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Lagrangian mean curvature flow

Jason D. Lotaym

Lagrangian mean curvature flow is a powerful tool
in modern mathematics with connections to topics
in analysis, geometry, topology and mathematical
physics. I will describe some of the key aspects of
Lagrangian mean curvature flow, some recent progress,
and some major open problems.

1 Shortest curves

A famous mathematical question which goes back to antiquity is the isoperi-
metric problem. A simple version of the problem asks: given an area A, what is
the shortest curve in the plane that encloses the given area A? The answer is
well-known: the shortest curve is a circle as in Figure 1.

Figure 1: The isoperimetric problem
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1.1 Curves on surfaces

Another way to think about the isoperimetric problem is to imagine that the
plane is really the surface of a sphere with a point (say, the North pole) removed:
this is the familiar stereographic projection (see Figure 2).

Figure 2: Stereographic projection

When we “wrap up” the plane to get a sphere, a given curve in the plane
will become a curve in the sphere, as in Figure 3, and the area A it encloses in
the plane will become the area below the curve on the sphere. By rescaling our
stereographic projection, we can always ensure that the curve divides the sphere
into regions of equal area (so A becomes half the area of the sphere). The
isoperimetric problem then becomes: what is the shortest loop which divides the
sphere into regions of equal area? The answer, of course, is the equator or, more
accurately, any great circle, which means the intersection of the sphere with a
plane passing through the centre of the sphere (as shown on the right-hand side
of Figure 3).

Figure 3: Curves dividing the sphere into regions of equal area



We can now generalize our isoperimetric problem to other surfaces, such as
the torus (as in Figure 4), and ask: given a class of curves, what is the shortest
curve (or curves) representing that class? In particular, how can we find these
shortest curves?

A

Figure 4: Curves on the torus

1.2 Curve shortening flow

Given an initial curve 7, one way to approach the problem of finding the
shortest curve(s) in the same class as 7 is to consider a family of curves ~(t),
where ¢ > 0 represents “time”, with the properties that v(0) = v and, as time
increases, the length of «(t) decreases as quickly as possible. Explicitly, the
family of curves v must satisfy the following equation, which informally says
that the “velocity” of the family of curves (¢) is the “curvature” k(t) of the
curve y(t):
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(Note here that the time derivative appears as a partial derivative because the
function 7(t) depends on two variables: the position on the curve as well as
time.) Informally, the curvature is how “curved” the curve is at a point: for
example, in the plane, a straight line has k = 0, whereas a circle of radius r has
curvature k = 1/7? (so a circle is “more curved” if it is smaller).

Equation (1) is called the curve-shortening flow, since it shortens the curve as
quickly as possible. The curve-shortening flow is an example of what is called
a “geometric flow”. These are currently the subject of much research, and are,
in a sense, nonlinear versions of the heat equation, which was first developed
by Joseph Fourier in 1822 to describe how heat dissipates. In fact, the curve
shortening flow is the simplest example of “Lagrangian mean curvature flow”,
which we will introduce in Section 2.

The notion of a flow comes from physics and formalises the idea of the motion of a particle
in a fluid. It is informally viewed as a continuous motion of points in time.



1.3 Examples

If we start with a circle in the plane, then under the curve shortening flow (1)
it will always remain a circle, but it will get smaller and smaller until it shrinks
to a point in a finite amount of time (as in Figure 5).
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Figure 5: Circle shrinking to a point under curve shortening flow

If we instead start with a curve on the torus as in the left part of Figure 4, it
will converge (that is, get closer and closer) to a loop like one in the right part
of Figure 4 as ¢ goes to infinity (in other words, as t gets larger and larger).

One particularly important example is that if we start with any curve on
the sphere as on the left part of Figure 3 which divides the sphere into regions
of equal area, then the curve shortening flow will exist for all ¢ > 0 and the
flow will converge to a great circle as on the right part of Figure 3 as ¢ tends to
infinity.

2 Lagrangians

Mathematicians are very interested in a class of geometric objects called La-
grangians, which are named after Joseph-Louis Lagrange (1738-1813) and
naturally arise in classical mechanics, encoding some of the key properties
of a mechanical system, though they are now a fundamental part of modern
mathematics. Lagrangians can have any dimension, but always live in a space
of twice their dimension: the simplest examples are curves (of dimension 1) on
surfaces (of dimension 2), as we saw before. To give an intuitive sense of these
objects is somewhat complicated, but they are important because they connect
geometry, topology and physics.

2.1 Mean curvature flow
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Just as for curves, given a Lagrangian Ly we can try to decrease its “volume’
(remember now it can have any dimension) as fast as possible with a family L(t)
for t > 0 with L(0) = Lg. This again gives a geometric flow called the mean
curvature flow:
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where H is known as the mean curvature of L(t), which is a sort of “average”
curvature of L(t) at each point. When Lg is a curve in a surface then the mean
curvature H is equal to the curvature k of the curve, and so (2) becomes (1).

2.2 Finding smallest Lagrangians

Using the mean curvature flow (2) we can try to find the smallest Lagrangian
representing a given class of Lagrangians, just like for curves on surfaces.
However, in general, starting with a Lagrangian L(0) does not mean that L(t) is
Lagrangian for all later times ¢ > 0. That is, the mean curvature flow (2) does
not preserve the Lagrangian condition. An important observation by Smoczyk
[7] is that the Lagrangian condition is preserved by the mean curvature flow
if the space in which the Lagrangian lives has the special property known as
Kihler—Einstein, named after Erich Kéhler (1906-2000) and Albert Einstein
(1879-1955) (because of their relation to Einstein’s equations from General
Relativity). The Kéahler-Einstein condition is informally a natural extension
of the notion of surfaces with constant curvature, such as the round sphere, to
higher even dimensions. In these particular spaces, we can then solve (2) so that
L(t) is Lagrangian for all ¢: this gives rise to the Lagrangian mean curvature
flow.

Lagrangian mean curvature flow is extremely important mathematically, as
well as having links to String Theory in theoretical physics. The great challenge
is to understand when the flow will exist for all ¢ > 0 and converge to a minimal
Lagrangian (one for which H = 0) as t tends to infinity.

3 Examples

Picturing Lagrangians which are not curves is a little difficult: for example,
Lagrangian surfaces must live in 4 dimensions. However, we can visualize some
Lagrangian surfaces as follows.

3.1 Lagrangian tori

Suppose we have a curve in the plane, such as the ellipse in Figure 6, which
does not go through the origin. Then, we can define a Lagrangian so that for
every point in the curve we have a circle in the Lagrangian, where the size of
the circle is equal to the distance from the origin at that point of the curve.
This will mean that the Lagrangian defined by an ellipse will be a torus.

If we take a = b in Figure 6 then we get a circle and the corresponding
Lagrangian is known as the Clifford torus, named after William Clifford (1845-
1879). In this case, since a = b, the circles at each point are all the same size,
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Figure 6: An ellipse defining a Lagrangian torus

and so it can be viewed just like the torus in Figure 4. The Clifford torus is a
fascinating object which has been the subject of mathematical research for more
than 100 years, and has recently been the focus of great interest. In particular,
the Clifford torus is the natural higher-dimensional version of the usual circle
in the plane, or the equator in the sphere.

If a = b = 1, say, then the area enclosed by the circle will be 7. If we
want the area of an ellipse as in Figure 6 to also enclose area 7, then we need
the condition ab = 1. If we have two different ellipses with ab = 1, so that
they enclose the same area, then the Lagrangian tori they define are called
Hamiltonian z'sotopic. This is a higher-dimensional version of saying that two
curves in the plane contain the same area, or that two curves in the sphere both
split the sphere into regions of equal area, as we considered earlier.

3.2 Lagrangian spheres

If instead we have a curve in the plane which passes through the origin, such
as the “figure eight” curve in Figure 7, then we define a Lagrangian in the
same way, except that for the origin in the curve we have just a point in the
Lagrangian (since the corresponding circle in the Lagrangian has “zero length”).

Figure 7: A figure eight defining a Lagrangian sphere

The name comes from William Hamilton (1805-1865) and his work on classical mechanics.



This Lagrangian is a little more complicated to understand, but one way to
see what Lagrangian you get is described in Figure 8, where we imagine starting
with an ellipse (given a Lagrangian torus) and deforming it into a figure eight.
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Figure 8: A torus collapsing into a sphere

The resulting object we get after collapsing the torus is topologically a sphere,
meaning that if you imagine it was made of plasticine, then you can smoothly
deform it into a round sphere. To convince yourself that this is the case, imagine
pushing the blue circle around the surface until it shrinks to a point at the red
dot. This is exactly what happens if you take the equator and push it up to
the North pole in the sphere. The Lagrangian sphere we get from Figure 7 is
known as the Whitney sphere, named after Hassler Whitney (1907—-1989).

3.3 Clifford torus

If we start the Lagrangian mean curvature flow with Ly being the Clifford
torus described above, then the corresponding Lagrangian L(t) (solving the
Lagrangian mean curvature flow) will always be given by a circle in the plane
at each ¢ (and so a Lagrangian torus) until it shrinks to a point, as in Figure 5.

However, if we start the Lagrangian mean curvature flow at a torus defined
by an ellipse with b much smaller than a (but with ab = 1 so that the torus is
Hamiltonian isotopic to the Clifford torus), it is shown in [2, 5] that the ellipse
will collapse into a figure eight under the flow, so the torus will collapse into a
sphere as in Figure 8.

In [1] I showed recently, in collaboration with Evans and Schulze, that you
can take b arbitrarily close to a, with ab = 1, and still the Lagrangian mean
curvature flow starting at that torus cannot shrink to a point. We believe that
the torus will again collapse as in Figure 8 above. This result is very surprising
because it says that the Clifford torus is unstable for Lagrangian mean curvature
flow under arbitrarily small Hamiltonian perturbations, meaning that you can
change the initial Clifford torus a very small amount to one that is Hamiltonian
isotopic and yet get very different behaviour for the flow.

One key open problem is this: does the Clifford torus have the least volume
amongst all Lagrangians which are Hamiltonian isotopic to it? The result in [1]
shows that tackling this problem using Lagrangian mean curvature flow, which
is a natural approach, will unfortunately be very difficult.



3.4 Whitney sphere

One can also ask: what happens if we start the Lagrangian mean curvature
flow at the Whitney sphere? This has recently been answered, under certain
assumptions, in [6, 9]: the sphere will collapse to a point, and the corresponding
figure eight will not stay the same shape but deform as in Figure 9, “squashing”
vertically faster than it does horizontally.
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Figure 9: A figure eight collapsing under the flow

4 Thomas—Yau Conjecture

We have seen various examples in the previous section where we know what the
Lagrangian mean curvature flow looks like. However, in general, we do not know
what the flow does, even in flat space. A particularly important class of spaces
with the Kédhler—Einstein property (recall that this was mentioned in Section 2.2
above), where we want to understand the Lagrangian mean curvature flow are
called Calabi-Yau manifolds®: these are of central importance in many parts of
mathematics, as well as being relevant to String Theory in theoretical physics.
In Calabi—Yau manifolds, the minimal Lagrangians (which the Lagrangian
mean curvature flow is supposed to find) are basically the same as “special
Lagrangians”, which are the subject of a great deal of research.

In 2002, Thomas and Yau [8] made a conjecture that the Lagrangian mean
curvature flow in Calabi—Yau manifolds should exist for all time and converge to
a special Lagrangian if and only if the initial Lagrangian is stable, in a certain
sense. Arguably the largest open problem in Lagrangian mean curvature flow is
to try to prove (or disprove) the Thomas—Yau Conjecture, or more sophisticated,
updated versions of the conjecture due to Joyce [3].

Recently, Oliveira and I showed in [4] that a version of the Thomas—Yau
Conjecture is true for a large class of 2-dimensional Lagrangians. However, the
general conjectures by Thomas—Yau and Joyce remain out of reach, and resolving
these conjectures will be invaluable for Lagrangian mean curvature flow, which
will be of significant importance for both mathematics and theoretical physics.

A manifold is a space that can be curved, but if we zoom sufficiently close to any point, it
locally looks as flat as a plane (like the sphere and torus we have already seen).
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