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Higgs bundles without geometry
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Higgs bundles appeared a few decades ago as solu-
tions to certain equations from physics and have at-
tracted much attention in geometry as well as other
areas of mathematics and physics. Here, we take a
very informal stroll through some aspects of linear
algebra that anticipate the deeper structure in the
moduli space of Higgs bundles.

1 Introduct ion

Higgs bundles have been making waves in mathematics for over 30 years
now. They are solutions to certain differential equations that originate in
mathematical physics — specifically, the self-dual Yang-Mills equations reduced
by two dimensions [1] — but have become staples in geometry (algebraic,
differential, and symplectic), representation theory, and even number theory. In
a spectacular way, Higgs bundles were used to prove the Fundamental Lemma, a
Fields Medal-worthy result [4]. Coming full circle, Higgs bundles have a renewed
importance in high-energy physics through applications to string theory and
mirror symmetry.
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2 Modul i spaces in modern and ancient l i fe

We will delay the definition of a Higgs bundle until the next section, because on
its own, a single Higgs bundle is not so important. What makes them special is
the confluence of geometric features of an entire family of Higgs bundles, known
as the moduli space. Let’s take a moment to say a few words about moduli
spaces before we go into Higgs bundles themselves.

A moduli space is somewhat akin to a telephone book in which you can
look up every Higgs bundle (or some other kind of mathematical object). If
we continue with the telephone analogy, note that — especially these days —
a single person might have multiple phone numbers, say, a home landline, a
mobile, and a work number. To form the moduli space of phone numbers,
we consider someone’s home number, mobile number, and work number to be
three interchangeable avatars for the same thing: the person you are trying to
reach. As such, we make the decision that, for any given person, our phone
number moduli space only lists one of these numbers. 3 This is what we call an
equivalence relation on a set, in this case the set of all telephone numbers: two
numbers are deemed equivalent if they belong to the same person. Our moduli
space of Higgs bundles does the same thing. An individual Higgs bundle might
have many avatars. We can form the moduli space by picking a preferred avatar
for each.

If the telephone example seems too impractical, note that the set of time-
telling hours is an ancient moduli space of immense practicality. Humanity
opted out of telling one another the number of hours that have elapsed since
the dawn of known history. Instead, we reset the clock every 12 or 24 hours.
Going with the former (the AM/PM clock), we elect to treat 1 and 13 and 25
and so on as avatars of the same hour. We keep only 1 o’clock and throw away
the rest of its avatars, which is why we never refer to 37 o’clock or 49 o’clock,
etc. Mathematicians would use the notation Z12 to denote the moduli space of
time-telling AM/PM hours.

3 Vector bundles and matr ices with polynomial entr ies

So what is a Higgs bundle, then? To the reader who has not been exposed to
serious complex geometry — Riemann surfaces, vector bundles, Jacobians, holo-
morphic differentials — there is not much that can be said precisely. Accepting
some imprecision, a vector bundle can be imagined as a surface together with
lines or vector spaces at each point on the surface.

3 The practicality here is debatable. On the one hand, the book is data efficient because it
only contains one entry per person. On the other hand, it only gives you one way to reach a
person.
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In nature, we can think of a hedgehog as a fairly good real-life cartoon for a
vector bundle: indeed, over each point of their skin, the hedgehog has a hair
which determines a 1-dimensional space, and thus we would call the hedgehog a
(real) line bundle as shown in Figure 1. If we replace each hair with a piece of
cardboard, then we will have a rank-2 vector bundle. If we replace each sheet
of cardboard with a box, then we will have a rank-3 vector bundle; and so on.
We refer to the skin of the hedgehog as the base space of these bundles.

Figure 1: A line bundle over a hedgehog given by its thin hairs.

A crucial property of vector bundles is that of nontriviality. This allows a
bundle to behave differently over different small patches of the base space, and
is useful in many applications — particularly in physics. A good base space
will have patches that are each in correspondence with Rn for some n. Rather
than try to work with (or even properly define) nontrivial bundles, we will work
with just a single patch U = Rn.

Now, a common observation in mathematics is that things become easier
when we work over the complex numbers. The set of complex numbers C =
{a+bi|a, b ∈ R} is in correspondence with the set of points R2 = {(a, b)|a, b ∈ R}.
We will consider a base patch U = R2 and regard this as U = C. Such patches
cover a special class of base spaces called Riemann surfaces, which are the
typical setting for the theory of Higgs bundles.

A Higgs bundle is a vector bundle that also comes with a map Φ, called
the Higgs field, which transforms the vector bundle in a certain way. This is
sometimes called “twisting” (see Figure 2).

Figure 2: A map Φ which “twists” the hedgehog bundle.
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Because we have elected to work on a single patch of a Riemann surface, the
map Φ can be represented in a particularly simple way. If we have a complex
rank-r bundle on U = C (which means that a copy of Cr = R2r appears over
every point of U), then Φ is an r × r matrix with polynomial entries. In other
words, the entries of Φ are polynomial functions of some degree k taking the
form

akz
k + · · ·+ a1z + a0,

with ai ∈ C for each i. The parameter z is a complex number that tells us
where we are in the base U . When we pick a particular value for z, the map Φ
becomes an ordinary matrix of complex numbers and it acts on the copy of Cr

over z ∈ U by matrix multiplication. Here, the degree of the polynomials can
be regarded as the “twisting” effect.

Since z encodes U and since the size of Φ as a matrix reminds us that the
bundle consists of copies of Cr, we can go so far as to forget the patch and
forget the Cr’s altogether, and just focus on the map Φ. This is an extremely
reductionist point of view, but it is useful for us that matrices with polynomial
entries exhibit many of the interesting features of true Higgs bundles, since it
uses only linear algebra without many of the geometric complications.

4 Modul i spaces of matr ices with polynomial entr ies and
spectral curves

To start with the simplest example, we can take matrices with polynomial
entries in which the entries are simply complex numbers. These are, if one
likes, the matrices with polynomial entries of degree zero. We will work out the
moduli space of complex 2× 2 matrices. We must first decide what it means
for two matrices to be equivalent. The natural relation is that two matrices A
and B are equivalent if they are similar, meaning that there exists an invertible
matrix P in GL(2,C) such that

B = P−1AP.

For example consider the 2× 2 matrices

A =
(
a −b
b a

)
, B =

(
a b
−b a

)
, P =

(
−1 0

0 1

)
.

One can check that B = P−1AP and so A and B are equivalent. In fact, writing
the complex numbers a + bi as real 2 × 2 matrices A, the transformation P
corresponds to complex conjugation, a+ bi 7→ a− bi.
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It turns out that any 2× 2 matrix A is equivalent to a matrix of one of the
following three forms:

D =
(
λ1 0
0 λ2

)
, D0 =

(
λ1 0
0 λ1

)
, D1 =

(
λ1 1
0 λ1

)
(1)

where λ1 6= λ2. The numbers λ1 and λ2 are simply the eigenvalues of A. The
fact that we can transform A into an equivalent representative in which these
numbers emerge as the only non-trivial data suggests that these values play a
role in organizing the moduli space of the matrices. To go back to the telephone
book analogy, it appears that we can look up an equivalence class of similar
2× 2 matrices by its eigenvalues.

When λ1 6= λ2, the pair (λ1, λ2) corresponds to a single class of matrices, the
one represented by D in Equation (1). Something a little different happens when
we encounter a pair of the form (λ1, λ1). Here, there are exactly two classes that
share this “telephone number”: the class of matrices similar to D0 and the class
of matrices similar to D1 in Equation (1). If it bothers you that most eigenvalue
pairs correspond to only one class of matrices but some pairs correspond to two
classes, then you are not alone. This is a fundamental problem in moduli theory
and algebraic geometers solve this by throwing away the extra bothersome
points. In this case, we will choose to discard the classes represented by D1 in
Equation (1). This act of “throwing away” is what algebraic geometers refer to
as a imposing a stability condition. In linear algebra terms, we are throwing
away the non-diagonalizable matrices from the set of all 2× 2 matrices.

From this, it is tempting to conclude that the space C2, this is, the space
of pairs (λ1, λ2), is the moduli space of diagonalizable 2 × 2 matrices under
similarity. Indeed, for each point (λ1, λ2) ∈ C2, regardless of whether λ1 = λ2
or not, there is a single class of such matrices. At this point, one would do well
to recognize the following subtlety: the matrices(

λ1 0
0 λ2

)
and

(
λ2 0
0 λ1

)
are equivalent under similarity. In other words, the pairs (λ1, λ2) and (λ2, λ1)
represent the same class. The solution is to make no distinction between any
two pairs that differ only by order. In group-theoretic terms, this is the same
as saying that the moduli space is the quotient of C2 = C × C by S2, the
symmetric group on two letters. The beautiful thing is that the space that
results from collecting pairs in this way is again in bijection with C2 as a set, 4

4 Further still, they are homeomorphic as topological spaces. What is lost after quotienting
is the vector space structure on C2, and so algebraic geometers would prefer to refer to the
moduli space as the affine space A2.
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and so we may indeed conclude that the moduli space is C2. Viewed from the
theory of Higgs bundles, the space C2 plays the role of what we call the Hitchin
base, while the single class of matrices corresponding to each point in C2 is the
Hitchin fibre.

To go further, it is important to remember that the two eigenvalues λ1 and λ2
in the preceding example emerge as solutions to a degree 2 polynomial equation,

λ2 − (trA)λ+ (detA) = 0,

the characteristic equation of A, where tr and det are the trace and determinant,
respectively. 5 When Φ is a 2×2 polynomial-valued matrix of degree larger than
zero, both trΦ and det Φ will themselves be polynomials in z. This means that
for each point z in the patch U , there will be a pair of eigenvalues (λ1(z), λ2(z)).
This forms a new patch Ũ that, for almost every z ∈ U , contains two points
that project to z. This is what geometers call a branched double cover. The
word “branched” accounts for the possibility that, for some z, there will be
equal eigenvalues where the two sheets of Ũ will come together as in Figure 3.
This new patch Ũ is a local model for what geometers call a spectral curve — a
space whose points are the eigenvalues of some matrix or family of matrices.

Figure 3: A spectral curve with R1 and R2 corresponding to two branch points.

If we populate Ũ with the structure of a complex line bundle, as illustrated
in Figure 4, then for most points z ∈ U there will be two complex lines situated
directly above them in Ũ . We can physically transport these lines down to z —
this operation is called the pushforward — where they will span a copy of C2

at z. Furthermore, we can read off the two eigenvalues λ1(z) and λ2(z) above z
and construct a diagonal matrix Φz from them. It is possible to formulate Φz

in a consistent way even at points z where Ũ is branched. Having done this

5 For each characteristic equation, there is exactly one pair of (unordered) eigenvalues that
solve the equation, and therefore exactly one diagonalizable class of 2 × 2 matrices. This is
another way to see that the moduli space of 2 × 2 matrices is C2, since it takes two numbers,
tr(A) and det(A), to write down each characteristic equation. In this model, the order of the
two numbers does make a difference — swapping a trace with a determinant will change the
equation and hence the solutions!
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for all z ∈ U , we will have produced a rank-2 complex vector bundle and a
corresponding polynomial-valued matrix Φ on U . It is possible to go back and
forth between these types of objects: matrices with polynomial entries on U
and complex line bundles on Ũ . This is called the spectral correspondence and
it extends even to non-trivial Higgs bundles on compact Riemann surfaces. A
complete account of this appears in the work of Hitchin [2].

Figure 4: The data defining the vector bundle of a Higgs bundle, seen as a line
bundle on the double cover of the base space.

5 A hint of the ful l p icture

In the full geometric picture on a Riemann surface X, each Higgs bundle on X
will determine a spectral curve X̃ that forms a branched cover of X. The
spectral correspondence replaces Higgs bundles on X with line bundles on
the corresponding X̃ and the correspondence respects equivalence, which is a
generalization of similarity of matrices. If two Higgs bundles are equivalent,
then they determine the same X̃ and their line bundles on X̃ are also equivalent.
The set of equivalence classes of Higgs bundles with the same spectral curve X̃
is in correspondence with a set of line bundles 6 on X̃, and these form a
geometric torus (of some dimension). The collection of all spectral curves is
the Hitchin base while the respective tori are the Hitchin fibres, see Figure 5.
As with ordinary matrices, decisions have to be made regarding throwing away
“unstable” Higgs bundles, in order to build a moduli space. In the case of ordinary
matrices, the spectral curves become ordinary eigenvalues and line bundles
become ordinary eigenspaces, of which there is no choice up to equivalence,
recovering the picture discussed earlier in which the Hitchin base consists of
eigenvalues and the Hitchin fibres are just single points.

6 We should be discussing holomorphic Higgs bundles and holomorphic line bundles at this
point, but we wish to maintain the decidedly very informal tone of this note for the lay reader.
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Figure 5: A torus fibration with singular fibres.

Torus fibrations, which are geometric structures consisting of a torus over
each point in some other space, appear frequently in mathematics and physics:
in the theory of integrable systems, in mirror symmetry, and in representation
theory. This universality evokes natural questions about how the moduli space
of Higgs bundles might connect with these areas. It happens to be the case
that Higgs bundles play a crucial role in problems central to all three subjects.

If we have kept the attention of the reader, we invite them to spend some
time with introductory surveys on Higgs bundles such as [3, 5, 6] and, from
there, examine some more specialized literature on the rich interplay between
Higgs bundles and various areas of mathematics and physics.

Image credi ts

All figures were made by the authors.
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