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ABSTRACT. Many evolutionary systems, as for example gradient flows or
Hamiltonian systems, can be formulated in terms of variational principles
or can be approximated using time-incremental minimization. Hence they
can be studied using the mathematical techniques of the field of calculus of
variations. This viewpoint has led to many discoveries and rapid expansion of
the field over the last two decades. Relevant applications arise in mechanics
of fluids and solids, in reaction-diffusion systems, in biology, in many-particle
models, as well as in emerging uses in data science.

This workshop brought together a broad spectrum of researchers from
calculus of variations, partial differential equations, metric geometry, and
stochastics, as well as applied and computational scientists to discuss and
exchange ideas. It focused on variational tools such as minimizing movement
schemes, Gamma convergence, optimal transport, gradient flows, and large-
deviation principles for time-continuous Markov processes.

Mathematics Subject Classification (2010): 49-06 (Calc. of Var.), 35-05 (PDEs),70-06 (mechan-
ics of particles and systems), 58E30 (Variational principles), 60F10 (Large deviations), 82C05

(Classical dynamic and nonequilibrium statistical mechanics (general)).

Introduction by the Organisers

Variational approaches to evolution systems provide a rich and very active field
of mathematical research combining several previously only loosely connected
branches of mathematics. This includes studies of geometric aspects like metric
structures in infinite dimensional function spaces and of the geometry of relevant
energy landscapes, like their geodesic lambda-convexity. The connection with the-
ory of optimal transport provides new insights into metric spaces on the one hand
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and provides new tools for the theory of partial differential equations on the other
hand. Another surprising connection links analysis and stochastics to provide
new gradient structures for macroscopic partial differential equations arising from
many-particle systems via large-deviation principles.

During the last few decades many evolutionary PDEs for models in mechan-
ics, physics, chemistry, and biology have been studied via new approaches based
on new variational techniques, combining well established tools and new ideas in
clever ways. This includes classical and generalized gradient flows including rate-
independent flows, geometric analysis for fluid and transport dynamics, Hamilton-
ian systems, and stochastic dynamics of many-particle systems. Concrete exam-
ples include the Fokker—Planck equation, porous medium equations, microfluidic
systems and thin-film equations, interface evolutions, pattern formation and evolu-
tion, coarsening, micromagnetics, superconductors, materials science (crack prop-
agation, behavior of material defects, epitaxial growth, grain boundary evolution),
biological aggregation, many particle systems with interactions and randomness,
and geometric flows.

The aim of this workshop was to bring together a group of experts and young
researchers from calculus of variations, partial differential equations, non-smooth
geometry, stochastic analysis, as well as applied and computational scientists for a
stimulating interchange of ideas. This has succeeded remarkably well, and among
the themes presented during the workshop, we mention here:

e optimal transport techniques and transportation distances, functional in-
equalities, entropic interpolation (many speakers);

e connections between gradient flows and other solution concepts, such as
Brakke flow for mean curvature (Otto) and conservation laws (Brenier);

e connections between gradient flows, statistical mechanics, large deviations,
and thermodynamics (Ottinger, Léonard, Maes, Zimmer);

e novel numerical methods for gradient flows and other variational evolu-
tionary systems (Matthes, Pattacchini, Knees);

e new variational formulations (Stefanelli, Mittnenzweig, Dal Maso, Erbar,

Monsaingeon), and new analysis of existing formulations (Savaré);

reaction-diffusion problems as variational evolution (Liero);

application of variational concepts for data analysis (Garcia Trillos);

entropy-entropy dissipation methods (Jiingel);

crystallization, oscillation, and pattern formation (Niethammer, Maes);

discrete interaction systems, evolution on graphs, and their metric and

variational interpretation (Mittnenzweig, Niethammer, Erbar);

e rate-independent systems, quasi-static crack growth, and elasto-plasticity
(Chambolle, Dal Maso);

e front propagation and phase-field models (Cancés, Otto).

In total, there were 17 talks of 45 minutes and 8 talks of 30 minutes leaving
plenty of time for discussions, which have been greatly stimulated by the diversity
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of the topics and of the contributions. As always, the friendly atmosphere and the
perfect environment of Oberwolfach have also contributed to the success of the
meeting in a major way.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons

Foundation for supporting Jin Feng in the “Simons Visiting Professors” program
at the MFO.
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Abstracts

Solution by convex optimization of the Cauchy problem for hyperbolic
entropic conservation laws

YANN BRENIER

We want to solve by convex optimization the Cauchy problem for the class of
entropic conservation laws, namely for systems of evolution PDEs of form

(1) U + 0;(F“(U)) =0, a=1,---,m,
(with implicit summation on repeated indices), where U = U(t,z) € W C R™,
t € [0,7], z € D= (R/Z), 0, = %, 0; = a%i, W is a smooth convex open

set, while the so-called "flux” F : W — R¥*™ is a smooth function enjoying the
symmetry property

(2)  Vie{l,---d}, VB,y€{l,---,m}, D2pED,F =082 E9pF',

for some smooth function, called "entropy”, £ : W — R, which is supposed to be
convex in the strong sense that (92 5€) is a positive definite matrix, everywhere on
W. The symmetry condition (2) enforces the conservation of entropy, in the sense
that every smooth solution U to (1) must satisfy the extra-conservation law

(3) 0:(E(U)) +0:(Q(U)) =0,

where the ”entropy-flux” function Q : W — R% depends on F and &.
This class of PDEs is of paramount importance in continuum mechanics and mate-
rial sciences (Hydrodynamics, Elastodynamics, Magnetohydrodynamics, etc...[4]).
The simplest example, is the so-called ”inviscid” Burgers equation

2 2

(4) 8tu+8x(%)20, u € R, E(U):%,
A richer example is the Euler equation of isothermal fluids:

B q®q _ _ al? d
(5) Op+V-q =0, 8tq+V-(T)+Vp =0, £€= 2—p+plogp, p>0, ge R

Under mild additional conditions, PDEs of that class are of hyperbolic type and
are (locally) well-posed [typically in Sobolev spaces H® for s > d/2+1 [4]]. [Never-
theless, in most cases, smooth solutions develop singularities, called ”shock waves”,
in finite time, and they cease to be continuous.] Thus, our goal looks hopeless.
Indeed, space-time convex minimization problems presumably lead to optimality
equations of space-time elliptic type, in contradiction with the hyperbolic char-
acter of the equations we are interested in. However, we are able to find such a
convex optimization problem with the following properties:

i) For general entropic systems of conservation laws, it is always possible to recover
a smooth solution by convex optimization on a sufficiently small time interval;

ii) in the special and very simple case of the so-called ”inviscid” Burgers equation,
any entropy solution (a la Kruzhkov-Panov) can be recovered, at any time, by
convex optimization.
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Here is the way to find this convex optimization problem. We first consider the
concept of weak solutions U, for which the Cauchy problem with initial condition
Uy means

(6) / QWL U + 8;WoFi®(U) + / W, (0, )UE =0,
[0,T]xD D

for all smooth functions W = W (¢, x) € R™ such that W (T, -) = 0. Weak solutions
are not expected to satisfy the extra-conservation law (3). In particular

te(0,T] — /DS(U(t, N

is not expected to be constant in t. The concept of weak solutions is quite faulty
since, for a fixed initial condition Uy, weak solutions may not be unique and the
conservation of entropy is generally not true. (This is now well established in the
case of the Euler equations, in Hydrodynamics, through the results of Scheffer,
Shnirelman, De Lellis-Székelyhidi Jr. [7, 8, 5, 10].) So, we look, given an initial
condition Uy, for weak solutions that minimize over [0, 7] the time integral of their
entropy. As just explained, this problem is not void since weak solutions may not
be unique and do not conserve their entropy. Using the trial functions W in (6)
as Lagrange multipliers, we get the following min-max problem

(1) I=infsup E(U) — 0,WaU" — 0, W, F (U) — / Wi (0, YU,
vow Jo,1]xD D

where W = W (t,z) € R™ are smooth functions, vanishing at t = T'. This indeed

amounts to looking for a weak solution U of our system of conservation laws with

initial condition Uy that minimizes the time integral of its entropy. Let us now

exchange the infimum and the supremum in the definition of I and get the lower
bound

(8) J:supinf/ EU) — oW, U — ;W F™(U) —/ Wa (0, Uy
w U Jjo,1xD D

which can be reduced to the concave maximization problem
() J = sup _K(9,W, DW) — / W (0, ) US
w J[0,T)xD D

where W is still subject to W(T,-) = 0 and K is the convex function defined by

(10)  K(A,B) = sup A,V + By, F**(V) - E(V), A€R™, BecR™
Vew

This concave maximization problem is very similar to the Monge optimal mass

transport problem with quadratic cost in its so-called ”Benamou-Brenier” for-

mulation [2, 1, 9]. Its numerical treatment in the style of [2] is currently under

investigation.
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A degenerate Cahn-Hilliard model as constrained gradient flow
CLEMENT CANCES
(joint work with D. Matthes and F. Nabet)

We consider a mixture of two incompressible and immiscible fluids in a convex
domain Q of R? for d < 3. The fluid composition is described by the phase
concentrations ¢ = (¢1, ¢2) that are subject to the constraint

(1) c1+co=1.

We associate an energy £(c) to a configuration c. It is defined by

€ 1
Ele) = / l—|Vcl|2 + —c1c2 + x(c) | de.
Q 2 €
In the above formula, x enforces the constraint and writes

0 if c1+co = 1,
+o00 otherwise.

x(e) =
Each phase is convected by its own speed v;, i.e.,
Oci + diV(Ci’Uz‘) =0,
with no-flux across 9€2. To velocity fields V' = (v1, v2), we associate the dissipation

1
D(c,V) = Z 5/Qc,~|v|2dac.

i€{1,2}
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Then the phase speeds v; are chosen following the following steepest descent con-
dition [8, 10]:

2 V € Argmin | D(¢,V) + max /cmvz
(2) g ( max %:2} 1t

Since p = (p1, p2) belongs to 0E(c) iff ¢ satisfies the constraint (1) and

1
fg = p1 — po = —€Acy + Ecl(l — 1)

where pg is called the generalized chemical potential, the steepest descent condi-
tion (2) leads to the system

Orc; — div(e; V) = 0,

c1+cy =1,

p1 — p2 = —€eAcy + e (1 — ),
Jo(cipr + capo)dz = 0.

(3)

The third equation of the above system has to be complemented with homoge-
neous Neumann boundary conditions on ¢, while the last equation is just there
to normalize the chemical potentials that would otherwise be defined up to an
additive constant.

This model coincides with the model derived by E and Palffy-Muhoray in [5], but
differs from the classical degenerate Cahn-Hilliard model proposed by de Gennes
in [3] that we recall now:

Ore — div(e(l — ¢)Vug) =0,
(4) ftg = —€Ac+ 1c(1—¢),
Jo pedx = 0.

The system (4) can be interpreted as the gradient flow of the energy £(c,1 — ¢)
for a Wasserstein like distance corresponding to the nonlinear mobility ¢(1 — ¢)
(cf. [4, 7]). As already pointed out by Otto and E in [9], the model (3) makes the
energy decrease faster than (4) does. This is confirmed by numerical simulations
based on the numerical scheme proposed in [2]| as shown in Figure 1.

Finally, we establish the existence of a weak solution to the problem (3) thanks
to the convergence of the minimizing movement (or JKO [6]) scheme

1
(5) c" € Argmin —W?(c,c" ') + £(c).
ceA 2T

In the above formula, 7 > 0 denotes a time step that will tend towards 0 in the
convergence analysis. The set A is defined by

A:{ceLl(Q;Ri) ‘/cidx:/cinidw}
Q Q
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0.3 T T T T
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——model (4)

Energy

5.1072 | :

F1GURE 1. Evolution of the energy along time for a spinodal de-
composition governed by both models (3) and (4).

ini ,ini

where ¢™ = (¥, ¢iM) is an initial data of finite energy. It is endowed with the
Wasserstein distance
1/2

Wee)=| Y Wcé) . VY(c,e) e A%
i€{1,2}

The proof relies on tools introduced in [1] for proving the existence of a solution
of multiphase porous media flows.

REFERENCES

[1] C. Cances, T. O. Gallouét, and L. Monsaingeon, Incompressible immiscible multiphase flows
in porous media: a variational approach, Anal. PDE 10 (2017), 1845-1876

[2] C. Cances and F. Nabet, Finite Volume Approzimation of a Degenerate Immiscible Two-
Phase Flow Model of Cahn—Hilliard Type, in Finite Volumes for Complex Applications VIII
- Methods and Theoretical Aspects, C. Cances and P. Omnes (eds), Springer Proceedings
in Mathematics and Statistics 199 (2017), 431-438.

[3] P.-G. de Gennes, Dynamics of fluctuations and spinodal decomposition in polymer blends,
J. Chem. Phys. 72 (1980), 4756-4763.

[4] J. Dolbeault, B. Nazaret, and G. Savaré, A new class of transport distances between mea-
sures, Calc. Var. Partial Differential Equations 34 (2009), 193—-231.

[5] W. E and P. Palffy-Muhoray, Phase separation in incompressible systems, Phys. Rev. E 55,
R3844.

[6] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck
equation, STAM J. Math. Anal. 29 (1998), 1-17.

[7] S. Lisini, D. Matthes, and G. Savaré, Cahn-Hilliard and thin film equations with nonlinear
mobility as gradient flows in weighted- Wasserstein metrics, J. Differential Equations 253
(2012), 814-850.

[8] A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion
systems, Nonlinearity 24 (2011), 1329-1346.



12 Oberwolfach Report 54/2017

[9] F. Otto and W. E, Thermodynamically driven incompressible fluid miztures, J. Chem. Phys.
107 (1997), 10177-10184.
[10] M. A. Peletier, Variational Modeling: Energies, gradient flows, and large deviations, Lecture
Notes, Wiirzburg (2014). Available at http://www.win.tue.nl/~mpeletie

Some results on quasistatic fracture growth in linearized elasticity
ANTONIN CHAMBOLLE

The variational approach to fracture [13, 3| is an extension of Griffith’s classi-
cal theory for the modelling and study of crack growth, where, in a quasistatic
setting, a crack evolution is computed by successive (global) minimization of an
energy consisting of a “bulk” (linearised elasticity) part and a “crack” term which
penalises the length or surface of the discontinuity of the displacement. Namely,
given a boundary datum U on a part of ' C 99, Q € R? (d = 2,3 in general),
and a “time”-step 0t > 0, one finds at each step k£ > 1 a minimiser (u, K) of

(1)  min {/Q(Ce(u) ce(u)dr + HUYHEK) :u = (két)Uy on TP K D Kk_l} :

The tensor C is the Hooke’s law, typically Ce(u) = 2ue(u) + ATre(u)ld and
e(u) = (Du + DuT)/2 is the symmetrised gradient of the displacement, here a
function v € H} (2 \ K;R?).

In practice, one needs to relax a bit this problem (for which existence remains
unknown, see [14, 9] for recent results) in the class “|G|SBD” [1, 2, 11] of functions
w such that Du + Du” is a bounded Radon measure, which is decomposed into
a part e(u)dx absolutely continuous with respect to Lebesgue’s measure, and a
(d — 1)-dimensional “jump” part [u] ® v, H% 1| J,, where the countably (d — 1)-
rectifiable set .J,, is defined as the set of points  where there exists (a normal unit
vector) v, and (two different displacement values) u* such that, as p — 0,

L'(B1) 4 -
Y= u(ac + py) — U X{y-v,>0} +u X{y-vu<0}

(the blowup of u at = converges to a function taking two values). Then, [u] =
ut —u” and [u] © vy, = ([u] @ vy + vy @ [u])/2.

In fact, SBD is even too restrictive. The natural space where to look for a
weak minimiser of (1), which corresponds to solving a problem of the form

(2) n%in/Q(Ce(u) ce(u)dz + HIH(TL)

is the space GSBD(2) [11], first introduced by G. Dal Maso during the MFO
Worskshop #1149 in 2011. Here, a boundary condition has to be enforced in some
specific way, and J,, is the intrinsic jump set of the function u. The set GSBD
is defined by the properties of 1D slices which are required to be SBD functions.
More precisely, u € GSBD(R) if and only if for any £ € S¥~! and a.e. x € £+, the
functions s — wu - {(x + s§) are SBD),. and their variations satisfy some global
bound.
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Such estimate give little control on the function itself (which is necessary to
study problems such as (2), where the energy controls only the L? norm of e(u)
and the total surface of the jump set).

In this setting, existence of minimisers for (2) could only be proven very recently,
and only in 2D, by Friedrich and Solombrino [14]. The fact that these minimisers
are, in fact, strong, is shown in [9].

In this talk were reviewed and explained some recent results obtained in col-
laboration with S. Conti and G. Francfort [6], V. Crismale [8], S. Conti and
F. Iurlano [7]. A first result is the following theorem, proved in [6] (a priori
only for SBD displacements, however the proof is only based on integrals along
lines and carries on without change to GSBD). Here, GSBD,, is the set of func-
tions u € GSBD such that e(u) is p-integrable and J,, has finite (d — 1)-Hausdorff
measure.

Theorem 1. Let § > 0,6 >0, Q = (=6,0)¢, Q' = 1+ 60)Q, Q" = (1 +20)Q,
p € (1,00). There ezists c(0,p,d) > 0 such that for any u € GSBD,(Q"):

(1) There ezists w C Q" and a = Az +b, A+ AT = 0, a linearized rigid
motion, such that

lw| < c57—[d_1(Ju)
1w = all s a1y < €87 [le(u)l| o)

(2) Letting then v = uxgn. + ax. and given ¢ a smooth symmetric mollifier
with support in B(0,0/2), one has

/Q|€(’U*¢5) —e(u) x ¢s|Pdx < ¢ (%)/ le(u)[Pdz

where as usual, ¢s(x) = (1/6%)¢(x/6).

The result can be used as follows: given u € GSBD, () (p € (1,00)), n > 0,
§ > 0 small, one covers  with cubes R, = 20z + (—0,6)%, z € Z¢, of size §
(non-overlapping). One also introduces the cubes Q. = 26z + (1 + 0)(—4,6)? and
their enlargements Q’,, Q" as in the theorem (with sides respectively multiplied by
(1+6) and (1 4 20)). Here 6 is a fixed quantity (usually chosen so that @ has
edges of size at most 3/2 larger than R,). Then, one categorizes the cubes into
“bad” and “good” cubes, depending whether He~1(J, N Q") > nd¢~1 or < nsd-1.
In the first ones, one observes that the size of the boundary of the cube (2d(26)?~1)
is controlled by H4=1(J, N QY)/n.

In the second ones, one applies the theorem, introducing sets w, C Q' with
lw.| < edH (T, N QY), rigid motions a., and smooth approximations v, =
¢s*((u—az)xq:\w, +a=). Then, the approximations are glued together for instance
using a partition of unity of the good cubes, ¢, € C>X(Q.;[0,1]), ¢. > Xr.,
>, 0.=1,|Vep.| < C/§ (where C obviously is like 1/6).

It is then not too hard to show that if 7 is small enough, letting @ = ), ¢, v, in
the good cubes and % = 0 in the bad cubes, one has @ € GSBD,(Q), H41(Jz) <
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C/an_l(Ju),
[letwapds < @+ e(w) /Q e(u) Pdz

where €(n) goes to zero as n — 0.
Such constructions in this setting were first developed to study the convergence
of phase-field approximation of fracture models with non-interpenetration, see [5]

and the report of the MFO Workshop #1729.
Thanks to this construction, we could show in [8]:

Theorem 2. Let u € GSBD,(Q2): then there exists u, — u a.e. such that u, is
smooth up to its jump set J,  which is made of a finite union of (nice) pieces of
C*' hypersurfaces, with

(1) limy o0 HY (T, ) = HOH(Tu);
(2) e(un) — e(u) strongly in LP(£;RIXD).

sym

This extends well-known results (since [4]) but removes unnecessary assumption
(such as u € LP) for the orignal function w.

With a similar construction, we could also adapt the arguments in [12] for the
Mumford-Shah functional and [9] (in dimension 2) to show in any dimension a
result of existence of strong minimizers (i.e., with essentially closed jump set)
for energies such as (2) with an additional quadratic penalization (ensuring weak
compactness).
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A maximal dissipation condition for dynamic fracture, with an
existence result in a constrained case

GIANNI DAL MASO
(joint work with Christopher J. Larsen and Rodica Toader)

We consider a model of dynamic fracture in dimension two. The reference config-
uration is a bounded open set Q C R? with Lipschitz boundary 99 = dpQ U dn .
On 0p€) we prescribe a time dependent Dirichlet boundary condition w(t), while
on Onf) we impose the homogeneous Neumann boundary condition.

The initial crack Ty = vo([ag, 0]) is described by a curve o : [ag, 0] — Q of class
C3! parametrised by arc-length and such that vo(ag) € 09, o is transversal to
0 at yo(ao), and yo(s) € Q for every s € (ag,0]. The crack at time t € [0,7] is
described as

Ly = v([ao, s(¥)]),

where v: [ag,by] — R? is the arc-length parametrisation of a C>! simple curve,
coinciding with 7o on [ag, 0], and s: [0,T] — [0, b,], with s(0) = 0, is a continuous
piecewise C>! function that, for every ¢t € [0,T], provides the length of the crack
produced along the curve 7.

Given r > 0 and L > 0, we assume the following properties on the unknown
C31! curve v:

(G1) uniform tangent balls condition: for every s € [ag, by] the two open disks
of radius r tangent to v at y(s) do not intersect y([ao, b,]);

(G2) wuniform distance from the boundary: dist(y([0,b4]), 0) > 2r;

(G3) wuniform bounds: |y (s)| < L, |73 (s3) — 3 (s1)| < L|sy — 51|, for every
s, 81, S2 € [ap, by, where ~() denotes the i-th derivative of ~.

Given p > 0 and M > 0, we assume the following properties on the unknown
piecewise C31 crack length s:

(S1) bound on the speed: 0 < 5(t) < p;
(S2) uniform bounds: |3(t)] < M, |5(t)] < M, and |5 (t1) =8 (t2)| < M|t; —ts
for every t¢,t1,ts in an interval where s is of class C3!.

Given a body force f, a boundary condition w, an initial displacement ug, and an
initial velocity ui, the unknown displacement u: [0, T]x — R? solves the system
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of elastodynamics in the time dependent domain 2\ L)
i(t,z) — div(C(x)Vu(t,z)) = f(t,z) fortec (0,T), x € Q\ gy,
u(t,x) =w(t,x) forte (0,T), x € Ipl,
(C(x)Vu(t,z))v(z) =0 forte (0,T), x € ONQUT 4y,
u(0,z) = ugp(x) for x € €,
0,z) =ui(x) forz e,

u

where C(x) is the elasticity tensor. Note that we have the homogeneous Neumann
boundary condition on both sides of I'y(;), since we assume that the crack lips are
traction-free.

Our analysis is based on the following result, proved in [1].

Theorem 1. Assume (G1), (G2), (G3), (S1), and (S2). Under suitable reg-
ularity and compatibility assumptions on f, w, ug, and ui, if the constant p that
bounds the crack speed is small enough, then there exists a unique weak solution
of the system of elastodynamics in the time dependent domain Q\T'y). Moreover
this solution depends continuously on all data, including (v, s).

A localization argument in space and time (see [3]), based on the finite speed of
propagation, allows us to extend this result to the case 0 < u < \/X/ 2, where A\
is the ellipticity constant of the elasticity tensor (which gives an estimate of the
speed of sound).

We now fix f, w, ug, and u1, and consider only the collection CP*“ of all cracks
(v, s) satisfying (G1), (G2), (G3), (S1), (S2), and such that the corresponding
displacement u satisfies the dynamic energy-dissipation balance:

kinetic energy at time to + elastic energy at time to +
enerqy dissipated by the crack between t1 and to =
kinetic energy at time t1 + elastic energy at time t1 +

work of the external forces between t1 and to .

The energy dissipated by the crack between ¢; and t2 is assumed to be proportional
to s(t2) — s(t1), where the proportionality constant depends on the material and
is interpreted as the toughness of the material.

The collection CP¥*¢ is non-empty, since every stationary crack satisfies the
dynamic energy-dissipation balance. Indeed, this is a general property of the
solutions of the system of elastodynamics in time-independent domains.

Therefore, we propose an additional principle, a mazimal dissipation criterion,
which forces the crack to grow when it is possible to grow in a way that preserves
the dynamic energy-dissipation balance (so that stationary cracks are not always
solutions). The spirit of the maximal dissipation condition is simply that the crack
must run as fast as possible, consistent with the dynamic energy balance.

To be precise, we say that (v, s) € CP*¢ satisfies the mazimal dissipation con-
dition if there ewists no (¥,8) € CP*¢ such that, for some 0 < 79 < 71 < T,

(MD1) sing(8) C sing(s),
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(MD2) 3(t) = s(t) and (5(t)) = v(s(t)) for every t € [0, 70],
(MD3) 5(t) > s(t) for every t € (79, 1.

Here and henceforth sing(s) is the set of points where s is not regular. Conditions
(MD1)-(MD3) say that there is no sufficiently regular crack which satisfies the
dynamic energy-dissipation balance, coincides with the crack described by (v, s)
up to time 79, and is longer at every time between 7y and 7.

For technical reasons, we are able to prove the existence of an admissible evolu-
tion satisfying the previous condition only in a quantitative way, depending on a
prescribed threshold n > 0. This leads to the following definition: (v, s) € CP*¢ sat-
isfies the n-mazimal dissipation condition on [0, T if there exists no (¥, 8) € CPcc
such that (MD1)-(MD3) hold for some 0 < 79 < 7y < T and, in addition,

(MD4) 5(m1) > s(m1) +n.

Our main result is the following theorem (see [3]).

Theorem 2. Assume (G1), (G2), (G3), (S1), and (52), with 0 < p < V/A/2.
Suppose that f, w, u®, u' satisfy the hypotheses of Theorem 1 and let n > 0.
Then there exists an n-maximal dissipation solution of the dynamic crack evolution
problem corresponding to these data.

The main difficulty in the definition of an n-maximal dissipation solution is the
variability of the interval (7g, 71] where the comparison crack (9, 8) € CP*¢ satisfies
the inequality §(t) > s(t). To overcome this problem we discretize time and in
each time interval we use Theorem 1 to prove the existence of a mazximal pair
(v, s) among all pairs satisfying our quantitative regularity requirements and the
dynamic energy-dissipation balance. Then we prove that the function obtained
by glueing together these maximal functions is an n-mazimal dissipation solution,
if the length of each time interval is less than n/u, where p is the bound for the
velocity.

In the antiplane case a similar result with a prescribed crack path (i.e., v is
given and only s is unknown) is proved in [2] using the results for the scalar wave
equation contained in [4].
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A gradient flow to the homogeneous Boltzmann equation
MATTHIAS ERBAR

Since the pioneering work of Otto [8] it is well know that many diffusion equations
can be cast as gradient flows in the space of probability measures with the relevant
geometry being induced by the L? Wasserstein distance. Otto’s approach has
been widely used in the study of the trend to equilibrium, stability questions and
construction of solutions.

In this talk, I presented a characterization of the spatially homogeneous Boltzmann
equation as a gradient flow of the entropy based on [3]. Crucial for this is the
identification of a novel geometry on the space of probability measures that takes
the collision process between particles into account.

The spatially homogeneous Boltzmann equation is given as

o f = /Rd /Sd1 [f I —ff*}B(v—v*,w)dv*dw,

where f is a probability density on R?. The shorthand f., f’, f/ stands for
f(vy), f(V), f(vl) with v, v, and v', v}, denoting the pre- and post-collisional veloc-
ities respectively related according to v/ = v — (v — vy, W)w, vV, = Ve + (V — V4, WHW
with w € S9=1. The collision kernel B encodes the microscopic details of the par-
ticle interaction and we assume it to be continuous and to satisfy ¢! < B < ¢ for
some constant ¢ > 0.
Boltzmann’s H-Theorem asserts that the entropy H(f) = [ flog f is non-increas-
ing along solutions, i.e. H(f,) = —D(f;) <0, where

1 I o

D(f:) = - /log (f' fi— ff)Bw —ve,w)dwdv,dv .

4 e
Our goal is to characterize the homogeneous Boltzmann equation as the evolution
that decreases the entropy as fast as possible. This gradient flow structure rests
on a novel geometry on the space of probability measures.

Given probabilities fo and fi; we solve (a suitable relaxation of) the minimiza-

tion problem

1
WB(fo,f1)2:inf{£/0 /|?¢t|2A(ft)B(v—v*,w)dwdv*dvdt} ,

where the infimum runs over all curves of probability densities (f;): connecting fy
and fi and all functions v : [0,1] x R — R related via

Ocfi(v) + i / Vi A(fe) B(v — vy, w)dwdv, = 0 .

Here, we have set Vo = ¢/ + ¢, — ¢ — ¢, and A(f) is shorthand for A(f f., f'f1),
where A(s,t) = (s —t)/(log s — logt) denotes the logarithmic mean.

It turns out that Wg defines an extended, separable and complete distance on the
set P, (R%) of probabilities with zero mean and unit variance. Moreover, each pair
of densities at finite distance can be joined by a geodesic, i.e. an optimal curve
(ft)+ in the problem above.
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We obtain the following variational characterization of the Boltzmann equation
Theorem 1: For any curve (fi)i>0 of probability densities in P.(R®) with H(fo) <
oo we have that

T
Te(f) = M) = W) + 5 [ DU+ |yt 20 9T 0.

The solution (fi): to the homogeneous Boltzmann equation is the unique curve
with Jp(f) =0 for all T.

Here |fi|yw, denotes the metric speed w.r.t. Wg. In this sense, the Boltzmann
equation is a steepest descent of the entropy, decreasing it as fast as possible. To
motivate this result, note that for a smooth function £ on R"™ and any smooth
curve x we have

T 1 T
E(zr) — E(x0) :/ VE(zy)ddt > —5/ IVE|?(x¢) + |%¢|2dt .
0 0

with equality if and only if x is a gradient flow curve of E, i.e. &y = —=VE(z¢). In
metric spaces this characterization can be used to define gradient flows by replacing
|z¢|with the metric speed of the curve and |VE| by an upper gradient. We refer
to [1] for a detailed account on gradient flows in metric spaces. Thus, Theorem
1 characterizes the Boltzmann equation as the gradient flow of the entropy in the
space (P.(R?), Wpg).

As a first application, we obtain a time-discrete variational approximation scheme
for the Boltzmann equation related to the implicit Euler scheme for the gradient
flow structure. Given a time step 7 > 0 and an initial datum fo € P.(RY) with
H(fo) < oo define iteratively

| 1 .
f§=fo Fr € agmin[Hlg) + =Walg. /)] -
g

and let f7 = f7 for t € ((n — 1)7,n7| be the piecewise constant interpolation.
Theorem 2: As T goes to zero, f] converges weakly to the solution f; of the
Boltzmann equation with initial datum fy.
As a second application the gradient flow structure can be used to give a new
and simple proof of the convergence of Kac’s random walk, an N-particle stochas-
tic dynamics, to the solution of the spatially homogeneous Boltzmann equation
recovering results of Sznitman [10] (see also Mischler-Mouhot [6] and Norris [7]
for quantitative results). It has been shown recently that Kac’s random walk (in
fact any continuous time Markov chain) has a gradient flow structure induced by
a suitable transportation distance, see [4, 5, 2], i.e. a characterization similar to
Theorem 1 holds. The crucial idea is to note that these gradient flow structures are
consistent in the limit N — oo. Using the approach of Sandier—Serfaty [9] of evolu-
tionary I'-convergence this boils down to proving simple lim inf-estimates between
the constituent elements of the gradient flow structure, the entropy, dissipation
and metric speed, yielding the convergence of the gradient flows.
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Cross-diffusion systems with nonstandard entropies
ANSGAR JUNGEL
(joint work with N. Zamponi)

Multi-species systems from physics, biology, chemistry, etc. can be modeled by
reaction-diffusion equations. When the gradient of the density of one species in-
duces a flux of another species, cross diffusion occurs. Thus, the diffusion matrix
involves nonvanishing off-diagonal elements. In many applications, the evolution
equations satisfy a formal gradient-flow structure, which compensates the diffi-
culty arising from the fact that the original diffusion matrix is generally neither
symmetric nor positive definite. The cross-diffusion equations have the form

(1) 8tui - ZdiV(Aij (u)VuJ) = fz(u) in Q, t > 0, 1= 1, ey, n,
j=1

where w;(z,t) is the density of the ith species, u = (u1,...,un), A;j(u) are the
diffusion coefficients, f;(u) is the reaction term of the ith species, and Q C R?
(d > 1) is a bounded domain with smooth boundary. We need to prescribe initial
conditions for u;; the boundary conditions generally depend on the considered
application. Setting A(u) = (A;;(u)) and f(u) = (f1(w),..., fn(u)), we may write
(1) more compactly as

Ou — div(A(u)Vu) = f(u) in Q, t > 0.

Generally, there do not exist maximum principles or a regularity theory for
diffusion systems. Our approach is to assume that there exists a convex function h :
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R™ — R, called an entropy density, such that the matrix product B = A(u)h” (u)~?
is positive semidefinite [2]. Then (1) writes as

Oru — div (BV%H> fu),

where 6 H/du is the variational derivative of the entropy H[u] = [, h(u)dz. This
can be recognized as a formal gradient flow with the Onsager operator £ —
div(BV¢). Using h/(u) as a test function, this usually leads to gradient estimates
needed for the global existence analysis.

In many situations from population dynamics, cell biology, and thermodynam-
ics, the entropy is given by the sum of the Boltzmann entropies of the various
species, h(u) = > u;(logu; — 1). Here, we are interested in situations, where
the cross-diffusion system admits a nonstandard entropy, i.e. a function that is not
the sum of Boltzmann entropies. We consider three examples.

1. ENERGY-TRANSPORT SYSTEMS FOR SEMICONDUCTORS

Under some assumptions, the transport of electrons with density p(x,t) and elec-
tron temperature (z,t) can be described by the cross-diffusion system

(2) 0ip = A(p0'*77), 0,(pf) = A(p6**~P) in Q, t >0,

where § € [—1/2,1/2) is a parameter coming from the elastic collision rate in
the Boltzmann equation from which this model is derived; see [1] for details. To
simplify, we have neglected the electric field and the relaxation term. Equations
(2) possess the entropy density h(p,0) = plog(pf~3/?). A formal computation
shows (for suitable boundary conditions) that

d |Vp|2 Vo|?
h 0)d 01/2 dr <

where C' > 0. Unfortunately, this estimate is not useful close to 6 = 0, as the
positivity of 8 cannot be easily proved. The idea is to use a nonphysical entropy,
namely h(p, ) = p?6° with b € R, which gives the estimate

jt/ 2Hbd:c—|—01/ [V (p2o+1=28)/4 124y < Oy,

with positive constants C'y and Cs depending on the boundary data. Then, taking
a variant of the sum [, 208124z + Jo p?0°dz, we are able to derive gradient

estimates for the variables p, pf'/2=8 and p63/2—#, which is necessary to define a
weak solution to (2). The existence of global weak solutions was shown in [6].

2. PARTIAL AVERAGING IN ECONOMICS

Starting from the forward Kolmogorov equation for the distribution function f of
an Ito6 process, the partial averages u;(z,t) fR z,y,t)e"*Ydy, where z € R,
y € R, \; > 0, satisfy under some sunphfying assumptions the equations

(3) Opu; = A(a(ul/ug)ui) + piuw; in T ¢>0, i=1,2,
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where T¢ is the d-dimensional torus and the function a : (0,00) — (0, 00) and the
parameters p; are related to the volatility appearing in the Kolmogorov equation
[5]. The partial average u; may be interpreted as an value of an economic param-
eter weighted by the parameter y. Surprisingly, (3) can be analyzed using entropy
methods. The key idea is to employ the functional

Hiu] = /T h(w)de, h(u) = (Z—l)au% + (Z—;)_a + i(ui ~log us),

i=1
where a > p + 4 and u = (u1,u2), leading to the entropy inequality

a—p b—c
% N ((ﬂ) N (2) >(;w1\2 + |Vua|?)do < CHIul,
Td

(1) U9
where C' > 0 depends on p; and C' = 0 if u; = po = 0. This inequality gives
gradient estimates for u; and us, which are the key for the global existence analysis
executed in [3].

3. FLOW MIXTURE WITH VAN DER WAALS PRESSURE

Consider an isothermal fluid mixture of n mass densities p;(x,t) in a domain
Q C RY, whose evolution is governed by the equations

n
Orp; = div (pﬂ)-l—&ZDij(p)V/Lj), 1=1,...,n,
j=1
where the velocity v is determined from Darcy’s law v = —Vp, the van der Waals
pressure p is defined by the Gibbs-Duhem relation Vp = > | p;Vp;, the chemical
potentials y; are given by u; = 0h/Jp;, and the free energy equals

n n n
h(p) = Z,Oi(log pi — 1) = prot log (1 - ijpj) - Z Wij PiPj-
i=1 j=1 i,j=1
Here, ¢ > 0 is a small parameter, D;;(p) are the diffusion coefficients, pior =
Z?:l pi is the total mass density, a;; = a;; > 0 measures the attraction between
the ¢th and jth species, and b; is a measure of the size of the molecules. Putting
these relations together, the evolution equations can be written as

n
atpi :leZ((pr]—f—ED”(p))v,uj), 1= 1,...,TL.
j=1
Since the diffusion fluxes sum up to zero, the matrix (D;;) is positive definite

only on the orthogonal complement of its one-dimensional kernel. The lack of full
positive definiteness is compensated by the presence of the matrix (p;p;), which is
of rank one only. This property is reflected in the entropy inequality

d

— | h(p)dx +/ |Vp|?dx + 5/ Vu:D(p)Vudz < 0.

dt Jo Q Q

Both the second and third integrals lead to H' bounds for j;, which are the basis
of the global existence analysis performed in [4].
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Non-variational evolution towards a crystal-like pattern
CHRISTIAN MAES
(joint work with Karel Netocny)

Nonequilibirum statistical mechanics has roughly two types of questions. One is
reaching for a dynamical characterization of the equilibrium condition. Here equi-
librium refers to the macroscopic state corresponding to maximal entropy given a
number of constraints in terms of energy, volume, particle number and maybe also
other conserved quantities. By entropy for a closed and isolated mechanical system
we mean the logarithmic phase space volume of microscopic states compatible with
the macroscopic condition, making thus the bridge between the microscopic de-
scription and the macroscopic looks of a system composed of many particles. The
dynamical characterization of such an equilibrium condition includes the study of
relaxation to equilibrium, the derivation of macroscopic evolution equation, the
understanding of the emergence of dissipation from Hamiltonian dynamics, linear
response theory and the theory of macroscopic dynamical fluctuations as in the
theory of large deviations on path-space. That first chapter of nonequilibrium
statistical mechanics thus also wants to contain derivations of variational evolu-
tions and the understanding of their connection with the condition of detailed
balance [1, 2], or the derivation of damping and friction in contact with a thermal
equilibrium environment [3], etc.

The second type of question concerns the so called steady state. We are now
dealing with -on the level of the total system plus reservoirs- a low entropy macro-
scopic condition which is assumed kept and steady over a certain time-scale. The
possible variations are again enormous, but one can easily imagine systems driven
by boundary conditions, where the latter make the weak contact between system
and reservoirs, those being spatially separated and specified in terms of a few ki-
netic and thermodynamic parameters. Heat conduction is a special case. Yet,
there also exists driving induced by temporal changes, like via periodic external
fields, or driving via internal degrees of freedom, etc. Here again the questions
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include developing a response and fluctuation theory, and to characterize possible
stability and relaxation towards the nonequilibrium steady condition.

The question of the paper [4] and the present contribution is to study the emerging
stability of a pattern of probes in contact with a nonequilibrium medium. That
brings us towards one of the burning questions within nonequilibrium physics, to
describe pattern formation from more microscopic to mesoscopic models, to get to
grips with symmetry breaking and phase transitions under nonequilibrium condi-
tions.

Morphogenesis is a traditional problem in many scientific domains. Related
concepts are self-assembly, self-organization and the emergence of patterns, both
spatially and temporally. It is obviously related with symmetry breaking and
with issues of learning. Much of contemporary research is devoted to it for its
technological and fundamental significance [5]. One of the most sensational aspects
is that nature appears able to use robust mechanisms in giving a large variety
of astonishing spatio-temporal patterns [6]. It is not so strange to believe that
nonequilibrium conditions can be at the origin of such structures, but there are
few ab initio studies of the mechanisms through which such patterns emerge from
contact with nonequilibrium media. Indeed one would wish to avoid specially
constructed or ad hoc modeling to deduce such structures.

In the present work [4] we present possibly the simplest scenario where calcula-
tions can be done explicitly and the emergence of a stationary spatial crystal-like
pattern can be followed in great detail. The mesoscopic model consists of three lay-
ers of description. It corresponds to three types of particles, all confined on a ring
of length L. First there is the viscous thermal equilibrium reservoir of fast moving
small particles. It is represented in the dynamics via its temperature S~! and it
gives idealized (white) noise and linear friction to the other particles immersed in
it. Secondly there are the driven particles forming a nonequilibrium medium. We
call them colloids. They are with many, mutually independent, and are undergo-
ing an overdamped dynamics in the thermal bath. The driving is by a constant
rotational force over the ring, with amplitude €. They are each in short range
interacting with IV probes. The latter have positions z = (z(1),x(2),...,z(NV)).
Formally, we thus have for the position 7; € S of one colloid,

d oU 1/2
(1) %Zs—%—l—(%) & (nmod L)

with U(z,n) = Y_, u(za — 1) the total potential for which we suppose sufficient
smoothness, the symmetry u(z) = u(—z) and the range ¢ in that u(z) = 0 when-
ever |z| > §. The constant ¢ is the constant driving force. Inverse temperature 3
and friction ¢ are fixed positive parameters, with & standard white noise on the
ring. Alternatively, we can write the stationary Smoluchowski equation

@) Ge = paln) [+ 3w (a(a) — )] — L)
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where p, is the stationary density of the colloids under periodic boundary condi-
tions and for fixed colloid mass fOL pz(n) dn = p°L; the constant j, is the stationary
current of the colloid flow and it depends on the probe positions x. Finally we
imagine the probes as moving on the slowest time-scale. In that quasi-static limit
we thus consider as force on the ath-probe from the driven fluid the mean force
given by

3) fula) = / o/ (2(a) — 1) paln) dn

In that approximation the probes then take the overdamped dynamics

) 2 2
(4) Pia = fole) + (F) 6 a=0,.. N-1
now with friction I' > 0 and independent standard white noises &;*. The dynamics
(4) is our main object of study. The main result is that it allows stable crystal-like
patterns which are reached via non-variational relaxation.

There are a number of length scales in the model which are all important. There
is of course the lenght L of the circle and the range ¢ of the probe—colloid interac-
tion. The number of colloids being N, we want L/N > 2§ so that in equilibrium
fa(x) = 0 whenever the probes are sufficiciently far apart. The dissipation length
is {4 = (¢8)~! and we find that the situation is most interesting for L > £4, N
large and § < {4, Nly/L > 1, with L/(25) > N. That enters in particular in the
analysis of the equidistant probe configuration.

The equidistant configuration x = x* of probes obviously has the property that
fa does not depend on a. We can write it as a rotating crystal

L
(5) ¥ (a,t) = vt + N (o mod N)

steady rotation speed v* proportional to the stationary current j,. In the paper
[4] we prove that that crystal is stable in the following sense.

The linearized dynamics of the perturbation x(a) = z* () +y, has the standard
form

. O fa(z*
(6) Fya = ZMa’yy’y ) Mory - 8( )
¥ Ty
with M, = _ny;éa M, (zero mode) and My, = my_q,a # 7 for certain

linear elasticity coefficients m.. We call them effective “spring constants” but it is
important to realize that they are not symmetric, m, # m_,, which in the end is
a consequence of the driving ¢ in (1) (choosing a rotation direction); the induced
forces between the probes are non-reactive. We show in [4] that the m, > 0 when
the interaction u between colloids and probes is either completely attractive or
completely repulsive. There is a Lyapunov function, A = Y _ y2, with A(t) <0
unless y = 0, proving stability in (6) of the crystal pattern.
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For the stability against thermal fluctuations we estimate the time of relax-
ation in (6) using an analogy with compound Poisson processes. The stationary
distribution for the linearized (4) coincides with the Boltzmann distribution,

(7) v(y) oc e PV

for the effective potential

(8) V(y) = % > YaMaryy = i > my > (Yaty = Ya)’

v>0 fe

despite the absence of detailed balance in (4).
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A two-step time discretization of metric gradient flows
DANIEL MATTHES
(joint work with Simon Plazotta)

1. VARIATIONAL FORMULATION OF MULTI-STEP SCHEMES

We analyze a discrete-in-time approximation of gradient flows in metric spaces,
using a variational analogue of the BDF2 formula instead of the most commonly
employed BDF1 method (which is better known as minimizing movement scheme).
Before stating our result in the metric context, we briefly recall the respective
methods for numerical integration of ODEs: given a smooth function F : R — R
and an initial datum u® € R?, we seek an approximation of solutions u : [0, 00) —
R? of the initial value problem

i =—VF(u), u(0)=u
by sequences (u?)22, of uniform time step 7 > 0, i.e., such that u} ~ u(nr). Two
canonical options are the BDF1 method,
n—1
u—u
(1) ur solves ——— = —VF(u),

T
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which needs one initial datum v ~ u°, and the BDF2 method,

_ ,,n—1 _am—2
(2) u? solves 2 (&> - (%) = —VF(u),

T 2T

which is initialized with two data points u?,ul. Estimates on the convergence of
(u)$2, to u are classical; in the smooth setting, the BDF1 and BDF2 method
are convergent, respectively, at first and second order in 7.

The essential ingredient to define analogues of these BDF methods for metric
gradient flows in the sense of [1] is their variational formulation: (1) and (2) are
the Euler-Lagrange equations for

d(u,v)?  d(u,w)?

d 2
d(u,v)” + F(u) and F@(u;v,w):= — + F(u),
2T T 4T

FT(l)(u; v) =

respectively, when v = u”~! and w = u”~2, that is, the iterations (1) and (2) can
be written in the form

n—1 n72)
)

(3) u” € argmin FY (™), or w” € argmin (a7 ul

respectively. Clearly, the variational functionals FT(l) and FT(Q) can be defined also
for non-smooth energies F' defined on a complete metric space (X, d). And under
the usual hypotheses, that F' be non-negative, proper, and lower semi-continuous,
the recursions (3) are well-posed in that general context.

2. MAIN RESULT

So far, we have been able to prove convergence for a particularly good class of
metric gradient flows, namely for flows that satisfy the evolutional variational
inequalities (EVI): we say that u : [0,00) — X is an EVIy-curve for F' if

() 5 d(u(t), =) + Sd(u(t),2)? < () ~ F(u(t)
holds for almost all ¢ > 0 and each “observer point” z € X. The hypotheses that
we impose on F' below imply that its gradient flow consists of EVIy-curves. The
approximation of general curves of maximal slope is left for further research.

We introduce the following notion: a functional G' on (X, d) is weirdly convex
of modulus p € R, if any ~p,v1 can be joined by an absolutely continuous curve

(¥s)se[o,1] along which the following augmented Jensen inequality holds:

G:) < (1= 5)G(h0) +sG(m) = s(1 = )d(r0.m)", 0<s<L,

For the BDF1 method, it has been shown in [1] that if there is some A € R such
that
1
;
for each sufficiently small 7 > 0 and each v € X, and if d(u?,u®) = O(7), then

the sequence of minimization problems (3) is uniquely solvable and converges with
rate O(4/7) to the unique solution u of the EVIy-flow for F. In fact, under mild

FWV(-;v) s weirdly convex of modulus p{) = X\ +
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further hypotheses, the order of convergence can be improved from one-half to
one, see [1, Chapter 4]. Our own result for the BDF2 method is:

Theorem 1. Assume that there is some X\ € R such that for each sufficiently
small 7 > 0 and for arbitrary v,w € X that

9 3
Assume further that d(u2,u") = O(1) = d(ul,u’) and that limsup, _,, F(u?) < .
Then:

e the sequence of minimization problems (3) is uniquely solvable;
o the (ul})s2, converge to an absolutely continuous limit curve u : [0,00) —

X in the following sense: for each T > 0, there is a C' > 0 such that
d(ul,u(nt)) < C\/T for allnt <T;

o v is an EVIy-curve for F.

(5) FP (. v,w) s weirdly convex of modulus

We emphasize that the order of convergence that we prove is still just O(y/7).
The significant contribution is that there is some quantifiable rate for convergence
to the — possibly very non-smooth — solution to the gradient flow in the very
general context of EVI flows on metric spaces. On the other hand, if it is known
that the limiting solution has a high degree of regularity in time when considered
in another context, i.e., in a Hilbert space, then the manifold classical results on
second-order convergence of BDF2 become applicable.

The connection from hypothesis (5) to the EVI formulation (4) is easily estab-
lished. Indeed, from (5), one derives the following discrete EVI:

3 d2(u¢7z) _d2(u¢_172) 1 d2(u¢_172) _d2(u¢_272) A 2/, Mn
1( - )—1( - )+§dwﬂ”

gF@—Fmﬁ—TKﬂﬁ%EEY_(ﬂﬁ%ﬁﬁyl

In the course of the proof, we derive sufficiently strong a priori estimates on the
u? to pass to (4) in the limit 7 — 0.

3. DISCUSSION OF HYPOTHESES

Hypothesis (5) is trivially satisfied for any A-convex functional F' on a Hilbert
space X, with d being induced by the norm || -||: for the connecting curve, choose
the interpolating straight line, 75 := (1—8)y0+s71. Then f(s) := ||vs—al/* defines
a quadratic polynomial in s for any a € X with f”” = 2||71 — 70//>. This clearly
implies that the difference of the metric terms in r? (vs; v, w) gives a contribution
that is convex of modulus 2|1 — 7o ||%.

The main application that we have in mind is that of A-displacement convex
functionals F on the L2-Wasserstein space (P2(R?), W3). This includes gradient
flows of nonlinear drift-diffusion-aggregation type,

Ou=AWw")+V-(uVV)+ V- (uVIW xu),
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where m > (d—1)/d, and V, W € C%(R%) are such that their Hessians are uniformly
bounded from below. Given 7g,7v1,v, w € P2(R?), one defines 7, as the generalized
geodesic from 7o to 71 with base point v. That is, let t°, ¢! be optimal maps in
70 = tY4v and 1 = t' 4, respectively, and define vs := ((1 — s)t° + st)yv. It
then follows that g(s) := W3(vs,v) is a quadratic polynomial in s, with ¢” = G :=
[1t°(x) — t'(2)|?> dv(z) > WZ(v0,7). On the other hand, h(s) := WZ(ys,w) is
not a quadratic polynomial in general, but satisfies the concavity inequality [1,
Proposition 3.9.12]

h(s) > (1 — $)h(0) + sh(1) — %5(1 _s).

In summary, the metric terms in r? (vs; v, w) give a contribution that is convex of
modulus %G > %Wf (71,70). Finally, since we assumed that F' is A-displacement
convex, s — F'(v,) is convex of modulus AG. This verifies (5).
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From discrete Moran-Wright-Fisher processes to continuous Kimura
equations by optimal transport

LEONARD MONSAINGEON
(joint work with Fabio Chalub, Ana Ribeiro & Max Souza)

In this ongoing work, we establish a new connection between discrete Moran-
Wright-Fisher-type Markov processes (birth/death) and continuous Kimura diffu-
sion equations, modeling for instance genetic drift and natural selection in popu-
lation dynamics. Both models share a particular degeneracy: while in the discrete
Markov setting two absorbing states exist, the continuous PDE features implicit
absorbing boundary conditions. More precisely, considering a population of N
individuals with probability p; of finding ¢ individuals with allele A (thus N — ¢
with allele B), the discrete model reads
d
; (1),

(MWF) — =K p(t

for some particular stochastic kernel K of the Moran-Wright-Fisher type. Two
particular absorbing steady-states eg, ey correspond to genetically homogeneous
populations (only one allele A/B persists). At the continuous level, the fraction
of allele A within the population is denoted by z € [0, 1], and the neutral Kimura
equation reads

(K) op = 02 (F(x)p), t>0,zel0,1].

P = (p()a"'?pN)
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Here F'(x) is a positive function encoding the transition probabilities and vanishes
on the boundaries F'(0) = F(1) = 0, typically F'(z) = (1 — z). The diffusion in
(MWF) therefore degenerates at the boundaries, and x = 0, 1 are again absorbing
states corresponding to purely homogeneous population. The problem is thus
implicitly supplemented with absorbing boundary conditions, one must consider
measure-valued solutions with boundary Dirac singularities

p(t,x) = a(t)do(x) + p(t, x)dx + b(t)d1 (),

and two additional conservation laws must be imposed in order for the problem
to be well-posed [1].
On the one hand, the convergence

p(t) — p(t,x) weakly as N — oo

in the limit of large population and in some appropriate sense was proved by
Chalub and Souza [1]. The discrete absorbing states i = 0, N naturally become
absorbing boundary conditions at x = 0,1 in this limit.

On the other hand, the optimal transport theory and associate discrete and con-
tinuous Wasserstein metric structures allow to interpret some diffusion problems
as Wasserstein gradient flows [3, 4]. For the biologically relevant Moran-Wright-
Fisher kernel K = (K;) and Kimura diffusion F(x), both (MWF) and (K) look
very much like such Wasserstein gradient flows in the space of discrete/continuous
probability measures, respectively. However, the absorbing states and boundary
conditions prevent from applying the classical theory due to singularity issues,
and neither (MWF') nor (K) can be directly interpreted as gradient flows. Instead,
we show that the internal components (i-e (p;)1...n for the discrete Markov chain
or the absolutely continuous part p(t,z) for the PDE) can be suitably rescaled
in time with respect to some natural quasi-stationary distributions, and that the
rescaled dynamics can be seen respectively as discrete and continuous Wasserstein
gradient flows. In the rescaled g variable the driving functionals turn out to be
the Boltzmann-Shannon-Gibbs entropy,

N
vlamy) =3 Lo ()
1’L

ialm) = [ 210 (52) arn(o

for the continuous case, where wy = (7;);=1...nv and w(z) are corresponding sta-
tionary measures. Furthermore, as N — oo, clearly Hy(.|wn) — H(.|7) at least
in the sense of Gamma-convergence, and the discrete Wasserstein distance Wy
converges to the continuous Wasserstein distance YW as N — oo [2].

To summarize, our contribution is twofold: first, we show that the discrete and
continuous dynamics enjoy similar variational structures, respectively induced by
discrete and continuous optimal transport after quasi-stationary rescaling. Second,

for the discrete case and



Variational Methods for Evolution 31

the two variational structures are compatible with each other (in the sense of I'-
convergence of gradient-flows), since the driving functionals and metric structures
also converge in the large population limit.
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Instabilities and oscillations in coagulation equations
BARBARA NIETHAMMER
(joint work with M. Bonacini, M. Herrmann, J.J.L. Veldzquez)

We consider the coagulation equation

3 oo
(1) Bf(t,€) = L / K(€—n.m)f(te—n)f(t,n) dn — F(£,€) / K(€n)f(t.n) dn.,

where f(t,£) denotes the number density of clusters of size £ € (0,00) at time
t > 0. It describes the formation of larger clusters by binary coagulation of
smaller ones. The microscopic details of the coagulation process are subsumed
into the rate kernel K, which is typically homogeneous. It is well-known that for
kernels of homogeneity larger than one gelation occurs, that is the loss of mass at
finite time, while otherwise solutions conserve the mass if it is initially finite. A
topic of particular interest in this latter case is whether the large-time behaviour
is described by self-similar solutions. While this issue is well-understood for the
constant and the additive kernel, for other kernels only few results are available.
In the case of kernels with homogeneity strictly smaller than one, existence results
for self-similar solutions have been established for a large class of kernels, while
uniqueness and convergence to self-similar form has only recently been proved for
some special cases [2].

In the case of kernels with homogeneity one, it turns out that one needs to
distinguish two cases. In the first case, called class II kernels by Van Dongen and
Ernst, one has K(£,1) = ¢g > 0 as £ — 0, as for example for the solvable additive
kernel K (&,n) = £+mn. On the other hand, kernels that satisfy lim¢ o K(£,1) =0,
are called class-I kernels. In order to explain more details and the difference
between the two cases it is useful to rewrite (1) in conservative form, that is as

I3 0o
(2) a0 (¢f) +5’5(/0 g K(n, p)nf(n)f(p) dpdn) =0.
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With the change of variables ¢ = e* and u(t,r) = £2f(t,£) equation (2) becomes
@ ot =0 ([ | dz K (e, Dult,y)ult, 2))
— z+In(l—ev—7)

Notice also that [ _&f(t,€)dé = [; u(t, z) dz. Hence, mass conserving solutions to
(1) correspond to nonnegative integrable solutions of (3) with conserved L!-norm.

Equation (3) suggests to look for special solution of the form u(¢, x) = G(x—bt),
which leads to the task of finding b € R, and a nonnegative function G satisfying

0 e’}
(4) bG(z) = / /1 L KNG )6 ) dedy

In fact, such special traveling wave type solutions correspond to self-similar solu-
tions in the {-variable. We first notice that (4) has a nontrivial constant solution
co > 0 only if the integral f_ooo flfle_ey) K(e¥~%,1)dzdy is finite. This is the case
for class I kernels, but not for class II kernels. In fact, for class I kernels the only
consistent behaviour of solutions G of (4) is imG(z) — ¢y as * — —o0. As a
consequence, there can in this case be no nonnegative solutions to (4) with finite
mass.

In the case of class II kernels we can expect that a family of solutions exist,

just as for the additive kernel. There it is known that for any b > 2 there exists
a solution Gy, with M = 1, such that Gy(x) ~ e ?* with b = % for b > 2 and

Ga(z) ~ e 2¢ . In [1] we provide the first existence results of solutions to (4)
for nonsolvable kernels. Under the assumption that K is continuous, symmetric,
homogeneous of degree one and with the asymptotics K(&,1) ~ 1+ €% for some
p € R and « € (0,1) we prove the following: for any sufficiently large b there exists
a solution with decay Gp(x) ~ e P, where also b = ﬂpl. If B > 0, then there
is no nonnegative solution for b sufficiently close to one. However, based on the
insights gained in the proof of the latter result, we also conjecture that if g < 0,
then there exists a solution for any b > 1 (with some specific asymptotics in the
limit case b =1).

We now return to class I kernels where we have seen that no nonnegative trav-
eling wave solution with finite mass can exist. To get an idea what happens in
the long-time limit of solutions with finite mass we consider the rescaled function
ue(7,%) = Lu(%, L), where 0 < e < 1, and find

(5)
Orue(T,%) = —3 82 / / %, 1) e (7, T4y )ue (7, 2+2) dz dy)
eln 1-— ea

~ —co0z <u€(7' ) )

with ¢y = f_oo ﬁi?l—ey) K(ey_z, 1) dydz < oco. Hence, we conclude that u. ap-
proximately solves the Burgers equation. Recall that for integrable nonnegative
data with mass M the solutions to the Burgers equation d;u+ 0, (uz) = 0 converge
in the long-time limit to an N-wave with the same mass, i.e. u(t,z) ~ %N(l‘/\/%)
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with N(x) = %X[o,zx/ﬁ]' On the other hand, if one starts with data such that

up(r) — u—_op > 0 as x — —o0, the solution converges to a traveling wave with
height u_,, and related speed. In order to investigate, whether the long-time
behaviour of solutions to (3) is indeed similar as for the Burgers equation we
performed in [3] numerical simulations of (3) for a family of kernels

(6) Ko(&n) =ca(§+n)' 2", a>0

with a suitable normalization constant ¢, > 0. Figure 1 shows the simulations for
two values of « for smooth initial data with compact support. We see that solutions

time=7., a=2.0 time=36., a=2.0 time=72., a=2.0
0.16 0.08 0.05
0.00; 0.00 t  0.00
0 30 60 0 30 60 0 30 60
time=29., a=0.6 time=72., a=0.6 time=289., a=0.6
0.12 0.08 0.03|
0.00; 0.00 t  0.00
0 60 120 0 60 120 0 60 120

FIGURE 1. Convergence to the N-wave for « = 2 (top), and o =
0.6 (bottom).

indeed converge to an N-wave in the long-time limit, but that the transition at
the shock front is oscillatory, with oscillations becoming stronger when a becomes
smaller. One expects that the transition at the shock front is given by a rescaled
traveling wave profile and simulations of (3) for Riemann data (see Figure 2)
indeed confirm that the traveling wave profiles are oscillatory for small . In
[4] we construct by formal matched asymptotic expansions such traveling wave
solutions for sufficiently small a.

a=21.0 a=2.00 a=0.01
1.0 1.2 2.6

FI1GURE 2. Shape of traveling wave for different values of «.

We also perform in [3] a linear stability analysis of the constant solution. It
turns out that, surprisingly, for a > s+ ~ 35 the constant solution is unstable,
whereas for smaller « it is stable. This observation gives rise to the conjecture,
that also the N-wave and the traveling wave are unstable for the same range of
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a. Correspondingly we also expect that for large «, and more generally for other
kernels that concentrate near the diagonal, that the long-time behaviour is not
universal, and no convergence to a specific profile takes place.
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Is there a structure-embodying variational principle for
nonequilibrium thermodynamics?

HANS CHRISTIAN OTTINGER

The complete structure of Hamiltonian dynamics is embodied in a variational
principle, known as Hamilton’s principle (principle of stationary or least action).
In particular, this variational principle embodies the Poisson bracket structure
and can be used to construct symplectic integrators as the stationary points of
a discrete action obtained from a discrete Lagrangian [6]. The existence of this
variational principle relies on variational self-adjointness, which is deeply related to
symplectic structure [13]. The construction of the Lagrangian involves the inverse
of the symplectic matrix so that the existence of a variational principle seems to
be restricted to nondegenerate Poisson brackets.

Hamiltonian structure is the hallmark of reversible dynamics. In nonequilib-
rium thermodynamics, we are interested in the combination of reversible and ir-
reversible dynamics, where a fairly abstract, geometric formulation is given by
the GENERIC framework (general equation for the nonequilibrium reversible-
irreversible coupling) [5, 12, 10]. Among mathematicians, this structure is also
known as metriplectic [8, 9]. Important open questions are: Is there a variational
principle that embodies the complete GENERIC structure? Could such a varia-
tional principle be used to construct structure-preserving GENERIC integrators
[11]?

In GENERIC, the reversible contribution to dynamics possesses a Hamiltonian
structure with degenerate Poisson bracket; degeneracy is essential because it allows
for the existence of an entropy that is conserved under reversible dynamics. The
irreversible contribution to dynamics is associated with a gradient flow, for which
there exist several mathematical formulations [1]. In particular, gradient flows
can be associated with dissipation potentials and a variational principle. The full
dynamics can alternatively be characterized by contact Hamiltonian dynamics in
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a larger space in which the physical states are characterized by a contact form
[5, 3, 7, 4, 2], where the contact Hamiltonian is given in terms of the entropy
production. Legendre transformations are to contact Hamiltonian dynamics what
canonical transformations are to Hamiltonian dynamics.

Hamiltonian flows focus on reversible dynamics, contact Hamiltonian flows focus
on irreversible dynamics. Both of them are associated with variational principles.
What is missing is a single variational principle embodying all the elements of
the GENERIC structure. From a more practical perspective, what is missing
is a GENERIC integrator that preserves all the structural elements of combined
reversible and irreversible dynamics in numerical time integration.
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Brakke - de Giorgi - Osher
FeLix OTTO
(joint work with Tim Laux)

Formally, the evolution of the boundary ¥ of a set Q C R? by its mean curvature
H, meaning that we have for the normal velocity 2V = H (the factor of two is
convenient for later), is a gradient flow of the surface energy £ = HI"1(X) =
[ IVx| (where x is the characteristic function of Q) wrt to the 2 x L?(X) inner
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product. This follows from the fact that the first (inner) variation of the area
functional wrt to a test vector field £ is given by

(1) 5E(x,5>:/ZHu-§=/Evm"-5=/(V-5—V-D£u>!w,

dVx
Vx|

In view of this gradient flow structure of mean curvature flow (MCF), it is
natural to study a minimizing movements (MM) scheme (with time-step size h),

1€

where in the last expression, v is the measure-theoretic normal

X" minimizes %CF (6 x™H + B(x).
Since the induced distance degenerates (Michor&Mumford ‘06, see [1] for the pre-
cise references), Almgren&Taylor&Wang introduced in 93 the proxy d?(x,x°)
= 4 [, 1o dist(-,29), and Luckhaus&Sturzenhecker established in ‘95 a conver-
gence result for the piecewise constant interpolation xp of {x"}, in time, under
the assumptions that (for a subsequence h | 0)

(2) xn — xin L' and //|VXh|dt—>//|Vx|dt,

where the second assumption, as opposed to the first, does not follow from the

natural a priori estimates and makes the convergence result a conditional one.
However, it is not known whether this limit satisfies the dissipation inequality

42HI1(2) + [ H*> <0, which in view of (1) can be weakly encoded by

@ 5[V [(7e—vpenwd -5 [ v <o

distributionally in ¢ for all test vector fields &.

In this talk based on [2], we show that a computationally highly efficient and
robust scheme, the thresholding scheme introduced by Merriman&Bence&Osher
in ‘92, produces limits that satisfy even all localized versions of (3), cf (5), which
actually characterizes MCF as pointed out by Brakke in ‘78. In doing so, we
use the tools introduced by de Giorgi for MM in metric spaces, as presented by
Ambrosio-Gigli-Savaré ‘04.

The thresholding scheme proceeds in two steps: First, the characteristic func-
tion x"1 is convolved by the centered Gaussian of variance h, ie Gp(z) :=

2
\/217r—h exp(—%). Second, x" is the characteristic function of the set where this

convolution is larger than %:
1
(4) X" u™ = G T e X = T (U > 5)

This scheme clearly preserves the comparison principle and thus its limits have
been shown to satisfy MCF in the sense of viscosity solutions (Evans ‘92, Barles
& Georgelin ‘93). Its main practical interest lies in its easy extension to the multi-
phase case, which we can treat by the very same analysis.
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The localized dissipation inequality takes the form of 42 [ ¢ + [,(CH? + V(-
vH) < 0 for any test function ¢ > 0. Brakke observed that this family of inequal-
ities characterizes a smooth solution of MCEF, and used it to introduce a weak
notion of solution based on varifolds. On our BV -level, this takes the form of

& [avd+ [ -v-DcemIva - 5 [ cte-»219n
@ + [(ac—v-D)vy <0

distributionally in ¢, for all test vector fields £ and test functions ¢ > 0.
It was observed in Esedoglu&O. ‘15 that thresholding can be interpreted as a
minimizing movement scheme. Indeed, (4) is equivalent to

1

- (0,0 Y) + Ea(v),

(6) X" minimizes among all v = v(x) € [0, 1]
where Ej,(v) := ﬁ J(1 = v)Gp, * v T-converges to ¢y [ |Vx| (wrt to underlying
L'-convergence with the understanding that the value is +oo if the limit is not
a {0,1}-valued function of bdd variation), and where the distance function is
given by 1d3 (v, w) := \/Ef(G% * (v —w))?. Tt is this variational interpretation
that allowed for an extension of thresholding to the multi-phase case with surface
tensions that depend on the phases they separate. It also allowed for the first
convergence result to a BV-type solution in the multi-phase case [1], however
conditional like Luckhaus&Sturzenhecker, namely under condition (7). The result
of this talk is

Theorem. Let x° = x%(z) € {0,1} be st [|Vx"| < co. Suppose that for a
subsequence h | 0 we have the analogue of (2), that is,

(7) xn — x in L' and /Eh(Xh)dt — /co/|Vx|dt.

Then y satisfies (5).
The proof relies on the fact that next to (6), thresholding satisfies a MM prin-
ciple for every localizing (test) function ¢ > 0:

1 -

X" minimizes ZhJi(v,x”_l) + En(v, X",

where 1d?(v,w) = \/EfC(G% x (v — w))? is the localization of 1d?(v,w) but
En(-,x™ 1) is a perturbed (next to localized) version of Ej:
Bu(w.) = 7 [ (61~ 0)Gn
v,X) == —= - v
r\U, X \/E h
+ (v =[G GrH](1 = x) + (v = X)[¢, G H]Gy * (v = x)).
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This MM principle allows to appeal to de Giorgi’s tools for MM, yielding a discrete
version of the dissipation inequality in form of

En(xX™, X" = Ex(x™ 1, ")

1 _ B n 1 ’I’Lh - .
+ S|0ER (- x"HIP(X™) + —/ OB (- X" (un(t))dt <0,
2 2h (n—=1)h

where |0F|(v) := limsup,,_,, %

E and up((n — 1)h + 7) := argmin(5=d*(v, x" ') + E(v)) denotes the variational
interpolation of "~ and x™ in a MM scheme for metric d and functional E.

Thanks to these tools, the proof is essentially soft and relies on the following
ingredients. The metric slope is bounded by below by the first variation:

SIOERCOR () 2 8B 0(0.€) = VR [ Gy (€ Vo))

denotes the metric slope of a functional

For the first variation, the relation of Ej, to Ej simplifies asymptotically

[6En (- x)(0,€) — 6En (v, CE)| < Ch M |

where C' is a generic constant only depending on ¢ and §. The increments of
Ep(v,x) in x are related to the first variation of the squared metric d3:

‘ dh(U7X)

h
which has to be combined with the Euler-Lagrange equation for (6). Elementary
arguments show

(B0, X) — Baw,0)) + 5603 ()0, )] < (3 (3

p=1

)P + b2 En(x)),

S

0B, (v,€) — %/Dg : (1 — 0)(Grid — hD2Gy,) * v| < Ch? By (v),

|\/E/§(G% «(€-Vv))? — % /g§®§ : (1 —)hD?Gy, * v| < Ch By (v),

so that the result relies on the assumption (7) only in the form that v — y in L!
with [(1 —v)Gp * v — ¢o [ |Vx| implies

%/(C(l—v)Gh*v%—az(1—v)h2D2Gh*v) —>co/(C—{—V-UV)]VX].
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A blob method for diffusion
FRANCESCO SAVERIO PATACCHINI
(joint work with José Antonio Carrillo, Katy Craig)

For a range of partial differential equations (PDEs), from the heat and porous
medium equations to the Fokker—Planck and Keller—Segel equations, solutions
can be characterized as gradient flows with respect to the quadratic Wasserstein
distance. In particular, solutions to the PDE

(1) o=V - (pVV)+V - (VW % p) + Ap™
confinement interaction diffusion

where V: R - R, W: R? — R, m > 1, and p is a curve in the space of probability
measures, are formally Wasserstein gradient flows of the energy

(2)
Jga plogp, m=1,p < LY,

E(P) = Vi + & foa W # pipt F(p), F(p)=4 fra 5. m > 1p < L2,
400 otherwise,

where £? is d-dimensional Lebesgue measure. This implies solutions p of (1) satisfy

(3) Oup = — V& (p),
for a generalized notion of gradient Vyy,, which is formally given by
(4) VwaB(p) = =V (pVEE).

where € /dp is the first variation density of € at p. The theory of Wasserstein
gradient flows has inspired new numerical methods, with a common goal of main-
taining the gradient flow structure at the discrete level, albeit in different ways.
One common strategy for preserving the gradient flow structure at the discrete
level is to leverage the variational scheme introduced in [9] by working with differ-
ent discretizations of the space of Lagrangian maps [11], by reconstructing Dirac
masses over nonoverlapping balls [5, 4], or by making use of convex analysis and
computational geometry [1], amongst many others.

Here we develop a deterministic particle method for Wasserstein gradient flows.
The simplest particle method for (1), in the absence of diffusion, consists first in
discretizing the initial datum pg as a finite sum of Dirac masses, i.e.,

(5) po = 10(])\[ = Zii]_ mi51‘m T € Rd; my > O;

where d,, is the Dirac mass centered at z; € R?. Without diffusion and provided
sufficient regularity of V and W, the solution p?V of (1) with initial datum p’
remains a sum of Dirac masses at all times ¢, so that

(6) PN () = S mib, e,
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and solving (1) reduces to solving the system of ordinary differential equations
N

(7) T; = —VV(.CCi)—ZmJ'VW(.%’i—.Tj), 7 € {1,,N}
j=1

The particle solution p~ is the Wasserstein gradient flow of the energy (2) with
initial datum pY’, so in particular the energy decreases in time along this discrete
solution. This simple particle method converges to exact solutions of (1) under
suitable assumptions on V and W, as has been shown in the mean-field limit sense
(2, 3, 8]. In [6] the authors derive a blob method for the aggregation equation with
improved rates of convergence to exact solutions for singular interaction potentials
W by convolving W with a mollifier. When diffusion is present in equation (1), the
fundamental assumption underlying basic particle methods breaks down: particles
do not remain particles, that is, the solution to (1) is not of the form (6). One
way to circumvent this is by introducing a suitable regularization of the flux of
the continuity equation [7, 12, 10]; the main disadvantage of this approach is that,
with the exception of the case m = 2, the gradient flow structure is not preserved.

The goal here is to introduce a new deterministic particle method for PDEs of
the form (1) that respects the problem’s underlying gradient flow structure and
naturally extends to all dimensions. We follow an approach analogous to that
found in [6] for the aggregation equation and regularize the associated internal
energy F™. For a mollifier p.(x) = p(x/c)/e?, x € RY, € > 0, we define

Jralog(we x p)dp  for m =1,

fRdep for m > 1.

m—1

(8) Fp) =

As e — 0, we prove that {F"}. I'-converges to F™ for all m > 1. In the presence
of a confining drift or interaction potential, so that minimizers exist, we also show
that minimizers converge to minimizers. For m > 2 and semiconvex potentials
V,W € C?(R%), we show that the gradient flows of the regularized energies £™
are well-posed and are characterized by solutions to the PDE

Op =V - [(VV + VW x p)p]
+ V- [p (Ve x (0= % p)™2p) + (@e * p)™ (Ve % p))] -

Under sufficient regularity conditions, we prove that solutions of the regularized
gradient flows converge to solutions of (1) using the strategy in [13]. When m = 2
and the initial datum has bounded entropy, we show that these regularity condi-
tions automatically hold, thus generalizing Lions and Mas-Gallic’s result for the
porous medium equation on bounded domains to (1) on all of R?. For this reg-
ularization particles do remain particles, and consequently our numerical method
consists of taking a particle approximation for (9). We show that, under sufficient
regularity conditions, our particle solutions converge to exact solutions of (1).

A key advantage of our approach is that, by regularizing the energy functional
and not the flux, we preserve the problem’s gradient flow structure. Further ad-
vantages include the ease with which our method may be combined with particle

(9)
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methods for interaction and confinement potentials, its simplicity in any dimen-
sion, and the good numerical performance we observe for a wide choice of po-
tentials; also, at least when m = 2, our regularization can be interpreted as an
approximation of the porous medium equation by a nonlocal interaction potential,

We give several numerical results, in one and two dimensions, analyzing the
rate of convergence with respect to the 2-Wasserstein metric, L'-norm, and L>°-
norm and illustrating qualitative properties of the method, such as asymptotic
behavior of the Fokker—Planck equation and mass criticality of the Keller—Segel
equation. In particular, for the heat and porous medium equations (V =W = 0,
m = 1,2,3), we observe that the 2-Wasserstein error depends linearly on the grid
spacing h ~ N~1/? for m = 1,2,3, while the L'-norm depends quadratically on
the grid spacing for m = 1,2 and superlinearly for m = 3. We conduct a detailed
numerical study of equations of Keller—Segel type, including a one-dimensional
variant (V = 0, W = 2xlog|-|,x > 0,m = 1,2) and the classical two-dimensional
version (V =0, W = A~! m = 1); we show that the well-known mass criticality of
these equations is present in our numerical solutions and demonstrate convergence
of the critical mass as the grid spacing h and regularization e are refined.
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A variational principle for the incompressible Navier-Stokes system
ULISSE STEFANELLI
(joint work with Michael Ortiz and Bernd Schmidt)

The incompressible Navier-Stokes system
(1) ur+u-Vu—vAu+Vp=0, divu=0

describes the flow velocity u : Q x (0,00) — © € R? and the pressure per unit
density p : Q x (0,00) — R of a viscous fluid with kinetic viscosity v > 0, and
we use the notation u - Vu = 23:1 u;j0y,u. We assume the container Q to be
Lipschitz and bounded and impose no-slip boundary conditions (v = 0 at 0f2).
System (1) can be classically reformulated in a weak form by letting H and V
to be the closure of {u € C®(;R3) | dive = 0} in L*(;R3) and Hi(Q;R3),
respectively, defining the operators A, B : V — V' (dual of V) as

<Au,v>:/Vu:Vvda:, <B(u),v>:—/(u®u):divvda¢ Yu, v eV
Q Q

(where (-,-) stands for the duality pairing between V' and V and : denotes the
standard contraction) and asking for

ut + B(u) + vAu =0 in V' for a.e. t > 0.
A trajectory u € L2 (0,00;V) with uy € L{ _(0,00;V’) and u(-,0) = ug € H

loc loc
(given) is called Leray-Hopf solution of (1). Such solutions exist in L>°(0,7; H)
and are weakly continuous in H, so that the initial condition makes sense [18].
We propose a new variational approach to Leray-Hopf solutions. This consists

in minimizing the functionals

o 1
IF(u) = / / e e Zlup 4+ u- Vul? + g|u - Vu|* + 1|Vu|2 dz dt
0o Ja 2 2 2¢
on the set of admissible trajectories

We = {ve L% (0,00;V) | vg, u-Vu € LE (0,00, H),v(0) = uf}.

loc

Here, ¢ > 0 is a small parameter, bound to converge to 0, and ¢ > 1/8 is a
stabilization parameter. The approximating initial values ui € V are chosen in
such a way that u§ — wo in H and ||[Vu§||7. + ¢l|uf - Vu§|7. < Ce! for some
C > 0.

The relation between the minimization of I and the Navier-Stokes system (1)
is revealed by formally computing the Euler-Lagrange equation for I¢, namely

(2) O0=wu+u-Vu—vAu+Vp
—e(ur +u-Vu)y —ediv((us +u - Vu) ® u)
+eVu (ug +u- Vu) — eodiv((u - Vu) @ u) + eoVau' (u- Vu)

so that one recovers (1) by formally taking ¢ — 0. In fact, this program can be
made rigorous and we have the following.
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Variational principle [13|. The functional I. admits minimizers u®
in We. Up to not relabeled subsequences, u® — u weakly in L*(0,00; V)
where u is a Leray-Hopf solution of the Navier-Stokes system (1).

Note that the Euler-Lagrange equations of I¢ correspond to an elliptic-in-time
regularization of (1). An early reference in this direction is the work by Lions [10],
where however no variational structure was available.

The above variational principle falls within the general class of Weighted Inertia-
Dissipation-Energy (WIDE) principles. These provide a variational approach to
abstract evolutive systems of the form

(3) pp +0pD(p,p) + 0, E(p,t) 30

where the trajectory ¢ : (0,00) — H (Hilbert space) describes the state of the
system, p > 0, D(p, ¢) is a nonnegative dissipation gradient, convex in the rate ¢
with D(-,0) = 0, E(¢p, t) is a possibly time-dependent energy, and 0 denotes partial
(sub)differentiation. Solutions to (3) can be recovered by finding minimizers ¢° of
the functionals

. < Py - 1 . 1
Fe)= [ (16l + D) + SEED ) d

among trajectories ¢ € HZ (0,00;H) with given initial conditions ¢(0) = ¢ and
pp(0) = ppy and by taking the limit ¢° — . This variational program has
been successfully followed in a number of different parabolic (p = 0) situations
including rate-independent processes (D(yp, -) positively 1-homogeneous) [11], gra-
dient flows (D(¢p, ) quadratic) [12, 14], and doubly nonlinear evolutions (D(¢, -)
p-homogeneous, 1 < p # 2) [1, 2]. In the dynamic case of semilinear waves (p > 0),
the validity of the principle was conjectured by De Giorgi in [6] and checked in
[15, 17]. See [8, 9, 16] for extensions to other situations and [5, 7, 4] for applications
to mechanical problems.

Let now ¢ : 2x (0, 00) — € describe the motion of the fluid. The incompressible
viscous case can be modeled by letting H = L?(2; R3) and defining

D(p.¢) = / pldev(Vp(Tip))mm

(’dev’ and ’sym’ denote respectively the deviatoric and the symmetric part of the
strain rate Vo(Vo)™1), E(p) = 0 if det Vo = 1 a.e. and E(p) = oo otherwise.
By rewriting () in Eulerian coordinates via the transformation u = ¢ o !
we obtain the functional I°(u) with o = 0.

The o-term in I° plays the role of a stabilization. It has no influence on the
limiting Navier-Stokes system (see the Euler-Lagrange equations (2)) but provides
enhanced coercivity, which is in turn instrumental to prove the compactness of the
minimizers u°. Such term is reminiscent of analogous stabilizations in computa-
tional fluid mechanics [3, 19].
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Asymptotical analysis of a weighted very fast diffusion equation
arising in quantization of measures via the JKO scheme

FILIPPO SANTAMBROGIO
(joint work with Mikaela Iacobelli, Francesco Saverio Patacchini)

The problem of quantization of a measure consists in finding the atomic measure v,
with fixed number N of atoms, best approximating in the sense of the Wasserstein
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distance, a given density f in a compact of R%: min{W, (v, f) : #spt(v) = N}.
This is equivalent to

min{/ d(x, )P f(x)dx : #X = N}.

The only unknown are the points of the support ¥ of the optimal measure, and a
classical question concerns the asymptotics when N — oo. In this case it is known
that the limit density of these points is a minimizer of the energy functional

Fo)= [ L

ol
This is a classical fact (see [7, 6, 13]), then translated into a I'-convergence state-
ment (see [4]) in [1] (a more general proof, has been established in a similar case
n [14]). See also [11] and [8].

A natural problem is to study the evolution of the points of ¥ when they follow
the steepest descent curves of the functional they minimize, and to compare it to
the gradient flow (in the Wasserstein sense) of F. Notice that the Lagrangian evo-
lution of ¥ exactly translates into a Ws-gradient flow for p. In [2, 3] a comparison
between the two is studied, essentially in 1D or in a very particular 2D case.

In this work we only concentrate on the limit equation, the gradient flow of F.
This equation reads

dx.

dip—V - (pVU'(£)) =0,

where m = f1/(@+1) and U(s) = s~® with o = p/d. The function m is usually
supposed to be bounded from below and from above, and, when needed, smooth.
This can be considered as a very fast diffusion equation (because of the negative
exponent in U, while fast diffusion corresponds to exponents between 0 and 1),
and we call it weighted because of the presence of the non-constant weight factor
m. It was already studied, with particular attention to the asymptotical behavior
when t — oo, in [9], but only in 1D.

The approach that we use is to use the so-called JKO scheme (see [10]), which
requires to iteratively solve

W3 (p, pk)
2T .
We prove some properties of the minimizers of this problem, which can be iterated
in £ and, when 7 — 0, provide properties of the solution.
In particular we are able to prove

min F'(p) +

e Upper and lower bounds. If p, < a™, then the minimizer p also satisfies
pr < a’ and, if p, > a~, we also have p > a~. This works independently
of the regularity of m.

e BV bounds. If p/m € BV and satsifies upper and lower bounds, then we
the same is true for p/m, provided logm satisfies D?(logm) < AI. More

precisely, we have
(1-a0n) [ Iv(Em < [ v

k
)Im,

Sl
S



46

Oberwolfach Report 54/2017

[1]
[2]
3]

where the constant C' > 0 depends on the upper and lower bound of p/m
(which are the same as pi/M and hence as pg/m). In particular, when
A < 0, this implies exponential convergence in BV to the steady state and,
when A > 0, implies controlled BV bounds. This result is proven via the
technique developed in [5].

e Instantaneous regularization. The third point evoked during the talk con-
cerns the fact that, even if the initial density pop is such that pg/m is
neither L> nor BV (just an inital summability po € L? for a suitable ¢
is required), these properties appear instantaneously, in the sense that, in
the time-continuous equation, for every ¢ > 0 the L* and the BV norm
of p/m are bounded by a negative power of ¢t. For the BV norm, this is
obtained by differentiating in time G(p) := [(p/m)?m and obtaining

] )'mef[7(Go)

Integrating in time, this proves that we have L?(H') regularity for the
function (p/m)(@=*=2)/2 This implies that, for t > 0, p;/m is H' and
hence BV, and the BV regularity is then preserved in time. For the L°°
regularity, this has to be coupled with a Moser-like iteration (see [15])
estimate, which allows to improve the summability exponent. These com-
putations can be done in the discrete JKO scheme, using the so-called flow
interchange technique (taken from [12]), but require the geodesic convexity
of G (which is true for m log-concave). Adapatations via approximation
exist anyway, even without this assumption. Another difference is that we
do not obtain instantaneous L regularization (because we cannot per-
form Moser’s iteration infinitely many times), but only on estimate on the
LP(T) norm, where lim,_,o p(7) = 4o0.
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The Hellinger-Kantorovich distance as a generalization of
optimal-transport distances to scalar reaction-diffusion problems

MATTHIAS LIERO
(joint work with Alexander Mielke, Giuseppe Savaré)

1. ENTROPY-TRANSPORT PROBLEMS

Let po € M>o(X) and p1 € M>o(Y) be nonnegative, finite Borel measures on
Polish spaces X and Y, respectively. In particular, we consider the case that ug
and pq have different total masses po(X) # p1(Y), and the theory of optimal
transport is not meaningful. However, by relaxing the marginal constraint for
transport plans and introducing a penalization in the form of entropy functionals
we arrive at the new formulation of entropy-transport problems:

(1) ET(uo, ) = inf { /X Fo(j—fg)duo+ /Y F1(j—zll)du1+ /X clr.y)dn},

where F; : R>g — Ry are lower semicontinuous and convex functions with
dom(F;)N]0, o[ # () to avoid trivial cases and ¢ : X XY — [0, oo] is a lower semicon-
tinuous cost function. The infimum runs over all transport plans n € M>o(X xY)
with marginals 7; = wén. Under reasonable assumptions, minimizers for (1) exist.

The concave transform F? (¢) = infs~0{ Fi(s) + s¢} leads to the equivalent dual
problem

(2) ET(uo.m) = sup { /X FS(d0())dpo + /Y F2 (1) dpi
do(x) + &1 (y) < () }.

Using the transformation ¢; = F?(¢;) the dual problem can be written in terms of
a linear objective functional in t; but with the nonlinear constraint Go(vo(x)) +
G1(¥1(y)) < c(z,y), where Gi(1p) = sup,..o{r¢ —rFi(1/r)}.

We can find a third equivalent formulation in terms of the marginal perspective
function, which allows us to formulate the entropy-transport problem as an optimal
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transport problem on an extended space, where a marginal constraint now has to
hold for barycentric projections.

For this, we use the Lebesgue decomposition u; = p;n; + p;- that allows us to
rewrite the integrals in (1) as a single integral with respect to 7, namely

/ [poFo(i) © iy (i) +c|dn + Fo(0)ug (X) + Fi (0)ui (V),

XxY Po P1

where (f@g)(x,y) := f(x)+g(x). Since we are dealing with a convex minimization
problem we can perform a Young measure relaxation by considering the extended
spaces X = X x [0,00[ or Y =Y x [0, 00] such that a pair (p;,n;) corresponds
to the measure 6,, ® 7;. In particular, measures A on X and Y are related to
measures ;4 on X and Y via the barycentric projection p = PN = f[o,oo[TdA(T)'
Note that 33 satisfies the scaling invariance Ty = P, where the rescaled measure
is given via A\g = (prdy)4(6A) for prdy(x,r) = (z,7/6(x)) and a positive function
6 : X — [0,00[. After in inner minimization with respect to positive functions
(xz,y) — 0(z,y), we arrive at the equivalent formulation

(3) ET(uop1) = min{ H(z,r,y,s)dA ‘ P = ,ui}

XXY

for plans A € M>o(X x Y) and with the marginal perspective function

: 0 6
H(z,ry,s)= 5I>lf(; {?“Fo (;) + sk (;) + Oc(x, y)}
Note that H(z,7,y,s) — Fo(0)r + F1(0)s for c(z,y) — oo and H(x,ry,s) <
Fy(0)r 4+ F1(0)s for every (z,7) € X, (y,s) € Y.

2. THE HELLINGER—KANTOROVICH DISTANCE

For X =Y, a special entropy-transport problem is given by the choice Fy(z) =
Fi(z) = zlogz — 2+ 1 and c(z,y) = —2log(cos(dx(x,y) A 7/2)) as it induces a
distance on the space of nonnegative, finite Borel measures, which can be seen as
an interpolation between the Hellinger-Kakutani distance and the Kantorovich—
Wasserstein distance and hence shall be called Hellinger—-Kantorovich distance HK.
Indeed, the homogeneous marginal perspective function in this case reads

(4) H(a:o,r(z),xl,r%) = 7“(2)4—7“% —2rgry cos(dx (zo, z1) Am) =: de([zo, 0], [1:1,7“1])2.

The function d¢ defines a distance on the cone space over the metric space X. The
latter is given by the quotient space Cx := (X x [0, oo[) /~ with

(5) (370,7“0) ~ (961,7“1) iff xg = ry, ro=r1 >0, orrg=1r; =0.

In particular, the associated entropy-transport problem for g, @1 consists of
computing the minimal Kantorovich-Wasserstein distance W¢ among all measures
Ao, A1 on the cone space having po and pq as barycenters. The HK distance inherits
many properties from the Kantorovich-Wasserstein distance on the cone.
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In the case X = R? the Hellinger Kantorovich distance has an equivalent
dynamical formulation in the sense of Benamou—Brenier

1
(6) HK(po,p1)* = min{/ /d [[vs]? 4+ dw?]dpsds | po—o = pto, pe=1 = i1
0 R

d
&/Js +V- (Vsﬂs) = 4ws/~55}7

where the generalized continuity equation for the velocity field v, (z) € R? and the
scalar field ws(x) € R holds in the distributional sense. In particular, the distance
is induced by the Onsager operator Kik(p){ = =V - (pVE) + 4p€, which gives rise
to gradient-flow formulations of scalar reaction-diffusion equations of type

pr=—Kw(p)DF(pr) <= p=V - (peF"(pe)Vpe) + 4peF'(p1) =0,
where F(p) = [ F(p)da is the driving functional for the evolution.

3. CONVEX FUNCTIONALS ALONG HELLINGER—KANTOROVICH GEODESICS

Similar to the case of the Kantorovich—Wasserstein distance, where geodesic curves
are induced by the geodesic curves in the underlying space X, we can find an
explicit characterization of geodesics in the Hellinger—Kantorovich space for X =
RZ: If s > pg, for s € [0,1], satisfies H(ps,, tts,) = |51—50|H (10, p11) then there
exists a dynamical plan m € Prob(C([0, 1]; €x)) such that

(i) 7 is concentrated on geodesic curves in €y,

(ii) s := (es)ym is a geodesic curve in (Prob(€x), We), where es(z) = z(s),
(iii) ps = PAs and (esy, €5, )37 € M(E€x xCx) is optimal in (3) for us, and s, .
We consider functionals on the space of nonnegative, finite Borel measures con-

sisting of an internal and potential part, i.e.

Flu) = {f F(p)dz + [ V(z)du if p = p(z)da

+00 otherwise.

Considering only the potential energy given by V : R? — R, we find that it is
geodesically A-convex iff the function (r,z) + r?V (z) is geodesically convex with
respect to the cone metric. For the internal energy part, we use that for absolutely
continuous measures p; = p;dzr a connecting Hellinger—Kantorovich geodesic curve
also has a density which is given via

Ry (¢o(x), Vo (x))?
det (DT (¢o(x), Vo (x), D2y ()))

where R and the transport map Ty are in turn given explicit in terms of an
optimal potential ¢y coming from the dual formulation in (2).

Plugging the formula for ps into the functional F and computing the second
derivative with respect to s, we find that F is geodesically 0-convex iff the function
G(r,u) = urdF(1/(u?r?)) satisfies

ps(x) = po(x)

(7)  Yu: r+~ G(r,u) is non-increasing, and (r,u)+— G(r,u) is convex.
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Note that for fixed u these are McCann’s conditions for geodesically convex func-
tionals with respect to the Kantorovich—Wasserstein distance, while for fixed r the
conditions imply convexity with respect to the Hellinger—-Kakutani distance. We
emphasize, that the joint convexity in (r,u) is an even stronger requirement.

In case of F(p) = plogp the conditions in (7) are not satisfied, hence the
associated functional is not convex with respect to the HK distance. In contrast,
F(p) = pP yields convex functionals for p > 1.
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Entropic transport, deterministic transport and large deviations
CHRISTIAN LEONARD

No effort of rigor is done in this abstract, in particular the full underlying assump-
tions of some results will be left unprecise.

Consider two spaces X and Y, a cost function ¢ : X x Y — [0,00) such that
inf ¢ = 0, two probability measures y € P(X) on X and v € P(Y) on ).

Deterministic optimal transport. We call deterministic the standard optimal
transport in order to distinguish it from the entropic optimal transport to be
introduced later. Deterministic optimal transport (DOT) consists in solving the
Monge-Kantorovich problem:

(MK) /X N c(z,y) p(drdy) — min; p e Il(u,v)

where II(p,v) := {p € P(X¥ x)Y) : px = i, py = v} is the set of all couplings of
w and v. As a result, it is known [7] that any coupling p € II(u,v) solves (MK)
if and only if there exist two functions ¢ : X — [—00,00) and ¥ : J — [—00,00)
such that

(1) @Y < ¢ everywhere,
p®Y = ¢, p-almost everywhere.

These functions are called the Kantorovich potentials and they can be chosen such
that

(2) {wx) = infpey {c(z,b) — (b)),  wEX,
Ply) = infucx {clay) —pla)}, ye.



Variational Methods for Evolution 51

Entropic optimal transport. The relative entropy of the probability measure
p with respect to the reference probability measure r is defined by

H(pl) = [ log(dp/dr) dp & 0,3
Take r> € P(X x Y) and for any € > 0, define the probability measure
r¢ = exp(—€ 'A) exp(—e tc)r® € P(X x )

where A € R is a normalizing constant. Entropic optimal transport (EOT) con-
sists in solving the Schrodinger problem of order e:

(S°) eH(p|r) — min;  p € I(p,v).
By a direct computation, eH (p|r¢) = [cdp + eH(p|r™®) + A — [ ¢dp, since by
e—
the Laplace principle: \¢ := elogfe*C/6 dr® —>0 inf ¢ = 0. This suggests that
e—

(S¢) — (MK) in some sense.

e—0
Convergence of (EOT) to (DOT). Indeed, as a general result, one can prove
that [4, 2]: T-limeyo (€H(-]r) + trigur)) = () + tm(uw), Where () (p) = 0 if
p € II(u,v) and 400 otherwise. Consequently, lim, o inf (S¢) = inf (MK) and any
limit point of the sequence (p¢) of solutions to (S€) solves (MK).

Large deviation principle. A sequence (q¢) of Borel probability measures on
some topological space Z is said to obey the large deviation principle (LDP) with
rate function J : Z — [0, oc], if for any Borel subset A C Z,

. < Tim SO AY < T C(A) <
i}lltlfAJ < lug%)nfelogq (A) < hnelisoupelogq (A) < glAf J,

where int A and cl A are the topological interior and closure of A, see [3]. A
shorthand for this LDP is

€ -1

= —e J).
q° = exp(—eJ)
Large deviations of (p°). The sequence (p) of solutions to (S€¢) satisfies the
following large deviation principle. There exist two functions ¢ : X — [—00,00)
and ¢ : ) — [—00,00) such that

-1
= — I
= exp(—e 1),

where the rate function I is given by:

(3) I(z,y) = c(x,y) — p(z) —P(y).

As a direct corollary, we recover the standard result (1) about DOT by expressing
that, as a large deviation rate function, I is nonnegative and the support of any
limit point of (p¢) is included in {I = 0}.

The proof of this LDP is based on the representation of the unique solution p¢ of
the Schrédinger problem (S€) as

pe(dzdy) = f(x)g (y) r (dzdy)
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for some measurable nonnegative functions f¢ on X and g¢ on Y, see [5] for in-
stance. Some manipulations based on this product form formula, inspired by
Mikami’s article [6], allow to obtain the equation

(4)  pldz)v(dy) = [ /X Xy % dpe] %(%y) p*(dzdy),

where the unknown is p¢, the data are p,v and r¢, and we denote: r (dz) =
r'(X € dax), r$(dy) = r(Y € dy), r¥(dz) = r*(dz | Y = y) and ry"(dy) =
re(dy | X = z), with X(z,y) = = and Y (z,y) = y the marginal projections. As
the sequence (r¢) satisfies the LDP

¢ < exp(—e lc),

el0
it follows that (r&),... also satisfy LDPs with rate functions expressed in terms
of ¢. For instance, r$ = exp(—e~ley) with cy(y) = inf, c(a,y), and ry” =
€ €

exp(—e 1c%) with ¢% () = ¢(z,y) — ¢y (y), under the assumption that r° <
r¥ ® ry°. On the other hand, since II(y,v) is compact, from any subsequence of
(p€) one can extract a subsubsequence (still denoted (p€)) such that

¢ = exp(—e 1),

pe = exp(—e 1)

for some rate function /. Plugging all these exponential estimates in the right-
hand side of (4) provides us with an LDP. It remains to identify the resulting rate
function with the rate function tsupp uxsuppr Of the left-hand side to obtain an
equation leading to (2) and (3).

JKO revisited with large deviations. This last section is based on a joint work
in progress with Johannes Zimmer. It is known since [1] that the JKO scheme of
convergence for the heat equation is related to the large deviations of the empirical
measure of a large system of independent Brownian particles. This LDP (Sanov’s
theorem) leads to the entropy minimization problem

(5) H(P|R) — min; PeP(Q): Py = po,

where R is the path measure describing a reversible Brownian motion, P € P(2)
is a probability measure on the path space (2 with initial marginal Fy. For any
time step 7 > 0, let R” be the 7-discretization of R and P7 the solution of (5)
with R replaced by R™. The I'-convergence of H(:|R") to H(-|R) as 7T tends down
to zero, together with a rewriting of H(P|R) by means of current and osmotic
actions: A and A%, allows to prove that the solution of the De Giorgi scheme
based on

J™(,v) = H(p|vol)/2 — H(v|vol)/2 +771C7 (u, v)

with C7(u,v) := inf {A®(P) + 72A4%5(P); P € P(Q) : Py = p, P, = v}, converges
to the solution of the heat equation. Note that by the Benamou-Brenier formula,
we have: lim, o C™ = W3, the squared Wasserstein distance.
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Variational convergence of EVI-flows
GIUSEPPE SAVARE
(joint work with Matteo Muratori)

Consider a complete metric space (X,d) and a lower semicontinuous functional
¢ X — (—o00,+00], with proper domain D(¢) := {z € X : ¢(z) < +o0}. The
slope of ¢ [1] is defined as
s (@) = 9(0)-
y—x d (.CL', y)

if x € D(¢) and not isolated,

0 if x € D(¢) is an isolated point,
+oo if x € D(9).

¢ is geodesically A-convex, \ € R, if for every zg, z1 € D(¢) there exists a (minimal,
constant speed) geodesic x : [0, 1] — D(¢) such that x(0) = zg, x(1) = 1,

d(x(do),x(¢1)) = [1 — Pold(x(0),x(1)) for every ¥; € [0,1],
and
H)) < (1= D)6(z0) + Do(a1) — 20(1 — ) (o, 71) for every 9 € [0,1].
A continuous curve u : [0,00) = D(¢) satisfies the Evolution Variational Inequal-

ities EVI,(¢) associated to ¢ if

%i—:d%u(t),y) + %d2(u(t),y) < ¢(y) — ¢(u(t)) for every t >0, y € D(¢),

where %—Jgg‘(t) := limsupy, | o(¢(t +h) — ¢(¢))/h is the right upper Dini derivative of
a real function (.
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DEFINITION [1, 7, 5]. The functional ¢ admits a A-gradient flow in (X,d) if there
exists a continuous semigroup Sy : D(¢) — D(¢), t > 0, satisfying the properties

Ss+t(z) = Ss(Se(x)), ltiJ%l Si(x) = So(x) =x  for every x € D(¢),

such that for every x € D(¢) the curve t — Si(x) solves EVIy(¢).

REMARK. When X is an Hilbert space and d is the distance induced by the
scalar product, a functional ¢ is geodesically A-convex if and only if = +— ¢y (x) :=
¢(x) — 5|z|? is convex. In this case, a curve u : [0,00) — D(¢) is a solution to
EVI\(¢) if and only if u is locally Lipschitz and solves the differential inclusion

(1) c(iit (t) € A(u(t)) a.e.in (0,00),

where A is the multivalued A-convex subdifferential of ¢ characterized by

AW © (&y—a)+5ly— 1P < o) - o),

or, equivalently,

A=A = 0¢y.
Since A—\I is a maximal monotone operator, Crandall-Liggett generation theorem
and Brézis regularization result [3] guarantee that for every ug € D(¢) there exists
a unique solution of (1) and ¢ admits a A-gradient flow. O

REMARK. Let (X,d,m) be a complete and separable metric-measure space sat-
isfying the exponential volume growth condition m(B,(z¢)) < AeP? for suitable
constants A, B > 0 and zp € X. (X,d, m) satisfies the Riemannian Ricci lower
curvature condition RCD(K,00), K € R, [2] if the relative entropy functional
pw— ¢(u) == [ologodm, o = du/dm, admits a K gradient flow in the Wasser-
stein Space (772( ), Wa).

We are interested to study the stability of the notion of A-gradient flow with
respect to perturbations of the functional ¢ in the variational framework of I'-
convergence.

Let us consider a sequence of extended-real functionals (¢"),en defined in the
metric space (X,d). The inferior and superior I'-limits [4] are defined by

: e he by . h
- hhnggfqb (x) = 1nf{11}lrriltréf¢ (") :x %x}—lgighhrggfén(i)gb :

I-limsup ¢" (z) = inf { limsup ¢™(z") : 2" — :1;} = limlimsup inf ",
h—00 h—00 PO p oo Bp(x)

where By (z) :={y € X : d(y,z) < p}.
We say that ¢ = T'- hm oM if ¢ =T- hm mf P =T- lim sup @™, Tt is well known

that the I'-limit ¢ can also be characterlzed by the followmg properties
s = hhmlnfqﬁh(w ) > ¢(x),
—00
VeeX 3@"),: 2" -z, ") = o).
We prove the following stability result:
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THEOREM. Let ¢", ¢, h € N be geodesically \-convex functionals in the metric
space (X,d). We suppose that for every h € N ¢" admits a X-gradient flow (SF)i>0
and that at least one of the following properties holds

(a) Recovery sequence for ¢ and |0¢|:
P-limsup ¢" = ¢, T-limsup 96" < |9¢]  on D(|0g]),
h— o0

h—o0

i.e. for every u € D(|0¢|) there exist u € D(|0¢"|) such that
=, @M (u) = gu),  limsup 9" |(u") < [06](u).
h—o0

(b) Qualified T'-convergence: T'-limsup, .. ¢" < ¢ and for every u €
D(¢), € >0 and T > 0, there exists T € (0,7) such that

liminf inf ¢" > inf ¢ —er.
e

(c) Local Yosida regularization: I'-limsup,,_, . ¢" < ¢ and for every u €
D(¢), e >0 and T > 0, there exists T € (0,7) such that

1 1
. . o h PP, > L2 T
hhnlgéf 11;1f¢ (v) + 2Td (u,v) > 11(3f o(v) + 2Td (u,v) —er
Then we have

- Existence of the limit \-flow: the functional ¢ admits a A\-gradient
ﬂO’UJ (St)tZO'
- Conwvergence of the flows: whenever 2" — x € D(¢), 2" € D(¢"),

hlim Sh(zM) =Si(x) for every t > 0.
—00

- T'-convergence for ¢" and |0¢"|: T- lim ¢" = ¢, T- lim |0¢"| =
h— o0 h— o0

|09).
The above theorem is a metric version of the corresponding result in Hilbert spaces,
due to Bénilan, Crandall, Pazy [3]. We can also prove a slightly different statement,
involving an auxiliary topology and modeled on Mosco convergence in Hilbert
spaces [6]. To this aim, let us suppose that X is endowed with a weaker Hausdorff
topology o such that

-z, 2 x yields iminf, . d(z,,y) > d(x,y) for every y € X;
- every d-bounded sequence (z"); with sup, ¢"(z") < +o0o admits a o-
converging subsequence.

We can say that ¢" converges to ¢ in the metric-Mosco sense if [1, 7]
" Lr = lim inf o (") > ¢(x),
—00
Vee X 3I(zM),: e =, ¢ (a") — o(x).
THEOREM If ¢" admits a A-flow S and converges to ¢ in the metric-Mosco sense

as h — oo, then also ¢ admits a \-flow (S¢)i>0 and the same conclusions of the
previous Theorem hold.
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Gromov-Hausdorff limit of Wasserstein spaces on point clouds
NicoLAs GARciA TRILLOS

In this talk we suggest how variational techniques for evolution can be used to
study the stability of certain data analysis procedures in the large data limit. In
particular, we present a first theoretical result that provides the basis for the study
of statistical consistency of such procedures.

Mathematically speaking, the type of evolutions we are interested in are gradient
flows in the Wasserstein space associated to a graph. The nodes of the graph are
random data points z1, ..., z, sampled from some distribution on R%; two points
are connected with an edge if their distance is smaller than a given length-scale
€ > 0 controlling data connectivity. The main question we are interested in is the
following;:

(1) How and when can one establish the stability of evolution equations defined
on geometric graphs that can be described as gradient flows in discrete
Wasserstein space, as the number of points n — oo and € — 07?7

Discrete Wasserstein spaces on graphs have been introduced independently in [1,
2, 3] as follows. Let us denote by P(X,,) the set of probability measures supported
on X,, :={x1,...,z,}. For any pg, p1 € P(X,) their discrete Wasserstein distance
is defined by

1
Wolpoupr) = int [ 5 ViCor,p)*pr(as )
0 T ij

where the inf is taken over all curves ¢t € [0, 1] — (p¢, V;), starting at pp and ending
at p1, that solve the (discrete) continuity equation

d N
Ept + divy, (p: Vi) = 0.
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Here div,, stands for the divergence operator acting on discrete vector fields (func-
tions defined on the edges of the graph) and p; is an interpolation of p; that define
a “density” on edges of the graph (e.g. interpolation with the logarithmic mean).
The above definition is motivated by the Benamu-Brenier characterization of the
Wasserstein space on Euclidean space. In [1], it is shown that the heat equa-
tion on the graph can be described as the gradient flow of the relative entropy
(with respect to the uniform measure on the graph) with respect to the discrete
Wassesrtein distance.

Our approach to answer (1) is to use the notion of I'-convergence for sequences
of gradient flows that was introduced in [4]. In our setting, the evolutions are
all defined in different metric spaces, and hence, the variational stability of the
sequence of gradient flows depends on the stability of the metric spaces in the
Gromov-Hausdorff sense. The main theoretical result that we discuss in this talk
is the following Gromov-Hausdorff convergence of Wasserstein spaces on point
clouds in a localized setting.

Theorem:(Main Theorem in [5]) Suppose X,, := {z1,...,z,} are i.i.d. sam-
ples from the uniform distribution on the d-dimensional flat torus. Suppose the
parameter € := ¢, used to construct the geometric graph is such that

1 Pa
7Og(7i)/d — 0, epy/log(ned) — 0,

where p; = 3/4 and pg = 1/d for d > 3. Then, with probability one, the discrete
Wasserstein space (P (X, ), Wy,) (appropriately rescaled) converges in the Gromov-
Hausdorff sense towards the Wasserstein space (P(T%), W), as n — oo.

This result is analogue to the work [6] where the Gromov-Hausdorff convergence
of Wasserstein spaces defined on regular grids towards the Wasserstein space at
the continuum level is established. As suggested earlier, the main motivation for
our mathematical considerations, is the analysis of data analysis procedures of
evolution type (like for example the mean shift algorithm [7]) in the large sam-
ple limit. To connect the motivating applications with the mathematical theory
described above we need to answer the following questions:

e Are there any existing machine learning algorithm for clustering or classi-
fication of evolution type, that can be directly described as gradient flows
in Wasserstein space or that can be associated to one such flow?

e Can one design relevant machine learning algorithms with a gradient flow
structure that by their very nature would inherit desirable properties and
in particular exhibit stability properties as n — co0?

Many conceptual, theoretical, and computational aspects of these questions remain
to be developed. At the mathematical level one immediate task to complete is to
extend the results in the Theorem to more general geometric settings (e.g. data
sampled from a measure supported on a manifold) and more general graph con-
structions on random data (e.g. k-NN graphs). By formulating all these questions
we hope to open and explore new research directions in mathematical analysis,
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with the intention of establishing rigorous analytical results supporting the use of
algorithms for the analysis of data.

REFERENCES

[1] J. Maas, Gradient flows of the entropy for finite Markov chains, Journal of Functional
Analysis (2011),2250-2292

[2] S. Chow, W. Wen, Y. Li and H. Zhou, Fokker-Planck equations for a free energy functional
or Markov process on a graph, Arch. Ration. Mech. Anal. (2012), 969-1008

[3] A. Mielke, Geodesic convezity of the relative entropy in reversible Markov chains , Calc.
Var. (2013) 1-31

[4] S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applica-
tions, Discrete and Continuous Dynamical Systems (2011), 1427-1451

[6] N. Garcia Trillos, Gromov-Hausdorff convergence of Wasserstein spaces on point clouds,
Preprint (2017)

[6] N. Gigli and J. Maas, Gromov-Hausdorff convergence of discrete transportation metrics,
SIAM J. Math. Anal. (2013), 879-899

[7] M. Perpifidn, A review of mean-shift algorithms for clustering, Preprint (2015)

On fluctuations in Markov chains
JOHANNES ZIMMER
(joint work with Robert L. Jack, Marcus Kaiser)

In recent years, new connections between the theory of gradient flows on the
macroscopic scale and underlying reversible Markov chains on a mesoscopic scale
have been discovered; we refer for example to the work of Maas [4]. These links
shed new light on the famous work by Onsager; in particular, the near-equilibrium
theory of Onsager has recently been extended to a more general setting [6], and it is
shown there that this leads to nonlinear evolution equations, so-called generalised
gradient flows. We argue that this setting, when cast in terms of forces and
currents (fluxes) as the classic Onsager theory, can also be extended to irreversible
Markov chains. We show this setting is natural in the sense that classic physical
quantities appear. Furthermore, an associated variational principle appears as
rate functional of a large deviation principle.

Before explaining the setting and results, we first recall elements of Onsager
theory and Macroscopic Fluctuation Theory, as the setting for Markov chains is a
natural generalisation. Let p denote state of the system; then Onsager considers
n currents j = (j¢)?_; and conjugate forces F'(p) = (F*)"_; (such that F(p) is
independent of the state p). He establishes a variational setting, which says that
the most likely current minimises

(1) ®(p,j. f) =7 = LT+ = lilT-1 = G /) + IFIL

with norm ||j||2_, := 1j7L~'j. Note that in Onsager theory, the relation be-
tween forces and fluxes is linear; for a given force F', the most likely current J,
say, satisfies J = LF. Moreover, ® is independent of p, even if we include p
as argument for later convenience. Also, without going into details, we remark
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that (1) is the integrand in a so-called rate functional of a large deviation prin-
ciple, which describes the probability of (rare) dynamical trajectories, in other
words fluctuations of macroscopic properties of physical systems. Namely, with
the choices made above, we can cast the Onsager-Machlup theory for dynamical
fluctuations [7] as follows. For some large parameter N (for example the size of
an ensemble),

(2) Prob ((ﬁé\[,jé\[)tg[o,T] ~ (pt,jt)te[o,T]) = exXp {—NI[O,T] ((Ptajt)te[O,T])}

with the rate functional

. 1 [T _
(3) I[O,T] ((pt7]t)t€[O,T]> = IO(/OO) + 9 / (I)(ptvjta F(Pt)) dt;
0

here Ij is a functional related to a given initial condition.

Macroscopic Fluctuation Theory (MFT) [1] can be seen as extension of Onsager
theory. In this setting, one considers the macroscopic description of N indistin-
guishable particles moving on a lattice Ay, in the hydrodynamic limit, i.e., in the
limit L — oo such that density converges to a number p, say. The system is
described by a local (mass) density p: A — [0,00) and local current J: A — R,
The time evolution depends on the applied force F(p): A — R¢, and one can see
that as, in Onsager theory, there is a relation between applied forces and result-
ing fluxes. As for the Onsager setting, this can be described by a large deviation
principle of the form (2)—(3), however with integrand

(4) Py (p, g, f) = %/A(j —x(0)f) - x(p) " (G — x(p)f) da.

A natural questions is: is there a similar structure on the level of Markov chains?
We answer this for Markov chains on a finite state space V', though many results
carry over to countable state spaces [3]. We denote the transition rates by ry, and
assume the stationary distribution 7 is unique, with 7(z) > 0 for all z € V. We
recall that a Markov chain is reversible if it satisfies the detailed balance condition
7(x)rgy = 7(Y)Trye, and non-reversible otherwise.

Reversible and non-reversible Markov chains exhibit distinctly different be-
haviour. For example, reversible Markov chains are typically models for equilib-
rium systems, are convenient to use in Monte Carlo algorithms, and have steady
states without persistent currents. In contrast, non-reversible Markov chains are
typically models for non-equilibrium systems, are less often used in Monte Carlo
algorithms, and have steady states with persistent currents.

Given these significant differences, it is natural to compare these two classes of
Markov chains. This might enable us to understand better how to model nonequi-
librium systems and how to design new Monte-Carlo algorithms, for example. It is
known that breaking detailed balance can accelerate convergence to equilibrium,
see for example [2] and the references therein. Yet, the structure analysed in [3]
sketched below applied to both reversible and non-reversible chains.

We recall that the free energy (Kullback-Leibler divergence) with respect to m

is F(p) :==> . p(x) log(%). As in Onsager theory and MFT, we consider forces
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and currents. Namely, the probability current is

(5) me(p) = p(x)r:r;y - p(y)ryx-
Further, we assign to each edge in E a force F' (affinity [9]) and a mobility a,

P(@)Tay
6 Foy(p) :=log ——= and a.y(p) := 21/ p(@)r2yp(y)rys-
(©) o(p) = log s o(0) = 2/ p(@)reyolu)ry
Then it follows directly from (5) and (6) that force-flux relation is nonlinear,
™) Juy(p) =z, (p) sinhi (1 Fry (9)).

Furthermore, a large deviation principle of the form (2) holds, where the rate
functional is finite for paths satisfying p; + div j; = 0, and then takes the form

(8)

T
, 1 , , N
Tio,r1 ((pt, gt )eeio,r1) = F(po) +/O 5 (W (pt,t) — (Ges F'(pr)) + ¥ (pr, F'(pt))] dt,
where ¥ and U* are Legendre duals, with
9) U*(p, F Zamy )(cosh (2 Fyy(p)) — 1),

see [b, 8, 3].

We remark that the large deviation principle (2) with a rate functional (8) is
general in the sense that it covers the Markov chain setting as well as Onsager
theory and MFT, with the only difference being that for the latter two settings
the Legendre duals ¥ and U* are quadratic functions, while there are genuinely
nonquadratic in the case of Markov chains, (9). From this observation, it imme-
diately follows that the force-flux relation is linear for Onsager theory and MFT,
but leads for Markov chains necessarily to the nonlinear relation (7).

This “thermodynamic” structure for Markov chains can provide insight in sev-
eral ways. For example, for a natural decomposition of forces in “symmetric”

« : 29 S . ()7 (y) A T(@)Tay S
and “antisymmetric” parts, F, (p) := log Z(y)w(z) and Fy, := log = (F

is the same for the adjoint process, while F'4 changes sign for the adjoint, so
F* = FS — ') the following generalised orthogonality holds

U (p, F*(p) + F) = U (p, F5(p) — F*).

Also, it is natural to conjecture that the macroscopic quadratic functionals of
Onsager theory and MFT, (1) and (4), appear in a scaling limit, where the non-
quadratic structure (9) is in the limit approximated by its quadratic Taylor ex-
pansion; this is a question for future investigation.
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Convergence analysis of time-discretization schemes for
rate-independent systems

DOROTHEE KNEES

It is well known that rate-independent systems involving nonconvex energy func-
tionals in general do not allow for time-continuous solutions even if the given data
are smooth in time. Several solution concepts are proposed to deal with these dis-
continuities, among them the meanwhile classical global energetic approach and
the more recent vanishing viscosity approach. Both approaches generate solutions
with a well characterized jump behavior. However, the solution concepts are not
equivalent. Numerical discretization schemes are needed that efficiently and re-
liably approximate directly that type of solution that one is interested in. For
instance, in the vanishing viscosity context it is reasonable to couple the viscosity
parameter with the time-step size. Other approaches rely on different versions of
local minimization or on alternate minimization strategies. The aim of this short
note is to discuss different time-discretization schemes proposed in literature with
respect to their convergence properties.

The general setting is as follows, [3]: Let Z,V be Hilbert spaces, X a Banach
space with dense and compact or continuous embeddings, i.e. Z € ¥V C X. The en-
ergy functional 7 : [0,T]x Z — R is of the type Z(t,z) = 1(Az, 2)+F(z)— ({(1), z),
where A € Lin(Z, Z*) is symmetric and Z-elliptic, F € C?(Z;[0,00)) plays the
role of a nonconvex term of lower order, is weakly continuous and satisfies some
further growth assumptions and ¢ € C([0,T];V*). The dissipation potential
R : X — [0,00) is assumed to be convex, lower semicontinuous, positively ho-
mogeneous of degree one and bounded, i.e. there exist ¢, C' > 0 such that for all
x € X we have c||z||, < R(z) < C ||z 4.
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The aim is to approximate solutions of the following doubly nonlinear inclusion:
Given zp € Z determine z : [0,7] — Z with z(0) = zp and

(1) 0 € OR(3(t)) + DLI(t, 2(1)) .

A function z : [0,T] — Z is a local solution to (1) if 0 € OR(0) + D, Z(t, 2(t)) for
almost all ¢ together with the energy-dissipation estimate
t1

(E,<) Z(t1,2(t1)) + dissr(2; [to, t1]) < Z(to, z(t0)) + NI (r, z(r))dr

to

that is valid for every 0 < to < t; < T, [7]. The dissipation along the curve z
is given by diSSR(’Z7 [07 t]) = Suppartitions (ti): of [0,t] 27{\;1 R('Z(tl) - Z(ti—l)) All
solutions discussed in the next sections belong to this class. For simplifying the
presentation we assume an equidistant partition of [0, 7] with 0 =t/ < ... <t}
NeN, 7V =T/N, ti =krN.

Global energetic solutions. Global energetic solutions are characterized by the
global stability condition Z(t, z(t)) < Z(t,v) + R(v — 2(t)) that is fulfilled for
all v € Z and t € [0,7T], together with an energy-dissipation identity, i.e. (E,<)
with equality instead of an inequality, [7]. They can be approximated by a time-
incremental (global) minimization scheme via

2(0) = z0, 2z € Argmin{ Z(tx,v) + R(v —z25_1);veZ}, 1<k N.
BV-solutions. Given ¢ > 0 and starting from the minimization scheme
. €
(2) 2k € Argmin{ Z(ty, 2) + o~ |l — ||} +R(z— 26-1); 2 € 2}

in the limit 7 — 0, ¢ — 0 and 7/¢e — 0 one obtains vanishing viscosity so-
lutions, [6]. These are a special subclass of balanced viscosity solutions (BV-
solutions). The crucial estimate for the limit analysis is a BV-estimate of the
type supy Zgzl |z — 2zk—1|| z < oo. This estimate provides a uniform bound on
the length of the discrete curves { (t,zn(t)); ¢t € [0,7]} and allows to reformu-
late the system with respect to an arc-length parameter, i.e. one considers curves
{(tn(0),2n(0)); 0 € [0,Sn] } and studies the limit in this new setting.

Definition 1. A pair (£,2) with t € WH>*((0,5),R), 2 € W1>((0,9); V)
L>=((0,8); Z) is a parametrized BV-solution with initial value 2o, if t(0) =
t(S) =T, 2(0) = 2o, t'(s) > 0, /(s) + |2’ (s)|ly, < 1, if for all o € [0, 5]

I(t(0), (o)) + /OU R(2'(5)) + |12 (s)lly, distw (=D:Z(I(s), £(s)), OR(0))ds

+/0 WZI(t(s),2(s))ds

and if t'(s) disty (=D, Z(t(s), 2(s)), OR(0)) = 0 for a.a. s € (0, S).

In general it is difficult to choose the discretization parameters €, 7 in such a
way that discrete solutions with small N already show approximately the correct
jump behavior, see the discussion in [5, 3].
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Incremental local minimization. A different way to approximate BV-solutions
was proposed in [2]. Instead of introducing a viscosity parameter, this scheme
relies on a local minimization procedure: Given h > 0,tg =0, zp € Z, for k > 1

2t € Argmin{ Z(t} |, 2)+R(z— 2} |); 2z € Z, !

th = min{tﬁ_1 +h— HzZ — ZIQL—IHW T} .

2_22—1Hy <h}

While the limit curve, a BV-solution, was characterized already in [2] it is shown
recently in [3] that the proposed scheme reaches the final time 7' after a finite
number of time-steps and that again a uniform BV -estimate is valid that provides
a uniform upper bound on the length (with respect to ||-|| ;) of the curves generated
by the pairs (¢, 2}').

Relaxed local minimization. Instead of considering strict local minimization
the authors of [1] analyze a relaxed version and obtain local solutions in the limit.
In [3] the following slightly modified version was investigated: For 1 < k < N,
t € Nand ty = kT, 210 := 211 find

Zki € Argmin{I(tk,v) + g ||U — Zk:,i—l”i + R(U — Zk;i—l) v e Z } ,

and define zx 1= 2j oo = lim;_,00 2,; (weak limit in Z). In [1], the term R(v — zx)
was used instead of our term R(v — zg;—1). It is shown in [3] that the above
scheme is well defined and that suitable interpolants of the incremental solutions
again converge (for 7 — 0 and n — o0) to BV-solutions. A discussion of the case
with a fixed n > 0 can be found in [3], as well.

Alternate minimization with a penalty term. Rate-independent systems
typically play a role in the modeling of complex material behavior like plastic-
ity or damage propagation. In the small strain regime and neglecting inertia
and visco-elastic effects one obtains models where the equation of linear elastic-
ity for determining the displacements u is coupled to a rate independent system
describing the change of the inner variable z. Alternate minimization schemes
or staggered schemes are frequently used in the computations for such systems.
Let the energy functional £ : [0,7] x U x Z2 — R be given by E(t,u,z) =
S(A(L),(Y) + F(z) — (£(t),z) and choose R : Z — [0,00) as before. Find
(u,t) : [0,T] - U x Z with 2(0) = 2o and

0=D,E(t,u(t),z(t)), 0€d:R(2(t)) + D.E(t, ult), 2(t)) .
The scheme from [3] reads with (ug,0,2k,0) := (Uk—1, 2k—1): For i > 1 determine
ug,; € Argmin{ E(tx, v, zki—1); v €U },
2 € Argmin E(ti, uri, )+ RIC = znim1) + 5 1€ = il 5 ¢ € 23,
stop if |z, — 2ki-1lly, <05 (uk, 2k) = (Ui, 2k,4) -

For 7,6 — 0, n — oo and nd — 0 suitable interpolating curves converge to
a limit that is a BV-solution with respect to z and that satisfies in addition
D.,E(t(0),u(0),2(0)) = 0. This scheme was studied for the Ambrosio-Tortorelli
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model with 7 = 0 in [4]. Visco-elastic and visco-damage terms appear in the limit
although viscous terms were not introduced into the time incremental problems.
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A variational approach to quantum master equations coupled to a
semiconductor PDE

MARKUS MITTNENZWEIG
(joint work with Markus Kantner, Thomas Koprucki, Alexander Mielke)

Quantum master equations of Lindblad type are widely used in applications to
model the dynamics of open quantum systems interacting with the environment.
They are of the form

1) b= [ H] +L()
where L(p) is )
L(p) = Z'Voz (AapAL - E{AZcAa>p})

with ~, positive. Recently it has been shown [3, 2], that Lindblad operators
L satisfying a quantum detailed balance condition also possess a gradient flow
structure with respect to the quantum free energy. More precisely, the following
holds true.

Proposition 1 (Carlen-Maas 2017, Mittnenzweig-Mielke 2017). For every finite-
dimensional Lindblad operator satisfying the GNS quantum detailed balance con-
dition, there exists an Onsager operator K(p) such that

L(p) = —K(p)DF(p)
where F(p) = tr(plogp + BHp) is the quantum free energy.
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Here, we want to focus on the application of this gradient structure to the
formulation of hybrid quantum-classical models for semiconductor quantum dots
(QD) [1]. Modern optoelectronic devices increasingly use the quantum-mechanical
properties of few quantum dots such as entanglement or non-classical correlations
which makes it necessary to use density-matrix based descriptions for the dynamics
of the QDs. On the other hand, the simulation of whole semiconductor devices
needs a more coarse-grained description of the electrons and holes, such as the
well-established reaction-drift-diffusion transport models for instance. Thus, the
necessity of a hybrid model arises, where parts of the system are modeled quantum-
mechanically and other parts classically by a semiconductor PDE. Both parts need
to interact such that a general coupled quantum-classical model reads

(2) V-V =q(p—n+C+Q(p),
(3) oy - év Gn = —R— S, (pitbmp).
1
(4) atp+ ;v 'jp =-R-— Sp (p?lpanap)a
d i

The first equation is the Poisson equation for the electrostatic potential 1. Equa-
tions (3) and (4) model the transport of the electrons and holes, where R contains
the creation and recombination of electrons and holes. The last equation gives
the dynamics of the quantum system. Note that n,p and p are coupled by the
terms S, /, and £ which model the scattering of electrons and holes from the semi-
conductor bulk into the quantum system. In the following we want to focus on
this coupling part and we want to show that the coupling terms used in [1] are of
gradient type, i.e. they are generated by a gradient structure

_Sn(p7 17[}7 nap)
_Sp(pawanvp) = —K(p,n,p)D]:(p,n,p)
L(p;h,n,p)

where F is the free energy of the coupled system. The advantage of such a varia-
tional modeling approach is that it automatically gives thermodynamically consis-
tent equations. It ensures positivity of the entropy production and preserves the
global charge of the coupled system as we shall see. Conservation of charge is a
necessary condition on every coupling from a physical point of view. The charge
of the quantum system is given by Tr(pN), where N is the charge operator.

Using Proposition 1 one can show that there exists Onsager operators such that
the following £ is a Lindblad operator satisfying detailed balance:

L(p) = —K(p, ) (log p — B(H — uN))
For every scattering process, one can now construct a corresponding Onsager op-
erator that generates it. In the case of electron scattering, it has the form

(55) =5 (o £ )
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with p being the chemical potential and

K. — ( K(p, p)OI —(DwK(p, p)N )
© —w(z)tr (NK(p, p)O)  w(a)tr (N{O)w K(p, p)N).

The notation [ refers to the position, where the argument is to be inserted and

(o = /Q w(z) f(z) dz

is the averaging of the macroscopic quantity f with respect to the coupling function
w(+). This weight w(z) is the central function that connects the density matrix
with the PDE system. The weight w is non-negative and integrates to 1. Moreover,
K is a symmetric and positive operator, so it is indeed an Onsager operator and
thus ensures positivity of the entropy production. The conservation of charge of
the coupled system also follows from the special structure of the Onsager operator.
Quantities of the PDE system such as electrostatic or chemical potential couple
to the quantum system by averaging with w. So the quantum system experiences
only a local average of the macroscopic system. Quantum-mechanical quantities
embed into the PDE by taking the trace with p and multiplication with w(x).
The quantum-mechnanical contribution Q(p) to the Poisson equation for instance
is given by
Qp) = tr(Np) - w(a).

The central point of the above variational coupling is that it suggests to average the
thermodynamic potentials and not the electron or hole densities instead, thereby
creating thermodynamically consistent equations. Please see [1] for more details
on the model as well as its application to the simulation of an electrically driven
single-photon sources.
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In between Energetic and Balanced Viscosity solutions to
rate-independent systems: the Visco-Energetic concept

RICCARDA RoOSssI
(joint work with Giuseppe Savaré)

A broad class of rate-independent systems (hereafter abbreviated as RIS) is math-
ematically modeled in terms of
- a time-dependent, driving energy functional £ : [0,7] x X — (—o0, 00],
with [0, 7] the time span during which the system is observed, and X the
space of the states of the system,
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- a dissipation functional D : X x X — [0, 00|, keeping track of the energy
dissipated by the curve u : [0,7] — X describing the system evolution.
The aim of this note is to illustrate the novel approach of Visco-Energetic (VE)
solutions to the weak solvability of RIS, and to compare it with the existing notions
of Energetic (E) and Balanced Viscosity (BV) solutions. We will confine the
discussion to the simple, yet significant case in which (X, d) is a (complete) metric
space and the dissipation D is induced by the distance d via D(u1, us2) = d(u1, u2).
First, let us give a quick overview of the E and BV concepts, referring to [1] and
the bibliography therein for all precise statements. E solutions can be constructed
by recursively solving the time-incremental minimization scheme

IM. U € Argming . (d(U2 1, U) + £, U)), n=1,...,N,,
T Ue T T

where {t?})7  is a partition of [0,7T] with (fixed) time step 7 > 0 and we set
U? := ug, the initial datum. Under suitable conditions on &, the piecewise constant

interpolants (U, ), of the discrete solutions (U?)"~, converge as 7 | 0 to an E
solution of the RIS (X, &, d), namely a curve u € BV4([0,T]; X) fulfilling

- the global stability condition
(Sq4) E(t,u(t)) < E(t,v) +d(u(t),v) for every v € X,

- the energy-dissipation balance for all ¢ € [0, T]

(Eq) E(t,u(t)) + Varg(u, [0,t]) = / & (s, u(

It can be shown that, at every point ¢ in the jump set J, of u, the left and right
limits u(t—) and u(t—|—) fulfill the jump conditions

{ E(t,u(t—)) — E(t,u(t)) = d(u(t—), u(t)),
E(t,u(t)) — E(t,u(t+)) = d(u(t), u(t+)),

which are strongly influenced by the global energy landscape. It is well known that,
because of this, E solutions driven by nonconvex energies may have to jump ‘too
early’ and ‘too long’. This fact has motivated the introduction of an alternative
weak solvability concept for the RIS (X, £, d), which can be obtained starting from
this modified time-incremental scheme, for n =1,..., N,

(1)

(M.,) U €Argmingey (dUF71,0) + —d* (U, U) + E(E.0))

Here, the wiscous correction d?>(U"~1,U) is modulated by a parameter e such
that £ 1 co. Under appropriate conditions on &, (U,)- originating from (IM, ,)
converge as 7 | 0 to a BV solution of the RIS, i.e. u € BV4([0,T]; X) fulfilling

- the local stability condition

(Stoc) IDLE|(t,u(t)) <1 foreveryt e [0,T]\ Ju,
- the ‘BV energy-dissipation’ balance for all ¢ € [0, T

(Egv) E(t,u(t)) + Vargy(u, [0,t]) = £(0,u(0)) —i—/o 0E(s,u(s))ds
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In (Epv), the total variation functional Vargq, measures the energy dissipated at
a jump point t € J,, in terms of a Finsler-type cost v(t,-, ), defined by

v(t, u(t—), u(t+)) = inf{/o 0'|(r) (IDWE|(t,9(r))V1) dr :

¥ € AC([0,1]; X), 9(0) = u(t—), (1) = u(t+)}

(2)

with [¢| and |D,£| the metric derivative of ¥ and local slope of £(t, -), respectively.
Accordingly, at every t € J,, there hold the jump conditions

{ E(t,u(t—)) — E(t,u(t)) = v(t, ult—), u(t)),

(3) E(t,u(t)) — Et,u(t+)) (t:u(t),U(H))-

=v
=v
The BV cost v(t,-,-) indeed encodes the onset of viscosity, hence of rate-depen-
dence, into the description of the system behavior at jumps. Furthermore, be-
cause of the local character of the stability condition (Sjoc), BV solutions driven
by nonconvex energies have mechanically feasible jumps. Nonetheless, a crucial
requirement underlying the whole Balanced Viscosity theory is that the energy £
complies with a chain-rule type condition, which is ultimately related to regularity
properties and unavoidably restricts the range of applicability of BV solutions.

That is why, VE solutions have been proposed in the recent [2] as an alterna-
tive solution notion. The key idea is to broaden the class of admissible viscous
corrections of the time-incremental scheme: VE solutions indeed originate in the
time-continuous limit of discrete solutions to

U” € Argming . x (AU U)+ 602N U)+E(2,U)), n=1,...,N-,

where § : X x X — [0, 00] is a general, lower semicontinuous functional. However,
we shall confine the present exposition to the simpler, but still significant, case
6(u,v) = £d?(u,v), with 1 > 0 a fized parameter, and refer to [2] for the analysis
of the general case. The time-incremental minimization scheme thus becomes

(IM,) U" € Argming .y (d(Uﬁ—l, U) + %dQ(Uf_l, U) + E(t7, U)) with z > 0.

In [2, Thm. 3.9] the discrete solutions (U;), of (IM,,) were shown to converge, as
7 1 0, to a VE solution of the RIS, i.e. u € BV4([0,T]; X) fulfilling
- the viscously perturbed, but still global, stability condition

(Sve) E(t,u(t)) < E(t,v)+d(u(t),v)+ %dz(u(t),v) Vo € X and Vt € [0,T]\ Ju,

- the energy-dissipation balance for all ¢ € [0, T]

(Evg) E(t,u(t)) + Varg c(u, [0,t]) = £(0,u(0)) + /0 0:E(s,u(s))ds.
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In (Evg), the contribution to the total variation functional Varg . at a jump point
t € J, now features the ‘“VE cost’, which also enters into the jump conditions,

c(t,u(t—), u(t+)) := inf {TrcVE(t;ﬁ,E) .E € R,9 € C(E; X),
9(inf E) = u(t—), 9(sup E) = u(t+)},

where the transition cost Treyg(t; 9, E) is given by Treyg(t; 9, E) = Varg(d, F) +
GapVary(9, E) + ZseE\ sup E R(t,9(s)) and
e since F need not be interval, it may have ‘holes’ (i.e., connected compo-
nents of [inf F,sup F] \ F) and

GapVary (¥, E) = Z gd2(19(inf I),9(supl)),
I hole of E
o the residual function R : [0, 7] x X measures the failure of the VE-stability:

R(t,u) := sup (E(t,u) —&(t,v) —d(u,v) — ﬁdz(u,v)> :
veX 2
In fact, VE solutions are in between E and BV solutions in these respects:
e the assumptions for the existence theory, weaker than for E and stronger
than for BV solutions (cf. [2, Thm. 3.9]), and the modeling of jumps;
e the singular limits ¢ | 0 and p 1 co: VE solutions converge to an E and
to a BV solution, respectively, as shown in [3];
e the range of applicability of the theory to rate-independent systems in
solid mechanics, cf. [4].
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Generalised Gradient Systems and GENERIC in Flux Space
MICHIEL RENGER

This work is largely motivated by the quest for thermodynamically consistent
structures that characterise an evolution. Since many different structures could
describe the same evolution equation, we restrict to structures that can be de-
rived naturally by statistical mechanical arguments. This fits in the philosophy of
Boltzmann, who related free energy to large deviations of a microscopic system in
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equilibrium, and Onsager, who related a gradient flow of free energy to dynamic
large deviations of a system close to equilibrium. In our previous work [1], we
related large deviations of systems satisfying detailed balance to generalised gra-
dient systems. Deriving thermodynamic structures for systems that do not satisfy
detailed balance remains the central challenge of non-equilibrium thermodynamics.

Breaking of detailed balance typically occurs due to the occurence of non-trivial
but divergence-free fluxes. It is therefore widely believed that a good understand-
ing of these fluxes are one of the missing pieces of the puzzle. This sparks the
question whether flux large deviations could induce a structure like a gradient
system or Generic [3], where the state large deviations fail to induce something
alike. This turns out to be impossible.

In a general setting, we are given a Lagrangian £ : YW — R, on a manifold W
of (integrated) fluxes, a manifold of states X and a mapping ¢ : W — X. The
corresponding Lagrangian £ : X — R, is then obtained by

1 L(p,p) = inf inf  L(w,w),
(1) (p:5) 0 L (w, )
where the relation d¢,,w = p is simply a continuity equation.
We will say that the Lagrangian £ induces a generalised gradient system (GGS)
(W, W, F) whenever one can write

L(w,w) = ¥(w,w) + ¥* (w0, —dwF (w)) + (duwF(w), W),

where F is a free energy and ¥, U* is a convex dual pair such that U(w,0) =0 =
U*(w,0). This generalises a linear gradient system, where ¥ (w, w) = 1 (w, K (w)w)
for some metric tensor K.

The first abstract result states that if the flux Lagrangian £ induces a GGS
(W, ¥, F) and F(w) = F(¢(w)) for some F, that is, the free energy depends
on the state only, then the state Lagrangian £ also induces a GGS (X ,\i/,]:").
Moreover, if for the corresponding Hamiltonian H(w,d¢; ) also depends on w
through ¢(w) only, then we can calculate ¥, U* explicitly through
() W(ew),p) =  inf W(ww) and  (¢(w),€) = ¥ (w,dgLQ).

On the other hand, if a state Lagrangian £ induces a GGS (X, 0, .7:"), then we can
always modify the flux Lagrangian by

L(w, ) = £ (w, 0+ deH(w, d6Td, F(6(w))) ).

such that £ induces a GGS (W, ¥, F) where F(w) = F(¢(w)), and we still have

L(p,s) = inf 4 (p)=p infag, j=s L(w,w).
In a similar fashion, we say that the Lagrangian £ induces a generalised Generic
system (GGEN) (W, ¥, F, L,E) whenever one can write

L(w, ) = V(w, 1w — L(w)dw&(w)) + U (w, —dpF(w)) + (dwF(w), W),

where F, € are energies, U, U* is again a convex dual pair such that ¥(w,0) =0 =
U*(w,0), L is a so-called Poisson-structure, and the following two non-interaction
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conditions are satisfied (see [2]):
U* (w, ¢ 4+ Ady&(w)) = U (w, () for all (w,() € T*W and X € R,
L(w)dyF(w) =0 for all w e W.

The second abstract result states that if the flux Lagrangian £ induces a GGEN
W, U, F.L,E) and F(w) = F(p(w)), E(w) = E((w)) for some F,E, and

(3) L(¢(w)) := dpw L(w)de,,

depends on the state ¢(w) only, then the state Lagrangian £ also induces a GGEN
(X, \i’, ]:", ﬁ, c‘f) In particular, the (3) leaves the ‘Poissonian’ structure of L intact.

A typical example is that of a system of independent Markov chains Xy (¢) with
generator matrix () on a finite state space I. The state variable is p( )( t) =
L {X(t) =i} and Wi(jn)( t),7 < j measures the total net number of jumps from
i to j in time (0, ¢], also scaled with 1/n. Now (¢(w)); = p;(0) — div; w = p;(0) —
> ; wij. The large-deviation Lagrangian is given by

(4) L(w,w) inf Z (T log
w=u—uT )Q'L]

i,5€l

— uij + ¢i(w)Qij,

where the infimum comes from a contraction over one-way fluxes u. The La-
grangian £ induces a GGS (RU<7} ¥, F) if and only Q satisfies detailed balance
w.r.t. invariant measure 7, in which case

= % Z ¢i(w)log ¢Z7§w) , and

icl v

U (w, () =2 \/¢i(w)¢j (w)Qi;Qyi ( cosh(Gy) — 1).

1<j

By result stated above, the state Lagrangian £ now also induces a GGS (X, ‘if, F ).
From (2) and (do),€)i; = Vi€ = & — &, we retrieve the GGS as found in [1]:

U*(p,&) =2 /pipjQi;Qji(cosh(&; — &) — 1).
i<j

By the above arguments one should not expect to find a gradient or Generic
system in flux space if the evolution in state space does not have such structure.
Nevertheless, there are good reasons to study flux Lagrangians. The Lagrangian
in flux space is often a simple expression, whereas the state Lagrangian may not
even have an explicit formula. More precisely, if the dynamics consists of multiple
mechanisms that drive the system, then the flux Lagrangian is a sum over these
mechanisms, whereas the state Lagrangian (1) has the form of an inf-convolution
over fluxes. In the example above, we needed to study net fluxes in order to derive
a GGS, but the corresponding Lagrangian on one-way fluxes would be simply
(4) without the infimum. Naturally, having such an explicit Lagrangian could
be very practical, e.g. when studying multiscale expansions or phase transitions.
In a sense, the different mechanisms driving a system become decoupled in flux
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space. This principle could also be useful to derive operator splitting techniques for
systems with interacting mechanisms, like for example reaction-diffusion equations.
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