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From Bett i numbers to `2-Bett i
numbers

Holger Kammeyer • Roman Sauer

We provide a leisurely introduction to `2-Betti num-
bers, which are topological invariants, by relating
them to their much older cousins, Betti numbers. In
the end we present an open research problem about
`2-Betti numbers.

1 A geometr ic problem

Large parts of mathematics are concerned with symmetries of various objects
of interest. In topology, classical objects of interest are surfaces, like the one
of a donut, which is also known as a torus and commonly denoted by T. An
apparent symmetry consists in the possibility of rotating T by arbitrary angles
without changing its appearance as is indicated in the following figure.
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In fact, if we follow the position of an arbitrary point on the torus while rotating
it, we notice that the point travels along a circle. Any point not contained in
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this circle moves around yet another circle parallel to the first one. All these
circles are called the orbits of the rotation action.

To say what this means in mathematical terms, let us first recall that the
(standard) circle consists of all pairs of real numbers (x, y) such that x2 +y2 = 1.
Any point (x, y) on the circle can equally be characterized by an angle α ∈ [0, 2π)
in radian, meaning by the length of the arc between the points (0, 1) and (x, y).
Now, the key observation is that the circle forms a group, which means that we
can “add” two points by adding corresponding angles, forfeiting full turns: for
example π

2 + π
4 = 3π

4 , 3π
2 + π = π

2 , π + π = 0, and so forth. 1

The geometric situation described above can now be summarized mathemati-
cally by saying that the circle acts on T: any angle α determines a transformation
of T, namely the rotation around the axis by the angle α. Under the action
of this transformation, any point z ∈ T is mapped to another point called
rα(z) ∈ T, and we have the two important relations

• rα+β(z) = rα(rβ(z)),
• r0(z) = z,

which are valid for all angles α and β and for all points z ∈ T. The action is
moreover continuous: if points z1, z2 ∈ T are close to one another, then also
the points rα(z1), rα(z2) ∈ T obtained by rotating about the central axis of an
angle α are close to each other.

Rotating around the inscribed axis is not the only circle action one can find
on T. The following picture describes another one.

The orbits of this action are given by the dashed circle and all circles parallel
to it. So one “wraps” the torus about an angle α towards the center of the hole.
Nevertheless, depending on the surface under consideration, it can be tricky to
find continuous circle actions. For example, consider the following surface:

1 For a more in-depth introduction to groups, see Snapshot 3/2018 Computing with symme-
tries by Colva M. Roney-Dougal.
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We denote it by Σ2, where the subscript two simply indicates that it has two
handles. Or, in other words, that the genus of the bitorus is two – as opposed
to the torus, whose genus is one.

Of course, one always has the trivial action defined by rα(z) = z for all α,
but that is not interesting. Other than that, we could try to wrap points toward
the holes as in the last example. But then the point left from the middle
would be transported leftwards while the point right from the middle would
be transported rightwards so that they are not close anymore after the action:
this violates the continuity condition. So it looks impossible to find a nontrivial,
continuous circle action on this surface. But of course “it looks impossible” is
not good enough in mathematics. We need proof that it is impossible.

2 Invar iants and obstruct ions

A common method in mathematics to show the non-existence of a certain
structure or property, like a circle action on a surface, is to find an invariant
that serves as an obstruction. It turns out that the famous Euler characteristic,
named after Leonhard Euler (1707–1783), is an invariant that obstructs circle
actions. To explain this, let us first mention that the Euler characteristic is
defined by means of a triangulation. A triangulation is obtained by “sprinkling”
the surface with points and then “rebuilding” it by “gluing” triangles edge by
edge, where the edges are formed by connecting the points as indicated in the
following picture.

Then the Euler characteristic χ(Σ2) of the surface is given by the formula

χ(Σ2) := V − E + F,

meaning that we count the number of vertices, subtract the number of edges,
and add the number of faces. An important observation at this point is that no
matter how the triangulation of Σ2 was chosen, this number will always be −2.
In this sense, the Euler characteristic is an invariant of the surface: it does not
change if we modify the triangulation, and it does not change if we deform the
surface, as if it was made from an elastic rubber material.

The reader is invited to convince herself that triangulating the torus T gives
χ(T) = 0. A more conceptual way of showing the same thing is to start by
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noting that T = S1 × S1, that is, the torus is topologically equivalent to the
“product” of two circles S1. We then would like to apply the product formula
χ(X × Y ) = χ(X) · χ(Y ).

Here, triangulations and the Euler characteristic can be generalized to spaces
of three dimensions and higher by using tetrahedra and their higher-dimensional
counterparts, the n-simplices ∆n. Here, the number n denotes the dimension
of the simplex, such as n = 1 for an interval, n = 2 for a triangle, and n = 3
for a tetrahedron. Again, “triangulating” a space means to rebuild it by gluing
n-simplices along their (n− 1)-dimensional facets. The formula for the Euler
characteristic of such a space X is then given by

χ(X) = V − E + F − T ± · · · ,

now also taking the number T of tetrahedra and of higher-dimensional simplices
into account. To verify the product formula, one notices that triangulations of
X and Y yield a triangulation of X × Y by subdivision.

Since the torus is the product of two circles, T = S1 × S1, we thus have
χ(T) = χ(S1)2. But clearly χ(S1) = 0 because a triangulation of the circle
is just a polygon – which always has as many edges as vertices. Therefore,
χ(T) = 0. 2

Now the point is that a nontrivial circle action on a surface of genus g ≥ 1,
or more generally on an aspherical space X (see Section 5), gives something
similar to a product structure X = S1 × Y : the space can be glued from
elementary spaces of type S1×∆n. All these elementary spaces have zero Euler
characteristic by the product formula, from which one can conclude that the
whole space must have vanishing Euler characteristic, too. Thus, the calculation
χ(Σ2) = −2 shows that the genus two surface Σ2 does not permit any non-trivial
continuous circle action.

3 Homology and Bett i numbers

As we just saw, the Euler characteristic is a powerful tool, capable of solving
geometric problems. It should thus be worthwhile to refine this invariant in
one way or another. Such a refinement is given by the Betti numbers, whose
definition by Enrico Betti in 1871 can be seen as the moment when algebraic
topology came into being. The precise technical definition is involved, but the
idea is transparent: we start by considering the so called cycles, polygonal
chains that form closed loops in a space, like the two cycles in the torus pictured
below.

2 For another snapshot related to triangulations and the Euler characteristic, see Snap-
shot 12/2016 Footballs and donuts in four dimensions by Steven Klee.
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We do not want to distinguish two such cycles if their union forms the boundary
of a chain of triangles. In this case, we say that the cycles agree up to homology,
in other words, are homologous, as is the case for the two cycles we were
considering, see the next figure.

It turns out that the torus T has only four cycles up to homology – the first of
which is simply the trivial empty cycle:

In general, the surface of genus g will have 22g cycles up to homology. The
exponent in this formula is called the first Betti number b1(Σg) = 2g. To
be precise, what we described is the first mod 2 Betti number; to obtain the
ordinary Betti numbers, one needs to take into account the “direction” of cycles.
For “oriented” surfaces like the ones we are considering, Betti numbers and
mod 2 Betti numbers agree.

Considering cycles of triangles up to boundaries of chains of tetrahedra in
a space X gives the second Betti number b2(X). And in general, considering
cycles of n-simplices up to boundaries of chains of (n + 1) simplices defines
the n-th Betti number bn(X). The relation between Betti numbers and Euler
characteristic is expressed by the Euler–Poincaré formula

χ(X) = b0(X)− b1(X) + b2(X)− b3(X)± · · ·

where the sum ends after n steps if X can be triangulated using simplices of
dimension at most n. Thus the Betti numbers determine the Euler characteristic,
but not the other way around! The set of Betti numbers is a finer invariant
than the Euler characteristic.
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4 Cover ing spaces and `2-Bett i numbers

The virtue that Betti numbers carry more information than the Euler charac-
teristic comes at a price. For the torus, the Euler–Poincaré formula reads

χ(T) = 1− 2 + 1 = 0,

so individually, Betti numbers do not have the ability to obstruct circle actions
on aspherical manifolds. However, there exists a variant of the Betti numbers,
the so called `2-Betti numbers b(2)

n (X) which still satisfy the Euler–Poincaré
formula

χ(X) = b
(2)
0 (X)− b(2)

1 (X) + b
(2)
2 (X)− b(2)

3 (X)± · · · .

But as opposed to ordinary Betti numbers, they also individually share many
of the convenient features of the Euler characteristic, obstructing circle actions
on aspherical manifolds only being one of them. `2-Betti numbers emerge by
not only considering the space X itself, but instead the whole family of spaces
that arises from X by “cutting and pasting” copies of X along closed loops. In
our surface example, we could for instance cut along the two inscribed loops
which, after some bending and deforming, results in the space on the right.

Infinitely many copies of this space can be glued together to form a “grid” of
surfaces like the one below. This is an example of a covering space, a space that
locally, within the immediate surroundings of any given point, looks the same
as the original surface, but globally, as a whole, can be utterly different.
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The pictured covering space is moreover regular : it has so many symmetries
that any copy of the surface can be moved to any other by a translation of the
whole space. The picture shows only one out of a myriad of different possibilities
to produce a covering space by cutting and gluing.

But one particular covering stands out because it is a covering space of all
the others: the universal covering. For the genus two surface, we obtain it as
follows. First, cut along the indicated four loops.

It then takes quite some mental effort to see that with these cuts, the surface
can be flattened out to an octagon. Now deform, squeeze, and glue infinitely
many of these octagons until they tile a round disk as pictured below.
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For better visibility, the octagons are alternately filled black and white. Now
the idea is to define `2-Betti numbers as “asymptotic” Betti numbers when
passing to larger and larger covering spaces of X that more and more look like
the universal covering.

More precisely, we fix a sequence of regular covering spaces (Xk) of X such
that each Xk is a covering space of the previous space Xk−1 and such that
each Xk is constructed from only finitely many copies of the original space X.
The number dk of copies of X used to construct Xk is also called the number
of sheets of Xk. Since each Xk locally looks like X, we can consider points
xk ∈ Xk such that the surroundings of each xk in Xk look like the surroundings
of a fixed point x ∈ X. Whenever we move the point x in X, we can move the
corresponding points in Xk in the same direction. In this way, we assign to a
path in X starting at x the so-called lifted path in Xk starting in xk. A path
in X is called a noncontractible loop if both its initial and end point is x and if
it cannot be deformed continuously to the constant path at x. We say that (Xk)
converges to the universal covering if for any noncontractible loop in X, there
exists some k such that the lift of the loop to Xk has distinct initial and end
point. We have finally collected all the preliminaries to define `2-Betti numbers.

Definition. Fix a sequence of regular covering spaces (Xk) of X that converges
to the universal covering. Then the n-th `2-Betti number of X is given by

b(2)
n (X) = lim

k→∞

bn(Xk)
dk

.

This is not the usual way of defining `2-Betti numbers. It only applies to
those spaces that possess such a sequence of regular covering spaces – which
includes most spaces of interest. `2-Betti numbers were invented in 1976 by
Michael Atiyah, and his definition [1] is quite different from the above. That
`2-Betti numbers can be characterized by the above limit and that, in particular,
the limit exists and is independent of the chosen sequence of coverings is the
content of Wolfgang Lück’s approximation theorem [4] proven in 1994.

The circle S1 has a such a sequence of regular self-coverings S1 → S1 whose
number of sheets goes to infinity. See www.youtube.com/watch?v=vP7NAeeKjrw
for a movie presentation of these coverings. The above formula for `2-Betti
numbers now implies that all `2-Betti numbers of S1 are zero.

For our previous examples, it turns out that all `2-Betti numbers of the
torus T are zero,

b
(2)
0 (T) = b

(2)
1 (T) = b

(2)
2 (T) = 0,

while for the bitorus Σ2 we obtain

b
(2)
0 (Σ2) = b

(2)
2 (Σ2) = 0, and b(2)

1 (Σ2) = 2.
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Taken together, they illustrate the statement that the `2-Betti numbers b(2)
i are

an obstruction to circle actions: If a surface of genus g ≥ 1 supports a circle
action, then, in contrast to the Betti numbers bi, all its `2-Betti numbers must
be zero.

5 The Hopf–Singer conjecture

The Euler–Poincaré formula connecting Euler characteristic and `2-Betti num-
bers (see Section 4) is related to an open conjecture about aspherical manifolds,
which motivates important research in this area.

Let us first explain the notion of an aspherical manifold. One calls a space
aspherical if its universal covering is contractible, that is, can be continuously
contracted to a single point. A space is an n-dimensional manifold if it “locally”
looks like a ball in n-dimensional Euclidean space. We will also require that
the manifolds under consideration are closed, which means that any real-valued
continuous function on the manifold, which you should think of as a measurement
of any kind taken at each point, has a finite maximal value. All surfaces of genus
g ≥ 1, such as the torus T and the bitorus Σ2, are examples of closed aspherical
2-dimensional manifolds. The sphere is a closed 2-dimensional manifold that is
not aspherical. Both the “grid” covering surface and the plane that we have
already encountered are examples of aspherical 2-dimensional manifolds that
are not closed. 3

Higher-dimensional aspherical manifolds are an important object of research
in topology. In case you hear about the Borel isomorphism, or the Farrell–
Jones and Baum–Connes conjectures: they are all about aspherical manifolds
or spaces! Here we want to present yet another conjecture about aspherical
manifolds, which is attributed to Shiing-Shen Chern (1911–2004) and Heinz
Hopf (1894–1971):

Conjecture. Let M be a closed aspherical manifold of dimension 2n. Then

(−1)nχ(M) ≥ 0.

It is almost impossible to “attack” this conjecture by investigating suitable
triangulations of aspherical manifolds. Also, Betti numbers and their Euler–
Poincaré formula do not help a lot: in fact, Betti numbers of aspherical manifolds
are often non-zero, and it is hard to predict the sign of an alternating sum of
non-zero numbers that you do not know exactly. Here, `2-Betti numbers and

3 For a snapshot on manifolds from a geometric perspective, Snapshot 4/2019 Positive
Scalar Curvature and Applications by Jonathan Rosenberg and David Wraith.

9

https://publications.mfo.de/handle/mfo/1414


their Euler–Poincaré formula

χ(X) = b
(2)
0 (X)− b(2)

1 (X) + b
(2)
2 (X)− b(2)

3 (X)± · · ·

are much more helpful, since `2-Betti numbers tend to vanish more often. The
following conjecture is attributed to Isadore Singer and called Hopf–Singer
conjecture. It clearly implies the Chern–Hopf conjecture. It is stated in writing
for the first time in Józef Dodziuk’s paper [2] (albeit in slightly less general
form, namely for “non-positively curved” manifolds).

Conjecture. Let M be a closed aspherical manifold of dimension 2n. Then
all its `2-Betti number vanish except possibly the one in degree n.

Similarly, one conjectures the vanishing of all `2-Betti numbers for closed
aspherical odd-dimensional manifolds.

The Hopf–Singer conjecture and `2-Betti numbers provide a strategy for
proving the original conjecture by Chern and Hopf. This strategy was, for
example, successfully implemented by Mikhail Gromov in the case of so-called
hyperbolic Kähler manifolds [3]. The concentration of `2-Betti numbers in the
middle dimension, thus the Hopf–Singer conjecture, remains open in general,
though. They are still stimulating current research.
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Image credi ts

The Octagonal t i l ing of Poincaré disk, Author: Anton Sherwood (own work),
2013. Public domain, accessed via https://commons.wikimedia.org/
wiki/File:H2chess_288b.png, visited on October 29, 2019.
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