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Abstract. Machine learning has achieved remarkable successes in various
applications, but there is wide agreement that a mathematical theory for
deep learning is missing. Recently, some first mathematical results have been
derived in different areas such as mathematical statistics and statistical learn-
ing. Any mathematical theory of machine learning will have to combine tools
from different fields such as nonparametric statistics, high-dimensional statis-
tics, empirical process theory and approximation theory. The main objective
of the workshop was to bring together leading researchers contributing to the
mathematics of machine learning.

A focus of the workshop was on theory for deep neural networks. Mathe-

matically speaking, neural networks define function classes with a rich math-
ematical structure that are extremely difficult to analyze because of non-
linearity in the parameters. Until very recently, most existing theoretical
results could not cope with many of the distinctive characteristics of deep
networks such as multiple hidden layers or the ReLU activation function.
Other topics of the workshop are procedures for quantifying the uncertainty
of machine learning methods and the mathematics of data privacy.

Mathematics Subject Classification (2010): 62G05, 62G08, 62G20.

Introduction by the Organizers

The workshop Mathematical Foundations of Machine Learning, was organized in
hybrid format due to the sanitary restrictions at the time. The conference was
very well attended by 60 participants: 6 researchers were able to join in person,
54 researchers attended by visio. The participants were from various countries
in Europe and America. The schedule totalized 22 talks given by participants.
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Virtual rooms were available for discussion and virtual social events were organized
on Monday and Thursday.

Machine learning is the umbrella term of a number of data analysis tools for
prediction problems that have been mainly developed within computer science.
The strength of these methods is the wide applicability and the availability of fast
algorithms to process huge datasets. While in the classical statistical framework,
parameters have an interpretation (for instance the regression coefficients), the
parameters in machine learning are meaningless and the methods are commonly
referred to as black box procedures.

To formulate a mathematical framework for such black box procedures is a quickly
advancing field at the interface of mathematical statistics and statistical learning.

The workshop was organized on the topics mentioned below.

Neural networks: Most of the recent mathematical contributions in machine learn-
ing are on deep neural networks and this was a key topic during the workshop. The
concept of a neural network dates back to the fourties and fifties [Rosenblatt, 1958]
with a lot of mathematical research carried out during the late eighties and early
nineties. Based on their success in image classification, deep neural networks have
been popularized only recently. The mathematical analysis of a deep network is
much more involved due to the the hierarchical structure and the non-linear de-
pendence of the outcome on the parameters. There is also some difference in terms
of the used activation functions. Whereas sigmoidal activation functions have been
popular in the nineties, the most prominent activation function for deep neural
networks is the so called ReLU (rectified linear unit) activation, which induces
many interesting mathematical structures on the network functions making deep
ReLU network a mathematically rich object.

During the workshop, David Donoho discussed a new phenomenon, called neu-
ral collapse, that occurs for overparametrized neural networks during the terminal
phase of deep learning. In a joint talk, Michael Kohler and Sophie Langer presented
their recent work on rate-optimal generalization guarantees for learning a shallow
network using gradient descent. The work shows that it is possible to combine
the analysis of (stochastic) gradient descent, approximation theory and statistical
bounds for neural networks into meaningful results. Stefan Richter discussed fore-
casting time series using deep neural networks. He showed that fast convergence
rates can be obtained for pointwise forecasting and estimation of the predictive
distribution. Robustness for shallow neural networks was considered in the talk
by Sebastien Bubeck. He presented a conjecture stating that interpolation with
few network parameters automatically implies a large Lipschitz constant of the
network function and also provided some insights and first results why this should
be true. Gitta Kutyniok studied an invariance property of graph convolutional
networks called transferability. She showed that graph convolutional networks can
achieve transferability in two different ways. There were also two talks on theory
for optimization. Steffen Dereich derived conditions that guarantee convergence of
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stochastic gradient descent schemes and applied these results to neural networks.
Ohad Shamir looked from a general perspective on non-smooth and non-convex
optimization problems and introduced a new generalized notion of stationarity.

High-dimensional statistics: High-dimensional problems have been one of the main
focus areas in mathematical statistics during the past 20 years and are closely
intertwined with machine learning.

Gilles Blanchard considered estimation of many vector means simultaneously and
extended Stein shrinkage to this setup. He argued that the problem becomes
in some sense easier as the dimension of the vector space grows. Michael Vogt
discussed in his talk a new estimator for the effective noise term that occurs in
the analysis of the LASSO. In the talk given by Chao Gao, several estimators for
phase synchronization were compared and it was shown that all of these methods
achieve the exact minimax estimation risk up to a small additional term. In
Jianqing Fan’s presentation, a ℓp perturbation theory for the hollowed version of
the principal component analysis was developed and this was subsequently applied
to a community detection problem. Vianney Perchet discussed matching of sparse
random graphs in an online setting. To recover the spectrum of the adjacency
matrix associated to a graph structure, Tracy Ke considered an approach based
on counting short cycles.

Statistical learning tools: Statistical learning deals with the statistical error and
the complexity of the generated function classes. Upper and lower bounds on the
VC dimension of neural networks were derived and reviewed in the monograph
[Anthony and Bartlett, 1990]. For deep ReLU networks; an almost sharp charac-
terization of the VC dimension has been obtained recently in [Bartlett et al., 2019].
The analysis of the VC dimension suggests that deep networks should not perform
well, as the VC dimension also depends on the network depth and becomes useless
in the case where the number of network parameters is larger than the sample
size. Bounds on related notions of complexity based on covering numbers (see, for
example, [Anthony and Bartlett, 1990]) depend instead on the scale of network
parameters, and there has been a spate of recent results refining these deviation
inequalities for networks with ReLU nonlinearities. However, the scaling of these
bounds with depth does not match observations of practical deep networks.

Discussing how statistical learning tools can explain the success of deep learning
and other machine learning methods was a key focus of the workshop. The success
of convolutional neural networks is commonly believed to be due to the underlying
invariance structure. In this spirit, Andrea Montanari combined in his talk invari-
ant random features and invariant kernel methods and showed that incorporating
invariance results in a reduction of the test error by a factor scaling with some
power of the underlying dimension. Daniel Hsu introduced a specific version of
self-supervised learning, called contrastive learning, in a setting, where we observe
multiple ’views’ for each datum. In the context of topic prediction, for instance,
two views can be observed if for each document we have access to the abstract and
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the introduction. It was then argued that linear functions of the learned repre-
sentations are nearly optimal for contrastive learning. Richard Samworth studied
a general scheme for adaptive transfer learning, derived the minimax estimation
rate and proposed a minimax rate-optimal estimation procedure.

Zero loss, high gain: One of the surprising phenomena of several machine learn-
ing methods is that even if they are trained to have zero loss on the training
data, they still perform well on new data. This phenomenon contradicts the ex-
isting statistical theory which says that a method interpolating all data points
has a huge variance and will do poorly on new data. That overfitting per-
forms well is one of the most intriguing properties of modern machine learning.
In [Allen-Zhu et al., 2018, Du et al., 2018], it has been shown that gradient de-
scent with random initialization converges to zero training error in a highly over-
parametrized setting.

In her talk, Sara van de Geer derived risk bounds for minimum ℓ1-interpolation
in a high-dimensional binary classification model. Interestingly, the risk can still
converge to zero in certain regimes and therefore providing a theoretical justifica-
tion for the zero loss, high gain phenomenon in this setting. In a similar spirit,
Flori Bunea studied interpolation estimators for topic models and derived bounds
for the estimation risk.

Uncertainty: One of the most pressing problems is to compute the uncertainty
of the output of black-box methods. Bayesian approaches come with a built-in
notion of uncertainty quantification. The two main problems connected to the
Bayesian approach are the computational cost and the frequentist interpretation
of Bayesian credible sets.

During the workshop, one session was organized on this topic. Veronika Rockova
used generative adversarial networks (GANs) to estimate the likelihood ratio and
derived theoretical properties of the Metropolis-Hastings algorithm based on the
approximated likelihood. Richard Nickl presented in his talk a Markov chain
Monte Carlo method and proved that it converges with polynomial dependence
on the dimension of the model. As application computation of the posterior for a
PDE model was considered.
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Abstracts

Stein effect for estimating many vector means: a “blessing of
dimensionality” phenomenon

Gilles Blanchard

(joint work with Hannah Marienwald, Jean-Baptiste Fermanian)

Consider a model with many independent samples from different distributions,




X
(k)
• := (X

(k)
i )1≤i≤Nk

i.i.d.∼ Pk, 1 ≤ k ≤ B;

(X
(1)
• , . . . , X

(B)
• ) independent,

where P1, . . . ,PB are square integrable distributions on Rd which we will call tasks.
The goal is the estimation of their means (µk)1≤k≤B .

To simplify exposition, assume that Pi is a Gaussian distribution with mean
µi, variance σ2Id and that all samples have the same size N . In the machine
learning literature, the problem has been coined as “multiple task averaging” by
[Feldman et al., 2014], but can be seen in more traditional statistical/decision the-
oretical terminology as a “compound decision problem” [Robbins, 1951].

Our motivation for considering this setting is the growing number of large
databases taking the above form, where independent bags, corresponding to dif-
ferent but conceptually similar distributions, are available; for example, one can
think of k as an index for a large number of individuals, for each of which a number
of observations (assumed to be sampled from an individual-specific distribution)
have been collected, say medical records, or online activity by some governmental
or corporate spying device.

Given estimators µ̂1, . . . , µ̂B for µ1, . . . , µB , we can be interested either in the
mean squared error (MSE) for the estimation of each single mean,

MSE(k, µ̂k) := E

[
‖µ̂k − µk‖2

]
, k = 1, . . . , B,

or in the compound MSE, i.e. averaged over all tasks,

MSE(µ̂•) :=
1

B

B∑

k=1

MSE(k, µ̂k).

The benchmark estimators are the “naive” task-wise empirical means

µ̂NE
k :=

1

N

N∑

i=1

X
(k)
i ,

and it holds

MSE(k, µ̂NE
k ) = E

[∥∥µ̂NE
k − µk

∥∥2
]

= dσ2 =: ENE.
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A simple idea to improve over the naive estimator for a given task, say the first,
is the following. Assume first that an oracle gives us the information that for some
τ > 0, it holds

(1) ‖µ1 − µj‖2 ≤ τENE, j = 1, . . . , V1,

for some V1 ≤ B; call this τ -neighbor tasks of task 1 (after reordering indices for
convenience). Consider shrinking the naive estimator towards the average mean
of neighbor tasks

µ̃1 = γµ̂NE
1 + (1 − γ)

(
1

V1

V1∑

k=1

µ̂NE
k

)
.

Pick

γ =
τ(V1 − 1)

(1 + τ)(V1 − 1) + 1
,

then by independence of bags and the triangle inequality:

(2)
MSE(1, µ̃1)

ENE
≤ τ

1 + τ
+

1

V1(1 + τ)
.

Repeating this over all tasks and summing, it is not difficult to show

(3)
MSE(µ̃)

ENE
≤ τ

1 + τ
+

N
B

1

(1 + τ)
,

where N is the covering number of the set of means {µ1, . . . , µB} at scale
√
τENE/2.

(Proof:
∑B

k=1 V
−1
i ≤ N , assuming the oracle has given in each case a list of all

neighbor tasks, i.e. satisfying Eq. (1).)
Thus, assuming the oracle information, in all cases we can improve over naive

estimation (task-wise as well as in the compound sense), and the gain can be
substantial if there exists τ ≪ 1 such that the covering number of the true tasks at
scale

√
τENE/2 is ≪ B. Whether or not this is the case is context-dependent, but we

can easily imagine situations where the set of means has some structure resulting
in a small covering number (e.g. supported by a low-dimensional manifold; sparse;
clustered. . . )

Now to the actually interesting question: what can we do in absence of oracle

information? The answer is that we can use tests Tij , (i, j) ∈ {1, . . . , B}2 for

(H0,ij) : ‖µi − µj‖2 > τENE, against (H1,ij) : ‖µi − µj‖2 ≤ (τ/2)ENE.

Assume that we have a good control for both the family-wise type I and II error
of these tests, and that they are independent of the data used to control the
estimators (for instance, consider splitting each sample in two). Then we can apply
the above argument conditionally to the tests, thus getting the controls Eq. (2)
and Eq. (3) with some adjustments ( τ replaced by τ/2 in the scale of the covering
numbers, and an additional factor 2 to account for data splitting with respect to
the naive estimator which does not use data splitting).

All of this, though, has potential significance only if we can find such tests for
some τ ≪ 1, otherwise the potential improvement is almost nonexistent. Now the
little miracle or “blessing” of dimensionality is that we can find a family of tests
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having both controlled Type I and II error controlled provided τ & d−1/4 see e.g.
[Baraud, 2002]: the testing separation distance is much smaller than the estimation
error of the naive estimator in high dimension. (This compensates – somewhat
– the usual curse of dimensionality, which is that ENE increases linearly with d.)
Thus, in high dimensionality, we at least have the potential of an improvement
over the naive estimator up to a factor of order O(d−1/4), which can be the case
if the means have a favorable structure. This improvement can be quantified for
the compound estimation error but also for each individual estimation error.

These results have interesting ties to the classical literature on the James-Stein
estimator [James and Stein, 1961]; see also [Beran, 1996] and to the compound
decision literature (see e.g. [Brown and Greenshtein, 2009], where the multiple
mean estimation problem was tackled from the compound decision theory angle,
albeit only in dimension 1).

In the papers [Marienwald et al., 2021, Blanchard and Fermanian, 2021] we de-
velop these ideas, in particular we

• give a precise nonasymptotic account of the above phenomenon;
• study in particular precise results for tests based on an unbiased U -statistic

for ‖µi − µj‖2;
• consider the case of non-isotropic distributions with arbitrary covariance;

in this case the role of the ambiant dimension d is replaced by an appro-
priate notion of effective dimensionality (which has to be estimated);

• generalize the Gaussian case to the bounded case and even the case with
only moments of order 4 (using the median-of-means methodology);

• apply the above results in conjunction with reproducing kernel methods to
improve kernel mean embedding (see [Muandet et al., 2017]) estimation;

• illustrate the performance of the approach on simulated and real data.
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A law of robustness for two-layers neural networks

Sébastian Bubeck

(joint work with Yuanzhi Li, Dheeraj Nagaraj)

I will present a mathematical conjecture potentially establishing overparametriza-
tion as a law of robustness for neural networks. I will tell you some of the things
that we already know about this conjecture. Time-permitting I will include a
discussion of how to think about various quantities for higher order tensors (their
rank, the relation between spectral norm and nuclear norm, and concentration for
random tensors).
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Prediction under latent factor regression: adaptive PCR, interpolating
predictors and beyond

Florentina Bunea

(joint work with Xin Bing, Seth Strimas-Mackey, Marten Wegkamp)

This work is devoted to the derivation and analysis of finite sample prediction
risk bounds for a class of linear predictors of a random response Y ∈ R from a
high-dimensional, and possibly highly correlated random vector X ∈ Rp, when the
vector (X,Y ) follows a latent factor regression model, generated by a latent vector
of dimension lower than p. We assume that there exist a random, unobservable,
latent vector Z ∈ RK , a deterministic matrix A ∈ Rp×K , and a coefficient vector
β ∈ RK such that

(1)
Y = Z⊤β + ε,

X = AZ +W,

with some unknown K < p. The random noise ε ∈ R and W ∈ Rp have mean zero
and second moments σ2 =: E[ε2] and Γ =: E[WW⊤], respectively. The random
variable ε and random vectors W and Z are mutually independent. Throughout
the paper, both ΣZ := E[ZZ⊤] and A have rank equal to K.

Independently of this model formulation, but based on the belief that Y depends
chiefly on a lower-dimensional approximation of X , prediction of Y via principal
components (PCR) is perhaps the most utilized scheme, with a history dating
back many decades.



Mathematical Foundations of Machine Learning 863

Given the data X = (X1, . . . ,Xn)⊤ and Y = (Y1, . . . ,Yn) consisting of n
independent copies of (X,Y ) ∈ Rp × R, PCR-k predicts Y∗ ∈ R after observing a
new data point X∗ ∈ Rp by

Ŷ ∗
Uk

= X⊤
∗ Uk

[
U⊤

k X⊤XUk

]+
U⊤

k X⊤Y

= X⊤
∗ Uk [XUk]

+
Y,(2)

where Uk is the p×k matrix of the top eigenvectors of the sample covariance matrix
X⊤X/n, relative to the largest k eigenvalues, where k is ideally determined in a
data-dependent fashion and M+ denotes the Moore-Penrose inverse of a matrix
M .

Model (1) provides a natural context for the theoretical analysis of PCR-k
prediction. It is perhaps surprising that its theoretical study so far is limited to
asymptotic analyses of the out-of-sample prediction risk for PCR-K as p, n →
∞. To the best of our knowledge, finite sample prediction risk bounds for Ŷ ∗

Uk
,

corresponding to data-dependent choices of k, are lacking in the literature, and
their study under factor models of unknown K, possibly varying with n, provides
motivation for this work.

To obtain risk bounds for PCR, we prove a master theorem, Theorem 1.1, that
establishes a finite sample prediction risk bound for linear predictors of the general
form

(3) Ŷ ∗
B̂

= X⊤
∗ B̂

(
B̂⊤X⊤XB̂

)+
B̂⊤X⊤Y,

where B̂ ∈ Rp×q is an appropriate matrix that may be deterministic or depend on
the data X, with dimension q allowed to be random.

This approach has the benefit of not only covering the special case of PCR,

corresponding to choice B̂ = Uk, but of offering a unifying analysis of other

prediction schemes of the form (3). One important example corresponds to B̂ = Ip,
which leads to another model agnostic predictor, the generalized least squares
estimator (also known as the minimum norm interpolating predictor), which has
enjoyed revamped popularity in the last two years.

Using the full data matrix X for prediction – instead of just the first k principal
components as in PCR – leads to additional bias compared to PCR prediction.
However, in the high-dimensional regime p ≫ n, this bias can become small and

choosing B̂ = Ip can become a viable alternative to PCR that requires no tuning
parameters.

In addition to these two model-agnostic prediction methods, Theorem 1.1 can be
used to analyze predictors directly tailored to model (1), which are shown formally

to be of type (3) in Section 4.2 of [1]. We give a particular expression of B̂, as well
as the corresponding prediction analysis, under further modelling restrictions that
render parameters K, A and β identifiable. The model specifications given in the
aforementioned Section 4.2. allow us to view A as a cluster membership matrix,
making it possible to address a third, understudied, class of examples pertaining
to prediction from low-dimensional feature representation, that of prediction of
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Y via latent cluster centers, for features that exhibit an overlapping clustering
structure corresponding to A.

1. Main results

We write (X,Y ) ∼ sG-FRM(θ), with θ =: (K,A, β,ΣZ ,Γ, σ
2), if (X,Y ) satisfy

model 1, and ε, Z,W are sub-Gaussian, with respective sub-Gaussian constants
γε, γz and γw. Define

(4) δW := δW (θ) = c

[
‖Γ(θ)‖op +

tr(Γ(θ))

n

]
,

with c = c(γw) being some positive constant.

Theorem 1.1. Let B̂ = B̂(X) ∈ Rp×q for some q ≥ 1, and set

(5) r̂ := rank
(
XP

B̂

)
, η̂ :=

1

n
σ2
r̂

(
XP

B̂

)
, ψ̂ :=

1

n
σ2
1

(
XP⊥

B̂

)
.

For any θ = (K,A, β,ΣZ ,Γ, σ
2) with K ≤ Cn/ logn for some positive constant

C = C(γz) such that (X,Y ) ∼ sG-FRM(θ), there exists some absolute constant
c > 0 such that

Pθ

{
R(B̂) − σ2 ≤

[‖Γ‖op
η̂

r̂ +

(
1 +

δW
η̂

)
(K ∧ r̂ + logn)

]
σ2

n

(6)

+

[(
1 +

‖Γ‖op
η̂

)
δW +

(
1 +

δW
η̂

)
ψ̂

]
β⊤(A⊤A)−1β

}
≥ 1 − c/n.

Here the symbol ≤ means the inequality holds up to a multiplicative constant pos-
sibly depending on the sub-Gaussian constants γε, γz and γw.

The interpretation of this bound, as well as detailed derivations of the excess
risk bounds corresponding to our three main examples are given in [1].
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Several structured thresholding bandit problem

Alexandra Carpentier

(joint work with James Cheshire, Pierre Menard, Andrea Locatelli,
Maurilio Gutzeit)

In this talk we will discuss the thresholding bandit problem, i.e. a sequential learn-
ing setting where the learner samples sequentially K unknown distributions for T
times, and aims at outputting at the end the set of distributions whose means µk

are above a threshold τ . We will study this problem under four structural assump-
tions, i.e. shape constraints: that the sequence of means is monotone, unimodal,
concave, or unstructured (vanilla case). We will provide in each case minimax
results on the performance of any strategies, as well as matching algorithms. This
will highlight the fact that even more than in batch learning, structural assump-
tions have a huge impact in sequential learning.

Convergence of stochastic gradient descent schemes for
 Lojasiewicz-landscapes

Steffen Dereich

(joint work with Sebastian Kassing)

In this talk we discuss stochastic gradient descent (SGD) schemes. We first fix the
notation. We let (Ω,F , (Fn)n∈N0

,P) be a filtered probability space, F : Rd → R

be a continuously differentiable function and let (Xn)n∈N0
be an adapted sequence

of Rd-valued random variables such that for every n ∈ N

Xn = Xn−1 − γn(∇F (Xn−1) +Dn),

where

• (γn)n∈N is a sequence of strictly positive reals, the step-sizes,
• (Dn)n∈N is an (Fn)n∈N-adapted sequence of martingale differences, the

perturbation,
• X0 is an F0-measurable random variable, the initial value.

We discuss convergence of

(i) (F (Xn)), (ii) (∇F (Xn)) and (iii) (Xn)

under weak assumptions. Whereas convergence of (i) and (ii) are considered in
various articles convergence of (iii) is rather subtle without imposing restrictive
assumptions. We restrict attention to two events: we let

L =
{

lim sup
n→∞

|Xn| <∞
}

and for p ≥ 1 and a sequence (σn)n∈N of strictly positive reals,

M
p
σ =

{
lim sup
n→∞

σ−1
n E[|Dn|p|Fn−1]1/p <∞

}
.

The first result concerns convergence of (i) and (ii).
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Theorem: (see [1]) Let p ∈ (1, 2] and suppose that ∇F is locally Lipschitz con-
tinuous. If

∞∑

n=1

(γnσn)p <∞ and

∞∑

n=1

γn = ∞,

then, on L ∩Mp
σ, almost surely,

the limit (F (Xn))n∈N0
exists and lim

n→∞
∇F (Xn) = 0.

In the case where F does not posses a continuum of critical points1, this result
entails that also on L ∩Mp

σ, almost surely, (Xn) converges.
In the case where F possesses a continuum of critical points there exist examples

for which the solution (xt) to the ordinary differential equation

ẋt = −∇F (xt)

stays local and (xt) does not converge. One needs additional assumptions.

Definition: A C1-function F : Rd → R is said to be a  Lojasiewicz-function if for
every critical point x of F there exists β ∈ [ 12 , 1),  L > 0 and a neighbourhood Ux

of x such that for all y ∈ Ux

|∇F (y)| ≥  L|F (y) − F (x)|β .

The relevance of the previous definition stems from two properties

• every real analytic function is a  Lojasiewicz-function, see [2, 3], and
• if a solution to the ODE ẋt = −∇F (xt) stays local for a  Lojasiewicz-

function F , then (xt) converges.

We provide the following analogue of the latter result for SGD:

Theorem: (see [1]) Let F be a  Lojasiewicz-function with locally Lipschitz con-
tinuous derivative and p ≥ 2. Suppose that for n ∈ N

γn = Cγn
−γ and σn = nσ,

where Cγ > 0, γ ∈ (12 , 1] and σ ∈ R. If

2

3
(σ + 1) < γ and

1

2γ − σ − 1
< p,

then, on L∩M
p
σ , the process (Xn) converges, almost surely, to a critical point of F

(possibly a saddle point or a local maximum).

Moreover, as proved in [1], particular machine learning problems involving deep
learning networks with analytic activation functions are related to objective func-
tions F that are real analytic and thus  Lojasiewicz-functions.

1F is said to posses a continuum of critical points, if there exists an injective mapping ϕ :
[0, 1] → {set of critical points of F}.
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Prevalence of Neural Collapse during the terminal phase deep
learning training

David Donoho

(joint work with Vardan Papyan, XY Han)

Modern deep neural networks for image classification have achieved super-human
performance. Yet, the complex details of trained networks have forced most prac-
titioners and researchers to regard them as blackboxes with little that could be
understood. This paper considers in detail a now-standard training methodology:
driving the cross-entropy loss to zero, continuing long after the classification er-
ror is already zero. Applying this methodology to an authoritative collection of
standard deepnets and datasets, we observe the emergence of a simple and highly
symmetric geometry of the deepnet features and of the deepnet classifier; and we
document important benefits that the geometry conveys – thereby helping us un-
derstand an important component of the modern deep learning training paradigm.

This is joint work with Vardan Papyan, U Toronto and XY Han, Cornell. It
covers a paper which appeared in September 2021 in Proc Natl Acad Sci.We will
also discuss several papers by theory researchers which appeared in response. We
will also discuss our view of the current relationship between theory and practice
in this field.

An ℓp theory of PCA and spectral clustering

Jianqing Fan

(joint work with Emmanuel Abbe, Kaizheng Wang)

Principal Component Analysis (PCA) is a fundamental tool in statistics and ma-
chine learning. Its applications range from factor analysis and tensor decomposi-
tion to blind deconvolution and manifold learning. The computational efficiency
and statistical accuracy make PCA a top choice for analyzing massive data. While
existing study of PCA focuses on the recovery of principal components and their
associated eigenvalues, there are few precise characterizations of individual prin-
cipal component scores that yield low-dimensional embedding of samples. Since
all the downstream tasks account on the quality of embedding, the lack of investi-
gation hinders the analysis of various spectral methods for community detection,
clustering, ranking, synchronization and so on.
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To analyze the performance of spectral methods, one often relies on the uniform
(L∞) control of errors across individual principal component scores. However,
uniform control over all entries often leads to vacuum bounds if the sample size is
too small or the signal is too weak. In that case, one can only hope to establish
bounds for a reasonably large proportion of the entries based on more refined
analysis. In this talk, we first develop an Lp perturbation theory for a hollowed
version of PCA in reproducing kernel Hilbert spaces which provably improves upon
the vanilla PCA in the presence of heteroscedastic noises. Through a novel Lp

analysis of eigenvectors, we investigate entrywise behaviors of principal component
score vectors and show that they can be approximated by linear functionals of
the Gram matrix in Lp norm, which includes L2 and L∞ as two special cases.
The entrywise analysis is formalized via the powerful leave-one-out decoupling
technique.

We illustrate herewith the merits of the ℓp analysis using spectral clustering
for a mixture of two Gaussians. Let y ∈ {±1}n be a label vector with i.i.d.
Rademacher entries and µ ∈ Rd be a deterministic mean vector, both of which are
unknown. Consider the model

xi = yiµ+ zi, i ∈ [n],(1)

where {zi}ni=1 are i.i.d. N(0, Id) vectors. The goal is to estimate y from {xi}ni=1.
Since P(yi = 1) = P(yi = −1) = 1/2, {xi}ni=1 are i.i.d. samples from a mixture of
two Gaussians 1

2N(µ, Id) + 1
2N(−µ, Id).

By construction, X̄ = (x̄1, · · · , x̄n)⊤ = yµ⊤ and Ḡ = ‖µ‖22yy⊤ with ū1 =
y/

√
n and λ̄1 = n‖µ‖22. Hence, sgn(u1) becomes a natural estimator for y, where

sgn(·) is the entrywise sign function. A fundamental question is whether the
empirical eigenvector u1 is informative enough to accurately recover the labels in
competitive regimes. To formalize the discussion, we denote by

SNR =
‖µ‖42

‖µ‖22 + d/n
(2)

the signal-to-noise ratio of model (1). Consider the challenging asymptotic regime
where n → ∞ and 1 ≪ SNR . logn1. The dimension d may or may not diverge.
According to Theorem 3.2 in [1] , the spectral estimator sgn(u1) achieves the
minimax optimal misclassification rate

e−
1
2
SNR(1+o(1)).(3)

In order to get this result, we start from an ℓp analysis of u1. Theorem 3.3 in
[1] shows that

P( min
s=±1

‖su1 −Gū1/λ̄1‖p < εn‖ū1‖p) > 1 − Ce−p(4)

1In Theorem 3.2 in [1], we derive results for the exact recovery of the spectral estimator, i.e.
P(sgn(u1) = ±y) → 1, when SNR ≫ logn. Here we omit that case and discuss error rates.
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for p = SNR, some constant C > 0 and some deterministic sequence {εn}∞n=1

tending to zero. On the event ‖su1 −Gū1/λ̄1‖p < εn‖ū1‖p, we apply a Markov-
type inequality to the entries of (su1 −Gū1/λ̄1):

1

n
|{i : |(su1 −Gū1/λ̄1)i| >

√
εn/n}| ≤

1
n

∑n
i=1 |(su1 −Gū1/λ̄1)i|p

(
√
εn/n)p

(i)
=

(‖su1 −Gū1/λ̄1‖p√
εn‖ū1‖p

)p

≤ εp/2n ,(5)

where (i) follows from ū1 = y/
√
n and ‖ū1‖pp = n(1/

√
n)p. Hence all but an

ε
SNR/2
n fraction of u1’s entries are well-approximated by those of Gū1/λ̄1. On the

other hand, since the misclassification error is always bounded by 1, the exceptional
event in (4) may at most contribute an Ce−SNR amount to the final error. Both

ε
SNR/2
n and Ce−SNR are negligible compared to the optimal rate e−SNR/2 in (3).

This helps us show that the ℓp bound (4) ensures sufficient proximity between u1

and Gū1/λ̄1, and the analysis boils down to the latter term.
We now explain why Gū1/λ̄1 is a good target to aim at. Observe that

(Gū1)i = [H(XX⊤)ū1]i =
∑

j 6=i

〈xi,xj〉yj/
√
n ∝ 〈xi, µ̂

(−i)〉,(6)

where µ̂(−i) = 1
n−1

∑
j 6=i xjyj is the leave-one-out sample mean. Consequently,

the (unsupervised) spectral estimator sgn[(u1)i] for yi is approximated by sgn(〈xi,
µ̂(−i)〉), which coincides with the (supervised) linear discriminant analysis given
additional labels {yj}j 6=i. This oracle estimator turns out to capture the difficulty
of label recovery. That is, sgn(Gū1/λ̄1) achieves the optimal misclassification rate
in (3).

Above we provide high-level ideas about why the spectral estimator sgn(u1) is
optimal. Inequality (4) ties u1 and its linearizationGū1/λ̄1 together. The latter is
connected to the genie-aided estimator through (6). As a side remark, the relation
(6) hinges on the fact that G is hollowed. Otherwise there would be a square term
〈xi,xi〉 making things entangled.

We apply the newly developed perturbation theory to sub-Gaussian mixture
models for clustering analysis and contextual stochastic block models for commu-
nity detection. Intuitively, stronger signal allows for larger p in the Lp analysis
and makes tighter error control possible. For the sub-Gaussian mixture model,
our choice of p depends on the signal-to-noise ratio characterized by the sepa-
ration between components, the sample size and the dimension. This adaptive
choice yields optimality guarantees for spectral clustering. The misclassification
rate is explicitly expressed as a simple exponential function of the signal-to-noise
ratio, which implies exact recovery as a specific example. Perhaps surprisingly, the
Lp analysis reveals intimate connections between the fully unsupervised spectral
estimator and Fisher’s linear discriminant analysis, which is a supervised classifi-
cation procedure. Our results significantly improve upon prior arts which mostly
focus on more complicated algorithms such as semidefinite programs or impose
extra restrictions on the dimension and the signal strength.
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In the contextual community detection problem, one observes both the network
connections of nodes and their attributes. The network connections are modeled
through a stochastic block model and the node attributes are modeled through a
Gaussian mixture model that is independent of the network given the communities.
The Lp theory and linearization of eigenvectors lead to a tuning-free aggregated
spectral estimator that is conceptually simple and computationally efficient. Re-
markably, it adaptively integrates the two sources of information based on their
relative signal strengths. The estimator achieves the information threshold for
exact recovery and has an optimal misclassification rate below that threshold.
Moreover, our results readily imply optimal spectral clustering for the stochastic
block model and Gaussian mixture model separately. Simulation experiments lend
further support to our theoretical findings.
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Exact Minimax Estimation for Phase Synchronization

Chao Gao

(joint work with Anderson Y. Zhang)

The phase synchronization problem is to estimate n unknown angles θ∗1 , · · · , θ∗n
from noisy measurements of (θ∗j − θ∗k) mod 2π. In this paper, we consider the
following additive model:

(1) Yjk = z∗j z̄
∗
k + σWjk ∈ C,

for all 1 ≤ j < k ≤ n, where we use the notation x̄ for the complex conjugate of
x. We assume that each z∗j ∈ C1 = {x ∈ C : |x| = 1} and we can thus write it as

z∗j = eiθ
∗

j . The additive noise Wjk in (1) is assumed to be i.i.d. standard complex

Gaussian.1 Our goal in this paper is to study minimax optimal estimation of the
vector z∗ ∈ Cn

1 under the loss function

(2) ℓ(ẑ, z∗) = min
a∈C1

n∑

j=1

|ẑja− z∗j |2.

We remark that the minimization over a global phase in the definition of (2) is
necessary. This is because the global phase is not identifiable from the pairwise
observations (1).

Various estimation procedures have been considered and studied in the liter-
ature. For example, the maximum likelihood estimator (MLE) is defined as the
global maximizer of the following constrained optimization problem

(3) max
z∈Cn

1

zHY z,

1For Wjk ∼ CN (0, 1), we have Re(Wjk) ∼ N
(

0, 1
2

)

and Im(Wjk) ∼ N
(

0, 1
2

)

independently.
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whereY is Hermitian with Yjk = Ȳkj for all 1≤ k < j ≤ n and Yjj = 0 for all j ∈ [n].

Note that (3) can be shown to be equivalent to minz∈Cn
1

∑
1≤j<k≤n |Yjk − zj z̄k|2.

It was shown in [1] that the MLE satisfies ℓ(ẑ, z∗) ≤ Cσ2 with high probability for
some constant C > 0. However, the optimization (3) is nonconvex and computa-
tionally infeasible in general. To address this problem, generalized power method
(GPM) and semi-definite programming (SDP) have been considered in the litera-
ture to approximate the solution of (3). The generalized power method is defined
through the iteration,2

(4) z
(t)
j =

∑
k∈[n]\{j} Yjkz

(t−1)
k∣∣∣

∑
k∈[n]\{j} Yjkz

(t−1)
k

∣∣∣
.

In other words, one repeatedly computes the product Y z(t−1) and projects this
vector to C

n
1 through entrywise normalization. When the iteration (4) is initialized

by the eigenvector method, [2] shows that z(t) converges to the global maximizer of

(3) at a linear rate under the noise level condition σ2 = O
(

n
logn

)
. The semidefinite

programming is a convex relaxation of (3). It refers to the following optimization
problem,

(5) max
Z=ZH∈Rn×n

Tr(Y Z) subject to diag(Z) = In and Z � 0.

In general, the solution of (5) is an n× n matrix and needs to be rounded. When
σ2 = O(n1/2), it was proved by [1] that the solution to (5) is a rank-one matrix

Ẑ = ẑẑH, with ẑ being a global maximizer of (3). This result was recently proved

by [2] to hold under a weaker condition σ2 = O
(

n
logn

)
. Given the fact that SDP

solves (3), we know that it also achieves the same high-probability error bound

ℓ(ẑ, z∗) ≤ Cσ2 as that of the MLE under the additional condition σ2 = O
(

n
log n

)
.

Despite these estimation procedures studied in the literature, it remains an open
problem what the optimal error under the loss (2) is. In this paper, we establish
a minimax lower bound for phase synchronization. We show that

(6) inf
ẑ∈Cn

1

sup
z∈Cn

1

Ezℓ(ẑ, z) ≥ (1 − δ)
σ2

2
,

for some δ = o(1) under the condition that σ2 = o(n). This provides a stronger
characterization of the fundamental limits of the phase synchronization problem
than the Cramér-Rao lower bound, which only holds for unbiased estimators.
Instead, the lower bound in (6) holds for both unbiased and biased estimators.
Moreover, in this paper, we prove the MLE, the GPM and the SDP all achieve
the error bound

(7) ℓ(ẑ, z∗) ≤ (1 + δ)
σ2

2
,

2When the denominator of (4) is zero, take z
(t)
j to be an arbitrary value in C1.
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for some δ = o(1) with high probability under the same condition σ2 = o(n). In
other words, these three estimators are not only rate-optimal, but are also exactly
asymptotically minimax by achieving the correct leading constant in front of the
optimal rate.

To formally state our main result, we introduce a more general statistical esti-
mation setting that allows the possibility of missing entries. Instead of observing
Yjk for all 1 ≤ j < k ≤ n, we assume each Yjk is observed with probability p. In
other words, consider a random graph Ajk ∼ Bernoulli(p) independently for all
1 ≤ j < k ≤ n, and we only observe Yjk that follows (1) when Ajk = 1. Define
Ajk = Akj for 1 ≤ k < j ≤ n and Ajj = 0 for j ∈ [n]. The full observations
can be organized into two Hermitian matrices A and A ◦ Y , where ◦ denotes the
matrix Hadamard product. The MLE, the GPM and the SDP can be extended
by replacing Yjk in (3), (4) and (5) with AjkYjk.

Theorem 1.1. Assume σ2 = o(np) and np
logn → ∞. Then, there exists some

δ = o(1) such that

inf
ẑ∈Cn

1

sup
z∈Cn

1

Ezℓ(ẑ, z) ≥ (1 − δ)
σ2

2p
.(8)

Moreover, MLE, GPM and SDP (the normalized leading eigenvector of the SDP
solution) all achieve the error bound

ℓ(ẑ, z∗) ≤ (1 + δ)
σ2

2p
,(9)

with probability at least 1 − n−1 − exp
(
−
(
np
σ2

)1/4)
.

Theorem 1.1 immediately implies (6) and (7) as a special case of p = 1, and is
the first statistical analysis of phase synchronization for p < 1. We remark that
both conditions σ2 = o(np) and np

logn → ∞ are essential for the results of the

above theorem to hold. Since the minimax risk of the problem is σ2

2p , the condition

σ2 = o(np), which is equivalent to σ2

2p = o(n), guarantees that the minimax risk

is of smaller order than the trivial one. The order n is trivial, since ℓ(z, z∗) ≤ 4n
for any z, z∗ ∈ Cn

1 . When p = 1, the necessity of σ2 = o(n) for a nontrivial
recovery is understood in the literature. The condition np

log n → ∞ guarantees

that the random graph A is connected with high probability. It is known that
when p ≤ c logn

n for some sufficiently small constant c > 0, the random graph has
several disjoint components, which makes the recovery of z∗ up to a global phase
impossible.
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Contrastive learning, multi-view redundancy, and linear models

Daniel Hsu

(joint work with Akshay Krishnamurthy, Christopher Tosh)

Self-supervised learning is an empirically successful approach to unsupervised
learning based on creating artificial supervised learning problems. A popular
self-supervised approach to representation learning is contrastive learning, which
leverages naturally occurring pairs of similar and dissimilar data points, or multi-
ple views of the same data. This work provides a theoretical analysis of contrastive
learning in the multi-view setting, where two views of each datum are available.
We first prove that linear functions of the learned representations are nearly op-
timal on downstream prediction tasks whenever the two views provide redundant
information about the label. We also prove that, in the context of topic models
(and other multi-view mixture models), the learned representation can be inter-
preted as a linear transformation of the posterior moments of the hidden topics
given the words observed in a document.
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Counting Cycles in Networks

Tracy Ke

(joint work with Jiashun Jin, Shengming Luo, Minzhe Wang, Wanjie Wang)

In many network models, the quantity of interest (community structure, mixed-
memberships) is a low-rank signal matrix, masked by noise. The spectrum of
the signal matrix plays a fundamental role in network analysis and is of major
interest. We propose to recover the spectrum by counting short cycles in the
adjacency matrix. The cycle counts provide a good estimate for the moments of
the spectrum, which can thus be used to estimate the spectrum. Compared to
empirical spectrum, the proposed estimators are more accurate in a wide range of
parameter settings.

The idea can also be adapted to solve many other problems. One of such prob-
lems is global testing, where the goal is to test whether the network only has one
community or multiple communities. We find that counting cycles with a centered
adjacency matrix gives rise to an easy-to-use testing statistic that is asymptot-
ically N(0, 1) under null and achieves the optimal phase transition. The test is
competitive in a wide range of network settings, where we allow severe degree
heterogeneity and mixed-memberships.
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The Smoking Gun: Statistical Theory Improves Neural Network
Estimates

Michael Kohler, Sophie Langer

(joint work with Alina Braun and Harro Walk)

Deep neural networks have achieved impressive results in various applications,
e.g., in image classification (Krizhevsky, Sutskever and Hinton (2012)), text clas-
sification (Kim (2014)), machine translation (Wu et al. (2016)) and mastering of
games (Silver et al. (2017)). Unfortunately, those results have been achieved with-
out derivation of any mathematical or statistical theory of the estimates. Recently,
quite a few papers were published dealing with the theoretical results behind deep
learning. Approximation properties were analyzed, e.g., in Yarotsky (2017), Yarot-
sky and Zhevnerchuck (2020) and Lu et al. (2020)). Bauer and Kohler (2019),
Schmidt-Hieber (2020) and Kohler and Langer (2021) considered deep neural net-
work least squares estimates in a statistical setting and derived rate of convergence
results. While those results partly explain the success of neural networks, they did
not take into account all three aspects, namely approximation, generalization and
optimization, simultaneously and could therefore not improve neural network es-
timates in applications. But should it not be the purpose of statistical theory
to improve estimates in practice? In our talk we analyze neural networks with
one hidden learned by gradient descent. This analysis considers all three aspects,
namely approximation, generalization and optimization of deep learning theory,
simultaneously and we are able to improve the performance of our estimates in
practice. In particular, we analyze the L2 error of neural network regression esti-
mates with one hidden layer. Under the assumption that the Fourier transform of
the regression function decays suitably fast, we show that an estimate, where all
initial weights are chosen according to proper uniform distributions and where the
weights are learned by gradient descent, achieves a rate of convergence of 1/

√
n (up

to a logarithmic factor). Our statistical analysis implies that the key aspect behind
this result is the proper choice of the initial inner weights and the adjustment of
the outer weights via gradient descent. This indicates that we can also simply use
linear least squares to choose the outer weights. We prove a corresponding the-
oretical result and compare our new linear least squares neural network estimate
with standard neural network estimates via simulated data. Our simulations show
that our theoretical considerations lead to an estimate with an improved perfor-
mance. Hence the development of statistical theory can indeed improve neural
network estimates. That is why we consider this result as the smoking gun of
neural network theory.



Mathematical Foundations of Machine Learning 875

References

[1] B. Bauer and M. Kohler On deep learning as a remedy for the curse of dimensionality in
nonparametric regression, Annals of Statistics 47, 2261–2285.

[2] Y. Kim, Convolutional Neural Networks for Sentence Classification arXiv: 1408.5882
(2014).

[3] M. Kohler and S. Langer On the rate of convergence of fully connected very deep neural net-
work regression estimates using ReLU activation functions, arXiv: 1908.11133, To appear
in Annals of Statistics.

[4] A. Krizhevsky, I. Sutskever and G.E. Hinton, ImageNet classification with deep convolutional
neural networks In F. Pereira et al. (Eds.), Advances In Neural Information Processing
Systems 25 (2012), 1097–1105. Red Hook, NY: Curran.

[5] J. Lu, Z. Shen, H. Yang and S. Zhang, Deep network approximation for smooth functions
arXiv: 2001.03040 (2020).

[6] J. Schmidt-Hieber, Nonparametric regression using deep neural networks with ReLU acti-
vation function (with discussion), Annals of Statistics 48 (2020), 1875–1897.

[7] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Huber et al.
Mastering the game of go without human knowledge. Nature 550 (2017), 354–359.

[8] Y. Wu, M. Schuster, Z. Chen, Q. Le, M. Norouzi, W. Macherey, M. Krikum et al. Google’s
neural machine translation system: Bridging the gap between human and machine transla-
tion, arXiv: 1609.08144.

[9] D. Yarotsky, Optimal approximation of continuous functions by very deep ReLU networks,
COLT 75 (2018), 639–649.

[10] D. Yarotsky and A. Zhevnerchuk, The phase diagram of approximation rates of deep neural
networks, arXiv: 1906.09477 (2020).

Transferability of spectral graph convolutional neural networks

Gitta Kutyniok

(joint work with Michael Bronstein and Ron Levie)

In many applications in data science the data is represented by graphs. Graph
convolutional networks (CNNs), which are extensions of standard CNNs to graph
structured data, have achieved resounding success in the past few years. In a stan-
dard CNN, the network receives a signal defined over a Euclidean rectangle, and at
each layer applies a set of convolutions/filters, an activation function, and, option-
ally, pooling. A graph CNN has the same architecture, with the only difference
that signals are defined over the vertices of graph domains. In a machine learning
setting, the general architecture of the CNN is fixed, but the specific filters to use
in each layer are free parameters. In training, the filter coefficients are optimized
to minimize some loss function. In some situations, the data consists of many
different graphs, and many different signals on these graphs (multi-graph setting).
In these situations, if two graphs represent the same underlying phenomenon, and
the two signals given on the two graphs are similar in some sense, the output of the
CNN on both signals should be similar as well. This property is typically termed
transferability, and is an essential requirement if we wish the CNN to generalize
well on the test set in multi-graph settings. In fact, transferability can be seen as
a special type of generalization capability. Analyzing and proving transferability
of spectral graph CNNs is the focus of this talk.
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Graph CNNs can achieve transferability in different ways, and we consider two
categories of such ways. In concept-based transferability, when a graph CNN is
exposed to a multi-graph training set, it can learn “concepts” that promote trans-
ferability. On the other hand, principle transferability is the built-in capability of
graph CNNs to generalize between graphs that represent the same phenomenon,
independently of training and of specific filters. The latter approach is the focus
of this talk, which is based on [1].

Convolution operators on graphs. The definition of spectral convolution on
graphs is inspired by the convolution theorem in Euclidean domains, that states
that convolution in the spatial domain is equivalent to pointwise multiplication
in the frequency domain. To define the frequency domain of a graph, we con-
sider the (self-adjoint) graph Laplacian ∆, and use its eigenvalues as frequencies
and its eigenvectors as the corresponding Fourier modes. Graph filters F are de-
fined via a functional calculus implementation, where the frequency responses are
parameterized by a function f : R → C . Namely, given a graph signal s,

(1) Fs = f(∆)s :=

N∑

n=1

f(λn)(ψ∗
n · c)ψn

where {ψn}Nn=1 are the eigenvectors of ∆, λn are the eigenvalues, and ψ∗
n is

the conjugate transpose of vψn. Here, the scalars {f(λn)}Nn=1 are the frequency
responses of the filter. Functional calculus filters are computationally efficient,
linearly stable with respect to perturbations in the graph [2].

The majority of researchers from the graph CNN community currently focus on
developing spatial methods. One typical motivation for favoring spatial methods
is the claim that spectral methods are not transferable, and thus do not generalize
well on graphs unseen in the training set. The goal in this talk is to debunk this
misconception, and to show that state-of-the-art spectral graph filtering methods
are transferable. Interestingly, [3] showed in an extensive study that spectral graph
CNNs obtain state-of-the-art results in well known multi-graph benchmarks.

Principle transferability of spectral graph CNNs. We present a framework
of transferability, allowing to compare graphs of incompatible sizes and topologies.
To accommodate the comparison of incompatible graphs, our approach resorts
to non-graph theoretical considerations, assuming that graphs are observed from
some underlying non-graph spaces. In our approach, graphs are regarded as dis-
cretizations of underlying corresponding “continuous” Borel spaces. This makes
sense, since a weighted graph can be interpreted as a set of points (vertices) and a
decreasing function of their distances (edge weights). As a basic assumption, two
graphs are comparable, or represent the same phenomenon, if both discretize the
same space. This approach allows us to prove transferability under small perturba-
tions of the adjacency matrix, but more generally, allows us to prove transferability
between graphs with incompatible structures. In the following we present a sim-
plified adaptation of our results, where graphs are discretized from metric measure
spaces via sampling.
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The way to compare two graphs is to consider their embeddings to the met-
ric space they both discretize. For intuition, consider the special case where the
metric space is a manifold. Any manifold can be discretized to a graph/polygon-
mesh in many different ways, resulting in different graph topologies. A filter
designed/learned on one polygon-mesh should have approximately the same reper-
cussion on a different polygon-mesh discretizing the same manifold. To compare
the filter on the two graphs, we consider a generic signal defined on the continuous
space, and sampled to both graphs. After applying the graph filter on the sampled
signal on both graphs, we interpolate both results back to two continuous signals.
In our analysis we show that these two interpolated continuous signals are approxi-
mately equal. To this end, we develop a digital signal processing (DSP) framework
akin to the classical Nyquist–Shannon approach, where now analog domains are
metric-measure spaces, and digital domains are graphs.

Consider a metric space M with a Borel measure µ, and take the space of sig-
nals of M as L2(M). Consider a self-adjoint operator L in L2(M) that we call
the metric Laplacian. We suppose that L has a discrete spectrum, with eigen-
values λ0 < λ1 < . . . and corresponding eigenfunctions φn : M → C. The
metric-Laplacian models the geometry in M. We define band-limited spaces in
L2(M) (Paley-Wiener spaces) by PW (λM ) = span{φm}Mm=0. Denote by P (λM )
the orthogonal projection upon PW (λM ).

Graphs are sampled from metric spaces by sampling nodes as points in M. We
consider a set of graphs {Gn}n with Nn nodes each. Given Nn sample points

Gn = {xnk}Nn

k=1 ⊂ M, the sampling operator Sn : C(M) → L2(G
n) is defined by

Sns = {s(xnK)}Nn

k=1 for any continuous metric space signal s ∈ C(M). We define
the interpolation of between L2(Gn) and PW (λM ) as the adjoint operator of the

operator SnP (λM ). Namely, In;λM
=
(
SnP (λM )

)∗
. Note that the term interpo-

lation is adopted here from the classical Nyquist–Shannon DSP theory. However,
In;λM

only approximates the values at the nodes, and does not interpolate accu-
rately.

Now, consider two graphs G1 and G2, with corresponding graph Laplacians ∆1

and ∆2, that represent the same phenomenon. Adopting our basic assumption, we
thus suppose that both graphs approximate the metric space M in the following
sense. For some fixed Paley-Wiener space PW (λM ), and for each n = 1, 2 and
any metric space signal s ∈ PW (λM ), we have ‖Ls− In;λM

∆nSns‖ ≈ 0. By the
triangle inequality, we can also show

(2) ‖I1;λM
∆1S1s− I2;λM

∆2S2s‖ ≈ 0.

The following theorem proves in this situation that any Lipschitz continuous func-
tional calculus filter f is linearly stable in the perturbation error (2).

Theorem 1. Consider the above construction, and let λM > 0 be a band with
‖In;λM

‖ < C for n = 1, 2. Let f : R → C be a Lipschitz continuous function, with
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Lipschitz constant D, and denote ‖f‖L,M = max0≤m≤M{|f(λm)|}. Then

‖f(L)P (λM ) − In;λM
f(∆n)SnP (λM )‖ ≤DCM ‖SnLP (λM ) − ∆nSnP (λM )‖

+ ‖f‖L,M

∥∥P (λM ) − In;λM
SλM
n P (λM )

∥∥.

(3)

As a result of (3) and by the triangle inequality, we have that
‖I1;λM

f(∆1)S1P (λM ) − I2;λM
f(∆2)S2P (λM )‖ is linearly stable with respect to

‖I1;λM
∆1S1P (λM ) − I2;λM

∆2S2P (λM )‖ and
maxn=1,2

∥∥P (λM ) − In;λM
SλM
n P (λM )

∥∥. Last, we can extend the transferability of
filters property to a transferability of sprectral graph CNNs property.

To show that filters are transferable via (3), one must first show that the Lapla-
cians are transferable. For this, we prove that graph Laplacians which are ran-
domly sampled from metric space Laplacian are transferable in high probability.
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On polynomial-time computation of high-dimensional posterior
measures by Langevin-type algorithms

Richard Nickl

(joint work with Sven Wang)

The problem of generating random samples of high-dimensional posterior distri-
butions is considered. The main results consist of non-asymptotic computational
guarantees for Langevin-type MCMC algorithms which scale polynomially in key
quantities such as the dimension of the model, the desired precision level, and the
number of available statistical measurements. As a direct consequence, it is shown
that posterior mean vectors as well as optimisation based maximum a posteriori
(MAP) estimates are computable in polynomial time, with high probability un-
der the distribution of the data. These results are complemented by statistical
guarantees for recovery of the ground truth parameter generating the data.

Our results are derived in a general high-dimensional non-linear regression set-
ting (with Gaussian process priors) where posterior measures are not necessarily
log-concave, employing a set of local ‘geometric’ assumptions on the parameter
space, and assuming that a good initialiser of the algorithm is available. The
theory is applied to a representative non-linear example from PDEs involving a
steady-state Schrödinger equation.
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Online Matching in Sparse Random Graphs

Vianney Perchet

(joint work with Nathan Noiry, Flore Sentenac)

Motivated by sequential budgeted allocation problems, we investigate online match-
ing problems where connections between vertices are not i.i.d., but they have fixed
degree distributions – the so-called configuration model. We estimate the compet-
itive ratio of the simplest algorithm, “greedy”, by approximating some relevant
stochastic discrete processes by their continuous counterparts, that are solutions
of an explicit system of partial differential equations. This technique gives precise
bounds on the estimation errors, with arbitrarily high probability as the problem
size increases.

More precisely, we assume that the degree distribution on one side (the U-side)
has a generating function φU and of expectation µU and, on the other side (the
V-side), has a generating function φV and of expectation µV .

The main result is that given N ≥ 1 and T = µU

µV
N , let MT be the matching built

by “Greedy” on the configuration model induced by the above degree distributions;
then the following convergence holds in probability:

|MT |
N

P−→
N→+∞

1 − φV(1 −G(1)).

where G is the unique solution of the following ordinary differential equation:

G′(s) =
1 − φU

(
1 − 1

µU
φ′U (1 −G(s))

)

µV

µU
φ′U (1 −G(s))

; G(0) = 0.

Moreover, for any s ∈ [0, 1], if MT (s) is the matching obtained by “greedy” after
seeing a proportion s of vertices of V , then

|MT (s)|
N

P−→
N→+∞

1 − φU (1 −G(s)).

Convergence rates are explicit; with probability exponentially large, at least 1 −
ζN exp(−ξN c/2),

sup
s∈[0,1]

∣∣∣ |MT (s)|
N

−
(
1 − φU (1 −G(s))

)∣∣∣ ≤ κN−c,

where ζ, ξ, κ depend only on the (first two) moments of both πV and πU , and c is
some universal constant (set arbitrarily as 1/20 in the proof).
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Forecasting time series with neural networks

Stefan Richter

(joint work with Nathawut Phandoidaen, Moritz Haas)

Given is a high-dimensional stationary time series X1, ..., Xn ∈ Rd. The goal we
aim to investigate is the prediction of Xn+1 or low-dimensional statistics T (Xn+1)
given the past lags Xn, ..., Xn−r, where r ∈ N. We investigated two basic ap-
proaches:

(1) Find f such that Xn+1 ≈ f(Xn, ..., Xn−r+1) (which leads to point fore-
casts)

(2) Find distribution F such that F
d≈ PXn+1|Xn,...,Xn−r+1 (which leads to

distributional forecasts)

For both inference of f and F we consider approaches with neural networks and
provide statistical guarantees under conditions on the class of neural networks.

1. Point forecasting

We consider the simple model

Xt = f∗(Xt−1) + εt, t = 1, ..., n,

where f∗ : Rd → Rd and εt is i.i.d. Gaussian noise with Eεt = 0. Estimation of

f∗ is performed with neural networks f̂ , and quality assessment via the prediction

error ER(f̂), where | · | is the Euclidean norm and

R(f) :=
1

d
E[|X1 − f(X0)|22].

We pose the following encoder-decoder assumption on f∗ which mimics the idea
that the time series evolution takes place via a compression of the information of
the state before and is afterwards ’spread out’ again to all components.

Assumption 1. f∗ = f∗
dec ◦ f∗

enc, where f∗
enc = g2 ◦ g1,

• g1 : Rd → RD, and any component of g1 only depends on d̃ ≪ d compo-
nents and is in Cβ

• g2 : RD → Rd̃ with d̃≪ d is C∞,

• f∗
dec : Rd̃ → Rd is in Cβ.

For estimation of f∗, we consider neural networks which are defined as follows
(cf. [4]) Let σ : R → R be some activation function, e.g. σ(x) = max{x, 0}.

Definition 1.

F(L, p, s) := {g : Rd → R
d | g is a network with L layers, width vector p

and sparsity level s},
where g ∈ F(L, p, s) has the form

g(x) = W (L+1) · σ(v(L) +W (L) · σ(...W (2) · σ(v(1) +W (1)x)...)),

W (l) ∈ Rpl×pl−1 , v(l) ∈ Rpl , and
∑L+1

l=1

{
‖W (l)‖0 + ‖v(l)‖0

}
≤ s.
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To adopt for the encoder-decoder structure of f∗, we ask F(L, p, s) to have a layer

with only d̃ dimensions as follows.

Definition 2. F(L, p, s, J, d̃) := {f ∈ F(L, p, s) |Layer J has pJ = d̃ dimensions}.
The empirical risk minimizer of R(f) connected to this class reads now

f̂n :∈ argminf∈F(L,p,s,J,d̃)R̂n(f), R̂n(f) :=
1

nd

n∑

i=2

|Xi − f(Xi−1)|22.

It should be noted that in practice, f̂n is approximated by a stochastic gradient

descent method optimizer f̂≈
n , where the quality of f̂≈

n ≈ f̂n is current research.
Therefore the theoretical results derived in this report are not directly applicable
in practice, but they allow for a rough idea how the structure of the network has
to be chosen. We obtained the following result (cf. [2]), which is based on oracle
inequalities and empirical process theory based on [3] and the use of approximation
results from [4].

Theorem 1.1. Suppose that the β-mixing or functional dependence coefficients
δ(j) of Xi satisfy δ(j) ≤ Cj−α (α,C > 1). Let

φn = n
− 2β

2β+d̃ .

Suppose that

• Number of layers: log2(4 max{d̃, β}) log2(n) ≤ J ≤ L . log(n),
• Layer size: nφn . minl∈{2,...,L−1}\{J} pl,
• Number of nonzero weights: s ≍ nφn log(n).

Then

ER(f̂) −R(f∗) . log(n)3φ
α

α+1

n = log(n)3n
− α

α+1

2β

2β+d̃ .

The important result is that the exponent of the nonparametric rate does not
depend on the dimension d of the time series, but only on the compression di-
mension d̃. The strength of the polynomial dependence comes into play with an
additional factor α

α+1 which lies between 1
2 and 1. It is not clear up to now if this

rate is optimal.

2. Distributional forecasting

The original idea is based on WGANs from machine learning. Given is a latent
space RdZ and user-generated variables Z1, ..., Zn ∼ PZ with a chosen distribution
P
Z independent of X1, ..., Xn. For simplicity, the aim is to forecast the distribution

of some statistics T (X1) ∈ RdT given X0. This is done by defining an estimator
ĝ : RdZ × Rd → RdT which minimizes the 1-Wasserstein distance

W (PT (X1),X0 , P
g(Z,X0),X0)

over a certain class of functions g. If such an ĝ is found, then {ĝ(Zi, x) : i =
1, ..., N} with user-generated variables Z1, ..., ZN mimics the conditional distribu-
tion T (X1)|X0 = x, which enables us to provide distributional forecasts of T (X1)
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given X0 = x (*). We define ĝ as follows: First, the Kantorovich formulation of
the 1-Wasserstein distance is used:

W (P1,P2) = sup
f :Rd→R,‖f‖L≤1

{ ∫
fdP1 −

∫
fdP2

}
,

where ‖f‖L denotes the Lipschitz constant of a function f . This distance is ap-
proximated by a supremum over a class of neural networks (’critic networks’)
F(Lf , pf , sf ),

Wn(g) = sup
f∈F(Lf ,pf ,sf ),‖f‖L≤1

{Ef(T (X1), X0) − Ef(g(Z,X0), X0)}.

The estimator is obtained via minimization of the corresponding empirical version
over a class of ’generator networks’ F(Lg, pg, sg),

ĝn :∈ argming∈F(Lg,pg ,sg)
Ŵn(g),

Ŵn(g) := sup
f∈F(Lf ,pf ,sf ),‖f‖L≤1

{ 1

n

n
∑

i=2

f(T (Xi), Xi−1)−
1

n

n
∑

i=2

f(g(Zi, Xi−1), Xi−1)
}

Again, ĝn is an empirical risk minimizer which is not available in practice but
is approximated by min-max-gradient descent methods. Therefore, our results
should only be viewed as a first step towards a full theory. If there exists g∗ :
RdZ ×Rd → RdT such that P(g∗(Z,X0),X0) = P(T (X1),X0), fast convergence rates for
ĝn can be obtained by posing encoder-decoder assumptions on g∗ as follows:

Assumption 2. g∗ = gdec ◦ genc, where genc = genc,1 ◦ genc,0, where

• genc,0 : Rd+dZ → RD, and any component of g1 only depends on dg ≪ d
components and is in Cβ

• genc,1 : RD → Rdg is in C∞ and dg ≪ d+ dZ ,
• gdec : Rdg → RdT is in Cβ .

In [1], we proved the following result:

Theorem 2.1. Let φn = n
− 2β

2β+dg . Suppose that

(i) Lg ≍ log(n),
(ii) minl=1,...,Lg

pg,l & nφn,
(iii) sg ≍ nφn log(n)
(iv) Lf ≤ Lg, sf ≤ sg.

Suppose for the β-mixing coefficients of Xi that β(k) ≤ κ · k−α (κ, α > 1). Then

EWn(ĝn) = EWn(ĝn) −Wn(g∗) .
(sfLf log(sfLf )

n

)1/2
+ φ1/2n log(n)3/2,

If now F(Lf , pf , sf ) is chosen ’large enough’, then the above result implies the

weak convergence (ĝn(X0), X0)
d→ (T (X1), X0) which in turn justifies (*) above

(cf. [1]).
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Metropolis-Hastings via Classification

Veronika Rockova

(joint work with Tetsuya Kaji)

This paper develops a Bayesian computational platform at the interface between
posterior sampling and optimization in models whose marginal likelihoods are
difficult to evaluate. Inspired by adversarial optimization, namely Generative Ad-
versarial Networks (GAN), we reframe the likelihood function estimation problem
as a classification problem. Pitting a Generator, who simulates fake data, against a
Classifier, who tries to distinguish them from the real data, one obtains likelihood
(ratio) estimators which can be plugged into the Metropolis-Hastings algorithm.
The resulting Markov chains generate, at a steady state, samples from an ap-
proximate posterior whose asymptotic properties we characterize. Drawing upon
connections with empirical Bayes and Bayesian mis-specification, we quantify the
convergence rate in terms of the contraction speed of the actual posterior and the
convergence rate of the Classifier. Asymptotic normality results are also provided
which justify inferential potential of our approach. We illustrate the usefulness of
our approach on simulated data.

Adaptive transfer learning

Richard J. Samworth

(joint work with Henry W. J. Reeve and Timothy I. Cannings)

In transfer learning, we wish to make inference about a target population when
we have access to data both from the distribution itself, and from a different but
related source distribution. We introduce a flexible framework for transfer learning
in the context of binary classification, allowing for covariate-dependent relation-
ships between the source and target distributions that are not required to preserve
the Bayes decision boundary. Our main contributions are to derive the minimax
optimal rates of convergence (up to poly-logarithmic factors) in this problem, and
show that the optimal rate can be achieved by an algorithm that adapts to key
aspects of the unknown transfer relationship, as well as the smoothness and tail
parameters of our distributional classes. This optimal rate turns out to have sev-
eral regimes, depending on the interplay between the relative sample sizes and
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the strength of the transfer relationship, and our algorithm achieves optimality by
careful, decision tree-based calibration of local nearest-neighbour procedures.

Elephant in the Room: Non-Smooth Non-Convex Optimization

Ohad Shamir

It is well-known that finding global minima of non-convex optimization problems
is computationally hard in general. However, the problem of finding stationary-
like points (at least in terms of making the gradient small) is tractable even with
simple gradient-based methods, and received much attention in recent years (e.g.,
Nesterov [5], Jin et al. [2], Carmon et al. [1]). The resulting literature has been
largely motivated by the rising importance of non-convex problems such as deep
learning, but in fact, does not quite address them: Nearly all positive results in this
area require the objective function to be either smooth or have other structural
properties which are seldom satisfied in deep learning problems. This highlights
the importance of understanding what we can do efficiently on non-convex, non-
smooth optimization problems.

In the talk, we described some results, challenges, and possible approaches to
tackle this fundamental question. We began by revisiting the recent paper of
Zhang et al. [6], which pointed out that minimizing the gradient norm is not
possible in the non-smooth setting, and proposed an alternative notion of (δ, ǫ)-
stationarity1, along with computationally efficient methods which provably find
such points. However, this notion can also lead to counter-intuitive behavior, at
least in some cases: There are functions and points which are stationary-like under
this definition, but do not resemble stationary points, and with all gradients in a
δ-neighborhood being large.

We then proceeded to examine two alternative approaches, with other trade-offs
in terms of computational efficiency and performance:

• First, we studied the notion of getting δ-close to points whose gradient
norm is less than ǫ. Although intuitive, we showed a strong impossibility
result in a standard oracle complexity framework [4], implying that under
mild conditions, any algorithm with non-trivial guarantees will have oracle
complexity exponential in the dimension.

• Second, we considered the approach of reduction to the smooth case:
Namely, given a function f , find a smooth approximation f̃ , which ǫ-
approximates f (uniformly over Rd) and has Lipschitz gradients, and find

approximately stationary points with respect to f̃ . Interestingly, for non-
convex functions, there appears to be a trade-off between performance and
computational tractability in computing such smooth approximations: On
the one hand, there are very simple and computationally efficient meth-
ods (such as convolution with a smooth distribution function), that lead to
the gradient Lipschitz parameter scaling with the dimension. On the other

1Namely, points where the convex hull of gradients in a δ-neighborhood contains vectors
whose norm is less than ǫ
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hand, there are essentially optimal methods with dimension-free guaran-
tees (in particular, Lasry-Lions regularization [3]), that seem computa-
tionally intractable. In upcoming work, we prove that this trade-off is
necessary, again in an oracle complexity framework: Under mild assump-
tions, to get any dimension-dependence better than standard convolutions,
the oracle complexity must be exponential in the dimension – hence ruling
out computational tractability.

Overall, we argue that theoretically understanding nonsmooth nonconvex opti-
mization is an intersting and still relatively unexplored area, with different criteria
leading to different trade-offs in terms of computational efficiency, performance
and plausability. Besides the general question of which criterion will prove most
suitable, there are also quite a few specific open questions, such as more precisely
characterizing the oracle complexity for each of the settings we considered.
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On minimum ℓ1-norm interpolation

Sara van de Geer

(joint work with Geoffrey Chinot, Felix Kuchelmeister, Matthias Löffler)

We consider the classification problem, where one observes an input matrix X ∈
Rn×p and a binary response Y ∈ {±1}n given by Y = sign(Xβ∗ + ξ). The
unknown vector β∗ ∈ Rp is normalized to have ℓ2-norm ‖β∗‖2 = 1 and ξ ∈ Rn

is an unobservable noise vector. Aim is to estimate β∗ and build from this a
classification rule for predicting the label of an unlabelled observation. We study
the max-margin classifier, which is a value of b ∈ Rp solving the maximal margin
problem

max
b6=0

min
1≤i≤n

Yi(Xb)i
‖b‖1

=: γ̂,

where ‖ · ‖1 denotes the ℓ1-norm. As is shown in for example the papers [3], [5],
and [4], the max-margin classifier is closely related to the ada-boost algorithm
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developed by [2]. The max-margin estimator is proportional to the minimum
ℓ1-norm estimator

β̂ := arg min

{
‖b‖1 : min

1≤i≤n
Yi(Xb)i ≥ 1

}
.

Note that the estimator interpolates the data in the sense that sign(Xβ̂) = Y .

Theorem 1.1. Suppose that the n rows of X are i.i.d. copies of a standard
Gaussian random row vector x ∈ R1×p and that ξ is independent of X with i.i.d
Gaussian entries with mean zero and variance σ2. Let 0 < δ < 1 be arbitrary.
There exists a constants {c1, c2, c3, c4, c5, c6} such that for n ≤ pδ/c1 and log p ≤
n/c2, with probability at least 1 − n−1/c3

γ̂ ≥ 1

c4

(
log p

n

1

‖β∗‖1 + σ
√
n/ log p

) 1
3

,

‖β̂‖1
‖β̂‖2

≤ c5

(
‖β∗‖1 + σ

√
n/ log p

)
log p,

and ∥∥∥∥
β̂

‖β‖2
− β∗

∥∥∥∥
2

≤ c5

(
log p

n
‖β∗‖21 + σ2

) 1
4

log
1
2 p.

The theorem can be extended to the case of adversarial noise at the cost of an
additional log-factor.

The first result in Theorem 1.1 for the margin is derived using bounds obtained
in [1] and is in fact optimal. The other two results rely on the first result but may
be sub-optimal. Note that a rate of convergence for the misclassification error
follows immediately from the ℓ2-rate of convergence by Grothendieck’s identity,
which says that for a standard Gaussian random vector x ∈ R1×p, and for all
b ∈ R

p with ‖b‖2 = 1, one has

IP(sign(xβ∗) 6= sign(xb)) =
1

π
arccos(β∗T b)

=
1

π
dG(β∗, b),

where dG(β∗, b) is the Geodesic distance between the vectors β∗ and b. Thus, in
the context of Theorem 1.1, the Bayes error is of order σ for σ small, whereas our
bound has a term of order

√
σ which dominates σ for σ small. On the other hand,

if σ is small, the error due to the noise may be of smaller order than the error for
the noiseless problem.
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Estimating the lasso’s effective noise

Michael Vogt

(joint work with Johannes Lederer)

Consider the high-dimensional linear model Y = Xβ∗ + ε with response vector
Y ∈ R

n, design matrix X ∈ R
n×p, target vector β∗ ∈ R

p, and random noise
ε ∈ Rn. We allow for a dimension p that is of the same order or even much larger
than the sample size n, and we assume a target vector β∗ that is sparse. A popular
estimator of β∗ in this framework is the lasso [14]

(1) β̂λ ∈ arg min
β∈Rp

{
1

n
‖Y −Xβ‖22 + λ‖β‖1

}
,

where λ ∈ [0,∞) is a tuning parameter. The lasso estimator satisfies the well-
known prediction bound

(2) λ ≥ 2‖X⊤ε‖∞
n

=⇒ 1

n
‖X(β∗ − β̂λ)‖22 ≤ 2λ‖β∗‖1,

which is a direct consequence of the basic inequality for the lasso [2, Lemma 6.1]
and Hölder’s inequality. This simple bound highlights that a crucial quantity in
the analysis of the lasso estimator is 2‖X⊤ε‖∞/n. We call this quantity henceforth
the effective noise.

The effective noise does not only play a central role in the stated prediction
bound but rather in almost all known finite-sample bounds for the lasso. Such
bounds, called oracle inequalities, are generally of the form [2, 7, 9]

(3) λ ≥ (1 + δ)
2‖X⊤ε‖∞

n
=⇒ ‖β∗ − β̂λ‖ ≤ κλ

with some constant δ ∈ [0,∞), a factor κ = κ(β∗) that may depend on β∗, and
a (pseudo-)norm ‖ · ‖. Oracle inequalities of the form Eq. (3) are closely related
to tuning parameter calibration for the lasso: they suggest to control the loss

L(β∗, β̂λ) = ‖β∗ − β̂λ‖ of the lasso estimator β̂λ by taking the smallest tuning

parameter λ for which the bound ‖β∗ − β̂λ‖ ≤ κλ holds with given probability
1−α. Denoting the (1−α)-quantile of the effective noise 2‖X⊤ε‖∞/n by λ∗α, we
immediately derive from the oracle inequality Eq. (3) that

(4) P

(
‖β∗ − β̂(1+δ)λ‖ ≤ κ(1 + δ)λ

)
≥ 1 − α

for λ ≥ λ∗α. Stated differently, λ = (1 + δ)λ∗α is the smallest tuning parameter for

which the oracle inequality Eq. (3) yields the finite-sample bound ‖β∗ − β̂λ‖ ≤ κλ
with probability at least 1 − α. Importantly, the tuning parameter choice λ =
(1 + δ)λ∗α is not feasible in practice, since the quantile λ∗α of the effective noise is
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not observed. An immediate question is, therefore, whether the quantile λ∗α can
be estimated.

The effective noise is also closely related to high-dimensional inference. To
give an example, we consider testing the null hypothesis H0 : β∗ = 0 against the
alternative H1 : β∗ 6= 0. Testing this hypothesis corresponds to an important
question in practice: do the regressors in the model Y = Xβ∗ + ε have any
effect on the response at all? A test statistic for the hypothesis H0 is given by
T = 2‖X⊤Y ‖∞/n. Under H0, it holds that T = 2‖X⊤ε‖∞/n, that is, T is the
effective noise. A test based on the statistic T can thus be defined as follows: reject
H0 at the significance level α if T > λ∗α. Since the quantile λ∗α is not observed, this
test is not feasible in practice, which brings us back to the question of whether the
quantile λ∗α can be estimated.

We devise an estimator of the quantile λ∗α of the effective noise based on boot-
strap. Besides the level α ∈ (0, 1), it does not depend on any free parameters,
which means that it is fully data-driven. The estimator can be used to approach a
number of statistical problems in the context of the lasso. Here, we focus on two
such problems: (i) tuning parameter calibration for the lasso and (ii) inference on
the parameter vector β∗.

(i) Tuning parameter calibration for the lasso. Our estimator λ̂α of the quantile λ∗α
can be used to calibrate the lasso with essentially optimal finite-sample guarantees.
Specifically, we derive finite-sample statements of the form

(5) P

(
‖β∗ − β̂(1+δ)λ̂α

‖ ≤ κ(1 + δ)λ∗α−νn

)
≥ 1 − α− ηn,

where 0 < νn ≤ Cn−K and 0 < ηn ≤ Cn−K for some positive constants C and K.

Statement Eq. (5) shows that calibrating the lasso with the estimator λ̂α yields
almost the same finite-sample bound on the loss L(β∗, β) = ‖β∗−β‖ as calibrating
it with the oracle parameter λ∗α. In particular, Eq. (5) is almost as sharp as the

oracle bound P(‖β∗ − β̂(1+δ)λ∗
α
‖ ≤ κ(1 + δ)λ∗α) ≥ 1 − α, which is obtained by

plugging λ = λ∗α into Eq. (4).
Finite-sample guarantees for the practical calibration of the lasso’s tuning para-

meter are scarce. Exceptions include finite-sample bounds for Adaptive Validation
[5] and Cross-Validation [4]. One advantage of our approach via the effective noise
is that it yields finite-sample guarantees not only for a specific loss but for any loss
for which an oracle inequality of the type Eq. (3) is available. Another advantage
is that it does not depend on secondary tuning parameters that are difficult to
choose in practice; the only parameter it depends on is the level 1−α, which plays
a similar role as the significance level of a test and, therefore, can be chosen in the
same vein in practice.

(ii) Inference on the parameter vector β∗. Our estimator λ̂α of the quantile λ∗α
can also be used to test hypotheses on the parameter vector β∗ in the model
Y = Xβ∗ + ε. Consider again the problem of testing H0 : β∗ = 0 against H1 :
β∗ 6= 0. Our approach motivates the following test: reject H0 at the significance

level α if T > λ̂α. We prove under mild regularity conditions that this test has
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the correct level α under H0 and is consistent against alternatives that are not too
close to H0. Moreover, we show that the test can be generalized readily to more
complex hypotheses.

High-dimensional inference based on the lasso has turned out to be a very
difficult problem. Some of the few advances that have been made in recent years
include tests for the significance of small, fixed groups of parameters [1, 16, 6, 10,
8], tests for the significance of parameters entering the lasso path [12], rates for
confidence balls for the entire parameter vector (and infeasibility thereof) [13, 3],
and methods for inference after model selection [11, 15]. In stark contrast to
most other methods for high-dimensional inference, our tests are completely free
of tuning parameters and, therefore, dispense with any fine-tuning.
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