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Abstract

In [2, 18, 5, 19, 4] it has been shown that quantum resources can allow us

to achieve a family of equilibria that can have sometimes a better social welfare,

while guaranteeing privacy. We use graph games to propose a way to build non-

cooperative games from graph states, and we show how to achieve an unlimited

improvement with quantum advice compared to classical advice.

1 Introduction

An important tool in analysing games is the concept of Nash equilibrium [17], which

represents situations where no player has incentive to deviate from their strategy.

This corresponds to situations observed in real life, with applications in economics,

sociology, international relations, biology, etc. All equilibria do not have the same
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social welfare, i.e. the average payoff is different from one equilibrium to another.

Games of incomplete information can exhibit better equilibria if players use a re-

source – a general correlation, Q. Such correlation can be viewed as a resource

produced by a mediator to give advice to the players. The concept of advice gen-

eralizes the notion of Nash equilibrium to a broader class of equilibria [3]. All

such equilibria can be classified according to the properties of the resource correla-

tion. Three classes can be identified in addition to Nash equilibria (no correlation),

namely general communication equilibria (Comm) [9], where Q is unrestricted,

belief-invariant equilibria (BI) [10, 11, 14, 15] and correlated equilibria (Corr) [3].

The canonical versions of these equilibria form a sequence of nested sets within the

set of canonical correlations:

Nash ⊂ Corr ⊂ BI ⊂ Comm.

It was demonstrated that there exist games where BI equilibria can outperform

Corr equilibria [18] (in terms of a social welfare (SW) of a game) as well as games

where BI equilibria outperform any non-BI equilibria. In [19] the work of [18] is

extended into the quantum domain.

Auletta at al. [2] introduce quantum correlated equilibria as a subclass of BI

equilibria and show that quantum correlations can achieve optimal SW. This pro-

vides the link with quantum nonlocality, where quantum resources are used to

produce non-signalling correlations. In this context, belief invariance describes the

largest class of correlations that obey relativistic causality. The role of quantum

entanglement as quantum-social welfare advice was further studied in [4].

A characteristic feature of belief-invariance is that it ensures privacy – the other

players involved in the game have no infomation about the input one player sent

to the resource.

To obtain the canonical form of the games, [16] show that one can suppose that

the output of the correlation resource is the answer the players give by delegating

the extra computation (from game question to input to the box and from output of

the box to players’ answer) to the mediator. Therefore, quantum equilibria can be
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reached in a setting where players each measure quantum systems or, equivalently,

by just having a central system providing advices by measuring a quantum device.

Ref. [2] highlights several open questions. In particular,

(1) Whether any full-coordination game (a.k.a. a non-local game in quantum

physics and computer science communities) can be converted into a conflict-

of-interests game. Ref. [18] gives an example of a two-player variant of the

CHSH game, while [2] extends their result to an n-player game in which there

exists a BI equilibrium which is better than any Corr equilibrium.

(2) How can we get a large separation between the expected payoff for the quan-

tum and correlated equilibrium cases, and what is the upper bound for the

separation? In the case of two-player full coordination games this question

was settled in [7, 13]. Are there conflict-of-interest games which exhibit large

separation?

In this paper, we provide a natural way to convert graph games (and more

generally stabiliser games) into conflict-of-interest games, and we show how we can

create unbounded separation by increasing the number of players or using penalty

techniques (a negative payoff).

An interesting feature in these games compared to the usual pseudo-telepathy

scenarios studied in quantum information is the notion of involvement [1, 16], which

allows one to define some interesting scenarios in non-cooperative games and which

exhibits novel features, e.g. unlimited separation. If a player participates in the

game but is not involved (on a particular round) it means that their strategy is

not taken into account when determining the win/lose outcome. However, they do

receive a corresponding payoff.

Using these games one can build games with bounded personal utilities v0,

v1 on O(log(1ε )) players ensuring CSW (G)
QSW (G) ≤ ε, where CSW/QSW are the Classi-

cal/Quantum Social Welfares, respectively.

The paper is organized as follows. In Sec. 2 we describe graph games which

are the underlying non-local games used to define our games. In Sec. 3 we define

a non-collaborative game as a modification of the collaborative games by introduc-

ing unequal payoffs corresponding to answers 0 and 1 of each player, and discuss
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the corresponding quantum perfect strategy. We consider a particular version of

graph games from the cycle on five vertices. Sec. 4 discusses variations of non-

collaborative games based on the cycle on five vertices. Finally, Sec. 5 shows how

one can amplify the quantum advantage by adding a penalty for wrong answers

and by increasing the number of players.

2 Graph games

Non-local games play a key role in Quantum Information theory. They can be

viewed as a setting in which players that are not allowed to communicate receive

some inputs and have to produce some outputs, and there is a winning/losing con-

dition depending globally on their outputs for each input. Particular types of games

are pseudo-telepathy games [6] which are games that can be won perfectly using

quantum resources but that are impossible to win perfectly without communication

when the players have access only to shared randomness. Multipartite collaborative

games (MCG(G)) are a family of pseudo-telepathy games based on certain types

of quantum states called graph states. The players are identified with vertices of

the graph and have a binary input/output each with the winning/losing conditions

built using the stabilisers of the graph states.

The combinatorial game1 MCG with n players consists in asking the players

questions: for each question q, each player i receives one bit qi as input and answers

one bit ai. They can either all win or all lose depending on their answer, with

winning/losing conditions described by a set {(q, I(q), b(q))} where

• q ∈ {0, 1}n is a valid question in which each player i gets the bit qi and in the

subgraph of the vertices corresponding to players receiving one, all vertices

have even degree. Let I1 = {i, qi = 1} and G′ = G|I1 , a question is valid if

each vertex of G′ has an even number of neighbors in G′

• I(q) ⊂ [n] is a subset of players that are called ‘involved’ in the question as

the sum (modulo 2) of their answers determines the winning/losing condition

according to the bit b(q):

1without considering probability distributions
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• b(q) is defined such that the players win the game when the question is q if the

sum of the answers of the involved players is equal to the parity of the number

of edges of the subgraph of the vertices corresponding to players receiving one:∑
i∈I(q) ai = b(q) = |E(G′)| mod 2.

For instance the game associated to the cycle on 5 elements MCG(C5) is defined

by

• When the question is q = 11111 (each player has input 1), the players lose

if the binary sum of their answer is 0, i.e.
∑4

i=0 ai = 0 mod 2 , and win

otherwise.

• When the question contains 010 for three players corresponding to three ad-

jacent vertices, the players lose if the binary sum of the answer of these three

players is 1 i.e. ai−1 + ai + ai+1 = 0 mod 2 when q contains 0i−11i0i+1.

• The players win otherwise.

A variation of this game can be done by reducing the set of valid questions, for

instance in the above set-up the questions of the second type have only three players

“involved”, so a first version could be to chose only 5 questions of the second type

and give always 0 as advice to the non-involved players. This is the game studied

as an example in [16].

An important point is that the notion of involvement in MCG games is absent

in unique games and introduces situations where the players might change their

strategy (answer) without changing the winning/losing status of the global strategy.

To analyse these games and the strategies, one can imagine a scenario where

there is one special player representing Nature who is playing against the other

players. The strategy of Nature is therefore a probability distribution over the

questions that we study here (as is standard in game theory) as a known function

on the set of questions w : T → [0, 1] such that
∑

t∈T w(t) = 1. The games

will be therefore defined by equipping the combinatorial game with a probability

distribution over the questions.
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3 Defining non-collaborative games

Like in multipartite collaborative graph games MCG(G), we associate a non-

collaborative game NC(G) to each graph. We differentiate the payoff of the players

using the value of their output: If the global answer wins in the non-local game,

each player gets v1 if they answer 1 and v0 if they answer 0. If the global answer

loses, they get 0.

To match the traditional terminology used in game theory the output from now

on will be called strategy, and the input called type. The payoff is called utility and

the social welfare is the average of the utilities over the players.

A non-collaborative game NC(G) is thus defined from MCG(G) as follows

• The considered types are T ⊂ {0, 1}n where n is the number of vertices of G.

• As in MCG, to each type t ∈ T corresponds an associated involved set I(t)

of players, and an expected binary answer b(t).

• As in MCG, the losing set is

L = {(s, t),
∑
i∈I(t)

si 6= b(t) mod 2}.

We say that the players using a strategy s, given a type t, collectively win the

game when the sum of the local strategies of the involved players is equal to

the requested binary answer modulo 2.

• the payoff function is:

uj(s|t) =

 vsj if (s, t) 6∈ L

0 Otherwise

Firstly we consider the cycle on five vertices C5. We define NC00(C5) based on

the non-local game MCG(C5) studied in [1, 16]. For questions which involve three

players, both non-involved players have type 0 (see Figure 1).

We consider the game with the type probability distribution w(t) = 1/6 for all

the types.

The quantum perfect strategy for NC(G) is obtained when the players each
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(a) Ta = 11111,
I =

{0, 1, 2, 3, 4}, b = 1

(b) T0 = 10000,
I = {4, 0, 1}, b = 0

(c) T1 = 01000,
I = {0, 1, 2}, b = 0
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(d) T2 = 00100,
I = {1, 2, 3}, b = 0

(e) T3 = 00010,
I = {2, 3, 4}, b = 0

(f) T4 = 00001,
I = {3, 4, 0}, b = 0

Figure 1: NC00(C5): Square nodes indicate a 1 in the associated type, while circular
nodes indicate a 0. Involved players in each case are shaded in red.

Type Involved set Binary answer

Ta = 11111 I(Ta) = {0, 1, 2, 3, 4} b(T0) = 1

T0 = 10000 I(T0) = {0, 1, 4} b(T0) = 0

T1 = 01000 I(T1) = {0, 1, 2} b(T1) = 0

T2 = 00100 I(T2) = {1, 2, 3} b(T2) = 0

T3 = 00010 I(T3) = {2, 3, 4} b(T3) = 0

T4 = 00001 I(T4) = {3, 4, 0} b(T4) = 0

Table 1: NC00(G) game.

have a qubit from graph state |G〉 [1]. Each player i measures their qubit according

to their type ti, getting a quantum advice representing their part of the quantum

strategy si [1]. From the study of MCG(G) we have

Theorem 1. If all the players collaborate (follow the quantum advice) then for any

probability distribution over the types, the utility of each player is (v0 + v1)/2.

Proof. The output of each quantum measurement provides uniformly all the pos-

sible answers.
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3.1 Is the quantum pseudo-telepathy solution a Nash

equilibrium?

As the players now have an incentive to answer 1, they can sacrifice always getting

a good answer to maximize their utility. Indeed, in the previous game, each player

is always involved when they get type 1 and with probability 1/2 when they get

type 0; getting the wrong answer in that case only costs v0.

Without loss of generality we consider v1 ≥ v0. The players now have an

incentive to answer 1, because they might be able to maximize their utility by

allowing the non-zero probability of a wrong answer. Indeed, in the previous game,

NC00(C5), if the player gets type 1 then they are certain that they are involved,

and they won’t gain by defecting (not following advice). However, if their type is

0, then the probability of them being involved is 1/2, and so there is a fifty percent

chance that they will benefit from always answering 1 while not compromizing the

winning combination. Getting the wrong answer in that case only costs v0.

Theorem 2. Let p
(i)
inv(ti, si) be the probability for the player i who gets type ti and

advice si to be involved

Then, in NC(G), the quantum advice gives a belief-invariant Nash equilibrium

iff

v0
v1
≥ (1− p),

where

p = min
i

min
ti
p
(i)
inv(ti, 0).

Proof. If the advice is si = 1 then the winning payoff is already v1. Consider

the case when player i is given the advice si = 0 (which would lead to pay-

off v0 in the winning case). If the player defects then the difference of utility is

−v0p(i)inv(ti, 0)+(1−p(i)inv(ti, 0))(v1−v0). So the strategy is a Nash-equilibrium when

(1− p(i)inv(ti, 0))v1 ≤ v0, i.e v0/v1 ≥ 1− p(i)inv(ti, 0). This inequality has to hold for all

types and all players.

For NC00(C5), p
(i)
inv(0, 0) = 1/2 and therefore the quantum nonlocal strategy is
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an equilibrium only when v0/v1 ≥ 1/2.

One important characteristic of an equilibrium is the Social Welfare, which is

the average utility of the players.

As a direct consequence of Theorem 1 the average social welfare of the quantum

strategy is independent on the graph

QSW (NC(G)) =
v0 + v1

2
.

Note that the non collaborative games defined have a special feature that we call

guaranteed value: in any run of the game players following the quantum strategy

receive their expected payoff with probability 1.

4 Some versions of NC(C5)

In this section we study the game NC00(C5) and then introduce a number of modifi-

cations in order to improve the quantum advantage (ratio of quantum social welfare

to correlated social welfare) and also to symmetrize the game such that the players

get 0 and 1 with same probability or have the same probability of being involved

regardless of whether their type is 0 or 1.

4.1 Study of NC00(C5)

Pure Nash equilibria can be described by local functions: each player having one

local type bit and one strategy bit to produce, can locally act as follows:

• 0→ 0 , 1→ 0 constant function 0 denoted 0

• 0→ 1 , 1→ 1 constant function 1 denoted 1

• 0→ 0 , 1→ 1 Identity function denoted 2

• 0→ 1 , 1→ 0 NOT function denoted 3

The set of pure Nash equilibria depends on the ratio v0/v1. The are 20/25/40

pure Nash equilibria (4/4/6 up to symmetry) when v0/v1 lies within the interval

[0, 1/3], [1/3, 1/2] or [1/2, 1] respectively (see Table 2).
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Local functions Players utility [×6] SW [×30]

v0/v1 ≤ 1/3

2 1 1 1 1 2v0 + v1 3v1 3v1 3v1 3v1 2v0 + 13v1

3 3 1 1 1 2v0 + v1 2v0 + v1 3v1 3v1 3v1 v0 + 11v1

3 1 3 1 1 2v0 + v1 3v1 2v0 + v1 3v1 3v1 4v0 + 11v1

3 3 3 3 1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 5v1 8v0 + 17v1

1/3 ≤ v0/v1 ≤ 1/2

1 3 1 1 0 5v1 2v0 + 3v1 5v1 5v1 5v0 7v0 + 18v1

2 2 1 1 1 3v0 + 2v1 3v0 + 2v1 5v1 5v1 5v1 6v0 + 19v1

3 3 1 1 1 2v0 + v1 2v0 + v1 3v1 3v1 3v1 4v0 + 11v1

3 3 3 3 1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 5v1 8v0 + 17v1

v0/v1 ≥ 1/2

3 2 1 1 0 2v0 + 3v1 4v0 + v1 5v1 5v1 5v0 11v0 + 14v1

1 3 1 1 0 5v1 2v0 + 3v1 5v1 5v1 5v0 7v0 + 18v1

2 2 1 1 1 3v0 + 2v1 3v0 + 2v1 5v1 5v1 5v1 6v0 + 19v1

3 3 1 2 1 2v0 + 3v1 2v0 + 3v1 5v1 4v0 + v1 5v1 8v0 + 17v1

3 3 3 3 1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 5v1 8v0 + 17v1

3 2 3 2 2 2v0 + 3v1 4v0 + v1 2v0 + 3v1 3v0 + 2v1 3v0 + 2v1 14v0 + 11v1

Table 2: Nash equilibria for three intervals of the value v0/v1. Note that the critical
values 1/2 and 1/3 have union of both tables as equilibria.

We can see that most of these equilibria (all of them when v0/v1 ≥ 1/2) corre-

spond to local functions winning for the 5 types.

When v0 = 2/3 and v1 = 1 then the quantum social welfare of the pseudotelepa-

thy strategy is QSW = 0.83 whereas the best classical social welfare CSW = 0.77.

As noted in section 3.1 the probability of being involved in NC00 is p(1, s) = 1

and p(0, s) = 1/2 and the quantum pseudotelepathy measurements strategy is an
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equilibrium if v0/v1 ≥ 1/2.

Similar behavior can be seen with Pareto equilibria (ones in which local utility

cannot improve without reducing the outcome of someone else): see Appendix.

Recall that the characteristic feature of NC00(C5) is that each player has un-

equal probabilities of getting different types. The game can be symmetrized by

changing the types of the non-involved players from 00 to 01, as shown in the next

section.

4.2 Comments on NC01(C5)

We define a second variant from MCG(C5) : NC01(C5) where any player gets the

types 0 and 1 with probability 1/2 by adding an extra 1 for a non-involved player

in the types so that Ti = 0i−11i0i+11i+20i+3: see Table 3.

If the type probability distribution is w(t) = 1/6 for all the types, then one can

see that any player is involved with probability 2/3 whether their input is 0 or 1,

i.e. p
(i)
inv(0, 0) = p

(i)
inv(1, 0) = 2/3. Hence, by Theorem 2, the quantum strategy of

MCG produces a Nash equilibrium iff v0/v1 ≥ 1/3. Thus, one of the benefits of

this variant is that quantum Nash equilibria exist at a lower ratio v0/v1.

Note that in this version each player is getting a perfect random bit as advice :

p(a = 1) = p(a = 0) = 1/2.

When v0 = 2/3 and v1 = 1 then the quantum social welfare of the pseudotelepa-

thy strategy isQSW = 0.83 whereas the best classical social welfare is CSW = 0.78.

Type Involved set Binary answer

Ta = 11111 I(Ta) = {0, 1, 2, 3, 4} b(Ta) = 1

T0 = 10100 I(T0) = {0, 1, 4} b(T0) = 0

T1 = 01010 I(T1) = {0, 1, 2} b(T1) = 0

T2 = 00101 I(T2) = {1, 2, 3} b(T2) = 0

T3 = 10010 I(T3) = {2, 3, 4} b(T3) = 0

T4 = 01001 I(T4) = {3, 4, 0} b(T4) = 0

Table 3: NC01(G) game (Here the players are identified with the integers modulo 5).
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4.3 Comments on NC00,0(C5)

A modification of a different kind consists in adding more questions from the sta-

biliser. As the first example of this kind we define a game NC00,0(C5), where the

additional family of questions has four involved players with the non-involved player

getting type 0, as specified by Table 4.

Type Involved set Binary answer

Ta = 11111 I(Ta) = {0, 1, 2, 3, 4} b(T0) = 1

Ti1 = 0i1−20i1−11i10i1+10i1+2 I(Ti1) = {i1 − 1, i1, i1 + 1} b(Ti1) = 0
i1 ∈ {0, . . . , 4}

Ti2 = 0i2−11i20i2+11i2+20i2+3 I(Ti2) = {i2 − 1, i2, i2 + 2, i2 + 3} b(Ti2) = 0
i2 ∈ {0, . . . , 4}

Table 4: NC00,0(G) game.

For v1 = 1, v0 = 2
3 , and the probability distribution w(Ta) = 3

13 , w(Ti1) =

w(Ti2) = 1
13 we get a CSW of 0.72 versus a QSW of 0.83.

Note that each player gets types 0 and 1 with different probabilities. In fact,

it is simple to show that no choice of w1, w2 and w3 can make these probabilities

equal. However, it is possible to modify the set of types so that equality becomes

possible, as shown in the following.

4.4 Comments on NC00,01,0(C5)

We increase the set of types using other questions from the stabiliser: We define a

game NC00,01,0(C5) for which with a suitable choice of probability distribution the

players get 0 and 1 with the same probability.

We consider this game with type probability distributions given by w(Ta) =

3/13, w(ti1) = 1/26, w(Ti2) = 1/26 and w(Ti3) = 1/13.

The involvement probabilities satisfy Pinv(1) > Pinv(0) = 8/13 and the best

Classical Social Welfare with v0 = 2/3, v1 = 1 is CSW = 0.72 versus a QSW of

0.83.

Note that even though the types Ti2 and Ti3 are similar, the involved sets and

thus the utilities are different. However, if one wants to restrict to scenarios in

12



Type Involved set Binary answer

Ta = 11111 I(Ta) = {0, 1, 2, 3, 4} b(T0) = 1

Ti1 = 0i1−20i1−11i10i1+10i1+2 I(Ti1) = {i1 − 1, i1, i1 + 1} b(Ti1) = 0
i1 ∈ {0, . . . , 4}

Ti2 = 0i2−11i20i2+11i2+20i2+3 I(Ti2) = {i2 − 1, i2, i2 + 1} b(Ti2) = 0
i2 ∈ {0, . . . , 4}

Ti3 = 0i3−11i30i3+11i3+20i3+3 I(Ti3) = {i2 − 1, i2, i2 + 2, i2 + 3} b(Ti3) = 0
i3 ∈ {0, . . . , 4}

Table 5: NC00,01,0(G) game.

which the utility can be deterministically determined from the type, one can just

add an extra player with a type allowing to distinguish the different cases and with

utility the average utility of the other players independently of his/her action.

5 Quantum vs correlation separation

In [2] it is asked as an open question whether the separation between classical and

quantum social welfare is bounded. We show in this section how two families of

amplification techniques can increase the separation by adding a penalty for wrong

answers and then by increasing the number of players.

5.1 Wrong answer penalty

A possible technique is to penalize bad answers more, using the fact that classical

functions always produce a bad answer for some question. Instead of getting 0 when

losing we generalize so that each player gets −Ngv1 if they answer 1 and −Ngv0 if

they answer 0, where Ng can be seen as the penalty for giving a wrong answer. If

δ(s,t),L = 1 if (s, t) ∈ L and 0 otherwise, and Ng is a positive number, then

uj(s|t) = (−Ng)
δ(s,t),Lvsj

ForNC01(C5) as soon asNg > 3v1 there exists only two classical Nash equilibria:

• All 0 with a social welfare of
−Ngv0+5v0

6 and
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• All NOT with a social welfare of
−Ngv0+2v0+3v1

6 .

Therefore the classical social welfare decreases linearly with the penalty while

the quantum average social welfare remains v1+v0
2 .

5.2 Distributed parallel repetition

The distributed parallel composition of nonlocal games appears in [12] for the study

of non signaling correlations and also in [8] where it is called k-fold repetition. k

groups of players play at the same time and they win collectively if all the groups

win their game.

Theorem 3. There exists games with bounded personal utilities v0, v1 on O(log(1ε ))

players ensuring CSW (G)
QSW (G) ≤ ε for the ratio best classical social welfare over quantum

social welfare with guaranteed value.

Proof. It is easy to bound the utility in these settings as for any strategy in a

repeated game. If a player p is involved in the strategy Sj but is not involved in

the strategy Si of another group then his utility is conditioned by the fact that the

Si strategy wins to receive a positive utility and

up(Si × Sj) ≤ pwin(Si)u
p(Sj)

As the quantum strategy obtained from following the nonlocal advice always

wins, the QSW remains unchanged whereas the CSW decreases. For instance

CSW (k−fold NC00(C5)) = 5
6

k
CSW (NC00(C5)).

Therefore using these games one can build games with bounded personal utilities

v0, v1 on O(log(1ε )) players ensuring CSW (G)
QSW (G) ≤ ε

6 Conclusion

We have used properties of multipartite graph games to define conflict of interest

games, and shown that by combining such games the ratio classical social welfare

/ quantum social welfare can go to zero.
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One can easily extend to stabilizer games [8] to have any number of types and

possible strategies.

As pointed out by [2], quantum advice equilibria can be reached without need-

ing a trusted mediator, furthermore they ensure privacy as they are belief invariant.

Some other features may be emphasized if we define Nash equilibria using pseu-

dotelepathy games: such situations ensure a guaranteed utility and they are also

better when analysing the maximal minimal utility. It may be interesting to inves-

tigate further how this guaranteed value property for some quantum equilibria can

be used. On the other hand it would also be interesting to investigate how relaxing

the guaranteed win requirement might allow to increase the QSW even further.

The possibility of potentially unlimited improvement of social welfare while

preserving belief invariance is therefore a strong motivation to consider classical

payoff tables that arise for usual situations in which Nash equilibria occur and play

an important role. For example, in routing problems an advice provider could use

a quantum advice system as follows. To calculate the advice to send to each player,

the advice provider should either (a) send a rotated qubit to each player (who will

then measure their qubit to get the answer), or, in a trusted setting, (b) perform a

quantum measurement and send a classical message.
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Appendix

Pareto equilibria for NC00 when v0/v1 ≤ 1/3, Nb solutions : 121, Nb distinct

equilibria : 18

Local functions Players utility [×6] SW [×30]

2 1 1 0 0 3v0 + 2v1 5v1 5v1 5v0 5v0 13v0 + 12v1

3 3 2 0 0 v0 + 2v1 v0 + 2v1 v0 + 2v1 3v0 3v0 9v0 + 6v1

3 2 1 1 0 2v0 + 3v1 4v0 + v1 5v1 5v1 5v0 11v0 + 14v1

1 3 1 1 0 5v1 2v0 + 3v1 5v1 5v1 5v0 7v0 + 18v1

1 3 3 1 0 5v1 v0 + 4v1 v0 + 4v1 5v1 5v0 7v0 + 18v1

2 3 1 2 0 3v0 + 2v1 v0 + 4v1 5v1 3v0 + 2v1 5v0 12v0 + 13v1

3 2 2 3 0 v0 + 4v1 4v0 + v1 4v0 + v1 v0 + 4v1 5v0 15v0 + 10v1

2 1 1 1 1 2v0 + v1 3v1 3v1 3v1 3v1 2v0 + 13v1

2 2 1 1 1 3v0 + 2v1 3v0 + 2v1 5v1 5v1 5v1 6v0 + 19v1

3 3 1 1 1 2v0 + v1 2v0 + v1 3v1 3v1 3v1 4v0 + 11v1

3 1 3 1 1 2v0 + v1 3v1 2v0 + v1 3v1 3v1 4v0 + 11v1

3 3 1 2 1 2v0 + 3v1 2v0 + 3v1 5v1 4v0 + v1 5v1 8v0 + 17v1

3 3 2 2 1 2v0 + 3v1 v0 + 4v1 3v0 + 2v1 3v0 + 2v1 5v1 9v0 + 16v1

3 2 3 2 1 v0 + 2v1 2v0 + v1 2v0 + v1 2v0 + v1 3v1 7v0 + 8v1

3 2 2 3 1 v0 + 2v1 v0 + 2v1 v0 + 2v1 v0 + 2v1 3v1 4v0 + 11v1

3 3 3 3 1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 5v1 8v0 + 17v1

3 2 3 2 2 2v0 + 3v1 4v0 + v1 2v0 + 3v1 3v0 + 2v1 3v0 + 2v1 14v0 + 11v1

3 3 3 3 3 v0 + 4v1 v0 + 4v1 v0 + 4v1 v0 + 4v1 v0 + 4v1 5v0 + 20v1

Pareto equilibria for NC00 when 1/3 ≤ v0/v1 ≤ 1/2 Nb solutions : 91, Nb distinct

equilibria : 14
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Local functions Players utility [×6] SW [×30]

2 1 1 0 0 3v0 + 2v1 5v1 5v1 5v0 5v0 13v0 + 12v1

3 2 1 1 0 2v0 + 3v1 4v0 + v1 5v1 5v1 5v0 11v0 + 14v1

1 3 1 1 0 5v1 2v0 + 3v1 5v1 5v1 5v0 7v0 + 18v1

1 3 3 1 0 5v1 v0 + 4v1 v0 + 4v1 5v1 5v0 7v0 + 18v1

2 3 1 2 0 3v0 + 2v1 v0 + 4v1 5v1 3v0 + 2v1 5v0 12v0 + 13v1

3 2 2 3 0 v0 + 4v1 4v0 + v1 4v0 + v1 v0 + 4v1 5v0 15v0 + 10v1

2 2 1 1 1 3v0 + 2v1 3v0 + 2v1 5v1 5v1 5v1 6v0 + 19v1

3 3 1 1 1 2v0 + v1 2v0 + v1 3v1 3v1 3v1 4v0 + 11v1

3 3 1 2 1 2v0 + 3v1 2v0 + 3v1 5v1 4v0 + v1 5v1 8v0 + 17v1

3 3 2 2 1 2v0 + 3v1 v0 + 4v1 3v0 + 2v1 3v0 + 2v1 5v1 9v0 + 16v1

3 2 2 3 1 v0 + 2v1 v0 + 2v1 v0 + 2v1 v0 + 2v1 3v1 4v0 + 11v1

3 3 3 3 1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 5v1 8v0 + 17v1

3 2 3 2 2 2v0 + 3v1 4v0 + v1 2v0 + 3v1 3v0 + 2v1 3v0 + 2v1 14v0 + 11v1

3 3 3 3 3 v0 + 4v1 v0 + 4v1 v0 + 4v1 v0 + 4v1 v0 + 4v1 5v0 + 20v1

Pareto equilibria when ≥ 1/2, NB solutions 81, Nb distinct equilibria : 12

Local functions Players utility [×6] SW [×30]

2 1 1 0 0 3v0 + 2v1 5v1 5v1 5v0 5v0 13v0 + 12v1

3 2 1 1 0 2v0 + 3v1 4v0 + v1 5v1 5v1 5v0 11v0 + 14v1

1 3 1 1 0 5v1 2v0 + 3v1 5v1 5v1 5v0 7v0 + 18v1

1 3 3 1 0 5v1 v0 + 4v1 v0 + 4v1 5v1 5v0 7v0 + 18v1

2 3 1 2 0 3v0 + 2v1 v0 + 4v1 5v1 3v0 + 2v1 5v0 12v0 + 13v1

3 2 2 3 0 v0 + 4v1 4v0 + v1 4v0 + v1 v0 + 4v1 5v0 15v0 + 10v1

2 2 1 1 1 3v0 + 2v1 3v0 + 2v1 5v1 5v1 5v1 6v0 + 19v1

3 3 1 2 1 2v0 + 3v1 2v0 + 3v1 5v1 4v0 + v1 5v1 8v0 + 17v1

3 3 2 2 1 2v0 + 3v1 v0 + 4v1 3v0 + 2v1 3v0 + 2v1 5v1 9v0 + 16v1

3 3 3 3 1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 5v1 8v0 + 17v1

3 2 3 2 2 2v0 + 3v1 4v0 + v1 2v0 + 3v1 3v0 + 2v1 3v0 + 2v1 14v0 + 11v1

3 3 3 3 3 v0 + 4v1 v0 + 4v1 v0 + 4v1 v0 + 4v1 v0 + 4v1 5v0 + 20v1
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Nash equilibria for NC01

Nash equilibria for NC01 when 1/3 ≤ v0/v1 ≤ 1/2, Nb solutions : 76, Nb

distinct equilibria : 13

Local functions Players utility [×6] SW [×30]

1 1 2 0 0 5v1 5v1 2v0 + 3v1 5v0 5v0 12v0 + 13v1

3 2 1 1 0 3v0 + 2v1 3v0 + 2v1 5v1 5v1 5v0 11v0 + 14v1

1 3 1 1 0 5v1 3v0 + 2v1 5v1 5v1 5v0 8v0 + 17v1

3 2 2 1 0 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 5v1 5v0 11v0 + 14v1

1 3 3 1 0 5v1 2v0 + 3v1 2v0 + 3v1 5v1 5v0 9v0 + 16v1

1 3 1 2 0 5v1 2v0 + 3v1 5v1 2v0 + 3v1 5v0 9v0 + 16v1

2 1 3 2 0 2v0 + 3v1 5v1 2v0 + 3v1 2v0 + 3v1 5v0 11v0 + 14v1

2 2 1 1 1 3v0 + 2v1 2v0 + 3v1 5v1 5v1 5v1 5v0 + 20v1

3 3 1 2 1 2v0 + 3v1 3v0 + 2v1 5v1 3v0 + 2v1 5v1 8v0 + 17v1

3 3 2 2 1 3v0 + 2v1 2v0 + 3v1 2v0 + 3v1 3v0 + 2v1 5v1 10v0 + 15v1

3 3 3 3 1 3v0 + 2v1 2v0 + 3v1 3v0 + 2v1 3v0 + 2v1 5v1 11v0 + 14v1

3 2 3 2 2 3v0 + 2v1 3v0 + 2v1 3v0 + 2v1 3v0 + 2v1 2v0 + 3v1 14v0 + 11v1

3 3 3 3 3 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 2v0 + 3v1 10v0 + 15v1

Nash equilibria for NC01 when v0/v1 ≥ 1/2, Nb solutions 40, Nb distinct equi-

libria: 6

Local functions Players utility [×6] SW [×30]

3 2 1 1 0 3v0 + 2v1 3v0 + 2v1 5v1 5v1 5v0 11v0 + 14v1

1 3 1 1 0 5v1 3v0 + 2v1 5v1 5v1 5v0 8v0 + 17v1

2 2 1 1 1 3v0 + 2v1 2v0 + 3v1 5v1 5v1 5v1 5v0 + 20v1

3 3 1 2 1 2v0 + 3v1 3v0 + 2v1 5v1 3v0 + 2v1 5v1 8v0 + 17v1

3 3 3 3 1 3v0 + 2v1 2v0 + 3v1 3v0 + 2v1 3v0 + 2v1 5v1 11v0 + 14v1

3 2 3 2 2 3v0 + 2v1 3v0 + 2v1 3v0 + 2v1 3v0 + 2v1 2v0 + 3v1 14v0 + 11v1
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