The difficulty is that there is no natural basis, no ‘principal components’, to the k-
dimensional subspace found. We propose two definitions of principal components,
provide algorithms based on iterative least squares. We prove upperbounds on
their convergence times, and compare their performances in practice using the
Chinese Weather dataset.

When data come as curves without known functional form, the statistician
faces immediately the need for dimension reduction. The conventional and widely
used tool for such high dimensional curve data is principal component analysis
(PCA). The basic principle of this technique is to treat the curves as random
variations around a mean curve, and then orthogonalize the covariance operator
into eigenfunctions and corresponding (random) loadings. The focus of such a
representation is on studying the variation around a mean curve. Loadings on
(interpretable) eigenfunctions would then represent specific variations around the
average. PCA or more generally functional PCA (FPCA) has been successfully
applied in many fields such as gene expression measurements, financial with fac-
tor analysis, weather and natural hazard studies, demographics, etc... One of the
first applications is the one reported in [5]. They considered temperature curves
recorded daily over a year at multiple stations in an area. The premise is that
there are only a few principal components influencing the average temperature,
and that the temperature curve from each station is well-approximated on average
by a specific linear combinations of these factors. PCA approximates the mean of
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the data by a nested sequence of optimal subspaces of small dimensions. Thus the
optimal subspace of dimension k comes with a natural basis, consisting of uncor-
related random curves (vectors), the principal components, playing the role of the
factors aforementioned. Due to the nested structure of the optimal subspaces, one
can compute the first few components using a greedy algorithm. The first prin-
cipal component can be computed efficiently using iterative partial least squares
[8].

In many of the above applications, one is not only interested in the variation
around an average curve, but rather in features of the data that are expressible
as scale (variance) or tail related functional data. In volatility related pricing of
financial products, for example, the variation of the scale of risk factors is at the
core of fair pricing. If one would like to construct weather derivatives or forecasts
for the above FPCA example on temperature curves, one needs not only to know
the variation across stations, but also the changing scale of the temperature curves,
[1], [6]. In climatological science, one is interested in the extremes of certain
natural phenomena like drought or rainfall. A tail indicator like a quantile of a
conditional distribution when indexed by an explanatory variable also constitutes a
curve. Therefore, such a quantile curve collection may also be treated in a FPCA
context. Yet another tail-describing curve is the expectile function. Like the
quantile curve, it can be represented via a solution with respect to an asymmetric
norm.

In this paper, we develop an analogue of PCA for quantiles and expectiles. The
later, proposed by [4], is an analogue of the mean for quantiles. The quantile
to level τ of a distribution with cdf F , assuming F is invertible, is defined as
qτ = F−1(τ). It is also the solution to the following optimization problem [4]

qτ = arg min
q∈Rp

E‖X − q‖τ,1

where X is a random variable with distribution F , and

(1) ‖x‖τ,1 = |1(x ≤ 0)− τ ||x|α, α = 1.

Given data Xi ∼ F, i = 1, . . . , n, one may formulate the estimation of the unknown
quantile in a location model:

(2) Xi = qτ + ǫi,

with τ -quantile of the CDF of ǫ being zero. A natural estimate of qτ in (2) is
therefore

(3) q̂τ = arg min
q∈Rp

n∑

i=1

‖Xi − q‖τ,1.

Formulation (3) yields a statistical interpretation. In fact, if the noise ǫi in (2)
follow a so-called asymmetric Laplace distribution ALD(τ), which has cdf propor-
tional to exp(−ρτ (·)), then (3) can be interpreted as a quasi likelihood estimation
equation of (2). Putting α = 2 in 1 yields, via (3), a quasi likelihood interpretation
based on an asymmetric normal distribution.
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As noted in [3], the first step in this problem corresponds to doing low-rank ma-
trix approximation with weighted ℓ1 and ℓ2 norm, respectively, where the weights
are sign-sensitive (see Section 1). Based on a proposal of [7], the authors of [3]
proposed an iterative weighted least squares algorithm for expectiles, where the
weights are updated in each iteration. This algorithm is guaranteed to converge,
although not necessarily to the global minimum as we shall show below. Thus one
can at least find a locally optimal k-dimensional subspace that best approximates
a given quantile or expectile. The difficulty is that the weight matrix is not of
rank one, hence there is no natural basis, no ‘principal components’, to the k-
dimensional subspace found. While this is a known problem in weighted low-rank
matrix approximation [8], this problem has not been addressed in [3]. Further-
more, the definition of optimal τ -expectile subspace employed in [3] is not invariant
under linear transformations of the data. That is, if one changes the basis of the
data, the optimal τ -expectile subspace in the new basis is not necessarily a linear
transform of that expressed in the old basis. This means one has to fix a basis
for the data before computing the optimal τ -expectile subspace. This restricts the
usefulness of this method to applications where there is a natural basis, such as
in the Chinese weather dataset, where yearly temperature is expressed as a vector
of 365 daily temperatures. Here one would be interested in capturing extreme
daily temperature as opposed to extreme temperature expressed in a Fourier ba-
sis. However, in many other applications, invariance under change of basis is an
important feature of PCA.

The contributions of our paper is two fold. First, we work with the formulation
in [3] and propose two natural bases, hence two definitions of principal components
for the optimal subspace found. Second, we propose an alternative definition of
principal components for quantiles and expectiles, closely related to the definition
of principal directions for quantiles of [2]. This definition satisfies many nice
properties, such as invariance under translations and linear transformations of the
data, and in particular, returns the usual PCA basis under elliptically symmetric
distributions. We then provide algorithms to compute the three versions principal
components aforementioned, based on iterative weighted least squares. We prove
upper bounds on their convergence times, and compare their performances in
practice using the Chinese weather dataset.
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Composite Quantile Regression for the Single-Index Model

Weining Wang

(joint work with Yan Fan, Wolfgang Karl Härdle, and Lixing Zhu)

Regression between response Y and covariates X is a standard element of statis-
tical data analysis. When the regression function is supposed to be estimated in a
nonparametric context, the dimensionality of X plays a crucial role. Among the
many dimension reduction techniques the single index approach has a unique fea-
ture: the index that yields interpretability and low dimension simultaneously. In
the case of ultra high dimensional regressors X though it suffers, as any regression
method, from singularity issues. Efficient variable selection is here the strategy to
employ. Specifically we consider a composite regression with general weighted loss
and possibly ultra high dimensional variables. Our setup is general, and includes
quantile, expectile (and therefore mean) regression. We offer theoretical properties
and demonstrate our method with applications to firm risk analysis in a CoVaR
context.

Quantile regression(QR) is one of the major statistical tools and is “gradually
developing into a comprehensive strategy for completing the regression prediction”
[13]. In many fields of applications like quantitative finance, econometrics, mar-
keting and also in medical and biological sciences, QR is a fundamental element
for data analysis, modeling and inference. An application in finance is the anal-
ysis of conditional Value-at-Risk (VaR). [5] proposed the CaViaR framework to
model VaR dynamically. [12] used their QR techniques to test heteroscedasticity
in the field of labor market discrimination. Like expectile analysis it models the
conditional tail behavior.

The QR estimation implicitly assumes an asymmetric ALD (asymmetric Laplace
distribution) likelihood, and may not be efficient in the QMLE case. Therefore,
different types of flexible loss functions are considered in the literature to improve
the estimation efficiency, such as, composite quantile regression, [29], [9] and [10].
Moreover, [3] proposed a general loss function framework for linear models, with
a weighted sum of different kinds of loss functions, and the weights are selected
to be data driven. Another special type of loss considered in [17] corresponds to
expectile regression (ER) that is in spirit similar to QR but contains mean regres-
sion as its special case. Nonparametric expectile smoothing work with application
to demography could be found in [19]. The ER curves are alternatives to the QR
curves and give us an alternative picture of regression of Y on X .
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The difficulty of characterizing an entire distribution partly arises from the
high dimensionality of covariates, which asks for striking a balance between model
flexibility and statistical precision. To crack this tough nut, dimension reduction
techniques of semiparametric type such as the single index model came into the
focus of statistical modeling. [23] considered quantile regression via a single index
model. However, to our knowledge there are no further literatures on generalized
QR for the single-index model.

In addition to the dimension reduction, there is however the problem of choosing
the right variables for projection. This motivates our second goal of this research:
variable selection. [14], [22] and [27] focused on variable selection in mean regres-
sion for the single index model. Considering the uncertainty on the multi-index
model structure, we restrict ourselves to the single-index model at the moment.
An application of our research is presented in the relevant financial risk area: to
investigate how the revenue distribution of companies depends on financial ratios
describing risk factors for possible failure. Such kind of research has important
consequences for rating and credit scoring.

When the dimension ofX is high, severe nonlinear dependencies between X and
the expectile (quantile) curves are expected. This triggers the nonparametric ap-
proach, but in its full gear, it runs into the “curse of dimensionality” trap, meaning
that the convergence rate of the smoothing techniques is so slow that it is actually
impractical to use in such situations. A balanced dimension reduction space for
quantile regression is therefore needed. The MAVE technique, [24] provides us 1)
with a dimension reduction and 2) good numerical properties for semiparametric
function estimation. The set of ideas presented there, however, have never been
applied to composite quantile framework or an even more general composite quasi-
likelihood framework. The semiparametric multi-index approach that we consider
herein will provide practitioners with a tool that combines flexibility in modeling
with applicability for even very high dimensional data. Consequently the curse of
dimensionality is circumvented. The Lasso idea in combination with the minimum
average contrast estimate (MACE) technique will provide a set of relevant practi-
cal techniques for a wide range of disciplines. The algorithms used in this project
are published on the quantlet database www.quantlet.org.
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SWITZERLAND

Prof. Dr. Ivan Canay

Northwestern University

Department of Economics

2001 Sheridan Road

Evanston, IL 60208-2600

UNITED STATES

Prof. Dr. Andrew Chesher

Department of Economics

University College London

Gower Street

London WC1E 6BT

UNITED KINGDOM

Prof. Dr. Holger Dette

Fakultät für Mathematik

Ruhr-Universität Bochum

44780 Bochum

GERMANY

Prof. Dr. Alfred Galichon

Departement de Economique

Sciences Po

28 Rue des Saint-Peres

75007 Paris

FRANCE

Maria Grith

Wirtschaftswissenschaftl. Fakultät

Lehrstuhl für Statistik

Humboldt-Universität zu Berlin

Spandauer Str. 1

10178 Berlin

GERMANY

Prof. Dr. Wolfgang Karl Härdle
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