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Introduction by the Organisers

The aim of the workshop was to offer a forum to communicate recent develop-
ments in graph theory and discuss directions for further research in the area. The
atmosphere of the workshop was extremely lively and collaborative. On the first
day of the workshop, each participant introduced her/himself and briefly presented
her/his research interests, which helped to establish a working atmosphere right
from the very beginning of the workshop. The workshop program consisted of 9
long more general talks and 21 short more focused talks. The talks were comple-
mented by six evening workshops to discuss particular topics at a larger depth;
these were held in ad hoc formed groups in the evenings.

The workshop focused on four interlinked topics in graph theory, which have
recently seen new exciting developments. These topics were

• nowhere-zero flows and the dual notion of graph colorings,
• sparsity of graphs and its algorithmic applications,
• width parameters and graph decompositions, and
• results following the proof of Rota’s conjecture in matroid theory.
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The four main themes of the workshop were reflected in the selection of the work-
shop participants and in the choice of the talks for the program. However, space
was also allocated for talks covering additional recent results that the workshop
can touch all major developments in graph theory.

The first day of the workshop was designed to ignite the working atmosphere for
the rest of the week. Most of the day was devoted to 5-minute minipresentations of
workshop participants. Each participant was asked to briefly introduce her/himself
and to present some of her/his research interests. This was complemented by
having a problem session in the evening. The program of the remaining four days
of the workshop consisted of talks scheduled in the mornings and late afternoons,
and the rest of the afternoons reserved for work in groups. The exception was the
afternoon on Wednesday when the workshop trip took place. In addition, there
were six evening workshops organized by workshop participants on the following
topics:

• information theory and graph limits,
• width parameters and their duality,
• graph immersions,
• Albertson’s conjecture on the crossing and chromatic numbers of graphs,
• structure of matroids excluding a uniform matroid, and
• flows in graphs.

Most of the evening workshops consisted of few short presentations followed by an
in-depth discussion of the topic.

One of the greatest recent breakthroughs in graph theory is the proof of the
weak 3-flow conjecture. The three conjectures of Tutte on nowhere-zero flows
are among the most fundamental open problems in graph theory. The recent
breakthrough by Thomassen who proved that every 8-edge-connected graph has a
nowhere-zero 3-flow, which was followed by the improvement to 6-edge-connected
graphs by Lovasz Jr., Thomassen, Wu and Zhang, was one of the main themes of
the workshop. In the very first lecture of the workshop, Thomassen briefed the
participants on the state of the art in the area and presented many related open
problems. The original proof of Thomassen proceeds by reformulating the problem
as a question on covering graphs by stars. Barát and Thomassen conjectured
that the result can be generalized to covering graphs by trees; the proof of this
conjecture was the subject of Thomassé’s talk on the second day of the workshop.

A large portion of the workshop was also devoted to graph colorings, which is
the dual notion of nowhere-zero flows. Graph theory has seen exciting develop-
ments on colorings of graphs with forbidden induced subgraphs. The celebrated
Strong Perfect Graph Theorem characterizes perfect graphs, i.e., graphs where the
chromatic number and the clique number of every induced subgraph are equal. A
conjecture of Gyárfás asserts that the chromatic number of a graph with no odd
hole is bounded by a function of its clique number. The conjecture has recently
been proven by Seymour and Scott. During his presentation, Scott updated the
participants on the state of the art in the area and presented results related to
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stronger conjectures of Gyárfás. Other related results were presented in the talks
of Charbit and Chudnovsky.

Sparsity of graphs and its algorithmic applications formed another of the main
themes of the workshop. Ossona de Mendez presented results on the structure of
classes of sparse graphs based on his joint work with Nešetřil. On the algorithmic
side, this was complemented by talks of Grohe, Marx and Schweitzer. In particu-
lar, Grohe and Schweitzer presented a polynomial time algorithm for isomorphism
testing of graphs with bounded clique-width. It should be mentioned that the
problem of isomorphism testing of general graphs is one of the main open prob-
lems in algorithmic graph theory. Indeed, the recent breakthrough of Babai, who
designed a quasipolynomial time algorithm for the problem, attracted a very sub-
stantial attention in the discrete mathematics and computer science community.
Babai’s result was announced only few weeks before the workshop took place but
it was one of the results that also resonated throughout the workshop.

The algorithm of Grohe and Schweitzer is based on tree-like decomposition
of graphs, which together with width parameters formed another theme of the
workshop. In addition to having a focused evening workshop on the subject,
the workshop participants were updated on the progress related to the structure
of graphs excluding certain graphs as minors in the talks of Chuzhoy, Kreutzer
and Wollan. In particular, Chuzhoy reported in her talk on her work leading to
obtaining a polynomial bound in the Grid Minor Theorem.

Matroid theory is another area that has seen a rapid development in the last
several years. The origin of the Matroid Minor Project can be traced back to a
workshop in Oberwolfach in 1999. The Matroid Minor Project of Geelen, Gerards,
and Whittle led to the structural characterization of matroids with forbidden mi-
nors, which is analogous to the existing results on graphs with forbidden minors.
Most of the results of the project have not been published yet. The project also
led to developing tools that allowed proving Rota’s conjecture, whose proof was
announced in 2014 and is currently being written up. Recent results in the area
were covered in the talks by Geelen and Nelson, and also in the evening workshop
on the structure of matroids forbidding a uniform matroid as a minor.

The atmosphere during the workshop was extremely collaborative. The talks
were often followed by in-depth discussions in small groups in the afternoons and
evenings. It happened several times that small groups formed immediately after
the end of a talk to discuss different approaches to the open problems mentioned
in the talk. The evening workshops allowed more focused discussions of particular
problems. With most of the participants staying till Friday evening or Saturday
morning, the whole allocated week for the workshop was fully utilized. The work-
shop was significant for the graph theory community to stay updated on recent
important developments, and it also significantly contributed to the professional
development of its junior participants.
Reinhard Diestel
Daniel Král’
Paul Seymour



54 Oberwolfach Report 2/2016

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.



Graph Theory 55

Workshop: Graph Theory

Table of Contents

Carsten Thomassen
The weak 3-flow conjecture and applications. . . . . . . . . . . . . . . . . . . . . . . . . 57
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Abstracts

The weak 3-flow conjecture and applications.

Carsten Thomassen

This talk is about the interplay between graph colorings, flows and decomposi-
tions. I shall point out that Dehn’s result from 1916 about claw-decompositions
of planar triangulations can be thought of as a consequence of the list-color ver-
sion of Grötzsch’s Theorem using a connection between group-coloring and group-
connectivity established by Jaeger, Linial, Payan and Tarsi. Tutte’s 3-flow conjec-
ture from the beginning of the 1970ies is equivalent to Grötzsch’s Theorem when
restricted to planar graphs and is still open. The weak version, proposed by Jaeger,
is now a theorem, and can be thought of as a result about claw decomposition.
I shall discuss other applications, namely group flow (where the flow values are
allowed to be elements in a specified subset of a specified group), graph factors
modulo k (where we seek a subgraph with prescribed degrees modulo a fixed nat-
ural number k) and finally the so-called 1-2-3-conjecture saying that we can give
each edge a weight 1 or 2 or 3 such that the weighted degrees form a proper vertex-
coloring. If the edge-connectivity is large compared to the chromatic number, then
such a weighting is possible with weights 1, 2 only.

Edge partitioning highly connected graphs into trees

Stéphan Thomassé

(joint work with J. Bensmail, A. Harutyunyan, T.-N. Le, M. Merker.)

In his 2012 paper, Carsten Thomassen provided a solution to one of the most
intriguing open question in graph theory raised by Tutte: highly connected (here
8-connected) graphs indeed have 3-flows. The existence of 3-flows was proved few
years before equivalent to edge-decomposition of graphs into 3-stars, and Carsten
2012’ paper included the following result:

Theorem 1. Every highly connected graph G has an edge decomposition into
k-stars if the number of edges of G is divisible by k, where highly relates to k.

I will present in this talk a proof of the following result conjectured by Barát
and Thomassen in 2006:

Theorem 2: (BHLMT 2015) For every fixed tree T , there exists t such that every
t-connected graph G has an edge decomposition into copies of T if the number of
edges of G is divisible by the number of edges of T .

The case of paths was proved in 2015 by Botler, Mota, Oshiro and Wakabayashi.
And it turned out later on that arbitrary connectivity is not needed:

Theorem 3: (BHLT 2015) Every 24-edge connected graph with degree f(t) can
be edge decomposed into paths of length t, provided that its number of edges is
divisible by t.

The proof of Theorem 2 was obtained by merging the ideas of the proof of
Theorem 3 together with the work of M. Merker on decomposing a graph into
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homomorphic copies of tree. Let us however emphasize that even if our result
includes the case of stars (and hence implies that highly connected graphs have
3-flows), we rely on Thomassen’s result in our proof, and therefore Theorem 2 does
not shed new light on 3-flow.

A work in progress with the additional collaboration of T. Klimosova seems to
decrease the 24 of Theorem 3 to only 3, which would be best possible for paths.

I will conclude this talk by discussing an exciting question of Jaeger, Linial,
Payan and Tarsi stated in the language of subset sums which is a far reaching
extension of 3-flows, and could be a new direction for future research on the topic.

Colouring quadrangulations of projective spaces

Tomáš Kaiser

(joint work with Matěj Stehĺık)

By a well-known result of Youngs (1996), every quadrangulation of the projective
plane P 2 is either bipartite or 4-chromatic. (Recall that a quadrangulation of a
surface is an embedded graph with all faces of size 4.)

We extend the definition of quadrangulation to higher-dimensional spaces in
place of surfaces, in such a way that the chromatic number of any quadrangulation
of the n-dimensional projective space Pn is either 2, or at least n + 2, extending
Youngs’ theorem. The proof uses the topological method.

At the same time, the family of quadrangulations of projective spaces is quite
rich: it includes all (generalised) Mycielski graphs, all complete graphs and certain
graphs homomorphic to Schrijver graphs. The latter fact provides an alternative
proof of the Lovász–Kneser theorem on the chromatic number of Kneser graphs.

How many colors can be saved?

Luke Postle

(joint work with Marthe Bonamy, Da Qi Chen, Thomas Perrett)

In 1998, Reed proved that the chromatic number of a graph is bounded away from
its maximum degree and towards its clique number. Alternatively, one can save
a number of colors proportional to the difference between the clique number and
maximum degree. Here we discuss various generalizations of this result. First,
we examine extensions of Reed’s result for list-coloring and for a generalization
of list coloring called correspondence coloring, first introduced by Dvořak. We
apply these generalizations to progress on a conjecture of Erdős and Nešetřil that
the strong chromatic index of a graph is at most 1.25 times the maximum degree
squared. Second, we examine generalizations of Reed’s result where the list, sizes
degree sizes and clique numbers are allowed to vary locally over the vertices. Third,
we apply these local list versions to show that the chromatic number of a graph
is bounded away from its maximum average degree and toward its clique number.
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Equivalently, we give a multiplicative improvement in the ratio of edges to vertices
in a k-critical graph without a clique of size pk for all p < 0.99.

Complete graph immersions and minimum degree

Zdeněk Dvořák

(joint work with Liana Yepremyan)

An immersion of a graph H in a graph G is a function θ that assigns pairwise
distinct vertices of G to vertices of H and pairwise edge-disjoint paths in G to edges
of H , such that for each uv ∈ E(H), θ(uv) joins θ(u) with θ(v). The immersion is
strong if the paths intersect θ(V (H)) only in their endpoints.

Note that if G contains H as a topological minor, then G also contains H as
a strong immersion; the converse is false in general, and the (strong) immersion
containment is incomparable with minor containment.

Motivated by Hadwiger’s conjecture, Abu-Khzam and Langston [1] conjectured
the following.

Conjecture 1. Every graph without immersion of Kn+1 has chromatic number
at most n.

This was proved for n ≤ 6 by DeVos et al. [3], but the claim is open in general.
Recently, Kawarabayashi proved that a smallest counterexample to this conjecture
for any given n must have treewidth bounded by a function of n.

DeVos et al. [3] in fact proved the following stronger result.

Theorem 2. For n ≤ 6, every graph of minimum degree at least n contains an
immersion of Kn+1.

An analogue of this theorem for any n ≥ 7 is known to be false—there exist
constructions of graphs of minimum degree exactly n not containing an immersion
of Kn+1. Somewhat surprisingly, no better lower bound is known, motivating the
following question.

Question 3. Is it true that for all n ≥ 1, every graph of minimum degree at least
n contains an immersion of Kn?

It seems somewhat unlikely that this would be the case; on the other hand,
the affirmative answer to Question 3 would still imply Conjecture 1, by a Kempe
chain argument.

DeVos et al. [2] made a significant progress towards resolving Question 3 by
proving that minimum degree at least 200n implies a strong immersion of Kn. This
contrasts sharply with the known superlinear bounds for minors and topological
minors. Recently, in a joint work with Liana Yepremyan, we improved this result
as follows.

Theorem 4. Let t be a positive integer. If a graph G has minimum degree at least
11t + 7, then G contains Kt as a strong immersion.
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Packing and Covering Immersions in 4-Edge-Connected Graphs

Chun-Hung Liu

(joint work with coauthors)

A classical result of Erdős and Pósa states that for every integer k, there exists N
such that every graph either contains k disjoint cycles or contains a set of N vertices
intersecting all cycles. Robertson and Seymour generalized this result to provide
another characterization of planar graphs: a graph H is planar if and only if for
every integer k there exists f(k) such that every graph either contains k subgraphs
each containing H as a minor or contains a set of f(k) vertices intersecting all
subgraphs of G containing H as a minor. We say that H has the Erdős-Pósa
property with respect to the minor containment if the mentioned condition holds.

The topological containment and immersion containment are two graph con-
tainment relations closely related with the minor relation. A complete character-
ization for the graphs H in which H has the Erdős-Pósa property with respect to
the topological containment was proved by Postle, Wollan and I. The description
of the characterization is complicated, but it is unlikely to have a clean statement
as we also proved that testing whether a graph H has the Erdős-Pósa property
with respect to the topological containment is NP-hard.

We will address the immersion containment in this talk. Due to the nature of
the immersion relation, it is more reasonable to consider an edge-variant of the
Erdős-Pósa property. We say that a graph H has the edge-variant of the Erdős-
Pósa property with respect to the immersion containment if for every integer k,
there exists a number f(k) such that every graph either contains k pairwise edge-
disjoint subgraphs each immersing H or contains a set of f(k) edges intersecting
all subgraphs immersing H . The complete characterization for the graphs H with
the edge-variant Erdős-Pósa property with respect to the immersion containment
is considered to be as complicated as the topological containment. However, in this
talk, we will prove that no condition for H is needed if we restrict the host graphs to
be 4-edge-connected. More precisely, we prove that for every graph H , there exists
a function f such that every 4-edge-connected graph G either contains k edge-
disjoint subgraphs each immersing H or contains a set of f(k) edges intersecting
all subgraphs of G immersing H . This result is best possible in the sense that the
4-edge-connectivity cannot be replaced by the 3-edge-connectivity.
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Explicit bounds for the graph minor structure theorem

Paul Wollan

(joint work with Ken Kawarabayashi, Robin Thomas)

Robertson and Seymour proved that every graph excluding a fixed H as a minor
has a tree decomposition where each bag of the decomposition nearly embeds in
a surface of bounded genus. The technical definition of “nearly embedding in a
surface” includes a parameter k which measures how close the near-embedding is
to a genuine embedding with no crossing edges (when k = 0, a k-near embedding
is the same as an embedding without crossing edges). The theorem shows that
the parameterized k-near embedding exists where the parameter k is bounded by
a function on H .

The original proof of Robertson and Seymour was existential and gave no ex-
plicit bound on k in terms of H . Recent work by Geelen, Huynh, and Richter
gives an explicit bound for the existential step in the Robertson-Seymour proof,
and so together, there is a constructive bound on k. However, the length and
technicality of the original proof meant no bound on k was known, although it
had been estimated to be iterated tower functions.

We present a new and simpler proof of the graph minor structure theorem. A
consequence of the shorter proof is that it is now possible to give an explicit bound
on all the parameters in the theorem.

The Directed Grid Theorem

Stephan Kreutzer

(joint work with Ken-ichi Kawarabayashi)

Structural graph theory has proved to be a powerful tool for coping with compu-
tational intractability. It provides a wealth of concepts and results that can be
used to design efficient algorithms for hard computational problems on specific
classes of graphs occurring naturally in applications. Of particular importance is
the concept of tree width, introduced by Robertson and Seymour as part of their
seminal graph minor series [28]1. Graphs of small tree width can recursively be
decomposed into subgraphs of constant size which can be combined in a tree like
way to yield the original graph. This property allows to use algorithmic techniques
such as dynamic programming, divide and conquer etc. to solve many hard com-
putational problems efficiently on graphs of small tree width. In this way, a huge
number of problems has been shown to become tractable, e.g. solvable in linear or
polynomial time, on graph classes of bounded tree width. See e.g. [2, 1, 3, 9] and
references therein. But methods from structural graph theory, especially graph
minor theory, also provide a powerful and vast toolkit of concepts and ideas to
handle graphs of large tree width and to understand their structure.

1Strictly speaking, Halin [14] came up with the same notion in 1976, but it went unnoticed
until it was rediscovered by Robertson and Seymour [25] in 1984.
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One of the most fundamental theorems in this context is the grid theorem,
proved by Robertson and Seymour in [25]. It states that there is a function
f :N → N such that every graph of tree width at least f(k) contains a k × k-grid
as a minor. The known upper bounds on this function f(k), initially being enor-
mous, have subsequently been improved and are now polynomial [4]. The grid
theorem is important both for structural graph theory as well as for algorithmic
applications. For instance, algorithmically it is the basis of an algorithm design
principle called bidimensionality theory, which has been used to obtain many ap-
proximation algorithms, PTASs, subexponential algorithms and fixed-parameter
algorithms on graph classes excluding a fixed minor. See [5, 6, 7, 8, 11, 10] and
references therein.

Furthermore, the grid theorem also plays a key role in Robertson and Seymour’s
graph minor algorithm and their solution to the disjoint paths problem [26] (also
see [17]) in a technique known as the irrelevant vertex technique. Here, a problem is
solved by showing that it can be solved efficiently on graphs of small tree width and
otherwise, i.e. if the tree width is large and therefore the graph contains a large grid,
that a vertex deep in the middle of the grid is irrelevant for the problem solution
and can therefore be deleted. This yields a natural recursion that eventually leads
to the case of small tree width. Such applications also appear in some other
problems, see [13, 18, 21].

Furthermore, with respect to graph structural aspects, the excluded grid the-
orem is the basis of the seminal structure and decomposition theorems in graph
minor theory such as in [27].

The structural parameters and techniques discussed above all relate to undi-
rected graphs. However, in various applications in computer science, the most
natural model are directed graphs. Given the enormous success width parame-
ters had for problems defined on undirected graphs, it is natural to ask whether
they can also be used to analyse the structure of digraphs and the complexity of
NP-hard problems on digraphs. In principle it is possible to apply the structure
theory for undirected graphs to directed graphs by ignoring the direction of edges.
However, this implies an information loss and may fail to properly distinguish be-
tween simple and hard input instances (for example, the disjoint paths problem is
NP-complete for directed graphs even with only two source/terminal pairs [12], yet
it is solvable in polynomial time for any fixed number of terminals for undirected
graphs [17, 26]). Hence, for computational problems whose instances are digraphs,
methods based on undirected graph structure theory may be less useful.

As a first step towards a structure theory specifically for directed graphs, Reed
[23] and Johnson, Robertson, Seymour and Thomas [15] proposed a concept of
directed tree width and showed that the k-disjoint paths problem is solvable in
polynomial time for any fixed k on any class of graphs of bounded directed tree
width. Reed [22] and Johnson et al. [15] also conjectured a directed analogue of
the grid theorem.
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Figure 1. Cylindrical grid G4.

Conjecture 1. (Reed and Johnson, Robertson, Seymour, Thomas) There
is a function f :N → N such that every digraph of directed tree width at least f(k)
contains a cylindrical grid of order k as a butterfly minor

Actually, according to [15], this conjecture was formulated by Robertson, Sey-
mour and Thomas, together with Alon and Reed at a conference in Annecy, France
in 1995. Here, a cylindrical grid consists of k concentric directed cycles and 2k
paths connecting the cycles in alternating directions. See Figure 1 for an illustra-
tion. A butterfly minor of a digraph G is a digraph obtained from a subgraph of
G by contracting edges which are the only outgoing edge of their tail or the only
incoming edge of their head.

In an unpublished manuscript, Johnson et al. [16] proved the conjecture for
planar digraphs. In [20], this result was generalised to all classes of directed
graphs excluding a fixed undirected graph as an undirected minor. This includes
classes of digraphs of bounded genus. Another related result was established in
[19], where a half-integral directed grid theorem was proved. More precisely, it was
shown that there is a function f :N → N such that every digraph G of directed
tree width at least f(k) contains a half-integral grid of order k. Here, essentially, a
half-integral grid in a digraph G is a cylindrical grid in the digraph obtained from
G by duplicating every vertex, i.e. adding for each vertex an isomorphic copy with
the same in- and out-neighbours.

The main result of this talk, building on [24, 20, 19], is to finally solve this long
standing open problem.

Theorem 2. There is a function f :N → N such that every digraph of directed
tree width at least f(k) contains a cylindrical grid of order k as a butterfly minor.
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Excluded Grid Theorem: Improved and (somewhat) Simplified

Julia Chuzhoy

We study the Excluded Grid Theorem of Robertson and Seymour — a fundamental
and widely used result in graph theory. Informally, the theorem states that for
every undirected graph G, if the treewidth of G is large, then G contains a large
grid as a minor. Graph treewidth is an important and extensively used graph
parameter, that, intuitively, measures how close a given graph G is to being “tree-
like”. For example, the treewidth of a tree is 1; the treewidth of the (g × g)-
grid is Θ(g); and the treewidth of an n-vertex constant-degree expander is Θ(n).
Many combinatorial optimization problems that are hard on general graphs, have
efficient algorithms on trees, often via the dynamic programming technique. Such
algorithms can frequently be extended to bounded-treewidth graphs, usually by
applying the dynamic programming-based algorithms to the bounded-width tree-
decomposition of G. However, for large-treewidth graphs, a different toolkit is
often needed. The Excluded Grid Theorem provides a useful insight into the
structure of such graphs, by showing that every large-treewidth graph must contain
a large grid as a minor. Formally, the Excluded Grid Theorem is the following.

Theorem 1. [Robertson and Seymour] There is some function f : Z+ → Z+,
such that for every integer g ≥ 1, every graph of treewidth at least f(g) contains
the (g × g)-grid as a minor.

The Excluded Grid Theorem plays an important role in Robertson and Sey-
mour’s seminal Graph Minor series, and it is one of the key elements in their
efficient algorithm for the Node-Disjoint Paths problem (where the number of the
demand pairs is bounded by a constant). It is also widely used in Erdos-Posa-type
results and in Fixed Parameter Tractability; in fact the Excluded Grid Theorem
is the key tool in the bidimentionality theory.

It is therefore important to study the best possible upper bounds on the func-
tion f , for which Theorem 1 holds. Besides being a fundamental graph-theoretic
question in its own right, better upper bounds on f immediately result in faster
algorithms and better parameters in its may applications. Until recently, the best
upper bound on f(g) was super-exponential in g, while the best lower bound, due
to Robertson, Seymour and Thomas is f(g) = Ω(g2 log g); the also conjecture
that this value is sufficient. In this talk we discuss a recent series of results that
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have lead to a polynomial upper bound on f(g), with the best current bound being
f(g) = O(g19 poly log g). In addition to improved bounds, we describe a number of
new techniques, including a conceptually simple and almost entirely self-contained
proof of the theorem that achieves a polynomial bound on f(g). We hope that
this approach will eventually lead to tighter bounds on the theorem.

Computing with Tangles

Martin Grohe

(joint work with Pascal Schweitzer)

Tangles of graphs have been introduced by Robertson and Seymour in the context
of their graph minor theory. Tangles may be viewed as describing ”k-connected
components” of a graph (though in a twisted way). They play an important role
in graph minor theory. An interesting aspect of tangles is that they cannot only be
defined for graphs, but more generally for arbitrary connectivity functions (that
is, integer-valued submodular and symmetric set functions).

However, tangles are difficult to deal with algorithmically. To start with, it is
unclear how to represent them, because they are families of separations and as
such may be exponentially large. Our first contribution is a data structure for
representing and accessing all tangles of a graph up to some fixed order.

Using this data structure, we can prove an algorithmic version of a very gen-
eral structure theorem due to Carmesin, Diestel, Hamann and Hundertmark (for
graphs) and Hundertmark (for arbitrary connectivity functions) that yields a
canonical tree decomposition whose parts correspond to the maximal tangles.
(This may be viewed as a generalisation of the decomposition of a graph into
its 3-connected components.)

Isomorphism Testing for Graphs of Bounded Rank Width

Pascal Schweitzer

(joint work with Martin Grohe)

Decompositions play a central role in graph theory in particular in the structural
theory of graphs with a forbidden minor. A general structure theorem due to
Carmesin, Diestel, Hamann and Hundertmark (for graphs) and Hundertmark (for
arbitrary connectivity functions) yields a canonical decomposition whose parts
correspond to the maximal tangles. These tangles may be viewed as describing
objects resembling “k-connected components”. We describe algorithmic versions
of such theorems.

Using the notion of treelike decompositions, it is then sometimes possible to
further decompose said parts in a canonical fashion. Such canonical decomposi-
tions find their application for example in graph isomorphism testing. We describe
how they can be constructed and used to test isomorphism of graphs of bounded
rank width (or equivalently of bounded clique width) in polynomial time.
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All infinite graphs have tree-decompositions displaying their
topological ends

Johannes Carmesin

In 1964 Halin conjectured that every infinite connected graph has an end-faithful
spanning tree. Roughly, such a spanning tree is one that has the same boundary
at infinity as the graph. This was disproved by Seymour and Thomas and inde-
pendently by Carsten Thomassen in the 1990s. I will explain how this conjecture
can be repaired.

This talk will be self-contained; in particular I will not assume any special
knowledge about infinite graphs.

Packing and covering in finite and infinite matroids

Nathan Bowler

The most important unsolved problem in the theory of infinite matroids remains
the Packing/Covering conjecture. I’ll introduce the conjecture, briefly discuss
which special cases are known, and outline some consequences for infinite graphs
and finite matroids.

Optimal Electrical Networks

Mark Walters

Given a graph on n vertices with m edges, each of unit resistance, how small can
the average resistance between pairs of vertices be? There are two very plausible
extremal constructions – graphs like a star, and graphs which are close to regular –
with the transition between them occuring when the average degree is 3. However,
one of our main aims in this talk is to show that there are significantly better
constructions for a range of average degree including average degree near 3.

A key idea is to link this question to an analogous question about rooted graphs
– namely ‘which rooted graph minimises the average resistance to the root?’. The
rooted case is much simpler to analyse that the unrooted, and one of our main
results is that the two cases are asymptotically equivalent.
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Joins of cubic graphs

Alexander Schrijver

Although our results are purely combinatorial, it will be convenient to consider
cubic graphs as compact 1-dimensional topological spaces such that the neighbour-
hood of any point is either a line or a 3-star. (So the vertexless loop © counts as
cubic graph.) Removing a vertex results in a graph with three ‘loose ends’.

Let k be a natural number and let G and H be cubic graphs with at least

k vertices. The k-join G
k

∨H of G and H is the random graph obtained as fol-
lows. Choose randomly k distinct vertices u1, . . . , uk of G and k distinct vertices
v1, . . . , vk of H . For each i = 1, . . . , k, remove (topologically) the vertex ui from
G and the vertex vi from H ; the three open ends thus arising in G are connected
randomly to the three loose ends thus arising in H . (So for each i, there exist 3!
possible connections.)

A function f on {cubic graphs} is a partition function (cf. [3]) if their exists a
natural number k and a symmetric function b : {1, . . . , k}3 → R such that for each
cubic graph G:

f(G) =
∑

φ:E(G)→{1,...,k}

∏

v∈V (G)

b(φ(δ(v))),

where δ(v) is the set of edges incident with v, thus φ(δ(v)) is the multiset of
‘colours’ from {1, . . . , k} given to the edges incident with v. Then b(φ(δ(v))) is
the ‘value’ of this multiset. Counting perfect matchings or 3-edge-colorings can be
described as partition functions.

A function f : {cubic graphs} → R is called multiplicative if f(∅) = 1 and
f(G ∪ H) = f(G)f(H) for all G,H ∈ {cubic graphs}. (Here ∅ is the graph with
no vertices and edges, and ⊔ denotes disjoint union.)

In [6] we proved that any real-valued function f on {cubic graphs} is a partition
function if and only if f is multiplicative and for each k the matrix

(f(G
k

∨H))G,H∈{cubic graphs with at least k vertices}

is positive semidefinite. Here for any random graph γ, f(γ) is the expected value
of f(γ). The proof is based on the first fundamental theorem (FFT) of invariant
theory and on a theorem of Procesi and Schwarz [4]. It extends a theorem of
Balázs Szegedy [7].

With Guus Regts and Bart Sevenster we proved in [5] an analogue of this
theorem for cyclic cubic graphs — that is, to cubic graphs in which for each vertex
v a cyclic order of the three edges incident with v is prescribed. Then in the join
of ui and vi we must respect the cyclic orders at ui and vi. (So now there are 3
possible connections.) If we restrict b to cyclically invariant functions (i.e., b(h, i, j)
is invariant under cyclic permutations of h, i, j), the above characterization is
maintained. Proving it requires consideration of the Young tableaux associated
to certain representations of the symmetric group and a theorem of Hanlon and
Wales [2].
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We apply the characterization to weight systems (that is, functions satisfying
the IHX relation) as occurring in the Vassiliev knot invariant theory (cf. [1]).
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Holes in graphs of large chromatic number

Alexander Scott

(joint work with Paul Seymour, Maria Chudnovsky)

A “hole” in a graph is an induced cycle of length at least 4. The perfect graph
theorem says that if a graph has no odd holes and no odd antiholes (the comple-
ment of a hole), then its chromatic number equals its clique number. But what
happens if we only exclude odd holes? Is chromatic number at most some function
of the clique number? More generally, for what classes of graphs does a bound on
clique number imply some (larger) bound on chromatic number?

Gyarfas proposed several conjectures of this form in 1985, and recently there
has been significant progress on them. We survey this and several related results.

Chi Bounding Families of Oriented Graphs

Pierre Charbit

(joint work with P. Aboulker, J. Bang-Jensen, N. Bousquet, F. Havet, F.
Maffray, S.Thomassé and J.Zamora)

Several results have been obtained, including recently, on the following topic: “if a
graph does not contain a fixed clique as a subgraph but nevertheless has very big
chromatic number, what other induced structures must it contain?”. A famous
conjecture of Gyárfás and Sumner states for any tree T and integer k, if χ(G)
is big enough, either the graph contains a clique of size k or it contains T as an
induced subgraph (by a classical result of Erdős, such a result is impossible if one
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replaces T by any graph that contain a cycle). In this talk I will discuss some
results and open problems about extensions of this conjecture to oriented graphs.

Coloring (some) perfect graphs

Maria Chudnovsky

(joint work with Irene Lo, Frederic Maffray, Nicolas Trotignon and Kristina
Vuskovic, and Aurelie Lagoutte, Sophie Spirkl and Paul Seymour)

Grötschel, Lovász and Schrijver gave an algorithm that uses the ellipsoid method
to find an optimal coloring of a perfect graph in polynomial time. However, no
purely combinatorial algorithm is known for this problem, in spite of our fairly
deep understanding of the structure of perfect graphs. This talk will describe
recent results on the problem, namely present combinatorial coloring algorithms
for a few different subclasses of perfect graphs.

Group-Walk Random Graphs

Agelos Georgakopoulos

The study of random graphs is currently one of the most active branches of graph
theory. By far the most studied random graph model is that of Erdős & Rényi
(ER), in which every pair of vertices is joined with an edge with the same proba-
bility, and independently of each other pair.

In recent years, many models of geometric random graphs have been emerging
[2, 4]. The idea now is to embed the set of vertices (possibly randomly) into a
geometric space —usually the euclidean or hyperbolic plane, and their higher-
dimensional analogs— and then to independently join each pair of vertices with
a probability that decays as the distance between the vertices in the underlying
space grows.

One advantage of these geometric random graphs compared to the ER model is
that they can approximate real-life networks much more realistically, but they are
also of great theoretical interest given the impact of the ER model. A disadvantage
is that there is an infinity of such models, obtained by varying the underlying
geometry, the way the points are embedded, and the connection probability as a
function of distance, and no canonical choice is available.

In [1] I introduce a model of (finite) geometric random graphs, called Group-
Walk Random Graphs (GWRG), that arose from the study of the space of Dirichlet
harmonic functions on an infinite group. This model uses an infinite Cayley graph
as the underlying geometry in which the vertex set is embedded. The probability
to join a pair of vertices with an edge is determined by the behaviour of random
walk, and hence indirectly by their distance.

As an example, let G be an infinite homogeneous tree, rooted at a vertex o. In
general, we allow G to be an arbitrary locally finite Cayley graph, or even a more
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general graph. Let Gn := G[{v ∈ V (G) | d(v, o) ≤ n}] be the ball of radius n
centered at o, and define the boundary ∂Gn to be the set {v ∈ V (G) | d(v, o) = n}
of vertices at distance exactly n from o.

We construct a random graph Rn as follows. The vertex set of Rn is the
deterministic set ∂Gn. The edge set of Rn is constructed by the following process.
We start an independent simple random walk in Gn from each vertex v ∈ ∂Gn,
and stop it upon its first return to ∂Gn, letting v† denote the vertex in ∂Gn where
this random walk was stopped. We then put an edge in Rn joining v to v† for each
v ∈ ∂Gn.

We could stop the construction here and declare Rn to be our GWRG, but
it is more interesting to consider the following evolution: let R1

n := Rn, and for
i = 2, 3, . . . let Ri

n be the union of Ri−1
n with an independent sample of R1

n;
or in other words, Ri

n is the random graph obtained as above when we start i
independent particles at each vertex in ∂Gn. Alternatively, rather than starting
a fixed number i of particles at each vertex, we could start a random number of
particles independently at each vertex, according to the Poisson distribution with
mean i.

The original motivation for introducing the model was to try to find connections
between the properties of the group of the underlying Cayley graph G and the
statistics of the corresponding GWRGs, and hence use the latter as a tool for
studying groups. Since then connections to other objects have emerged, including
Sznitman’s random interlacements [5]. Moreover, in the special case where G is
the 2-dimensional square grid Z2, it turns out that Ri

n converges in the Benjamini-
Schramm sense, as n → ∞, to a well-studied model of long-range percolation [3].
I hope that other known models of geometric random graphs will turn out to be
special cases of GWRGs.

Finally, when G is a homogeneous tree, Ri
n has a very interesting Benjamini-

Schramm limit which is almost surely finite for every i, and is the object of ongoing
research joint with O. Angel, J. Haslegrave and G. Ray.
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Accessibility in transitive graphs

Matthias Hamann

We look for connections between the cycle space and the cut space of infinite
transitive graphs. The cut space of a graph G is the set of all cuts E(A,B) for
bipartitions {A,B} of V (G) seen as a GF (2)-vector space and the cycle space is
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the set of all finite sums over GF (2) of edge sets of finite cycles. We call the vector
spaces Aut(G)-modules, as the automorphisms of G act canonically on them. They
are finitely generated Aut(G)-module if they have a generating set that consists of
only finitely many Aut(G)-orbits. In [4], we obtain the following theorem.

Theorem 1. Let G be a 2-edge-connected transitive graph. If its cycle space is a
finitely generated Aut(G)-module, then the same is true for its cut space.

Thomassen and Woess [6] showed that locally finite graphs whose cut spaces are
generated by cuts of bounded size are accessible, i. e. there exists some n ∈ N such
that any two ends can be separated by removing at most n edges of the graph.
Theorem 1 implies the following.

Theorem 2. Every locally finite transitive graphs whose cycle space is generated
by cycles of bounded length is accessible.

Theorem 2 has various applications. As locally finite transitive planar graphs
have the property that their cycle space is generated by cycles of bounded length,
see [5], we obtain as a corollary of Theorem 2 that these graphs are accessible, a
theorem of Dunwoody [2] which we proved combinatorially.

Another class of graphs whose cycle spaces are generated by cycles of bounded
length are hyperbolic graphs. As another corollary, we can confirm a conjecture
of Dunwoody [1] that locally finite transitive hyperbolic graphs are accessible.

Accessibility is also a notion in group theory, which corresponds to the graph
theoretical notion in a natural way, see [6]. Therefore, we can apply Theorem 2
to obtain a combinatorial proof of Dunwoody’s theorem [3] that finitely presented
groups are accessible.
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Cycles in Directed 3-Graphs

Imre Leader

It is trivial that if a tournament (complete directed graph) is not transitive then it
contains a directed 3-cycle, and that in general a directed graph that has a cycle
may have its shortest cycle of length n. We consider the analogous questions for
3-graphs: a directed 3-graph consists of some 3-sets, each of which has been given
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one of its two possible cyclic orientations, and a ‘directed cycle’ means a positive
sum of some of the 3-sets that gives weight zero to each 2-set.

We show that there are directed 3-graphs whose shortest cycle has length about
n2/2, which is best possible, and that there are 3-tournaments whose shortest cycle
has length about n2/3.

Chromatic threshold and critical threshold

Peter Nelson

The critical number of a GF(q)-representable matroid M , viewed as a subset of
a projective geometry G over GF(q), is the codimension of the largest flat of G
that does not intersect M . This is a geometric analogue of chromatic number. In
this context, I will discuss surprising geometric analogues of well-studied problems
in graph theory, including the Erdős-Stone Theorem, the chromatic number of
triangle-free graphs, and the more general ’chromatic threshold’ problem.

Generating k-connected matroids and graphs

Jim Geelen

(joint work with Bert Gerards, Tony Huynh, and Stefan van Zwam)

Tutte’s Wheels and Whirls Theorem states that, if M is a 3-connected matroid
with |M | ≥ 4 and M is neither a wheel nor a whirl, then there is an element e
such that M\e or M/e is 3-connected. This implies that, if M is a 3-connected
matroid with |M | 6= 0, then M has a 3-connected minor N with |N | = |M | − 1 or
|M | − 2.

These results do not extend to 4-connectivity; there exist 4-connected matroids
where the distance to the largest 4-connected proper minor can be made arbitrarily
large (consider the cycle-matroid of a toroidal grid). Moreover, while Tutte’s
notion of 3-connectivity is very natural for graphs, the notion of 4-connectivity
is not. The cycle matroid of a graph G is k-connected exactly when the graph
is k-connected and has girth at least k. So M(G) is 3-connected if and only if
G is simple and 3-connected, which is very natural, however, the cycle-matroids
of complete graphs are not 4-connected, which is not very satisfactory to graph
theorists. We overcome both of these issues by relaxing notion of k-connectivity.

Let L = (l1, l2, . . . , lk−1) be a sequence of non-negative integers. A matroid M
is L-connected if for each t-separation (A,B) of M with t < k either |A| ≤ lt or
|B| ≤ lt. Thus Tutte’s version of k-connectivity corresponds with (0, 1, . . . , k− 2)-
connectivity. In order for the cycle-matroids of complete graphs to be L-connected
we need that (l1, l2, . . . , lk−1) grows quadratically, but then the cycle-matroids of
grids will also be L-connected.

In joint work with Bert Gerards, Tony Huynh, and Stefan van Zwam we prove
the following result:
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Theorem 1. Let L = (l1, l2, . . . , lk−1) be a sufficiently fast growing sequence of
non-negative integers. If M is a sufficiently large L-connected matroid then M
has an L-connected minor N with |N | = |M | − 1 or |M | − 2.

We can say a lot about the structure of M when we require |N | = |M | − 2; in
particular, we can avoid this outcome when M is the cycle matroid of a graph.

The theorem arose out of work on Rota’s Conjecture and played a central role
in proving that conjecture.

Structural Sparsity (Graph Theory meets Model Theory)

Patrice Ossona de Mendez

(joint work with Jaroslav Nešetřil)

The structural properties of sparse graphs has a long history, from the study of
structural properties of graphs with bounded degrees and Robertson–Seymour
graph structure theorem for graphs excluding a minor [28] to the structure the-
orems for graphs excluding a topological minor [10, 2] and of graphs excluding a
strong immersion [6].

Although the notion of sparsity may appear as elusive, the authors introduced
a general dichotomy for (monotone) graph classes [19, 18, 21] between nowhere
dense and somewhere dense classes of graphs, and the division of nowhere dense
classes between classes with bounded expansions and those with unbounded ex-
pansion [15]. Several structural decomposition tools [14, 16, 22, 25] opened the
way to efficient algorithms for classes with bounded expansion [17, 3, 5] and for
nowhere dense classes [9].

Nowhere dense classes and classes with bounded expansion received several
non-trivially equivalent characterizations [22, 26] (see also [8]).

In order to stress the variety of the applications, we mention four results:

• the boundedness, for each odd integer p, of the exact p-distance chromatic
number of graphs within a class with bounded expansion (which already
for p = 3 and the class of planar graphs leads to interesting developments),
and how this property characterizes bounded expansion classes;

• the possibility to find large induced sunflower-like substructures witnessing
a large induced logarithmic density of copies of a fixed graph [20];

• the characterization by means of r-neighborhood covers of nowhere dense
classes and of classes with bounded expansion [8];

• the existence of fixed parameter model checking algorithms [4, 5, 9, 11].

Among the many characterizations of nowhere dense classes and of classes with
bounded expansion, we focus on structural characterizations based on excluded
substructures. This study leads to the conjecture [22, 24] that every monotone
nowhere dense class of graphs either has bounded expansion of contains for some
k ∈ N the k-th subdivisions of graphs with arbitrarily large girth and chromatic
number. Note that this conjecture would follow from a conjecture of Erdős and
Hajnal [7], and also from a conjecture of Thomassen [31].
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We say that a structure is structurally sparse if it may be reconstructed from
a small amount of information, in particular if it can be obtained as an interpre-
tation of a sparse structure. The notions of sparse class and structurally sparse
class are obviously linked, and closely related to the general model theoretic no-
tions of independence property introduced by Shelah [30] — which expresses the
possibility of encoding a random bipartite graph with a definable edge relation —
and the notion of VC dimension, which arose in probability theory in the work
of Vapnik and Chervonenkis [32]. These notions are deeply linked as, as observed
by Laskowski [12], a complete first-order theory does not have the independence
property if and only if, in each model, each definable family of sets has finite VC
dimension. This link is made clear by a theorem by Adler and Adler [1], which
states that for a monotone class of graphs, it is equivalent that the class is nowhere
dense, that first-order formulas have bounded VC-dimension on the class (NIP),
and that first-order formulas have bounded order property on the class (stabil-
ity). These last properties are defined as the possibility to construct some special
generic structures (bipartite random graph, point-set graph, half graphs, transitive
tournaments) by means of first-order interpretations.

We show two examples of direct applications:

• the proof of existence of functions f, g such that every graph G that can
be oriented in such a way that some subset X of vertices of order f(n, r)
has the property that any two of its elements are linked by a directed path
of length r in exactly one direction contains an exact g(r)-subdivision of
Kn;

• the proof that the category of graphs cannot be represented by any mono-
tone nowhere dense class of graphs with homomorphisms (answering a
question by J. Nešetřil).

Further investigating these connections, we note that the shatter function (used
to define VC-dimension) can be used to coin yet another characterization of
nowhere dense and bounded expansion classes: it follows from the characterization
theorem of Adler and Adler [1], Sauer–Shelah lemma [29, 30], and the characteriza-
tion of bounded expansion classes by the boundedness of neighborhood complexity
by Reidl [27] that the shatter function of the family of all r-balls of the graphs in a
monotone class is linear (for each r) if and only if the class has bounded expansion,
polynomial (for each r) if and only if the class is nowhere dense, and exponential
(for sufficiently large r) otherwise.

We also mention some connections with graph limits (characterization of ran-
dom-free hereditary classes by Lovász and Szegedy [13], and the conjecture on
existence of modeling limits for structural limits of graphs in a nowhere dense
class [23]), and with class entropy [26].

In conclusion, it appears that connections to finite model theory can give most
valuable hints on the reasons why excluding special generic substructures may
imply strong global properties.
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High-dimensional combinatorics – Hypertrees

Nati Linial

There is a major ongoing research effort to develop high dimensional combinatorics.
It starts from the observation that most basic combinatorial constructs are, in a
well-defined sense, one-dimensional. It is extremely interesting to investigate the
higher-dimensional counterparts of these objects.

Specifically, we study high-dimensional analogs of: Permutations, Graphs (sim-
plicial complexes), tournaments and more. Here we discuss high-dimensional
analogs of trees. There are several ways to define (one-dimensional) trees, and
we pick a definition that nicely adapts to higher dimensions. Let A be the one-
dimensional boundary operator, i.e., the n×

(

n

2

)

incidence matrix of some orienta-
tion of the complete graph Kn. It is easy to see that rankR(A) = n − 1, that a
set of linearly independent columns in A is synonymous with a forest and column
bases correspond to trees.

The rows and columns of the d-dimensional boundary operator A are indexed

by
(

[n]
d

)

resp.
(

[n]
d+1

)

. For every S = {x1, . . . , xd+1} ∈
(

[n]
d+1

)

where the xi appear

in order, and for every i, the (S \ {xi}, S)-entry of A is (−1)i. All other entries
of A are zero. It is easy to show that rankR(A) =

(

n−1
d

)

. We only consider d-
dimensional simplicial complexes X with a full (d−1)-skeleton. When the columns
of A that correspond to the d-faces of X are linearly independent, we say that X
is acyclic, and when they form a column basis, we say that X is a d-dimensional
hypertree. G. Kalai who introduced this notion in 1983 proved some striking
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results about hyeprtrees, but we still do not know: How many d-dimensional
n-vertex hypertrees are there?

In an elementary 1-collapse we remove from a graph G a vertex of degree one
and the single edge incident with it. We say that G is 1-collapsible if it is possible to
eliminate all its edges by a series of elementary 1-collapses. Clearly, G is collapsible
iff it is acyclic. Likewise, in an elementary d-collapse we remove from a d-complex
X a (d−1)-face τ and a d-face σ provided that σ is the unique d-face that contains
τ . We say that X is d-collapsible if we can eliminate all its d-faces in a series of such
steps. It is easy to see that a collapsible complex is acyclic, but in dimensions d ≥ 2
the reverse implication fails. In fact, Kalai posed Conjecture: The fraction of
d-hypertrees that are collapsible tends to zero when n grows. This is still
open.

Can we at least find many non-collapsible hypertrees? The following construc-
tion works in all dimensions d ≥ 2, but for simplicity of notation I only state it
for d = 2: Let n be prime and let a, b, c ∈ Fn. Create the 2-hypertree Xa,b,c where
{x, y, z} is a 2-face iff x + y + z ∈ {a, b, c}. Theorem: [Linial, Meshulam,
Rosenthal] The complex Xa,b,c is a 2-hypertree. It is 2-collapsible iff
a, b, c is an arithmetic triple.

This is only one of several aspects in which the one and high-dimensional sit-
uations differ. Let F be an n-vertex forest. We say that an edge e /∈ F is in the
shadow of F if F ∪ {e} contains a cycle. It is easy to see that if F is “almost a

tree”, i.e., it has n− 2 edges, then at least ⌊n2

4 ⌋ edges are in its shadow and this is
tight. If X is an acyclic d-complex, we say that a d-face not in X is in X ’s shadow
if the column corresponding to σ is linearly spanned by the columns of X . Let n
be prime for which 2 is a primitive element (A conjecture of Artin states that a
positive fraction of all primes satisfy this condition). Consider the simplicial com-
plex Zn whose 2-faces consist of all arithmetic triples modn. Theorem: [Linial,
Yuval Peled] The complex Zn is acyclic, it has

(

n−1
2

)

− 1 2-faces and its
shadow is empty.

Subexponential parameterized algorithms on planar graphs via
low-treewidth covering families

Dániel Marx

(joint work with Fedor Fomin, Daniel Lokshtanov, Marcin Pilipczuk, Micha l
Pilipczuk, and Saket Saurabh)

Our goal is to prove the existence of algorithms with running time 2O(
√
k·polylogk) ·

nO(1) for various problems on planar graphs that involve finding a connected sub-
graph on k vertices. Our main technical result is the following: given a planar

graph G on n vertices and an integer k, we can construct in time 2O(
√
k·polylogk) ·

nO(1) a family G1, . . . , Gm of 2O(
√
k·polylogk) · nO(1) subgraphs of G such that

(1) each Gi has treewidth O(
√
k · polylogk),
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(2) for every connected subgraph H ⊆ G on k vertices, there is at least one
Gi that contains H as a subgraph.

When putting together this result with known algorithms having running time
2O(w·polylogw) · nO(1) on graphs of treewidth w, we immediately obtain algorithms

of running time 2O(
√
k·polylogk) · nO(1) for various problems. The resulting algo-

rithms are very robust in the sense that it is easy to generalize them to weighted,
colored, or directed settings. For example, we can achieve this running time for
the following problems, where no such algorithms were known previously:

• finding a path of length k in a directed graph,
• finding a path of length k and minimum weight in a weighted undirected

or directed graph,
• finding an s-t path of length exactly k in an undirected or directed graph,
• finding a cycle of length exactly k in a directed or undirected graph,
• finding a subgraph isomorphic to a given connected bounded-degree graph
H on k vertices.

Decompositions of large graphs into small subgraphs

Daniela Kühn, Deryk Osthus

(joint work with Ben Barber, Stefan Glock, Allan Lo, Richard Montgomery and
Amelia Taylor)

A fundamental theorem of Wilson states that, for every graph F , every suffi-
ciently large F -divisible clique has an F -decomposition. Here a graph G has an
F -decomposition if the edges of G can be covered by edge-disjoint copies of F and
F -divisibility is a trivial necessary condition for this. We extend Wilson’s theorem
to graphs which are allowed to be far from complete. In particular, this yields a
”graph theoretical” rather than ”algebraic” proof of Wilson’s theorem. Our main
contribution is a general ”iterative absorption” method which turns an approx-
imate or fractional decomposition into an exact one. This is also connected to
the question of when a partially completed Latin square can be extended to a full
one. (This covers joint work with Ben Barber, Stefan Glock, Allan Lo, Richard
Montgomery and Amelia Taylor.)

Tilings in graphons

Jan Hladký

(joint work with Ping Hu, Diana Piguet)

Tools emerged with the theory of dense graph limits (and the related theory of
flag algebras) have been immensely useful in connection with the part of extremal
graph theory that deals with relations between subgraph density. A prominent
example in this direction is a result of Razborov [3] who determined an optimal
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function f : [0, 1] → [0, 1] such that if an n-vertex graph G contains at least α
(

n
2

)

edges then

(1) G contains at least (f(α) + o(1))
(

n
3

)

triangles,

thus resolving an old question of Lovász and Simonovits.
However, many problems in extremal graph theory concern other quantities. For

example, Allen, Bötcher, Hladký, and Piguet [1], established — as a counterpart
to (1) — the optimal function g : [0, 1] → [0, 1] such that if an n-vertex graph G
contains at least α

(

n
2

)

edges then

(2) G contains at least (g(α) + o(1)) n
3 vertex-disjoint triangles,

In the reported project we studied in general the underlying concept of F -tilings,
by which we mean a collection of vertex-disjoint copies a fixed graph F . Note that
when F = K2, we are dealing with matchings.

The main achievement of the project is that we can define a counterpart of F -
tilings for graphons. We illustrate the notion on the simplest case when F = K2.

Definition 1. Suppose that W : Ω2 → [0, 1] is a graphon. We say that f ∈ L1(Ω2)
is a matching in W if

(i) f ≥ 0,
(ii) supp(f) ⊂ supp(W ),
(iii) for almost every x ∈ Ω, we have

∫

y
f(x, y) +

∫

y
f(y, x) ≤ 1.

The above properties are limit counterparts to fractional matchings in finite
graphs. Indeed, any fractional matching in a finite graph G can be viewed as a
function h ∈ L1(V (G)2) such that (i) h ≥ 0, (ii) h is supported only on pairs of
vertices that form an edge, and (iii) for each x ∈ V (G), we have

∑

y h(x, y) +
∑

y h(y, x) ≤ 1.

Let us emphasize that while we call the objects in Definition 1 (integral) match-
ings, motivation for them comes from fractional matchings of finite graphs. Rough-
ly speaking, the Regularity lemma which is inherent in any graphon allows to view
many fractional objects as integral ones. Also, observe that the notion a matching
(or an F -tiling in general) does not depend on the values of the graphon, but only
on its support. This is because the Blow-up lemma tells us that sufficiently regular
pair of any positive density is a suitable object for tiling.

In particular, we can introduce a graphon parameter which is the supremum of
the sizes over all such F -tilings in that graphon. We give a transference statement
that allows us to switch between the finite and limit notion, and derive several
favourable properties, including the LP-duality counterpart to the classical relation
between the fractional vertex covers and fractional matchings/tilings.

We give two applications of this theory. Firstly, we determine the asymptotically
almost sure F -tiling number of inhomogeneous random graphs G(n,W ). Secondly,
we give a short proof of graphon version of a tiling theorem of Komlós [2] which
in this context extends the Hajnal–Szemerédi Theorem. This version of Komlós’s
theorem together with the transference result implies the original result. The
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advantage of the current proof is that it is, unlike the original one, completely
pedestrian.
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Quasi-random hypergraphs

Christian Reiher

(joint work with Vojtěch Rödl and Mathias Schacht)

In recent work with Rödl and Schacht, we found a new proof of a conjecture due to
Erdős and Sós stating that large uniformly dense 3-uniform hypergraphs of density
greater than 1/4 contain four vertices spanning at least three hyperedges. This
was proved earlier by Glebov, Král’ and Volec with the help of flag algebras and
computers. The new proof is based on the hypergraph regularity method and gave
rise to further developments in this field that are surveyed in this talk.

Packing induced subgraphs

Jacob Fox

(joint work with Hao Huang and Choongbum Lee)

Packing problems have been studied for more than four centuries, and have con-
nections to diverse areas of pure and applied mathematics. In this talk, we focus
on two well-studied combinatorial packing problems, Pippenger and Golumbic’s
graph inducibility problem from 1975 and (time permitting) Wilf’s permutation
packing problem from 1992. We discuss recent joint work with Hao Huang and
Choongbum Lee which solves these problems in almost all instances.

Reporter: László Miklós Lovász
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École Normale Superieure de Lyon
46, Allee d’Italie
69364 Lyon Cedex 07
FRANCE

Prof. Dr. Daniel Kral

Department of Mathematics
University of Warwick
Coventry CV4 7AL
UNITED KINGDOM

Prof. Dr. Stephan Kreutzer

LST für Logik u. Semantik
Technische Universität Berlin
Sekr. TEL 7-3
Ernst-Reuter-Platz 7
10587 Berlin
GERMANY

Dr. Daniela Kühn
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Università di Roma ”La Sapienza”
Via Salaria 113
00198 Roma
ITALY


