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SINGULARITIES AND BIFURCATIONS OF PSEUDOSPHERICAL SURFACES

DAVID BRANDER AND FARID TARI

ABSTRACT. We study singularities and bifurcations of constant negative curvature surfaces in Eu-
clidean 3-space via their association with Lorentzian harmonic maps. This preprint presents the basic
results on this, the full proofs of which will appear in an article under preparation. We show that
the generic bifurcations in 1-parameter families of such surfaces are the Cuspidal Butterfly, Cuspidal
Lips, Cuspidal Beaks, 2/5 Cuspidal edge and Shcherbak bifurcations.

1. INTRODUCTION

This report summarizes research undertaken during a Research in Pairs visit by the authors at
Mathematisches Forschungsinstitut Oberwolfach in May 2019. More details, as well as further
results, will appear in a forthcoming publication (see [6l]).

The subject is the study of the local singularities occuring on constant negative curvature (a.k.a.
pseudospherical) surfaces in Euclidean space R3. If S is a simply connected Lorentz surface, a
(Lorentzian)-harmonic map N : § — S? into the 2-sphere is a solution of the wave map equation

(1.1) N XNy =0,

where (x,y) is any local null coordinate system. The wave map equation is equivalent to the inte-
grabity of the system

(1.2) fi=NXxN,, f,=-NxN,,
and the solution f : S — R3, unique up to a rigid motion, with the Riemannian metric induced
from R3, has constant negative curvature K = —1 wherever it is immersed, and has N as its Gauss

map. Conversely, the Gauss map of any pseudospherical surface is harmonic with respect to the
Lorentz metric given by the second fundamental form. By Hilbert’s theorem there are no complete

FIGURE 1. Example of a pseudospherical surface with singularities.

pseudospherical immersions. However, at points where f (or equivalently N), is not immersed, the
property of being Lorentzian-harmonic is well defined, even though the Gauss curvature of f is not.
Thus, this formulation, which includes singularities, is a natural generalization of pseudospherical
surfaces to global differential geometry. In this work we wish to understand the generic singularities
and the bifurcations in generic 1-parameter families of solutions.

The analogous question for constant positive curvature surfaces (associated to Riemannian har-
monic maps) was studied in [5]. In that case, the surface is always a parallel surface to a regular
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surface, and hence the well developed theory of singularities of parallel surfaces (which are wave
fronts) could be used. In contrast, a pseudospherical surface (as generalized here) may have points
where it is not a wave front, and therefore a new approach needs to be deployed to deal with such
points.

Local singularities of a pseudospherical surface f are completely determined by a certain k-jet
of f at the singular point, and consequently of the k-jet of N at that point. Suppose that a given
polynomial map P of degree k from a Lorentz surface into the 2-sphere satisfies the Lorentzian-
harmonic condition up to order k: is there a germ of a Lorentzian-harmonic map into the 2-sphere
with k-jet P? Theorem below answers this question in the affirmative. This gives us a 4k-
dimensional parameterization of the space of k-jets that allows one to define the codimension of a
singularity. This is the basis of our study of singularities and bifurcations below.

2. THE SPACE OF GERMS OF ANALYTIC LORENTZIAN-HARMONIC MAPS

Let N: Q C R!! — S? be a real analytic map and (x,y) a null coordinate system in Q. We
may suppose that O = (0,0) € Q and that N(0,0) = (0,0, 1). Locally at O we can write N(x,y) =
O (x,y)(u(x,y),v(x,y),1), with u,v analytic functions on Q vanishing at the origin, and § = (1 +
u? + vz)_%. The wave map equation N x N,, = 0 is equivalent to the following system of semi-
linear PDEs:

1
I/t_x)7

2.1 1+ uz 2 (Quuytty +v(ucvy +uyvy)) = 0,
. 1

e e (2vvevy +u(uyvy +uyvy)) = 0.
Write j"u(x,y) = Yi_, Y5 aux* 'y and j"v(x,y) = Y0, Y~ brix* 'y for the n-jets, at the ori-
gin, of u and v respectively. It follows from (2.1)) that

n k—1

n n
Juy) =Y awt+ Y aw* + Y Y Pila, b)Yy,
22) i=1 i1 (=3 =1

n n n k—1
Fvxy) =Y b + Y by + Y Y Pu(b,a)X Ty,
=1 i=1 (=3 i=1

where ay; = Pyi(a,b),1 <i < k— 1, are polynomial functions in a9, a;;, b, by, with 1 <1 < k-2,
and by; = Py(b,a).

The important aspect of the expressions (2.2) is that all of the coefficients can be deduced from
the knowledge of u, u,, v and v, along the non-characteristic curve (x,y) = (¢,#). Combined with
standard existence and uniqueness theory for PDEs, this gives a parameterization of the space of
k-jets for germs of Lorentzian-harmonic maps into S?:

Theorem 2.1. For any (aj,a;,b;,by) € R* with a; = (aio)1<i<n a2 = (aii)1<i<n, b1 = (bio)1<i<n»
and by = (bj;)1<i<n, there is a local analytic Lorentzian-harmonic map into the 2-sphere determined
by (aj,az, by, by) with n-jet as in (2.2)).

3. FRONTALS

A differentiable map g : § — R> from a surface into Euclidean space is called a frontal map and
its image a frontal if there is a differentiable map v : § — S?> C R? such that dg is orthogonal to
v (see [10] for references). The map L = (g,v) : S — R3 x S? is called a Legendrian lift, and g is
called a (wave) front if L is regular (see [2]).
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Wave fronts are well studied ([2]) and their singularities are special. They are the so-called
Legendrian singularities and are determined by generating families of functions. Basically, they are
discriminants of versal deformations of singularities of functions.

An example of a wave front is a parallel of a regular surface in the Euclidian 3-space. Sin-
gularities of parallels of a general surface g : Q — R? are studied by Bruce in [7] (see also [8]).
Bruce considered the family of distance squared functions F, : Q x R* — R given by F, ((x,y),q) =
lg(x,y) — q|> — 3. A parallel W, of g is the discriminant of 7, that is,

JF, JF,
sz{q6R3:3(x,y)Gquchthatho((x,y),q)z a;‘)((x,y),q)z ayt"((x,y),q)ZO}-

For ¢y fixed, the function F, (x,y) = Fj,(x,y,q0) gives a germ of a function at a point on the
surface. Varying g and ¢ gives a 4-parameter family of functions F'. Let % denote the group of germs
of diffeomorphisms from the plane to the plane. Then, by a transversality theorem, for a generic
surface, the possible singularities of Fy, ; are those of Z-codimension 4, and these are as follows
(with Z-models, up to a sign, in brackets): AT %+ yz), Ay (24 y3), A? (x2+ y4), As (2 + y5 ) and
Dy (v® £x%y).

If a deformation family F;, of the A3-singularity is %-versal then the parallel is a swallowtail. If
it is not %-versal then the singularities are called non-transverse Ax.

Bruce showed that F is always an Z-versal family of the Aft and A, singularities. Consequently
the parallels at such singularities are, respectively, regular surfaces or cuspidal edges. In particular,
the A,-transitions in wave fronts ([1]) do not occur on parallels of surfaces ([[7]).

Singularities of frontals which are not wave fronts are recently being studied. However, there is
so far no general theory that deals with bifurcations in families of frontals with non-isolated singu-
larities (compare [9]), unlike the wave front case where one uses generating families of functions
([2]); the difficulty being that the map (f,N) from the surface to the unit cotangent bundle Tf‘]R3 is
not necessarily an immersion. See [[L0] for a survey article, new results and references on frontals.

As mentioned in the introduction, we deal with general pseudospherical frontals by using Theo-
rem to define a map to the k-jet space of Lorentzian-harmonic map-germs and use it to define
the codimension of a singularity of the associated pseudospherical surface as well as the notion of
generic families of such surfaces.

4. PSEUDOSPHERICAL FRONTALS

The definition given by (1.2) implies that a pseudospherical surface f is a frontal with Legendrian
lift (f,N), and it is easy to check that f is a wave front if and only if both Ny and N, are non-
vanishing, or, equivalently, both f, and f, are non-vanishing.

From the equations for f, we have |fy| = |Ny|, |fy| = |Ny| and (f, fy) = —(Nx,Ny), so df
and dN have the same rank at each point. Around a regular point we can write

[l = [N =470, |/ =IN[=:B#0, (f,fy) =ABcos,

so the first fundamental form of f, with the metric induced from R3, is I = A%dx? 4+ 2ABcos ¢dxdy +
B?dy?. By the definition of f and by the harmonicity of N we have

(fo:Ne) = (fy,Ny) =0, foy =Ny XNy = f, X f, = (ABsin@)N,

so the second fundamental form of f is II = 2ABsin ¢ dxdy. Hence the null coordinates (x,y) are
asymptotic coordinates for f, and the Gaussian curvature of f is constant K = —1.

Ishikawa and Machida [L1] previously showed that swallowtails and cuspidal edges (Figure [2))
are the only generic singularities for pseudospherical wave fronts. In order to study the bifurcations
in generic 1-parameter families of such surfaces, we observe that a wave front pseudospherical
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FIGURE 2. Pseudospherical surfaces with prescribed singularities. Cuspidal edge,
swallowtail, cuspidal butterfly, cuspidal lips, cuspidal beaks.

surface f can be realised locally as a parallel of a regular surface g (in fact, the surface g is a linear
Weingarten surface). We have the following result.

Theorem 4.1. The evolution of parallels at a non-transverse A;r (cuspidal lips), non-transverse
A5 (cuspidal beaks) and A4 (cuspidal butterfly) can be realized in generic 1-parameter families of
pseudospherical surfaces; see Figure|3| These are the only bifurcations that can occur in generic
1-parameter family of pseudospherical wave fronts.

FIGURE 3. Cuspidal lips (top), cuspidal beaks (middle) and cuspidal butterfly (bot-
tom) bifurcations.

The details of the proof of Theorem [4.1] are given in [6]. The idea is as follows: the recogni-
tion criteria in [12, [13} [14] can be used to find conditions on the k-jet of N for the various types of
singularities to occur (recall that Theorem [2.1] asserts the existence of a Lorentizian harmonic map
with a given k-jet). For the realization of the generic bifurcations we established in Theorem 4.1 and
Theorem 4.2 in [3]] general geometric criteria for determining such bifurcations. The criteria depend
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on certain k-jets of the family of surfaces. We use those criteria to construct generic 1-parameter
families of Lorentzian-harmonic maps using Theorem [2.1] These give the 1-parameter families of
pseudospherical surfaces which realize the generic bifurcations of parallels at non-transverse A3i
and A4 singularities. For singularities more degenerate than these to occur requires more condi-
tions on the k-jet, and a transversality argument shows that such singularities can be avoided on
pseudospherical wave fronts.

A point where a pseudospherical frontal is not a wave front (i.e., where f, = 0 or f, = 0) is
non-generic (the map from the surface to the k-jet space of germs of Lorentzian harmonic maps is
not transverse to the relevant stratum). However, such singularities do occur in generic 1-parameter
families of pseudospherical surfaces. We prove the following results in [6].

Theorem 4.2. Suppose that N has rank I, Ny = 0 or Ny = 0 and that its singular set is regular (so
it is locally a null curve [3l]). Then generically f is locally a 2/5-cuspidal edge, i.e., it is locally
diffeomorphic to the image of the map (x,y) — (x,y*,y°). The bifurcations of f in a generic 1-
parameter family f° of pseudospherical surfaces with f° = f, are as shown in Figure 4| top row.
The singular set of f* is an ordinary 2/3 cuspidal edge for s # 0, and there is a birth of a double
point curve on the surface f° on one side of the bifurcation (s < 0 or s > 0). The singular curve in
the source is timelike on one side of the transition and spacelike on the other side.

‘7
L)
T
-

FIGURE 4. The 2/4-cuspidal edge bifurcation (top) and the Shcherbak bifurcation
(bottom).

A surface f: R?,0 — R3,0 is called a Shcherbak surface if f is equivalent, by smooth changes
of coordinates in the source and target, to the map-germ (x,y) — (x,xy* +y3, xy* + gys); see Figure
M (lower middle) and Figure 3]

Theorem 4.3. Suppose that N has rank 1 and that N, =0 or N, = 0. In generic I-parameter families
of pseudospherical surfaces f°, the singular set of f = f° can have a Morse A} -singularity, where
one of the branches is a null curve and the other is transverse to both null curves at the singular
point. Then f° is a Shcherbak surface. The deformations in the family f* as s varies near zero are
as shown in Figure d|and Figure[5| We have a birth of two swallowtail singularities on one side of
the transition and none on the other side. On the side where there are no swallowtail singularities,
we have a birth of two cusp singularities of the double point curve.

For the proofs of Theorems[.2]and[4.3] we use the induced map from the surface to the k-jet space
of germs of Lorentzian harmonic maps. We show that the map is not transverse to the relevant strata,
but that transversality holds in generic one parameter families of pseudospherical surface f°. We
then analyse the structure of the singular set and of the double point curve of the members of the
family f*.
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FIGURE 5. Shcherbak singularity bifurcation (see also Figure E) The singular sets
are the red curves. In the first image, the surface self intersection is shown by black
curves. The singular sets in the coordinate domains are shown below.

5. NUMERICS

To compute examples of solutions, we modifed the solution of the Cauchy problem for pseudo-
spherical surfaces given in [4] to find the loop group potentials that generate the unique solution to
the Cauchy problem for a harmonic map N, with N and N, prescribed along a non-characteristic
curve (x,y) = (1,1).

A boundary potential (see [4]]) for the Cauchy problem along a curve parameterized by an interval
J, is loop-algebra valued 1-form with Fourier-expansion in the loop parameter A of the form y =
Y A;(t)Aldt, where A;(t) € su(2). The corresponding solution on the set J x J is obtained with
the following steps:

(1) Solve the ODE dX = y, with X (7y) = 1.

(2) At each (x,y) € J x J perform a Birkhoff decomposition X (x) !X (y) = H_(x,y)H (x,y),
where H.(x,y,A) extends holomorphically in A to D¥ := {A € CU{e} : |AF!| < 1},
normalized so that H_ (x,y,e) = I.

(3) Themap F(x,y,A) =X (x,A)H_(x,y,A) is an extended frame for the harmonic map N(x,y) =
F(x,y,1)diag(i, —i)F (x,y, 1)~ which solves the given Cauchy problem for N : I x I — S* C
su(2) =R,

(4) The so-called Sym formula f = 3—I;F -1 ‘ 4 also gives the pseudospherical surface f corre-
sponding to N.

We implement the above procedure by approximating the Fourier expansion of a loop by a Laurent
polynomial and then solving the ODE numerically. For polynomial loops the Birkhoff decomposi-
tion is equivalent to an LU-decomposition of matrices, so all of the above steps can be implemented.

Finding a formula for the boundary potential for the Cauchy problem with N and N, prescribed
along J, allows one to easily produce examples of all of the types of singularities discussed above,
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and the images in this report were generated this way. It is also possible to give simple criteria on
the potentials that correspond to the different types of singularities. For example:

Theorem 5.1. Any pseudospherical wave front can locally be represented by the boundary potential
y(r) = (c(t)e3 +eid+ (e —|—a(t)ez)),_l) dr,

where e; are an orthonormal basis for su(2). The corresponding pseudospherical surface f has a
singularity at p = (to,ty) if and only if a(ty) = 0. At such a point, the germ of f at p is a:

(1) Cuspidal edge (A) if and only if a’ # 0.

(2) Swallowtail (A3) if and only if @’ =0, a" # 0 and ¢ # 0.

(3) Cuspidal butterfly (A4) if and only if d'(ty) = a” =0, d” # 0 and ¢ # 0.

(4) Cuspidal lips (A7) if and only if d = ¢ =0, and ¢/ (a" +¢') < 0.

(5) Cuspidal beaks (A3) if and only ifd' =c =0, " #0, and ¢'(a" +¢") > 0.

See [6] for more details of this, as well as the construction for non-wave front singularities. In
[6] we also treat the singularities of the Lorentzian harmonic map N, which we did not discuss in
this report.
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