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Quantum symmetry

Mar t i jn Caspers

The symmetry of objects plays a crucial role in many
branches of mathematics and physics. It allowed, for
example, the early prediction of the existence of new
small particles. “Quantum symmetry” concerns a
generalized notion of symmetry. It is an abstract
way of characterizing the symmetry of a much richer
class of mathematical and physical objects. In this
snapshot we explain how quantum symmetry emerges
as matrix symmetries using a famous example: Mer-
min’s magic square. It shows that quantum symme-
tries can solve problems that lie beyond the reach of
classical symmetries, showing that quantum symme-
tries play a central role in modern mathematics.

1 Introduct ion

In the first half of the 20th century the principles of quantum mechanics were
discovered. These principles describe how very small particles behave. These
are particles at the scale of atoms or even smaller: electrons, neutrons, protons,
and many others. The theory required a startling new intuition about physical
concepts which had been thought for a long time to have been well understood:
movement, place, energy. Such seemingly easy concepts – visible to the human
eye on a daily basis – had to be re-invented. At the time, new models to
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understand quantum mechanics had been proposed by Erwin Schrödinger (1887–
1961), Werner Heisenberg (1901–1976), and many others. Although nowadays
these models are widely accepted to be correct, initially they led to huge debates
amongst leading mathematical physicists including Niels Bohr (1885–1962) and
Albert Einstein (1879–1961).

Figure 1: Solvay conference (Brussels, 1927) in mathematical physics where the
foundations of quantum mechanics were laid. Amongst the attendants
are Bohr, Einstein, and Heisenberg.

In this snapshot, the feature of quantum mechanics that we will concentrate
on is that it is based on “matrix analysis”, an approach usually attributed
to Heisenberg. We will give some more details shortly, but briefly, an n ×m
matrix is a rectangular array of numbers, arranged into n rows and m columns.
The use of matrices leads to surprising new phenomena. We begin showing
this by considering a famous puzzle that illustrates how useful matrices can
be: Mermin’s magic square. We then discuss how sets can be seen as a special
case of this matrix analysis. The latter step is a parallel between the step from
deterministic mechanics (what you see in daily life) to quantum mechanics
(what goes on in the microscopic world). Meanwhile we aim to give some
intuitive answers to the question of what happens to symmetries when one
“goes quantum”.
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2 From classical to quantum: a puzzle you can’ t solve, or
can you?

Let us begin by defining Mermin’s magic square. Take a 3× 3-grid, as shown in
Figure 2. Then we ask: Is it possible to fill the grid with numbers 1 and −1
such that:

• The product of the numbers in each row yields 1.
• The product of the numbers in each column yields -1.

⇒
1 −1 −1
−1 −1 1
1 −1 ?

Figure 2: On the left, an empty 3× 3-grid. On the right, an attempt to fill the
grid according to the rules.

On the right-hand side of Figure 2, you see an attempt to fill the grid. If
you multiply the numbers in the first row or the second row, the result is 1.
If you multiply the numbers in the first column and the second column, the
result is −1. So far so good. However, now we want to decide whether there
should be a 1 or a −1 at the place of the question mark. To make the product
of the numbers on the third row result in a 1, we need to replace the question
mark with a −1. However, if we want that the product of the numbers in the
third column is a −1 then we must replace the question mark with a 1. So we
conclude that we cannot complete the table according to the rules. We need to
go back and change the other numbers as well. However, thinking further, we
see that it is impossible to fill the table according to these rules. Why?

Let us try to compute the product of all numbers in the table. We know that,
according to the rules, the product of each row must be 1. So if we take the
total product we get 1 ·1 ·1 = 1. On the other hand we know that the product of
each column yields a −1. But then the total product must be −1 ·−1 ·−1 = −1.
This is, of course, impossible.

Now let us look at the “quantum” situation. At this point we will require a
little bit of linear algebra. We will consider 2 × 2 matrices, so square arrays
of numbers arranged in 2 rows and 2 columns. We multiply two such matrices
according to the following rule:(

a b
c d

)
·
(
e f
g h

)
=
(
ae+ bg af + bh
ce+ dg cf + dh

)
. (2.1)
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We multiply a number λ with a 2× 2-matrix as follows

λ ·
(
a b
c d

)
=
(
λa λb
λc λd

)
.

Let us introduce the special matrices

1 :=
(

1 0
0 1

)
, -1 :=

(
−1 0
0 −1

)
.

We also introduce the Pauli matrices, named after the physicist Wolfgang Pauli
(1900–1958):

σx :=
(

0 1
1 0

)
, σy :=

(
0 −i
i 0

)
, σz :=

(
1 0
0 −1

)
.

Here the symbol i denotes the square root of −1, that is, the complex number
with the property that i2 = −1. If we multiply these matrices we find that

σxσy = iσz, σyσz = iσx, σzσx = −iσy.

We also find that
σ2
x = σ2

y = σ2
z = 1.

Extending the definition of a matrix given in the introduction, we allow the
entries to be matrices themselves. In equation (2.1), if the entries a, b, c, . . . , h
are matrices, each time that we see a product of some of these entries on the
right hand side of the expression (2.1) we apply the matrix multiplication. We
shall further use the notation(

a b
c d

)
⊗ σ =

(
aσ bσ
cσ dσ

)
, (2.2)

where a, b, c, d are numbers and σ is a 2× 2-matrix. The equation in (2.2) is
called a tensor product. Let us compute the example σx ⊗ σy to make this a
little clearer:

(
0 1
1 0

)
⊗
(

0 −i
i 0

)
=

 0 ·
(

0 −i
i 0

)
1 ·
(

0 −i
i 0

)
1 ·
(

0 −i
i 0

)
0 ·
(

0 −i
i 0

)


=
(

0 σy
σy 0

)
,

where 0 denotes the matrix with all 0 entries.

4



Now we fill the magic square as shown in Figure 3. The entries are not
numbers anymore, rather they are 2 × 2-matrices whose entries are again
2× 2-matrices (that is, they are tensor products).

1⊗ σz σz ⊗ 1 σz ⊗ σz
σx ⊗ 1 1⊗ σx σx ⊗ σx
−σx ⊗ σz −σz ⊗ σx σy ⊗ σy

Figure 3: The 3× 3 grid filled with tensor products of matrices.

Now, after a certain amount of calculation, we observe that each row multi-
plies to the same matrix 1⊗1. Each column multiplies to the matrix −1⊗1. To
abbreviate the computations above we use the rule (A⊗B)·(C⊗D) = (AC⊗BD),
which can be checked from the descriptions above. So we get for the first row:

(1⊗ σz) · (σz ⊗ 1) · (σz ⊗ σz) = (1 · σz · σz)⊗ (σz · 1 · σz) = σ2
z ⊗ σ2

z = 1⊗ 1.

The other rows and columns can be checked by a similar computation.
In conclusion, the 3 × 3 square given by Figure 3 shows that one is able

to produce a solution to the problem if one permits matrices instead of just
numbers. The reader should note that this should not be considered some
artificial solution, because matrices and tensor products arise naturally in many
areas of mathematics, including quantum mechanics, as we will see in the next
section.

3 Operator theory: the language of quantum mechanics

In the 1920s, the foundations of quantum mechanics were laid by a group
of mathematical physicists. Quantum mechanics deals with the way that
small particles (such as electrons) move. These particles move in a “strange”
way. They do not have determined positions or momenta, but they are rather
determined by probability distributions. The chance that a particle can be
found in a certain region is given by a probability distribution. Sometimes
this phenomena is also described as particles having multiple locations at the
same time. Only after measuring the position of the particle the probability
distribution changes into a new probability distribution (with a high density at
the region where the particle was measured).

As mentioned in the introduction, amongst the mathematical physicists
working at the beginnings of quantum theory was Werner Heisenberg, who
proposed a mathematical model to describe these probability distributions using
matrix algebras. The 2× 2-matrices of the previous section provide a simple
example. If properly interpreted, these 2× 2-matrices can be used to describe
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a particle that can only be in two places (in fact, even more information can
be stored in a 2× 2 matrix, but we keep it simple here). One could think of 2
pots, and secretly putting a marble in pot 1 with probability p or a marble in
pot 2 with probability q where p+ q = 1, as illustrated in Figure 4.

Figure 4: Marble in a pot with probability distribution

The corresponding matrix would be the diagonal matrix given by(
p 0
0 q

)
.

We will not try to explain the precise details of quantum mechanics and Heisen-
berg’s matrix analysis. The main idea is that if the matrix has non-zero values
only on the diagonal, like in the example with the pots, then those diagonal
entries will be the probabilities that a particle is in a certain physical state.
This state is indexed by the place where the probability appears on the diagonal.
Now in more generality, most matrices can be “diagonalized” by choosing an
appropriate set of what are called basis vectors. Each number on the diagonal
of this diagonalized matrix is the probability that the state of the particle is de-
scribed by the corresponding basis vector. The fact that different matrices have
different basis vectors that diagonalize them leads to unexpected behavior which
cannot described by classical probability and classical mechanics. Mermin’s
magic square is an example of this. To summarise, the take-home message is
that properties of small particles can be described with the analysis of matrices.

Soon after Heisenberg (and many others) had discovered this matrix analysis
it was John von Neumann (1903–1957) who realized that to describe infinite
systems of particles one also needs infinite matrices (which means a matrix with
infinitely many rows and columns). This then evolved into the theory of operator
algebras. Operator algebras nowadays constitute a complete mathematical area.
It still has strong roots in quantum mechanics but many surprising links to
completely different areas have been found. These include links to knot theory,
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logic, complexity theory, number theory, and geometry (basically all parts of
mathematics and parts of mathematical physics and computer science).

Figure 5: Werner Heisenberg (left) and John von Neumann (right).

4 Symmetry and Groups

The concept of symmetry plays an important role throughout all of mathematics.
In the most elementary sense, an object is said to have a symmetry if after
reflecting or rotating the object, it stays the same. Symmetry is applied widely
in many real life structures; some examples from architecture can be seen in
Figure 6.

Figure 6: Examples of symmetry in architecture.

The notion of symmetry can be translated into the notion of a group. A
group is a set G with:

1. a distinguished element e in G called the identity;
2. a function G×G→ G : (a, b) 7→ a · b called the multiplication;
3. a function G→ G : a 7→ a−1 called the inverse;
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that satisfy the rules that for all a, b, c in G we have

(a · b) · c = a · (b · c), e · a = a · e = a, a · a−1 = a−1 · a = e.

Let us also mention for later that if for all a, b in G we have that

a · b = b · a

the group is said to be commutative. A simple example of a group is formed
by the positive real numbers R>0 with the usual multiplication, inverse and
identity 1. Another example could be the set of symmetries of an equilateral
triangle. These are three reflections, about the lines that join each corner to the
midpoint of the opposite side, and three rotations, by 120◦, 240◦, and 360◦ = 0◦.
This last symmetry is the identity of the group. We invite the reader to check
that all the group properties listed above are satisfied for this example, where
the multiplication is composition of symmetries (that is, doing them one after
another) and the inverse of a symmetry is whatever symmetry takes us back to
the original figure (so, for instance, the inverse of rotation by 120◦ is rotation
by 240◦, and every reflection is its own inverse). More generally, suppose that
we have any figure and we let G denote its set of symmetries. Then G is a
group with composition of symmetries as the multiplication. For example, the
left-hand picture in Figure 6 has many symmetries, some of which are shown in
Figure 7 One may reflect across a red line and then reflect across another red
line without changing the image.

Figure 7: Reflecting along a red line gives a symmetry. Note that there are
many more symmetries than the ones shown!

Symmetry and groups occur a lot in mathematics. As another example, we
may consider the 2× 2-matrices of the form

Aθ :=
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
, θ in R,

8



which corresponds to a rotation of the plane by θ◦. If we endow it with the
multiplication above, 1 for the identity, and inverse of Aθ being A−1

θ = A−θ,
then we find another group.

From symmetry to quantum symmetry

We shall heuristically describe what a “quantum group” is here. Recall that
the upshot of Mermin’s square was that one can solve certain problems if one
replaces numbers by matrices. We will do the same here essentially, but we have
to explain how the set G of a group is turned into a set of matrices. We note
immediately that a quantum group is a generalization of a group as defined
above. This means, in particular, that groups are quantum groups. So we are
dealing with a generalized notion of symmetry. Let us explain what type of
generalization we mean by taking the Gelfand-Naimark theorem as a starting
point.

Gelfand-Naimark theorem

From this point we require a little bit of undergraduate level mathematics, but
we will try to give the gist of the idea by first considering only finite sets. So,
suppose that X is a finite set. There is a very important object associated to X
which we call C(X). It consists of all functions X → C, and has the structure
of a C∗-algebra, which very imprecisely means it is a vector space 1 with a
multiplication, an involution (that is, a function that is equal to its own inverse),
and a norm (essentially, a way of measuring lengths or distances), which satisfy
certain identities. So we have an assignment

Finite sets → C∗ -algebras : X 7→ C(X).

Now the point is that C(X) encodes all the relevant information of the set
X. One can completely recover X from C(X), as follows. We let Ω(C(X))
denote the set of all non-zero linear 2 maps ϕ : C(X)→ C that satisfy ϕ(fg) =
ϕ(f)ϕ(g). Such maps exist! Indeed, take x in X and let ϕx(f) = f(x) be the
evaluation map. Then ϕx is in Ω(C(X)). It is then a little exercise to show
that the maps ϕx for all x in X actually make up the whole set Ω(C(X)). In
other words, there is a correspondence:

X ↔ Ω(C(X)) : x ↔ ϕx.

1 For the definition of a vector space, we refer to https://en.wikipedia.org/wiki/Vector_
space.
2 A map ϕ on a vector space is linear if it satisfies φ(αv + βw) = αϕ(v) + βϕ(w), for all
vectors v, w and scalar multiples α, β.
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So we have completely recovered the set X from C(X). More generally, if X
was a compact topological space 3 then essentially the same protocol allows one
to recover the topology of X from C(X), though the details are much more
involved. This correspondence is known as the Gelfand-Naimark theorem, and
it was proved in the 1940’s. Basically it says that the structure of a compact
topological space (think of the finite set if you wish) can completely be described
by a particular C∗-algebra. Hence the Gelfand-Naimark theorem translates
topology into algebra and vice-versa.

One should really think of two languages here. To use topology or to use
C∗-algebras is something like using German or French. Sometimes it is much
easier to explain something in one language than in the other. The same holds
on the mathematical level. You may gain more information on the algebraic
side by studying topology and vice-versa. This is one of the many strengths of
the Gelfand-Naimark theorem.

4.1 From symmetry to quantum symmetry

Suppose that G is a group. For simplicity we assume that G is finite. Remember
that G comes with a distinguished element e in G which we called the identity.
Further G has two distinguished maps, namely the multiplication and the inverse.
By the Gelfand-Naimark theorem we know that all the data about G as a set is
contained in the set of functions C(G) : G→ C. We consider the maps:

S : C(G)→ C(G) : f( · ) 7→ f( ·−1),

and
∆ : C(G)→ C(G×G) : f 7→ ((a, b) 7→ f(a · b)) .

For the identity we have the special map

ε : C(G)→ C : f 7→ f(e)

given by the evaluation at the identity. These maps satisfy certain additional
relations that encode the defining properties of a group. It turns out that the
quadruple (C(G),∆, S, ε) encodes all the information of the group G, in exactly
the same spirit as how the Gelfand-Naimark theorem encodes the properties of
a set and lets us move from sets to algebras. We call (C(G),∆, S, ε) a quantum
group.

Formally a quantum group can be defined as a C∗-algebra with certain
additional maps such as ∆, S and ε as above. If the C∗-algebra is commutative,

3 For a nicely-explained introduction to compactness, we recommend the notes by Terry Tao,
which can be found here: http://www.math.ucla.edu/%7Etao/preprints/compactness.pdf
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then the quantum group is constructed from a group exactly as we described
above. If the C∗-algebra is not commutative then it is a (possibly infinite
dimensional) matrix algebra with additional maps that resemble the group
multiplication, inverse and unit. In this sense we view quantum groups as a
“matrix generalization” of a classical group.

The name quantum group is usually attributed to Fields medallist Vladimir
Drinfeld. The formal definition of a C∗-algebraic (compact) quantum group is
due to Woronowicz [1].

Conclusion

We have seen through Mermin’s magic square that using matrix algebra and
operator theory we can solve problems that we cannot solve with regular numbers.
In the same vein, we have also seen that quantum groups are generalizations of
groups by replacing a function algebra by a matrix algebra. The natural question
is now: can we expect to resolve new problems using quantum groups that
could not have been solved with ordinary groups? The answer is yes. New knot
invariants have been discovered using the theory of quantum groups. Quantum
groups provide the right type of symmetry in non-commutative geometry, and
they also play a crucial role in random matrix theory and provide symmetries
for the exchange of non-commutative probability variables. In general one could
say that many parts of mathematical analysis has a matrix version and quantum
groups supply their symmetries.
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