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Ultraf i l ter methods
in combinator ics

Isaac Goldbr ing 1

Given a set X, ultrafilters determine which subsets
of X should be considered as large. We illustrate
the use of ultrafilter methods in combinatorics by
discussing two cornerstone results in Ramsey theory,
namely Ramsey’s theorem itself and Hindman’s the-
orem. We then present a recent result in combinato-
rial number theory that verifies a conjecture of Erdős
known as the “B + C conjecture”.

1 Ramsey’s theorem

The (infinite) pigeonhole principle asserts that if we color every element of an
infinite set, let us say the set of natural numbers N, with one of two colors,
say red or blue, then some infinite subset X of N is monochromatic, that is
every element of X has the same color. The proof basically amounts to saying
that the union of two finite sets is finite. Ramsey’s theorem is a significant
generalization of the pigeonhole principle.

Consider pairs of natural numbers, that is, sets of the type {m,n} with m,
n ∈ N and m 6= n. By coloring a pair, we mean that we assign to this set a
specific color.

1 I. Goldbring was partially supported by NSF CAREER grant DMS-1349399.
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Theorem 1 (Ramsey’s theorem) 2 Suppose that one colors all pairs of
natural numbers with two colors, say red or blue. Then there is an infinite
subset X of N that is monochromatic, in the sense that all possible pairs of
elements from X receive the same color.

In the remainder of this section, we give an idea of the proof of this theorem
by using the fictitious quantifier ∀∗. Intuitively, the quantifier ∀∗x should be
thought of as saying “for most elements” x or “for a large number of elements” x.
In the next section, we show that such a quantifier can actually be shown to
exist using the notion of ultrafilters.

Represent a pair of natural numbers by an ordered pair (m,n) with m < n
and fix a coloring c on such pairs of numbers. We write R(m,n) if c assigns to
the pair (m,n) the color red, and B(m,n) if the color blue is assigned.

We seek to construct a sequence a1 < a2 < a3 < . . . of natural numbers such
that either R(am, an) holds for all m < n, or B(am, an) holds for all m < n. To
know which color is more likely, it would be nice if either

∀∗x∀∗y R(x, y) or ∀∗x∀∗y B(x, y)

holds, meaning that, in the first case, many x have the property that there
are many y for which R(x, y) holds, and, in the second, that many x have the
property that there are many y for which B(x, y) holds. This is indeed the case
when our quantifier satisfies the following property:

(Part) For all subsets X,Y ⊆ N such that N = X ∪ Y , we have either
∀∗x (x ∈ X) or ∀∗x (x ∈ Y ).

Note for example that the quantifier “for all but finitely many x”, which is
the quantifier often seen in analysis (for example in the definition of limit), does
not satisfy requirement (Part). Indeed, this can be easily seen if you take X as
the set of even numbers and Y as the set of odd numbers. Assuming (Part) for
our quantifier ∀∗, we now have a color, let us say red, such that ∀∗x∀∗y R(x, y)
holds. We now fix a1 ∈ N such that ∀∗y R(a1, y). Actually, in order to guarantee
the existence of a1, we have to assume the following property:

(Non-∅) If X ⊆ N is such that ∀∗x (x ∈ X) holds, then X 6= ∅.

In other words, if something happens for “many” elements x, then it should
happen for at least one x! How do we proceed? We know that for many x,

2 Technically this is known as the infinite Ramsey theorem for pairs with two colorings. An
inductive argument is needed to go from two colors to an arbitrary finite number of colors.
One can also replace pairs by triples, quadruples, and so on, which makes the proof harder
only in notation.

2



there are many y for which R(x, y) holds and that there are many y such that
R(a1, y) holds. We now desire an a2 that satisfies both of these properties. In
other words, a2 should lie in the intersection of these two large sets, motivating
the following property:

(Int) If ∀∗x (x ∈ X) and ∀∗x (x ∈ Y ), then ∀∗x (x ∈ X ∩ Y ).

However, we also want a2 to be larger than a1, which could in theory be
impossible if a large set was finite. We thus consider the following strengthening
of (Non-∅):

(Inf) If ∀∗x (x ∈ X), then X is infinite.

Using (Int) and (Inf), we can thus choose a2 > a1 such that R(a1, a2)
and ∀∗y R(a2, y). We now have everything we need to continue our construction.
We find a3 > a2 such that R(a1, a3), R(a2, a3) and ∀∗y R(a3, y). This uses the
fact that the intersection of three sets is large, which follows from applying (Int)
twice. The rest of the construction proceeds in a similar manner.

This concludes the proof of Ramsey’s theorem, assuming the existence of a
quantifier ∀∗x satisfying (Part), (Int), and (Inf). We show the existence of such
a quantifier in the next section, by discussing the notion of ultrafilters.

2 Basic facts on ul t raf i l ters

The definition of an ultrafilter is often stated in a slightly different manner than
the terminology used in the previous section. First, we introduce the notion of
filters.

Definition 2 A filter 3 on N is a collection F of subsets of N satisfying the
following three properties:

1. The empty set ∅ does not belong to F while N itself does belong to F .
2. If A belongs to F and A ⊆ B, then B also belongs to F .
3. If A and B both belong to F , then A ∩B also belongs to F .

If one thinks of a coffee filter, used to catch the “large” coffee grinds, a
filter on N catches the “large” subsets of N. Here large can mean different
things depending on different filters. The first property says that the empty
set should not be large, which corresponds to requirement (Non-∅) from the
previous section, while the entire set itself is large. The second property says

3 Technically we describe the notion of a proper filter. The improper filter on N is simply
the collection of all subsets of N. We do not allow this as a filter in this snapshot.
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that if A is large and B is even larger, then B is also large. The final property
corresponds exactly to requirement (Int) from the previous section.

A prominent example of a filter is the following.

Example 3 The Frechet filter on N consists of those subsets A of N for which
the complement Ac, that is, the set of numbers not belonging to A, is finite.

Often one wants to know if a set of elements satisfying a given property is,
or is not, an element of a filter F . A useful notation is provided by the filter
quantifier ∀F , which means that the set of elements which makes the property
true belongs to F . For example, for a set A, the expression ∀Fx (x ∈ A) means
that the set of x which are contained in A is in the filter F . In general, such
a quantifier does not satisfy property (Part) from the previous section. For
instance, if F is the Frechet filter, then partitioning the numbers into the set of
even numbers and the set of odd numbers witnesses that ∀F fails requirement
(Part). This is why we need to consider ultrafilters.

Definition 4 A filter F on N is called an ultrafilter if it also satisfies:

4. For every A ⊆ N, either A belongs to F or Ac belongs to F .

Thus, the Frechet filter is not an ultrafilter. We often use the letters U and V
to denote ultrafilters. One can show that, for an ultrafilter U , ∀U satisfies the
properties (Part) and (Int). But what about (Inf)? Unfortunately, this is not
always the case for (Inf), as the next example shows.

Example 5 Fix a number n in N. Let Un consist of all subsets of N which
contain n. Then Un is an ultrafilter on N, called the principal ultrafilter
generated by n.

Since the set {n} consisting just of n belongs to Un, the quantifier ∀Un fails
the axiom (Inf) miserably! However, this is the only case in which an ultrafilter
can fail (Inf). It turns out that if U is a nonprincipal ultrafilter, that is U 6= Un

for any n ∈ N, then ∀U does satisfy (Inf) as well. 4

To summarize, if U is a nonprincipal ultrafilter on N, then the quantifier ∀U
satisfies the axioms (Part), (Int), and (Inf) from the previous section. However,
the question remains: do nonprincipal ultrafilters on N exist? Thankfully, they
do. The argument goes by first showing that an ultrafilter U on N is a “maximal”
filter, in the sense that there is no filter that extends U , and then by using
Zorn’s Lemma, which ensures the existence of such a maximal filter. In fact,
one shows that every filter is contained in an ultrafilter, so that there exist
many, many nonprincipal ultrafilters.

4 This is a nice exercise for the reader to work out.
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The existence of a nonprincipal ultrafilter satisfying (Part), (Int) and (Inf)
concludes the proof of Ramsey’s theorem by allowing the construction of the
sequence a1, a2, . . . from the previous section.

3 Hindman’s theorem and the semigroup βN
Another interesting and nontrivial extension of the pigeonhole principle is
Hindman’s theorem. Consider X ⊆ N and let FS(X) denote the set of all finite
sums of distinct elements of X. In other words, if X = {x1, x2, . . .}, then
FS(X) consists of the elements of X itself as well as elements such as x1 + x2
and x3 + x6 + x15 + x1000.

Theorem 6 (Hindman’s Theorem) If one colors all elements of N with the
colors red and blue, then there is an infinite subset X of N such that all elements
of FS(X) receive the same color.

Hindman’s original proof was purely combinatorial and very tricky. 5 A
simpler proof is given by considering ultrafilters and defining a sequence in a
manner similar to the proof of Ramsey’s theorem. More precisely, one constructs
an infinite sequence by keeping a large number of options open for future choices
of sequence elements. In this case, it is important that large sets have the
property that a large number of shifts of the set remain large. Given A ⊆ N
and a ∈ N, a shift of A by a is defined by

A− a := {b ∈ N : a+ b ∈ A}.

In other words, we shift A to the left by a units and then throw away any
negative numbers that might arise. Now, given an ultrafilter U on N and A ⊆ N,
we set

A− U := {a ∈ N : A− a ∈ U}.

Namely, A − U contains all those a for which the shift of A by a is large in
the sense of U . Note that if U is the principal ultrafilter Ub for some b ∈ N,
then a ∈ A−Ub means A− a ∈ Ub, implying b ∈ A− a, that is a ∈ A− b. This
means that this notion of ultrafilter shift generalizes the above notion of shifting
a set by a number. The key definition for the ultrafilter proof of Hindman’s
theorem is the following.

Definition 7 An ultrafilter U on N is called idempotent if, for every A ∈ U ,
one has A− U ∈ U .

5 Hindman himself suggested that asking graduate students to read the original proof could
be viewed as a form of torture!
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Alternatively stated, U is idempotent if, whenever A is large, then a large
number of shifts of A are also large. The terminology idempotent can be
explained as follows. Let βN denote the set of all ultrafilters on N. 6 One can
define an addition operation ⊕ on βN by declaring, for ultrafilters U and V
on N and A ⊆ N, that A ∈ U ⊕ V if and only if A − V ∈ U . 7 Thus, A
is large in the sense of U ⊕ V if and only if a U-large number of shifts of
A are V-large. The operation ⊕ on βN is a semigroup operation, meaning
that (U ⊕ V) ⊕ W = U ⊕ (V ⊕ W). Note indeed that the operation agrees
with the usual addition on N in case U and V are both principal. With this
terminology, saying that an ultrafilter U on N is idempotent is equivalent to say
that U ⊕ U = U , which is exactly what it means for an element in a semigroup
to be idempotent. Note also that all idempotent ultrafilters are nonprincipal. 8

A key ingredient to prove Hindman’s theorem is the following proposition.

Proposition 8 Suppose U is an idempotent ultrafilter. Then for every A ∈ U ,
there is an infinite set X ⊆ N such that FS(X) ⊆ A.

We briefly discuss the proof of this proposition by showing how to con-
struct the first elements of the set X = {a1, a2, . . .}. Since U is idempo-
tent and A ∈ U , we have that A − U ∈ U , hence A ∩ (A − U) ∈ U . Fix
a1 ∈ A ∩ (A − U). Since a1 ∈ A − U , we have A − a1 ∈ U . This im-
plies (A − a1) − U ∈ U , hence A ∩ (A − U) ∩ (A − a1) ∩ (A − a1 − U) ∈ U .
Since idempotent ultrafilters are nonprincipal, there exists a2 > a1 such that
a2 ∈ A ∩ (A − U) ∩ (A − a1) ∩ (A − a1 − U). At this point we have that
a1, a2, a1 + a2 ∈ A, and we are on our way to construct our desired infinite
set X. Let us construct one more element of the sequence. Since U is idempotent
and a2 is chosen in such a way that A − a2, A − a1 − a2 ∈ U , we have that
(A−a2)−U ∈ U and (A−a1−a2)−U ∈ U , hence, we can find a3 > a2 such that
a3 ∈ A ∩ (A− U) ∩ (A− a1) ∩ (A− a1 − U) ∩ (A− a2) ∩ (A− a2 − U) ∩ (A− a1 − a2) ∩ (A− a1 − a2 − U),
since U is nonprincipal. Now a3, a1 + a3, a2 + a3, a1 + a2 + a3 ∈ A. The proof
continues in this manner and a clever choice of notation makes a complete
inductive proof fairly clean to write down.

Recall that to prove Hindman’s theorem we need to find an infinite set
X = {x1, x2, . . .} such that all elements of FS(X) receive the same color. By
Proposition 8, we know that the existence of an idempotent ultrafilter implies
that any large set contains FS(X) for some subset X ⊆ N. We are now ready
for the proof of Hindman’s theorem.

6 This notation comes from a topological perspective on the set of ultrafilters.
7 One has to show that this actually defines an ultrafilter.
8 Note that the principal ultrafilter generated by 0 is idempotent. To prevent such an
anomaly, here we exclude 0 from N.
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Suppose that one has an idempotent ultrafilter U . If we let R and B denote
the elements of N of color red and blue respectively, then exactly one set, say R,
belongs to U . By the previous proposition, there is an infinite set X ⊆ N such
that FS(X) ⊆ R. This proves Hindman’s theorem, assuming the existence of
an idempotent ultrafilter. Do idempotent ultrafilters exist? Thankfully, again
the answer is yes, and in abundance. The result relies on Ellis’ Lemma, which
says that, under certain conditions, which are fulfilled by the semigroup βN,
idempotent elements always exist. In fact, using Ellis’ Lemma, one can even
prove that, given any set A which contains FS(X) for an infinite set X, there is
an idempotent ultrafilter U with A ∈ U . Thus, if A = B ∪ C for some sets B
and C, then one of them also contains FS(Y ) for some infinite set Y , giving a
stronger version of Hindman’s theorem.

4 Erdős’ B + C conjecture

The above applications of ultrafilters were in the area of Ramsey theory. There
have also been a number of applications to a different part of combinatorics
known as combinatorial number theory. In this section, we discuss a strik-
ing recent result in this direction which resolved an old conjecture of Paul
Erdős (1913-1996), who was one of the greatest mathematicians of the 20th
century.

Theorem 9 (Donaldson–Moreira–Richter (2018)) Suppose that A ⊆ N
is of “positive density”. Then there are infinite sets B,C ⊆ N such that A
contains B + C := {b+ c : b ∈ B, c ∈ C}.

There are many notions of positive density for sets of numbers, all of which
try to capture the idea that a set is of positive density if it contains a “positive
proportion” of the numbers. For example, under any reasonable notion of density,
the set of even numbers should have density 1

2 . Erdős’ original conjecture says
that for an infinite set A ⊆ N with positive lower density there are infinite
sets B,C ⊆ N such that A contains B + C. Note that of all of the positive
density assumptions, the lower density is one of the strongest. In the above
theorem, the authors merely assume that A has positive Banach density (to be
defined below), which is perhaps one of the weakest positive density assumptions,
making the theorem even more impressive. The first major progress on Erdős’
conjecture, due to Di Nasso, Jin, Leth, Lupini, Mahlburg, and the author, was
to prove (using ultrafilter techniques) that the conjecture was true under the
assumption that A has Banach density larger than 1

2 , that is, in some sense,
A contains more than half of the numbers.
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Before giving an idea behind the proof of Theorem 9, let us briefly describe
a reason why ultrafilters might be involved. Recall that we defined an addition
operation ⊕ on βN. It turns out that ⊕ is very noncommutative, that is, most
of the time, U ⊕V 6= V ⊕U . The next proposition shows the connection between
Erdős’ conjecture and ultrafilters.

Proposition 10 (Di Nasso) Given A ⊆ N, the following are equivalent:

• There are infinite subsets B,C ⊆ N such that A contains B + C.
• There are nonprincipal ultrafilters U and V such that A ∈ (U ⊕V)∩ (V ⊕U).

We now briefly explain how ultrafilters are actually used in the proof of
Theorem 9. First, we note the following.

Lemma 11 Let A ⊆ N. Suppose that there are e1 < e2 < e3 < . . . and
L := {l1 < l2 < l3 < . . .} such that for all n:

1. l1 + en ∈ A, l2 + en ∈ A, . . ., ln + en ∈ A, and
2. There are infinitely many l ∈ L with the property that e1 + l ∈ A, e2 + l ∈ A,

. . ., en + l ∈ A.

Then there are infinite sets B and C such that A contains B + C.

The proof of Lemma 11 is a nice exercise that we leave to the reader. The
next step in the proof is to rephrase Lemma 11 in terms of the density of the
set A. In order to do so, we introduce in more details the notion of density.
Consider a sequence I := (In) of intervals in N. By an interval in N, we mean a
set of the form [a, b] := {n ∈ N : a ≤ n ≤ b}, for a, b ∈ N, with length given by
the number of elements it contains, that is |[a, b]| := b− a+ 1. We assume that
the length of In goes to ∞ as n goes to ∞. For such a sequence of intervals I,
we define

dI(A) := lim
n→∞

|A ∩ In|
|In|

,

whenever the limit exists. The idea is that we are trying to measure how big A is
by taking “samples” of A from the interval In and asking what proportion of In

lies in A. The limit means that we are considering this proportion for larger
and larger intervals In. For example, declaring that dI(A) = 1

100 roughly means
that, for large enough n, approximately 1

100 of the elements of In live in A.
Notice that dI(A) > 0 means that A is “non-negligible” with respect to the
sequence I but could be incredibly “sparse” for other intervals in N. The Banach
density of A is the largest value one gets by considering the numbers dI(A) for
various sequences I. We now rephrase Lemma 11 with the vocabulary we just
introduced.
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Lemma 12 Let A ⊆ N. Suppose that there is ε > 0, a sequence I as above,
e1 < e2 < e3 < . . . and L := {l1 < l2 < l3 < . . .} such that for all n:

1. l1 + en ∈ A, l2 + en ∈ A, . . ., ln + en ∈ A, and
2. dI((A− en) ∩ L) > ε.

Then there are infinite sets B and C such that A contains B + C.

So the second property in Lemma 11 is now replaced by simply asking that,
for a non-negligible number of l in L, l + en ∈ A. The proof of Lemma 12 now
uses a result of Bergelson in order to pass to a subsequence of the numbers (en)
and (ln).

We can now get ultrafilters involved with yet another rephrasing of the
previous lemma.

Lemma 13 Let A ⊆ N. Suppose that there is ε > 0, a sequence I as above,
and a nonprincipal ultrafilter U such that, for U-almost all n, we have

dI((A− n) ∩ (A− U)) > ε.

Then there are infinite sets B and C such that A contains B + C.

To see that the hypothesis of Lemma 13 implies the hypothesis of Lemma 12,
one lets L = A − U and constructs a sequence e1 < e2 < . . . as follows. Let
l1 < l2 < . . . enumerate the elements of L in increasing order. Since A− l1 ∈ U ,
there is e1 ∈ A − l1 such that dI((A − e1) ∩ L) > ε. Since A − l2 ∈ U and U
is nonprincipal, there is e2 > e1 such that e2 ∈ (A − l1) ∩ (A − l2) and for
which dI((A − e2) ∩ L) > ε. One constructs in this manner the sequence
e1 < e2 < . . . and then proves that the hypothesis of the previous Lemma 12
holds if there is I for which dI(A) > 0. This proof is very complicated and we
do not provide further details.

5 Fur ther reading

The results mentioned in this snapshot are only a small sample of the main
results in Ramsey theory and combinatorial number theory that are proven
with ultrafilter methods. The books [2] and [4] are good references for further
reading. A nice survey article on this topic, containing many other examples,
is [1]. The algebraic properties of ⊕ on βN are quite fascinating (not to mention
quite bizarre) and can be found in [3], which also contains a plethora of further
combinatorial consequences.

9



References

[1] V. Bergelson, Ultrafilters, IP sets, dynamics, and combinatorial number
theory, in Ultrafilters Across Mathematics. Contemporary Mathematics,
vol. 530 (American Mathematical Society, 2010), 23–47.

[2] M. Di Nasso, I. Goldbring, and M. Lupini, Nonstandard methods in Ramsey
theory and combinatorial number theory, arxiv:1709.04076v2, Lecture Notes
in Mathematics 2239 (Springer, 2019).

[3] N. Hindman and D. Strauss, Algebra in the Stone-Cech compactification,
deGruyter Textbook (Walter de Gruyten, 2012).

[4] S. Todorcevic, Introduction to Ramsey spaces, Annals of Mathematics
Studies, vol. 174 (Princeton University Press, 2010).

10

https://arxiv.org/abs/1709.04076


Isaac Goldbr ing is an Associate
Professor of Mathematics at the
Universi ty of Cal i fornia, I r v ine.

Mathematical subjects
Discrete Mathematics and Foundat ions,
Algebra and Number Theory

License
Creat ive Commons BY-SA 4.0

DOI
10.14760/SNAP-2021-006-EN

Snapshots of modern mathematics from Oberwolfach provide exciting insights into
current mathematical research. They are written by participants in the scientific
program of the Mathematisches Forschungsinstitut Oberwolfach (MFO). The
snapshot project is designed to promote the understanding and appreciation of
modern mathematics and mathematical research in the interested public worldwide.
All snapshots are published in cooperation with the IMAGINARY platform and
can be found on www.imaginary.org/snapshots and on www.mfo.de/snapshots.

ISSN 2626-1995

Junior Edi tor
Mar ta Maggioni
junior- edi tors@mfo.de

Senior Edi tor
Sophia Jahns
senior- edi tor@mfo.de

Mathematisches Forschungsinst i tut
Oberwolfach gGmbH
Schwarzwaldstr. 9 –11
77709 Oberwolfach
Germany

Director
Gerhard Huisken

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.14760/SNAP-2021-006-EN
https://www.imaginary.org/snapshots
https://www.mfo.de/snapshots
mailto:junior-editors@mfo.de
mailto:senior-editor@mfo.de

	Ultrafilter methods  in combinatorics
	Ramsey's theorem
	Basic facts on ultrafilters
	Hindman's theorem and the semigroup of all ultrafilters on N
	Erdős' B+C conjecture
	Further reading


