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Introduction by the Organizers

The workshop Dynamische Systeme, organised by M.-C. Arnaud (Avignon), H.
Eliasson (Paris), H. Hofer (Princeton) and V. Kaloshin (Maryland) was well at-
tended with over 50 participants with broad geographic representation from 13
countries. The workshop covered a large area of dynamical systems mainly in
a symplectic or Hamiltonian setting with a special focus on rigidity problems:
spectrum theory of dynamical systems (length spectrum, PDE spectrum, spec-
tral invariants of symplectic topology), some aspects of limits theorems in ergodic
theory, horseshoes and chaos, celestial mechanics.

Striking results about spectral rigidity of billiards were presented by M. Leguil
for dispersing billiards, J. de Simoi for axis symmetric domains and A. Sorrentino
for convex billiards. Ergodic results for the billiard flow, a flow that is hard to study
because of its discontinuities, were presented by V. Baladi (existence of a measure
of maximal entropy for a Sinal billiard) and I. Mebourne (decay of correlations).
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Other results in ergodic theory were presented: the growth of nomalizing sequences
was explained by S. Gouezel and results on infinite Lebesgue spectrum for area
preserving toral flows were explained by G. Forni.

Recent results concerning the spectrum in symplectic toplogy, as action se-
lectors, were presented: D. Cristofaro-Gardiner presented results on the spectral
recognition of rank one contact forms on closed three-manifolds, L. Polterovich
dealt with quantum footprints of symplectic rigidity, S. Seyfaddini presented Floer
homology and Hamiltonian homeomorphisms, F. Schlenk explained a simple con-
struction of an action selector on aspherical symplectic manifolds, C. Viterbo pre-
sented results on barcode and small eigenvalues of the Witten Laplacian

Several results concerning topological entropy were presented: P. Le Calvez
proved that a smooth generic area preserving diffeomorphism of a closed surface
has an horseshoe and then positive topological entropy, Barney Bramham proved
that a Reeb flow has a global section or has a horseshoe, S. Crovisier explained
the structure of the periods of periodic orbits for dissipative diffeomorphisms of
the disc with zero entropy.

Results concerning Arnol’d diffusion were presented: M. Gidea dealt with En-
ergy Drift and Diffusion Process in the Three-Body Problem and T. Seara spoke
about recent results in geometric methods for Arnol’d diffusion,

Several other topics in dynamics where discussed in different talks: P. Berger
presented results on the emergence of wandering Fatou components among polyno-
mial automorphisms of the plane, J. Chaika presented results on horocycle orbits
in strata of translations surfaces, A. Knauf dealt with asymptotic completeness
in celestial mechanics, T. Jager presented some aspects of topological dynamics
and aperiodic ordert, D. Turaev spoke about stable multiparticle choreographies
in repelling potential, L.S. Young presented results on the dynamics of the brain

The meeting was held in an informal and stimulating atmosphere. The tradi-
tional walk was organized by F. Schlenk on Wednesday afternoon.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Viktor L. Ginzburg in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Homoclinic orbits for area preserving diffeomorphisms of surfaces
PATRICE LE CALVEZ
(joint work with Martin Sambarino)

Let S be a smooth closed orientable surface of genus g, furnished with a smooth
area form w. For 1 < r < oo, denote Diff] (S) the set of C" diffeomorphisms of S
preserving w, endowed with the C"-topology. We have :

Theorem. For 1 < r < oo, there exists a residual set R C Diff] (S) such that if
f €R, then

e there exist hyperbolic periodic points,
e cvery hyperbolic periodic point has a transverse homoclinic intersection.

Using the fact that the existence of a hyperbolic periodic point with a transverse
homoclinic intersection is an open property that implies the positiveness of the
entropy, we immediately deduce:

Corollary. For 1 <r < oo, there exists a dense open set O C Diff,(S) such that
the topological entropy of every element of f € O s positive.

Let us precise the theorem. We denote G/ ,(S) C Dift,(S) the (residual) set of
diffeomorphisms satisfying the following conditions.

e Every periodic point is either elliptic or hyperbolic. Moreover, if 2z is an
elliptic periodic point of period ¢, then the eigenvalues of D f?(z) are not
roots of unity.

e Stable and unstable branches of hyperbolic points that intersect must also
intersect transversally (in particular there is no saddle connection).

e If U is a neighborhood of an elliptic periodic point z, then there is a
topological closed disk D containing z, contained in U, and bordered by
finitely many pieces of stable and unstable manifolds of some hyperbolic
periodic point z’.

Denote Fixy,(f) the set of hyperbolic fixed points of f € Diff,(S,) and Pery(f)
the set of hyperbolic periodic points. Let us recall the following folklore result,
consequence of Lefschetz formula:

Proposition. If f € G/ (S), then #Perp,(f) > max(0,2¢g — 2).
Our theorem will be divided in two parts.

Theorem A. If f € G/ (S) and #Pery(f) > max(0,2g — 2), then every hyperbolic
periodic point of f has a transverse homoclinic intersection.

Theorem B. The set of f € G/ (S) such that #Pery(f) > max(0,2g — 2) is dense
in G,(S).
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The proof of Theorem A is based on a theorem of Mather. We can prove that the
four branches of z € Per,(f) accumulate on z and have the same closure K (z) in
S. So, we can define an equivalence relation on Pery(f) writing

2~z e K(z) = K(2).

In that case, z has homoclinic intersection if it is the case of z’ and we say that the
class k is homoclinic. Using some homological arguments, we begin to prove that if
#Fixp, (f) > 29 — 2, there is a point with a homoclinic intersection. Consequently,
if there is a unique class x, then x is homoclinic. Using improvements of Mather’s
theory due to Koropecki-Le Calvez-Nassiri, we can prove in the case where there is
at least two classes, that every class x is contained in a connected open set V # §
whose genus ¢’ satisfies #k > 2¢’ — 2 and use the same argument as before.

To prove Theorem B, we must begin to understand what are the elements
f € GI(S) such that #Per,(f) = 2g — 2. This is given by the following result:

Theorem C. If f € G/,(S) and #Perp(f) = 29 — 2, then:

e if g =1, then f is isotopic to the identity or to a power of a Dehn twist;

o if g > 1, dqg > 1 such that f9 is isotopic to the identity. Moreover there is
no non trivial periodic continua and consequently f is transitive and every
stable or unstable branch is dense.

So, to prove Theorem B, it is sufficient to show that one can approximate a map
f € GI(S), isotopic to the identity, such that #Per;(f) = #Fixs(f) = 29 — 2.
with a map having a supplementary periodic point. The rotation vector ps(p.,) €
H1(S,R) of the measure induced by w is not zero, because f is not Hamiltonian.
So, there exists a simple loop A C S\ Fixp(f) such that [A] A pr(pe) # 0. Fix
a small annular neighborhood A of A and a C'™ divergence free vector field X
supported on A such that pys (1) = s[A] if t € R, and set f* = ¢% o f. One has

pre(tw) A prpe) = s[ALA pp(pw) # 0 if s # 0.

The following proposition easily implies theorem B and can be proven using the
Forcing theory introduced by Le Calvez-Tal.

Proposition. Ve > 0,3s € (0,¢), f* & G (S) or hiop(f*) > 0.

Note that the the main theorem was proven by Takens in case r = 1 using the
C'-closing Lemma. It was also proved by Robinson and Pixton in the case of the
sphere and by Oliveira in the case of the torus. Moreover it was announced by
Xia in the case of Hamiltonian diffeomorphisms.
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On the Integrability of Birkhoff Billiards
ALFONSO SORRENTINO
(joint work with Guan Huang, Vadim Kaloshin)

A Birkhoff billiard is a dynamical model describing the motion of a billiard ball
inside a strictly convex domain 2 C R? with smooth boundary 9. The massless
ball moves with unit velocity and without friction following a rectilinear path; when
it hits the boundary it reflects elastically according to the standard refiection law:
the angle of reflection is equal to the angle of incidence.

This conceptually simple model, yet dynamically very rich, has been proposed
by G. D. Birkhoff as a mathematical playground where “[...Jthe formal side, usu-
ally so formidable in dynamics, almost completely disappears, and only interesting
qualitative questions need to be considered’ [3, pp. 155-156].

Since then, billiards have captured the attention of many researchers in various
areas of mathematics. Whereas it is clear how the geometry (i.e., the shape)
of the domain determines the billiard dynamics, a more subtle and intriguing
question is to which extent dynamical information can be used to reconstruct the
shape of the billiard domain. This translates into compelling inverse problems and
rigidity questions, that provide the ground for some of the foremost conjectures in
dynamical systems.

In this talk I shall focus on the so-called Birkhoff conjecture, namely the possi-
bility of classifying billiard domains which admit an integrable dynamics.

The easiest example of billiard is given by a billiard in a disc: in this case it
is easy to check that the angle of reflection remains constant at each reflection,
hence it is an integral of motion, which makes the circular billiard an integrable
dynamical system.

Integrability is one of the most important issue in the study of dynamical sys-
tems. In the case of billiards, it translates into a very peculiar geometric property:
the existence of so-called caustics. For circular billiards, for example, the fact that
the angle of reflection remains constant implies that each trajectory is tangent to a
concentric circle, which is an example of a caustic. The family of all these caustics
foliates the whole circular billiard domain.

More precisely, we say that a curve I' is a caustic for a billiard, if every time a
trajectory is tangent to I', then it remains tangent after each reflection.

Whereas the mere existence of caustics does not provide significant information
on the shape of the domainﬂ, the presence of a foliation of the billiard table by
caustics seems to be a more peculiar property.

Billiards in an ellipse have a similar dynamical picture: trajectories not passing
through a focal point are tangent to a confocal conic section, either a confocal
ellipse or the two branches of a confocal hyperbola. Thus confocal ellipses are
convex caustics, and they foliate the whole domain with the exception of the
segment between the foci.

1A striking result by Lazutkin [9] shows that all Birkhoff billiards with sufficiently smooth
boundary admit a positive measure set of caustics, accumulating to the boundary of the billiard.
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Are there other billiards admitting an integrable dynamics? This appearantly naive
question has given rise to one of the most famous (and impenetrable) problems in
dynamical systems:

Conjecture (Birkhoﬂg). Integrable Birkhoff billiards correspond to ellipses.

Despite its long history and the amount of attention that it has captured, this
conjecture is still open. Some of the most relevant contributions are:

- Bialy [2] proved that the only Birkhoff billiard fully foliated by caustics
is in the disc. This result was also proved by Wojtkowski [12], by an
integral-geometric approach.

- Innami [7] proved, using Aubry-Mather theory, that the existence of caus-
tics with rotation numbers accumulating to 1/2 implies that the billiard
domain must be an ellipse.

- The analogue of this conjecture under the assumption that there exists an
integral of motion polynomial in the velocity (Algebraic Birkhoff conjec-
ture), has been recently proved by Glutsyuk [5].

Instead of considering all possible Birkhoff billiards, one could restrict the analysis
to domains that are sufficiently close to ellipses and study the same question in
this context (Perturbative Birkhoff Conjecture):

- Levallois & Tabanov [10] proved the non-integrability of algebraic pertur-
bations of ellipses.

- Delshams & Ramirez-Ros [4] showed the non-integrability of entire sym-
metric perturbations of ellipses.

In this talk I shall describe a recent development obtained in collaboration with
Vadim Kaloshin, proving that the Perturbartive Birkhoff Conjecture holds true.
For nearly circular domains, this result was firstly proved in [I].

Theorem (Kaloshin, S. [8]). Let & be an ellipse of eccentricity 0 < eg < 1 and
semi-focal distance c; let k > 39. For every K > 0, there ezists € = e(eg, ¢, K)
such that if Q is C*-smooth domain and

i) the billiard map in Q admits invariant curves/caustics foliated by periodic
points for all rotation numbers %, q >3,

ii) 9Q is K-close to &, with respect to the C*-norm,
iii) O is e-close to &, with respect to the Ct-norm,

then  is an ellipse.

Notice that he notion of integrability i) that we require is very weak. A natural
question is what happens if only a small neighbourhood of the boundary is foliated
by caustics, or in another words there are invariant curves/caustics corresponding
to rotation numbers in (0, ), for some 0 < § < .

A partial answer to this question was recently provided in collaboration with
Guan Huang and Vadim Kaloshin in [6] for domains that are a sufficiently smooth

2Although some vague indications of this question can be found in [3], its first appearance
was in a paper by Poritsky [1I], so sometimes it is referred to as Birkhoff-Poritsky conjecture.
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perturbation of ellipses of small eccentricities, under the assumption that for a
given qo > 3 there exist invariant curves foliated by periodic points, for all rotation
numbers %, with ¢ > gp and j = 1, 2, 3 such that ged(j, ¢) = 1. The upper bound on
the eccentricity, the smallness condition on the perturbation and the smoothness
requirements, depend all on the choice of gg.

Acknowledgement. The author acknowledges the support of the prgect H2020-MSCA-ITN-
ETN “STARDUST-R” and the Italian MIUR, Excellence Department Project awarded to
the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.
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On the measure of maximal entropy of Sinai billiards
VIVIANE BALADI
(joint work with M. Demers)

Sinai billiards maps and flows are uniformly hyperbolic — however grazing orbits
give rise to singularities. Most existing works on the ergodic properties of billiards
are about the SRB measure (i.e. the Liouville measure in the case of flows), for
which exponential mixing is known (both in discrete [6] and continuous time [2]).
Another natural equilibrium state is the measure of maximal entropy. Since the
discrete-time billiard map T is discontinuous, the mere existence of this measure
is not granted a priori. The results of [I] presented in this talk are the following:
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Assuming finite horizon, we propose a definition h, for the topological entropy
of T'. We prove that h, is not smaller than the value given by the variational
principle, and that it is compatible with the definitions of Bowen using spanning
or separating sets. To get more, we need an additional condition. Letting (r, )
be the billiard coordinates, fix an angle g close to 7/2 and ny € N large. Let
so € (0,1) be the smallest number such that any orbit of length ng has at most
song collisions with |¢| > ¢o. (Due to the finite horizon condition, we can choose
o and ng such that sg < 1. If in addition there are no triple tangencies on the
table — a generic condition — then sg < 2/3.) Assume that h, > splog2. Then,
using a transfer operator acting on a space of anisotropic distributions (adapting
the arguments of Demers and Zhang [4] to our setting), we construct an invariant
probability measure . of maximal entropy for T' (i.e., h,, (T') = h.), we show
that ps has full support and is Bernoulli, and we prove that p, is different from
the SRB measure except if all non grazing periodic orbits have multiplier equal
to h.. (A key step to carry out the Hopf argument is to show absolute continuity
of the unstable foliation with respect to p..) Next, h, is compatible with the
Bowen—Pesin—Pitskel topological entropy of the restriction of 7' to a non-compact
domain of continuity. Last, applying results of Lima and Matheus [5], and Buzzi
[3], the map T has at least C'e™* periodic points of period n, for all n.
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Asymptotic completeness in celestial mechanics
ANDREAS KNAUF
(joint work with Stefan Fleischer)

The general setting is the one of a smooth (non-compact) manifold P of dimension
d with a volume form  and a C'-vector field X so that the Lie derivative £x
vanishes. Then the initial value problem for the differential equation © = X (x)
has a maximal solution of the form

®eC'(D,P) on D={(t,z) ERxP |T (z)<t<TT(x)},

with the escape times T := T+ : P — (0,+00] and T~ : P — [—00,0), and ®
preserves the volume form ().
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Definition 1. The wandering set of ® is given by
Wand := {:)3 € P | for some neighborhood U, of x and time t,, :
Us 19 ( (e, T(@)) x U,) 1 D) =0},
The singular set of ® is given by Sing :={z € P | T(z) < oo}.

Lemma 2.

(1) Sing is a Borel set
(2) Sing C Wand.

Let 7, : Hm — P (m € N) be a sequence of codimension one closed O-
submanifolds of P, which we call Poincaré surfaces.

Assumptions:

(1) The vector field X is transversal to their relative interior ¢y, : H,, — P.
Thus (¢ being the inner product) the (d — 1)-form

V:Z’I:Xg

on P induces volume forms V,, := ¢}V on H,,.
(2) We assume that lim,, . f?—t V,, = 0.

Definition 3. The set of transition points is given by

Trans := {x € P |3mo ENVm >mg: O (2) N H,, # 0},
O being the forward orbit.
Our main result in [FK19a] is the following.

Theorem 4. From the assumptions it follows that €(TransN Wand) = 0.

We applied this to scattering by n particles on
(1) joint configuration space M :=Rdr \ A, with
A:={g e R |thereexist 1 <i<j<n: ¢ =gq}
(2) phase space P :=T*M
(3) Hamiltonian function H € C%(P,R), H(q,p) := K(p) + V(q) with
K(p) =>4 Hzpr,L and V(q) := Zl§i<j§n Vii(ai — ;).

Definition 5. V is admissible, if lim| ;| Vi j(q) = 0, there exists an o € (0,2)
such that D*V; ;(q) = O(|lq|l=*"2) (|lql| £ 1), and for some Cy > 0 either

(1) for suitable Z; ; € R, |<ﬁ,ijj(q)> + am%;ﬁ <Cy (g £1)

(2) or the V; ; are bounded above, and, with W_(q) := max(—W(q),0),
(9, VVii(@)) < Cv + a(Vi;)-(q) (gl < 1).

Concerning the set Coll := {x € Sing ! limy s+ (5 q(t, @) exists}, we have
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Theorem 6. [FK19b)
For alln € N, d > 2 and E € R the set CollN H Y(E) of phase space points
leading to a collision has Liouville measure zero, provided V is admissible.

Additionally fOT(x) K(p(t,z))dt < oo (z € Coll).

Definition 7. We call the potential V

o long-ranged, if for some € > 0, [|VVi;(q)l = O(llq| =) (lall = 1),
o moderated, if for some a € (0,2), [[VVi;(q)[ = O(llal=*~") (lall < 1).

Note that a-homogeneous potentials are long-ranged and moderated.

Definition 8. For an initial condition xo € P\ Sing the asymptotic velocities

are

t
q( 7‘770) c ]Rdn.

Ei ($0) = t—lgl:noo

Concerning these Cesaro limits, in [Knl8] we proved

Theorem 9. Forn =4, d > 3 and long-ranged moderated central potentials the
set of xg for which % (xg) does not exist, has Liouville measure zero.
The Liouville measure of Sing is zero, too.
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Growth of normalizing sequences in limit theorems
SEBASTIEN GOUEZEL

Definition 1. Let (X, P) be a probability space, T : X — X a measurable map
and f: X — R a measurable function. We say that (X, P, T, f) satisfies a limit
theorem, for the mormalizing sequence (Bp) € (0,+00)N, if there erists a real
random variable Z which is not almost surely 0 such that S, f/B, converges in
distribution with respect to P towards Z, where Sy, f = ZZ;& foTF is the Birkhoff
sum of f forT.

There are many examples of such limit theorems. Let us give a few classical ones:

(1) If T preserves P and f is integrable, then Birkhoff theorem states that
Sn.f/n converges to E(f | Z) where Z is the o-algebra of invariant subsets.
This is a limit theorem with normalizing sequence B,, = n, when E(f | Z)
is not uniformly zero. When P is ergodic, this reduces to the fact that
Sn.f/n converges to [ f.
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(2) If T is an Anosov map and P is a Gibbs measure for a Hoélder potential,
one can get a limit theorem even when [ f = 0: if f is Holder continuous,
then the central limit theorem holds. This means that S, f/y/n converges
to a Gaussian random variable A'(0,02). This is a limit theorem when
02 > 0 or, equivalently, when f can not be written as g — g o T for some
measurable function g. The normalizing sequence is B,, = /n.

(3) If T is mixing and f = g — g o T, then S,, f converges in distribution to
Z — 7', where Z and Z' are independent random variables distributed
like g. This is a limit theorem if ¢ is not constant, i.e., if f is not almost
everywhere zero. The normalizing sequence is B,, = 1.

(4) Starting from a sequence of independent identically distributed random
variables whose renormalized partial sums converge to a stable law, one
gets an ergodic probability preserving system (X, T, P) and a function f
such that S, f/n'/® satisfies a limit theorem, for any o € (0, 2].

Our goal in [2] is to investigate the possible shape of limit theorems for general
systems. The limit Z can be arbitrary, as was proved by Aaronson and Weiss
in [1]:

Theorem 1.1. For any real random wvariable Z and any probability preserving
non-atomic system (X, T, P), there exists a measurable function f and a sequence
B,, — oo such that S, f/B, converges in distribution to Z.

On the other hand, it is easy to show that the sequence B,, can not be arbitrary.
We prove in [2] that it can not grow more than polynomially:

Proposition 1. Let (X, T, P) be a probability preserving map. Assume that, for
some function f, the sequence S, f /By, satisfies a limit theorem. Then there exists
C > 0 such that B,, = O(n%).

The argument for this proposition is easy. Our main interest, however, is in systems
which do not preserve P. If one removes all assumptions, then it is easy to create
stupid examples in which B, can grow arbitrarily fast, by using for instance the
left shift on Z. A form of rigidity comes from assuming conservativity, i.e., that
almost every point of a set A comes back infinitely often to A under the iteration
of the dynamics. This means that the values of f seen through the dynamics will
exhibit some weak kind of recurrence, preventing the Birkhoff sums from growing
too quickly. Our main result in this direction is the following theorem.

Theorem 1.2. Let (X, T, m) be a conservative map, and P a probability measure
which is absolutely continuous with respect to m. Suppose that, for some measur-
able function f, the renormalized Birkhoff sums S, f/By satisfy a limit theorem
with respect to P. Then B, can not grow exponentially: for any § > 0, one has

B, = o(eM).

This is considerably harder than Proposition[Il It turns out that the result in this
theorem is also optimal: in [2], we exhibit for each v < 1 a conservative map and
a measurable function exhibiting a limit theorem for B, = e . This shows that



1868 Oberwolfach Report 31/2019

the possible behaviors in conservative maps are much wilder than in probability
preserving systems. We also construct examples in which limsup By, +1/B;, = +o0
and liminf B,,11/B, = 0, in striking contrast to probability preserving maps, for
which B, 11/B, — 1.

The proofs of Proposition [I] and Theorem [I.2] have been formalized in the proof
assistant Isabelle/HOL, based on the ergodic theory library we had developed for
a previous article [3]. This means that these statements are certified, and can be
trusted with a degree of confidence which is much higher than anything that could
be achieved by the most careful authors and referees.
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Infinite Lebesgue spectrum for conservative flows on the torus
GIOVANNI FORNI
(joint work with B. Fayad, A. Kanigowski)

We prove that a class of smooth (real-analytic) full-measure Diophantine locally
Hamiltonian flows on the 2-dimensional torus with a single, sufficiently degenerate,
rest point have Lebesgue spectrum of infinite (countable) multiplicity.

The proof that the spectrum is absolutely continuous is based on estimate on
decay of correlations for smooth coboundaries, which allow to prove that such
correlations are square-integrable as functions of time.

The proof that the spectrum is Lebesgue with infinite multiplicity is based on
a new criterion, which is well-adapted to smooth dynamical systems with square-
integrable correlations on a set of sufficiently rich (dense) subset of smooth ob-
servables.

As a consequence of our criterion we derive that smooth time-changes of horocy-
cle flows also have Lebesgue spectrum of infinite multiplicity, thereby completing
the proof of a conjecture by A. Katok and J.-P.-Thouvenot [5], Conjecture 6.8.

The speaker had proved that such flows have Lebesgue maximal spectral type
in joint work with C. Ulcigrai [4].

We describe the class of flows for which our result holds. These are flows often
called Kochergin flows, after A. V. Kochergin who proved that they are mixing.
There are very few results on the rate of mixing for flows on surfaces. B. Fayad
[1] proved polynomial decay of correlations for a class of Kochergin flows on the
2-torus. The decay rate in this work is however not sufficient to derive that the
spectrum is absolutely continuous. B. Fayad and A. Kanigowski [3] recently proved
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that a subset of full Hasudorftf dimension of flows in this class have a generalized
Ratner property and are mixing of all orders.

Our class of Kochergin flows consists of flows on the torus with a single rest
point locally modeled on a Hamiltonian flow of Hamiltonian

H(z,y) = y(a® +2),  for (z,y) near (0,0) € R?,

with [ a sufficiently large integer, and an orbit foliations which coincides with the
foliation of a non-singular Diophantine flow, with the exception of two singular
orbits ending at the rest point in the future or in the past. It is easy to realize
these flows as infinitely differentiable locally Hamiltonian flows on the torus by a
partition of unity argument. By a more involved approximation argument it is
possible to construct real analytic examples.

Our Kochergin flows have a representation as special flows above an irrational
rotation of rotation number o € R\Q under a roof function ¢ : T — R* everywhere
of class C? except for a singularity at the origin. More specifically we assume that
the rotation number « satisfies a full measure Diophantine condition DClog ¢ of
the form: there exist C' > 0 such that
C

¢*(log g)'+¢”
We also assume that the roof function has a singularity of the following form:
there exist constants My, N1, Ry > 0 and n € (0,1) such that

\a—gyz for all (p,q) € Z x Z\ {0}.

o0 o p0)
(1) A, gy — M and - lm B ra = My
©'(0) A
2) A gy — 1 and o lim Greo = M
2 1
(3) im 29 _poand am 29 R

o—0+ 0= (B=m) 9—0- 0= (B=m)
We now recall the definition of a spectral type of a flow and in particular the
definition of Lebesgue spectral type with countable multiplicity. The Koopman
group of a flow ¢, preserving a probability measure i on a space X, is the strongly
continuous group U]fé5 of unitary operators on L?(X,du) defined as follows:

UP(f)=fo¢y, forall feL*(X,du)and forallteR.

By the spectral theorem for strongly continuous unitary groups, there exists a
sequence of probability measures

vV >V > DV >

such that Uﬁ(g on L?(X,dpu) is unitarily equivalent to the unitary group Ur defined
as

A A

Uy : f(&) = € f(&), forall fe @LQ(R, dvi(€)) and for all t € R.
k=1
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The measure class of the measure vy is called the maximal spectral type of the
unitary group. By the spectral theorem all spectral measures are absolutely con-
tinuous with respect to the maximal spectral type.

The sequence v > v > - -+ > v > is called the spectral type of the unitary
operator. The spectrum is said to be absolutely continuous if all the measures vy,
are absolutely continuous with respect to the Lebesgue measure on R, or equiva-
lently, if the maximal spectral type is.

An operator with absolutely continuous spectrum can fail to have Lebesgue
maximal spectral type if there exists a set C' C R of positive Lebesgue measure
such that 11 (C) = 0, hence v;(C) = 0 for all £ € N. The multiplicity of the
spectrum is the cardinality of the decomposition in the above definition.

Thus the spectrum is homogeneous Lebesgue if all measures v; are equivalent
to the Lebesgue measure and it is homogeneous Lebesgue of countable multiplicity
if the sequence v; > vy > --+ > v, > ... is infinite. In particular, an operator
with absolutely continuous spectral type can fail to have homogeneous Lebesgue
spectrum of multiplicity k& € N\ {0} if its spectral type consists of at most k — 1
spectral measures or if there exists a set C' C R such that v4(C) = 0.

We are now ready to state our main theorem on the spectral type of Kochergin
flows.

Theorem 1. The Koopman group of a Kochergin flow described above above has
Lebesgue spectrum of countable multiplicity if its rotation number o € DCiog ¢ with
&€ < 1/10 and if the roof function ¢ : T — RT has a power singularity at the origin
(as in the above formulas) with 0 < n < 1/1000.

A similar result holds for smooht time-changes (reparametrizations) of classical
horocycle flows for compact hyperbolic surfaces. This theorem confirms the Katok—
Thouvenot conjecture ([5], Conjecture 6.8).

Theorem 2. The Koopman group of a smooth time-change of the classical horo-
cycle flow for a compact hyperbolic surface has Lebesque spectrum of countable
multiplicity.

We conclude by stating our main abstract criterion for countable Lebesgue spec-
trum. Let F : L?(R,dt) — L?(R,dr) denote the Fourier transform, given by the
formula

FN@) = [ Fem e, for all € L2, ).

Theorem 3. Let {Ur} be a strongly continuous one-parameter unitary group on
a Hilbert space H with absolutely continuous spectrum. For a fited n € N, let us
assume that for every compact set C C R\ {0} of positive Lebesque measure there
exists €, c > 0 such that the following holds. For every € € (0,€y,c) there exist
vectors fi,..., fny1 € H such that
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KU (fi), fi)llLeryaey < dsj +€,  foralli,jel,...,n+1;
n+1

I H FQU(fa)s )l

=1

' n
L%H(C) > (n+ 1).(1+€) €.

Then the spectral type of {Ur} is Lebesgue with multiplicity at least n + 1.

The above criterion is applied through the following corollary, which makes clear
that it is enough to realize sufficiently arbitrary correlations. The derivative on the
convolutions appears since we only prove square-integrable decay of correlations
for smooth coboundaries, which are derivattives along the flow direction.

Corollary 4. Let us assume that, for every n € N and any system of even func-
tions wi,...,wnt1 € S(R) (the Schwartz space), and for any any € > 0, there
exists vectors f1,..., fn+1 € H such that, for alli,j € {1,...,n+ 1}, we have

2

d
(U fi), f5) — Ewi * Wi<t)5ij||L2(R) <e.

Then the spectral type of the strongly continuous one-parameter unitary group Ug
18 Lebesque with countable multiplicity.

The construction of the functions fi,..., fn+1, for an arbitrary n € N, for the
applications to the Koopman group of a Kochergin flow and to time-changes of
horocycle flows is based on the generalization of a construction found in [4] which
consists in defining functions supported in long and thin flow boxes or “towers”
(of transverse area converging to zero and diverging height). The functions are
in fact supported on a subset of fixed height for a sequence of longer and longer
(thinner and thinner) flow boxes. Their self correlations can be made arbitrary
on an interval of fixed size with a small square integrable error coming from the
correlations for times longer than the height of the flow box, while the mutual
correlations can be made small by taking the functions orthogonal on their common
domain of definition (this orthogonality property is in turn realized by taking the
horizontal factors of the functions to be orthogonal).
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Dynamical spectral rigidity of convex planar domains
Jacopo DE SiMoOI
(joint work with Vadim Kaloshin, Qiaoling Wei)

Let © C R? be a convex planar domain; is it possible to deform € in such a
way that the length of every periodic orbit of the billiard system inside €2 is
preserved? Isometric deformations trivially satisfy this prescription; we say that
Q is dynamically spectrally rigid if no other deformation satisfies this prescription.
It has been conjectured by Sarnak in the early 1990’s that every (convex) domain
with smooth boundary should be spectrally rigid.

In this talk we will see the proof that any sufficiently (finitely) smooth Zs sym-
metric strictly convex domain sufficiently close to a circle is dynamically spectrally
rigid (within Zo symmetric domains).

Our strategy associates to each domain €2 a corresponding Linearized Isospec-
tral Operator. Studying functional properties (injectivity) of this operator gives
information about spectral rigidity of the associated domain. We show that this
property holds for every domain sufficiently close to the circle.

The construction is explicit and generalizations are expected in further work
in progress with other collaborators. Moreover, thanks to the concrete nature
of the functional-analytic problem, numerical explorations and computer-assisted
approaches are feasible; reports in these directions will be available at the end of
the summer.

Renormalization of Hénon maps with zero entropy
SYLVAIN CROVISIER

(joint work with Enrique Pujals, Charles Tresser)

For C?-diffeomorphisms on compact surfaces, a positive topological entropy is
associated [7] with the existence of “horseshoes”: up to taking an iterate, these
are subsets where the dynamics is conjugate to a shift. On the contrary the
dynamics of systems with vanishing entropy seem very constrained and lead to
the following questions: To what extend can one describe the dynamics of surface
diffeomorphisms with zero topological entropy? How do they bifurcate to positive
entropy systems?

In the case of conservative diffeomorphisms of the sphere, Franks and Handel
have answered [5] to the first question, showing that the dynamics resemble the
dynamics of the time-one maps of hamiltonian flows. More generally, Le Calvez
and Tal have proved [8] that, for homeomorphisms, the transitive subsets have
a factor which is a periodic orbit, an irrational rotation or an odometers (Rees’
surgery produces large classes of exotic examples [2] but they are generally not
differentiable). The work we present here deals with C? diffeomorphisms of the
disc D which contract the area. In particular, we discuss a conjecture made by
one of us in the early 80’s and based on numerical experiments. This conjecture
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appeared and has been discussed in [0, [1]. We say that an integer n > 1 is a period
of f if there exists a point which is fixed by f™ and not by a smaller iterate.

Conjecture (Tresser). For any dissipative diffeomorphism of the disc, there exists
no such that the set of periods is contained in {n.2%, n < ng,k € N}. When
infinite, it contains a subset of the form {n.2¥ k € N},

This contrasts from diffeomorphisms with positive entropy, whose set of periods
contains a subset of the form n.N. The conjecture partially extends to surfaces
Sharkovsky’s theorem [9]: continuous interval maps have zero topological entropy
exactly when the set of periods is finite or has the form {2* k € N}.

Two of us have defined [3] the class of mild dissipative diffeomorphisms. These are
the C2-diffeomorphisms which send the closed disc D into its interior, contract the
area and whose ergodic measures p not supported on a sink satisfy: for p-almost
every point x, both stable branches of z intersects the boundary of the disc. For
instance any real Hénon map (z,y) +— (1 — ax? + y, bx) with jacobian |b| less than
1/4 induces a diffeomorphism in this class. Gambaudo-Tresser’s conjecture holds
for more general mild dissipative diffeomorphisms:

Theorem 1. For any mild dissipative diffeomorphism f of the disc whose topo-
logical entropy vanishes, the set of period is the union of a finite set with finitely
many sets of the form {n.2% k € N}.

A diffeomorphism f is renormalizable if there exist D C D homeomorphic to the
disc and k > 1 such that f¥(D) C D and f{(D)N D = for each 1 <i < k.

Theorem 2. For any mild dissipative diffeomorphism of the disc whose topological
entropy vanishes,

— either f is renormalizable,
— or any forward orbit of f converges to a fixed point.

These two statements were already known for Hénon maps which are strongly
dissipative (i.e. whose jacobian is very close to 0): De Carvalho, Lyubich and
Martens have even shown [4] by a perturbative method that the statement of
Sharkovsky’s theorem for interval maps extends then.

In our proof we analyze in details the dynamics of these systems:

Theorem 3. For any mild dissipative diffeomorphism of the disc whose topological
entropy vanishes, any orbit accumulates

— either on a periodic orbit,

— or on an tnvariant compact set K which is a generalized odometer A.

By generalized odometer, we mean that there exists a continuous semi-conjugacy
m: (K, f) = (A, h) between K and a dynamics on the Cantor set such that:
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— (A, h) is an odometer: for any € > 0 there exists m > 1 and a partition
K=A,UAU---UA,, into compact sets with diameter smaller than ¢,
satisfying h(A;) = A;41 for 1 < i < m and h(4,,) = A;. In particular
(A, h) has a unique invariant probability measure v.

— v-almost every point in A has a unique preimage by p.

In particular (K, f) is uniquely ergodic.

The class of mild dissipative diffeomorphisms of the disc with a finite set of
periods is C'-open and defines a natural generalization of Morse-Smale diffeo-
morphisms; those with an infinite set of periods exhibit a generalized odometer
and are infinitely renormalizable. In particular the boundary of the set of systems
with zero entropy (in the class of mild dissipative diffeomorphisms of the disc)
is included in the set of infinitely renormalizable systems with zero entropy; we
conjecture that this inclusion is an equality.

[
2]

3]
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A simple construction of an action selector on aspherical
symplectic manifolds

FELIX SCHLENK
(joint work with Alberto Abbondandolo and Carsten Haug)

1. INTRODUCTION

Hamiltonian systems on symplectic manifolds tend to have many periodic orbits.
The “actions” of these orbits form an invariant for the Hamiltonian system. The
set of actions can be very large, however. To get useful invariants, one selects for
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each Hamiltonian function just one action value by some minimax procedure: A
so-called action selector associates to every time-periodic Hamiltonian function on
a symplectic manifold the action of a periodic orbit of its flow in a continuous way.
For this one needs compactness assumptions on either the symplectic manifold
or the support of the Hamiltonian vector field. The mere existence of an action
selector has many applications to Hamiltonian dynamics and symplectic topology:
It readily yields a symplectic capacity and thus implies Gromov’s non-squeezing
theorem, implies the almost existence of closed characteristics on displaceable
hypersurfaces and in particular the Weinstein conjecture for displaceable energy
surfaces of contact type, often proves the non-degeneracy of Hofer’s metric and its
unboundedness, etc., see for instance [1}, 2] [3] 6] [7], 9].

Action selectors were first constructed for the standard symplectic vector space
(R*",wp) by Viterbo [9] and Hofer-Zehnder [3]. For more general symplectic
manifolds (M,w), action selectors were obtained, up until now, only by means of
Floer homology: For symplectically aspherical symplectic manifolds (namely those
for which [w]|x, ) = 0), Schwarz [7] constructed the so-called PSS selector when
M is closed, and his construction was adapted to convex symplectic manifolds
in [2]. Examples of convex symplectic manifolds are cotangent bundles and their
fiberwise starshaped subdomains, on which most of classical mechanics takes place.
We refer to Appendix A of [1] for a short description of these selectors. For some
further classes of symplectic manifolds and Hamiltonian functions, the PSS selector
was constructed in [4] (5] [8].

In this work we give a more elementary construction of an action selector for
closed or convex symplectically aspherical manifolds. Our construction uses only
results from Chapter 6.4 of the text book [3] by Hofer and Zehnder, that rely on
Gromov compactness and rudimentary Fredholm theory, but on none of the more
advanced tools in the construction of Floer homology (such as exponential decay,
the spectral flow, unique continuation, gluing, or transversality). In this way, the
three basic properties of an action selector (spectrality, continuity and local non-
triviality) are readily established by rather straightforward proofs, since the only
tool at our hands is the compactness property of certain spaces of holomorphic
cylinders.

2. IDEA OF THE CONSTRUCTION

In the rest of this note I outline the construction of our action selector on a
closed symplectically aspherical manifold (M, w). Denote by T = R/Z the circle of
length 1. Recall that the Hamiltonian action functional on the space of contractible
loops C29... (T, M) associated to a Hamiltonian function H € C*°(T x M,R) =:

contr

(M) is given by

bale) = [ @)+ [ Hea)ar
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where £ € C*>(D, M) is such that Z|sgp = x. The critical points of Ay are the
contractible 1-periodic solutions of the Hamiltonian equation

2(t) = X (t,x(t)),
where the vector field Xy is defined by w(Xp,+) = dH, and the set of critical

values of Ay is called the action spectrum of H and denoted by spec (H). An
action selector is a map o: (M) — R with the following three basic properties.

A1l (Spectrality) o(H) € spec (H) for all H € 5(M).
A2 (C°°-continuity) o is continuous with respect to the C'*°-topology on 7 (M).

A3 (Local non-triviality) There exists H € (M) with H < 0 and support in
a symplectically embedded ball in M such that o(H) < 0.

A first idea for defining an action selector is to boldly take the smallest action
value of a 1-periodic orbit,

o(H) := minspec (H).

Since spec (H) is a compact subset of R, this definition makes sense, and yields
an invariant with the spectral property. However, this invariant is not very useful,
since it fails to be continuous and monotone, two crucial properties for applications.
To see why, consider radial functions

Hy(z) == f(x]z]?) on B,

where f: R — R is a smooth function with compact support. For an arbitrary
symplectic manifold, such functions can be constructed in a Darboux chart and
then be extended by zero to the whole manifold. The critical points of Ay are the
origin and the (Hopf-)circles on those spheres that have radius r with s = 7r? and
f'(s) € Z; at such a critical point = the value of the action is

(1) Ap,(z) = f(s) —sf'(s),

see the left drawing in Figure[Ill Now take the profile functions f, fi, f_ as in the
right drawing: f’ € [0,1] and f/(s) = 1 for a unique s, while f_, f1 are C*°-close
to f and satisfy f_ < f < fyand f', f\ €[0,1). Then the formula (I)) shows that
o(Hy) is much smaller than o(Hy_ ) ~ o(Hy, ), whence o is neither continuous
nor monotone. Or take g with |g| very small and very steep. Then o(H,) is much
smaller than o(H ), whence monotonicity fails drastically.

The above discussion shows that the continuous, or monotone, selection of an
action from spec (H) must be done by some kind of minimax procedure for the
action functional. This was done for the Hofer—Zehnder selector by minimax over
a uniform minimax family, and for the Viterbo selector and the PSS selector by
a homological minimax. Our minimax will be over certain spaces of perturbed
holomorphic cylinders.

To introduce our construction, we first look at a toy model: Consider the qua-
dratic form q(z,y) = 22 — y? on R? and its perturbations

qn = q+h
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f(s) = sf'(sf

FIGURE 1. Radial functions and their minimal spectral values

dh

7

N

)
FIGURE 2. A perturbed quadratic form gy,

where h is a compactly supported function on R2. Here, the indefinite quadratic
form ¢ models the symplectic action and the compactly supported function h
models the Hamiltonian term in Ay, cf. [3] §3.3]. If h = 0, the only critical point
of g is the origin, with critical value 0. If h consists, for instance, of two little
positive bumps, one centered at (1,0) and one at (0, 1), then the graph of g5, looks
as in Figure[2l A continuous selection of critical values h +— o(h) should, in our
example, choose again 0, by somehow discarding the four new critical values.

In this finite dimensional example, one could define an action selector by the
minimax formula

o(h) = infm)z}th,

where the infimum is over the space of all images Y of continuous maps R — R?
that are compactly supported perturbations of the embedding y — (0,¥). Mono-
tonicity in A is clear from the definition, and spectrality can be proved by standard



1878 Oberwolfach Report 31/2019

deformation arguments using the negative gradient flow of ¢,. The definition of
the Hofer—Zehnder action selector (see [3| Section 5.3]) is based on a similar idea
and uses the fact that the Hamiltonian action functional for loops in R?™ has a
nice negative gradient flow.

Alternatively, one can fix a very large number ¢ such that the sublevel {g;, < —c}
coincides with the sublevel {¢ < —c} and define the same critical value o(h) as

inf {a € R | the image of iZ: H1({gn < a},{q < —c}) = H1(R* {g < —c}) is non-zero},

where the map ¢ is the inclusion
i"s ({an < a},{a < —c}) = (R* {g < —c})
and we are using the fact that
H,(R? {q < —c}) = Z.

Viterbo’s definition of an action selector for compactly supported Hamiltonians
on R?" uses a similar construction, which is applied to suitable generating func-
tions, see [9]. The Floer homological translation of this second definition is, in
turn, at the basis of Schwarz’s construction of an action selector for symplectically
aspherical manifolds, see [7], and of all its subsequent generalizations.

Here, we would like to define an action selector o(h) using only spaces of
bounded negative gradient flow lines: In the case of the Hamiltonian action func-
tional A g, these will correspond to finite energy solutions of the Floer equation,
which have good compactness properties. A first observation is that the knowl-
edge of the space of all bounded negative gradient flow lines of ¢; is not enough
for defining an action selector. Indeed, it is easy to perturb ¢ on a small disc
disjoint from the origin in such a way that the negative gradient flow lines of g3
look like in Figure B} A new degenerate critical point z is created, and the con-
stant orbits at (0,0) and at z are the only bounded negative gradient flow lines.
But since g, (z) could be either positive or negative, the set {(0,0), z} contains too
little information for us to conclude that the value of the action selector should be
qrn(0,0) = 0.

If, however, we are allowed to deform the function ¢, we can use bounded gra-
dient flow lines to define an action selector that identifies the lowest critical value
that “cannot be shaken off”. More precisely, take a family {h°}scr of compactly
supported functions such that h®* = h for s small and h®* = 0 for s large, and look
at the space % (h*) of bounded solutions of the non-autonomous gradient equation

u(s) = —Vap=(u(s)), s € R.

The boundedness of u is equivalent to bounded energy

B(w) = [ Vo )P ds = lim_ane (u()~ tim_gue(u(s))+ [ G (o) ds < oc,

s—4o00 R Os

or, since h® = h in the first limit and A® = 0 in the second limit, to the fact that
u(s) is asymptotic for s — —oo to the following critical level of ¢y,

qy (v) i= lim qn(u(s))
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F1GURE 3. The only bounded gradient flow lines are the constant
orbits at (0,0) and z.

and for all s large lies on the z-axis and converges for s — 400 to the origin (the
only critical point of ¢). The number

Luin a (u)
is the lowest critical value of ¢;, from which a bounded h®-negative gradient flow
line starts.

In our example from Figure [2] if we take h® = (s) h with a cut-off function 3,
then % (h®) contains no flow line u emanating from the two low critical points p;
or pg near (0,1). On the other hand, it is easy to construct a family h® that has a
negative-gradient line u(s) that converges to p; for s — —oo and to the origin for
s — 400. To be sure that we discard all inessential critical values, we therefore
set

o(h) = sup min g, ().

In the example, it is quite clear that for every deformation h® there exists a flow
line in % (h®) emanating from the critical point (0, 0), that is, o(h) = 0 as it should
be. In general, it is not hard to see that o(h) is a critical value of g, that depends
continuously and in a monotone way on h.

The number o(h) is the lowest critical value ¢ of ¢, such that for every defor-
mation h® of h there exists a bounded flow line u € % (h®) starting at a critical
level not exceeding c. Equivalently, o(h) is the highest critical value ¢ of g, such
that for every critical level ¢ < ¢ there exists a deformation h® of h such that all
flow lines of gps starting at level ¢’ are unbounded. That is: the whole critical set
strictly below ¢ can be shaken off.

Imitating the above construction, and inspired by the proof of the degenerate
Arnol’d conjecture in [3| §6.4], we can define an action selector for 1-periodic
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Hamiltonians on a closed symplectically aspherical manifold (M, w) in the following
way. Given H € C*°(T x M) we consider s-dependent Hamiltonians K in C*°(R x
T x M) such that K (s,-,-) = H for s small and K (s, -,-) = 0 for s large. Following
Floer’s interpretation of the L2?-gradient flow of the action functional, we consider
the space % (K) of solutions u € C*°(R x T, M) of Floer’s equation

(2) Osu + J(u) (atu — Xk (s,t,u)) =0
that have finite energy
E(u) = / 0sul? < oco.
RxT

Here, J is a fixed w-compatible almost complex structure on TM and |- |; is
the induced Riemannian norm. The space % (K) is Cf2.-compact by Gromov’s
compactness theorem. Now define the function

ayg: %K) =R, ay(u) = 8213100 Ap(u(s))

and finally define the action selector of H by

Aj(H) = Sup UGI%I?K) ay(u),
where the supremum is taken over all deformations K of H as above. The number
Aj(H) is the smallest essential action of H in the following sense: It is the lowest
critical value ¢ of Ay (that is, the lowest action of a contractible 1-periodic orbit
of H) such that for every deformation K of H there exists a finite energy solution
of Floer’s equation for K and .J that starts at a critical level < c.

In our finite dimensional model, we could have allowed for a larger class of
deformations of the gradient flow of ¢, by looking at families h® that for s large
do not depend on s but are not necessarily zero, and by taking the gradient with
respect to any family gs of Riemannian metrics that depend on s on a compact
interval. In the symplectic setting, the role of Riemannian metrics is played by w-
compatible almost complex structures. We may thus modify the above definition
by looking at functions K with K (s,-,-) = H for s small and K (s, -, -) independent
of s for s large, and at families J* of w-compatible almost complex structures that
depend on s on a compact interval. By using these larger families of deformations
we also obtain an action selector, A(H). This has the advantage that A(H) is
manifestly independent of the choice of J.
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Quantum footprints of symplectic rigidity
LEONID POLTEROVICH
(joint work with Laurent Charles)

According to the quantum-classical correspondence, quantum mechanics contains
classical mechanics as the limiting case when the Planck constant tends to 0. In
the talk, I have discussed quantum footprints of symplectic topology of the phase
space, focusing on rigidity phenomena.

First, I presented a link found in [2] between symplectic displacement energy,
a fundamental notion of symplectic dynamics introduced by Hofer [3], and the
quantum speed limit, a universal constraint on the speed of quantum-mechanical
processes discovered by Margolus and Levitin in [4]. In particular, positivity of
displacement energy of open subsets implies that on scales larger than the quantum
one, i.e., of the order A¢ with € < 1/2, the speed limit for semiclassical processes
involving semiclassical states is more restrictive than the universal one.

Second, I explained a connection between the Poisson bracket invariant of a
finite open cover of a closed symplectic manifold and the noise-localization un-
certainty relation [5]. Recall that this invariant measures, roughly speaking, the
minimal possible magnitude of Poisson non-commutativity of a partition of unity
subordinated to the cover. In dimension two, optimal bounds on the Poisson
bracket invariant were recently found by Buhovsky, Logonov and Tanny [1]. In
higher dimensions, they are still out of reach.
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The horocycle flow on the moduli space of translation surfaces
JON CHAIKA
(joint work with John Smillie, Barak Weiss)

A translation surface is given by a collection of polygons P, ..., P; in the plane
so that the sides can be grouped in pairs that are parallel and of equal length.
Identifying these paired sides by translation we obtain a translation surface, which
is a Riemann surface equipped with a singular flat metric. The singular points
of the metric are cone points whose cone angles are in 27Z. Two translation
surfaces are equivalent if there is a diffeomorphism between them whose derivative
is identically 1 between them. Such objects can be stratified by the orders of the
cone points of the surface to obtain a strata which we denote as H. (Note we are
suppressing the data that determines the strata in our notation.)

A trend in the study of strata of translation surfaces has been to use tech-
niques inspired by the study of homogeneous spaces. A major collection of results
on homogeneous spaces are rigidity results for the unipotent flows, like Ratner’s
Theorems:

Theorem. (Ratner) Let G be a connected Lie group, I' a lattice in G, X = G/T,
and U = {us : s € R} a one-parameter Ad-unipotent subgroup of G.

(1) For any x € X, Uz = Hux is the orbit of a group H satisfying U ¢ H C G,
and Hx is the support of an H-invariant probability measure fi,.
(2) For any x € X there exists p, so that supp(u,) = Uz and

Vf € Co(X), lim —/ f(uz dS—/fdux

t

The group SL(2,R) has a unipotent subgroup h; = (O 1) and the previous

theorem is false for the action of h; on the strata of translation surfaces that have
two cone points each of cone angle 47. We denote this stratum H and we have:

Theorem 1. There exists a translation surface z and a measure p so that x ¢
supp(p) (and so {h:x},.p # supp(u)) but for all f € C.(H) we have

lim —/ f(hez)dt = /fdu

T—oo T
Theorem 2. There is a dense G5 subset of H, B, so that for all x € B there
exists f € C.(H) so that

lim — / f(hez)dt does not exist.

Theorem 3. There is a translation surface z € H so that {h;z}, . has non-integer
Hausdorff dimension.

Theorem 4. There is a one parameter family of translation surfaces {zs}scr+ so

that whenever a < 8 we have that {h;z4},c is a proper subset of {hirg}, -
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The main object in the proof of these results is the tremor of a translation
surface. Given v a transverse invariant measure to the horizontal foliation on a
translation surface UP;/ ~ we want to obtain a new translation surface UP;/ ~.
We build each P/ by taking each side 7 of P;, which is a vector (h,v) in coordinates
and replacing it with the vector (h + sv(y),v) in coordinates where s € R. The
resulting translation surface is the time s tremor of UP;/ ~. Note when our
transverse measure comes from (the disintegration of) Lebesgue this agrees with
the horocycle flow. The surfaces in Theorems 1, 3 and 4 are all tremors of surfaces
that have extra symmetries. A key tool in our study is the fact that tremors
commute with the horocycle flow, and the horocycle flow of these surfaces with
extra symmetries can be understood.

Energy Drift and Diffusion Process in the Three-Body Problem
MARIAN GIDEA
(joint work with Maciej Capinski)

1. INTRODUCTION

In the context of perturbed Hamiltonian systems, we develop a general method
to show the existence of orbits that drift in energy, as well as of orbits whose
energy exhibits symbolic dynamics. This method allows one to obtain quantitative
information on such orbits — estimates on the range of the perturbation parameter
for which such orbits exist, on the speed of these orbits, and on the Hausdorff
dimension of their initial conditions —, as well as to obtain a description of the
stochastic process that governs the time-evolution of such orbits.

Our method can be applied to concrete models with realistic parameters, under
explicit conditions on the system. These conditions are of topological nature, and
can be verified either analytically or numerically via computer assisted proofs.

We apply our method to the planar elliptic restricted three-body problem,
viewed as a perturbation of the planar circular restricted three-body problem,
with the perturbation parameter £ being the eccentricity of the orbits of the pri-
maries. We prove that, for all suitably small (non-zero) values of ¢, there are orbits
whose energy drifts by O(1), at a rate of O(e). We also show the existence of orbits
whose energy exhibits symbolic dynamics, and we estimate that the Hausdorff di-
mension of such orbits is at least 4 in the 5-dimensional extended phase space. In
addition, we show that for any given diffusion process, there exists a set of initial
condition whose time-evolution in energy approximately follows that process.

Our results address some conjectures by Arnold and Chirikov.

2. MAIN RESULT

In the planar circular restricted three-body problem (PCR3BP), two primary
masses mq, Mo move on circular orbits about their center of mass, and a third
infinitesimal particle, i.e., m3s = 0, moves under the gravitational fields of mi, mo
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without affecting their orbits. The motion of mg relative to a co-rotating sys-
tem of coordinates, which places m; at (u,0) and mo at (—1 + p,0), where
1= mso/(my + ms), is given by the autonomous Hamiltonian

Ho(2) = 5((p1 +a2)° + (02 — 01)?) — (a1, 22).

Here z = (plaPQ,QMC]Q)a and W(Qla(&) = %(Q% + Q§) + 1;1“

d(ms, m1), ro2 = d(mg, mz). There are 5 equilibrium points for this problem. We
focus on one of them, referred to as Li, which is of saddle-center type, and is
surrounded by (Lyapunov) periodic orbits.

Since the underlying Hamiltonian system is autonomous, the energy function Hy
is preserved along trajectories.

In the planar elliptic restricted three body problem (PER3BP), the masses
m1, mg move on elliptic orbits of eccentricity € around the center of mass, while
the infinitesimal mass mg = 0 still moves under the gravitational fields of my, mso
without affecting their motion. Relative to a rotating-pulsating coordinate system,
which fixes my, mo at (i, 0) and (—1+ py, 0), respectively, the motion of ms is given
by the non-autonomous Hamiltonian

+ %, where 7 =

1

T T el ®)

Ho(2,6) = (o1 + ) + (2~ 0)?)

Here 6 is the true anomaly, and is taken as the ‘new time’ parameter.
The Hamiltonian of the PER3BP can be written as a small perturbation of the
one for the PCR3BP, i.e.,

H.(z,0) = Ho(z) + €H1(z,0;¢).

The energy function H. is not preserved along trajectories.

We consider a concrete model for the PER3BP, namely the the Neptune-Triton
system. In this case the normalized mass is p = 0.0002089, and the eccentricity is
c1=1.6" 1072,

Theorem 1. Consider the PER3BP model with the parameters from the Neptune-
Triton system. We have the following results:

(1) (Diffusing orbits) For every ¢ € (0,1, there exists a point z (¢) and t(e) €
(0,T/€), such that

Ho (@5 (2(2))) = Ho (2(e)) > C,

where C =2-1072 and T = 5.7 x 1074,

(2) (Symbolic dynamics) Let g = 1078 < 1. For any € € (0,&0] and any
sequence {I°}, _, 17 € [2n,C —2q] such that |I°T1 — 17| > 27 there
exists a point z and an increasing sequence of times t° > 0 such that

|(Ho (P (2)) — Ho(2)) — I?| <n for all o € N,

where n = 10719,
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(3) (Hausdorff dimension) The Hausdorff dimension of the set of points z
which exhibit symbolic dynamics as in (2) is greater or equal to 4 (in the
5 dimensional extended phase space).

(4) (Stochastic behavior) Let p,o € R, Yy € (0,C), and v > 3. Denote by f-
the first return time to {g2 = 0}. Consider the stochastic processes

Y;I:YO—FMt—FO’Wt, fO’f’tE[O,l],

where Wy is the standard Browian motion.

Then for each 0 < € < €g there exists a set Q. C {q2 = 0}, endowed
with the probability measure P. equal to the normalized Lebesgue measure
on ., so that the stochastic process X; : Qe — R defined by

Xi(2)=Ho ()17 1), porteqnl,
satisfies
lim X, < Yinr.

Above, Tx :=inf{t: X§f > C or X; <0}, 7y :=inf{t: Y, > C orY; <0}
are stopping times, and the convergence is in distribution.

3. METHODOLOGY

The main geometric mechanisms relies on following several homoclinic orbits asso-
ciated to a family of Lyapunov orbits around L, which exist in the PCRT3BP for
e = 0. In the PER3BP, for € > 0 small, as we follow the homoclinics, the return
map to a neighborhood (in the extended phase space) of the family of Lyapunov
orbits is either increasing or decreasing the energy.

To obtain orbits that drift in energy, we identify a ‘strip’ in the Poincaré section
{g2 = 0}, corresponding to some range of #-values, where the return map yields an
increase in energy by O(e). By repeatedly returning to this strip for O(1/¢)-times,
one can obtain a growth of energy by O(1).

To obtain symbolic dynamics, we identify two ‘strips’ in the Poincaré section
{q2 = 0}, corresponding to two disjoint ranges of #-values, such that the return
map to one strip yields an increase in energy by O(e), and the return map to the
other strip yields a decrease in energy by O(e).

To show that the set of initial conditions that yield symbolic dynamics has
Hausdorff dimension at least 3 in the 4-dimensional Poincaré section (hence at
least 4 in the 5-dimensional extended phase space), we show that this set of initial
conditions projects, relative to some suitable coordinate system, onto a certain
3-dimensional rectangle.

To prove the statement on stochastic behavior, we first construct a random walk
Y;? which approaches the chosen Brownian motion with drift Y; = Yy + ut + oW,
as € — 0, and then use symbolic dynamics to obtain orbits whose energy ‘shadow’
the values of Y,°.
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To obtain Theorem [1 we first prove some general results on perturbed Hamil-
tonian systems, which show that, if certain topological conditions are satisfied,
then there exist orbits with the desired properties.

To apply those general results to the PER3BP, we verify that the underlying
system satisfies the appropriate topological conditions. This verification is done
via a computer assisted proof. This amounts to performing all algebraic operations
in interval arithmetic, to integrate the differential equations with interval-based

ODE solvers, and to obtain all numerical solution with rigorous bounds.
See [1] for details.
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Emergence of wandering stable open components
PIERRE BERGER
(joint work with Sebastien Biebler)

Given a holomorphic endomorphism f of a complex manifold X, the Fatou set con-
sists of the set of points x € X which have a neighborhood U such that (f™|U),
is normal. In particular the connected components of the Fatou set, called Fatou
components, are mapped into each other under the dynamics. The understand-
ing of complexity of the dynamics on the Fatou set is a problem of fundamental
interest.

When X = P1(C), a celebrated result of Sullivan [I] shows that any rational
function does not have any wandering Fatou component. In higher dimension, the
problem of the existence of a wandering Fatou component was first studied in 1991
in the work of Bedford and Smillie [2] in the context of polynomial automorphisms
of C2. Our first main result is an answer to this problem:

Theorem. There exists a locally dense set of real polynomial automorphisms f of
C? which display a wandering Fatou component C satisfying:

(1) the real trace C NR? of C is non-empty,
(2) for every compact set Ko C C, the union J, 5 f"(Ko) is bounded and the
diameter of f™"(Kg) converges to 0 as n — oc.

The proof relies on a robust geometric model on parameter family of dynamics. It
implies the existence of a real wandering open stable components at a dense set of
parameters. By open stable component, we mean a maximal connected, open set
of asymptotic points. We prove that this component has a historical behaviour,
and that this model occurs densely among families inside the dissipative Newhouse
domain N". This allows us to complement the solution of Kiriki-Soma [3] on the
last Taken’s problem from the finitely regular case to the C'*°-case:
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Theorem. For everyr € [2,00], there is a dense subset of N formed by dynamics
f which display a wandering stable open component Cy satisfying:

(1) for every x € Cy, the limit set of the orbit of x intersects a horseshoe A,
(2) every x € Cy has its sequence (e,(x))n>0 of empirical measures e, (x) :=
LS 8y which di
= 2i—o Ofi(a) which diverges.

Moreover, in the two latter results, we show that for every x € C (resp. = € Cy),
the set of accumulation points of (e, (x)),>0 has its covering number N satisfying:

lim inf M
n—0 —logn
for the set of probability measures endowed with the Wasserstein distance.

This indicates that the statistical complexity of the dynamics is high. To quan-
tify the complexity of the statistical behavior of typical orbits for differentiable
dynamical systems, the notion of emergence has been introduced in [4]. The lat-
ter inequality confirms the main conjecture of [4] saying that super polynomial
emergence is typical in many senses and in many categories of dynamical systems.

>0
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The spectral recognition of rank one contact forms on closed
three-manifolds

DANIEL CRISTOFARO-GARDINER
(joint work with Marco Mazzucchelli)

A contact form on a (2n+1)-dimensional manifold is a differential one-form A such
that A A (dA\)™ is a volume form. A contact form determines a canonical vector
field R, called the Reeb vector field, defined by the equations

d\(R,) =0, A(R)=1.

For example, there is a natural contact form on the unit cotangent bundle of any
Riemannian manifold, such that the integral curves of R project to geodesics.

Closed orbits of the Reeb vector field are called Reeb orbits. The spectrum
A(Y,;\) C Ry of the pair (Y, ) is the set of periods of Reeb orbits; the simple
spectrum Agimp(Y, A) is the set of periods of simple Reeb orbits, in other words
those orbits that are not multiple covers. It is natural to ask to what degree we can
reconstruct A from A and Ajgir,p; the analogous question in Riemannian geometry,
called length spectrum rigidity, is much studied, see for example [8].



1888 Oberwolfach Report 31/2019

Define the rank of A(Y,\) to be the rank of the Z-submodule of R that it
generates. Our results address spectral recognition in the rank one case, where in
dimension 3 it turns out that much can be said:

Theorem 1. [2|[7] Let (Y, \) be a closed three-manifold with a contact form. Then
the following are equivalent:

e The action spectrum has rank 1.

o Fuvery orbit of the Reeb flow is closed.

e Fvery Reeb orbit has a common period. (In other words, there ezists a
positive real number T such that for any £ € Asimp(Y, A), £ divides T'.)

Theorem 2. [2]

Let (Y, \) be a closed three-manifold with a rank one contact form. Then, A can
be recovered from Agimp and Y : that is, if Ay and A2 are two rank one contact
forms on'Y such that Agimp(Y, A1) = Asimp(Y, A2), then there is a diffeomorphism
V.Y —Y such that U\ = \1.

We remark that the fact that the second bullet point in Theorem [1] implies the
third is classical, due to Wadsley [7].

The proofs of Theorem [1I] and Theorem [2] are quite different. Theorem [I] uses
a Floer homology for closed three-manifolds with a contact form, called embed-
ded contact homology (ECH), see [6]. ECH is defined in terms of Reeb orbits
and pseudoholomorphic curves, but is canonically isomorphic to Seiberg-Witten
Floer cohomology, and so connects gauge theory and low-dimensional contact and
symplectic topology. It can be used to define a series of spectral invariants which
recover the volume fY AN dA via a kind of Weyl law, called the “volume prop-
erty”, proved in [5]; this is the key fact tha