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Mathematics is the key to linking scientific knowledge
at different scales: from microscopic to macroscopic
dynamics. This link gives us understanding on the
emergence of observable patterns like flocking of birds,
leaf venation, opinion dynamics, and network forma-
tion, to name a few. In this article, we explore how
mathematics is able to traverse scales, and in particu-
lar its application in modelling collective motion of
bacteria driven by chemical signalling.

1 Emergence: the big mystery

1.1 A gap in the scient i f ic knowledge

Emergent phenomena are ubiquitous in nature: they correspond to the ap-
pearance of large-scale structures in underlying microscopic dynamics. At
the microscopic level particles or agents interact following some rules, but
as the macroscopic structures are not encoded directly into these rules it is
a challenge to explain how the macroscopic or observable dynamics emerge
from the microscopic dynamics (see Figure 1). Examples of emergence include
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collective dynamics (flocks of birds, school of fish, pedestrians, cell dynamics ...)
[3, 8, 9, 10, 16, 18], network formation (capillary formation [1], leaf venation [13],
formation of gullies, ant trails [6], ...), opinion dynamics [12], tumour growth
[22], sperm dynamics and fertility [11], and tissue development [23].

Understanding emergence in science is central to explaining how observable
phenomena arise. However, experimental techniques tend to be limited to one
given scale (large or small) and in general it is not possible to experimentally
study the link between the different scales. 3 That’s where mathematics plays a
crucial role. The mathematical tools for studying emergence come mainly from
kinetic theory, originally developed to study problems in mathematical physics
in the field of gas dynamics. The application of this mathematical framework
to explore systems coming from biology and sociology poses many new and
interesting challenges at the level of the modelling and mathematical analysis
(partial differential equations and probability theory).

Figure 1: Schematic concept of emergence: macroscopic structures (like flock-
ing) arise from underlying microscopic dynamics (interactions be-
tween individual birds). It is not obvious how the dynamics of the
individual birds give rise to the large-scale patterns of flocking.

3 For an interesting video showing the different scales in the universe see Powers of ten
produced by Eames Office: https://www.youtube.com/watch?v=0fKBhvDjuy0
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1.2 Our understanding of the wor ld is “ layered”

Scientific knowledge corresponds to a given “level of description” or scale. For
example, to investigate the functioning of a cell, one can study the cell at a
scale where the cell can be seen: how it grows, moves, divides and interacts
with its environment. Alternatively, one can also look at the cell at a lower
scale studying the composition of each part of its organelles, their chemical
composition, mechanical properties and the relation between each. Or, one can
consider a much larger scale where the cell is part of a given tissue. At this
larger scale, one would like to know how this cell is affected and affects the
tissue.

Each one of these levels of description (the molecular, the cellular, the tissue),
and how they are linked, is necessary to fully understand the functioning of
a cell. By traversing scales, we are able to answer questions like: how does
the structure and functionality of a tissue arise? Answering questions about
emergent phenomena is not easy: understanding the behaviour of a single cell
is not sufficient to predict the behaviour of cell aggregates or tissue. Most of
the approaches used so far to study problems in biology and social sciences do
not focus on understanding the emergence of observable phenomena from the
underlying microscopic structure, since this is extremely challenging.

2 How does maths help to explain emergent phenomena?

2.1 Reducing informat ion to gain understanding

Sometimes, having a lot of information on a system does not increase our
understanding of it. Suppose that you knew exactly what each individual in
your country was going to vote in the next elections. That is a lot of information!
You could list one by one the voting intentions of everyone. However, listing
one by one the voting intentions of everyone (microscopic information) does
not yield any useful information. What we would like to know typically is
the percentage of votes each party gets (“kinetic” information) or the average
vote in the different regions (macroscopic information). Such an analysis would
provide us with meaningful information, that is to say, information we can both
understand and utilize. This is exactly the idea of going from microscopic to
macroscopic dynamics: to reduce information in a meaningful way.

Consider another example, that of opinion dynamics. Suppose we encode
the opinions of individuals on given topic by assigning a value from the set
{−1, 1}. A list of everyone surveyed containing their name, the neighbourhood
in which they live and their opinion would be the microscopic information in
this system. We can then organise it into a kinetic description, where we lose
the information on the particular individuals, but we learn the proportion of
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people with a given opinion in any neighbourhood. We can define a kinetic
function f as follows:

f(neighbourhood Y, opinion x)

= number of people with opinion x in neighbourhood Y

total number of people .

For the macroscopic description we could instead ask for the average of all
opinions in each neighbourhood, by dividing the sum of the opinions by the
number of people in a neighbourhood. The reduction of information presented
in this example looks very simple, but things become more complicated when we
consider that people interact among each other and that their opinions evolve
over time.

The original example was the study of gas dynamics. Here, at the microscopic
scale we have Newton’s law governing the position and velocity of each gas
molecule; at the kinetic level we have Boltzmann’s equations for gas dynamics;
and at the macroscopic level we have the Navier-Stokes equations for fluid
dynamics [26]. By deriving macroscopic equations from microscopic ones we
validate the macroscopic equations and at the same time we understand how
macroscopic phenomena arise. Through the process of deriving macroscopic
equations we lose information, but we gain understanding!

2.2 Useful model l ing and the scient i f ic method

The starting point of all this mathematical process is, of course, a microscopic
model. At the microscale we will have particles or agents characterised by
some given properties (like the position and velocity of a particle or the voting
intention of a person) that interact following some rules. At this point we need
to model the system as simply as possible so that we capture what we are
interested in investigating or the hypothesis that we want to test. Simplicity is
important as very complicated models are neither controllable (there are too
many variables and we lose sight of what is influencing what), nor tractable
(the mathematical analysis would become too complicated). Therefore, finding
a good modelling framework is a critical first step in this analysis, and when it
comes to biological or social systems, this challenge defers substantially from
physical systems.

The primary complication is that there do not seem to be first principles in
biology and sociology as there are in classical mechanics (think of Newton’s
laws). This is very clear when we consider social interactions. What universal
laws govern opinion dynamics, pedestrian dynamics, the collective motion of
birds, and so on? How do we know that they will not differ between cultures,
species or even two individuals? However, we can still do a lot by focussing
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on “heuristic rules” to mathematically describe a phenomenon observed at
the microscale without worrying about the particular mechanisms by which
it occurs. Typically, these heuristic rules become hypotheses to be tested; for
example, in [23] the authors hypothesize that mechanical factors between cells
and fibres are enough to explain observable configurations in adipose (fat) tissue.
We aim to test this by first developing a microscopic model for cells and fibres,
and then using mathematical scaling techniques to derive a macroscopic model
that enables us to study the emergence of adipose tissue. In this way, the
mathematical connection between the scales allows one to establish a rigorous
link between the suggested microscopic cause of a macroscopic phenomenon.

3 From micro to macro: an example in biology

3.1 Bacter ia l chemotaxis

One of the most important abilities that living beings have is to adapt themselves
to the environment that surrounds them. Notwithstanding their adaptability,
the survival of any life form, from the most microscopic bacteria to the largest
mammals, strongly depends upon its capacity to understand whether an envi-
ronment is suitable and to migrate towards better places if it is not. This could
be for reasons of food availability, to avoid predators or to regroup into more
efficient colonies.

This phenomena is evident in multicellular organism, but even many bacteria,
such as Escherichia Coli, Rhodobacter Sphaeroides and Bacillus Subtilus, are
able to respond to extracellular changes in their surrounding environment. Here
we concentrate on E. Coli, because its biochemistry and movement are now
rather well understood.

There are several reasons why bacteria seek to move to a different location;
one of the most fundamental motivations being the search for food. Additionally,
many types of micro-organisms prefer to stay together as a group to increase
their chances of survival. So how is a single cell without eyes and ears able to
determine where the other members of the colony are, or where to go to find
nutrients? Questions like these are best answered at the micro scale. Cells such
as E. Coli have receptors on their outer membrane that allow them to detect
the change in concentration of chemical substances in their environment. This
enables them to move towards attractants or away from repellents by means of
a biased “random walk” (we will get back to this shortly). Generally speaking,
the directed movement of cells and organisms in response to chemical gradients
is called chemotaxis.

In the past 20-30 years, this mechanism has been an area of increasing
interest for applied mathematicians as the cooperation between experts in both
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mathematics and biology has allowed fruitful refinements to well-established
models whose weaknesses had been accepted by many researchers for the benefit
of their great simplicity and universality. From the mathematical viewpoint,
research at the interface of these two subjects is especially interesting as it
serves both the comprehension of biological phenomena and the development of
mathematical tools that find application in a wide range of other subjects.

3.2 Macroscopic bacter ia l dynamics

Historically, the Keller–Segel model [25, 21] has been one of the principal
approaches to describe bacterial motion mathematically. First introduced in
[20] (1953) and [15] (1970) to describe aggregation of slime mold amoebae, this
model has become one of the most widely studied models in mathematical
biology. It is a system of equations that describes the macroscopic density of
cells ρ(t, x) at location x and at time t; it encodes how ρ(t, x) changes due
to the presence of nutrients and the chemoattractant 4 produced by the cells
themselves. These three quantities – the density of cells, the concentration of
nutrients, and the chemoattractant concentration – interact in a non-trivial
way. Cells move around towards high concentrations of nutrients, and towards
the majority of the rest of the cell population; the nutrient is consumed by the
cells locally, and the chemoattractant both degrades and is produced by the
cells locally. In addition, all three quantities diffuse at different speeds that
can be measured experimentally. Together, these factors result in complicated
dynamics. The Keller–Segel model tries to encapsulate, approximately, the
dynamics when looking at the bacterial population as a whole. A number of
more refined models for the collective behaviour of cell populations have been
developed since, mostly inspired by the pioneering work of Patlak, Keller, and
Segel. These models have helped to understand important characteristics of
bacterial chemotaxis, but they have certain limitations. In particular, they
rarely allow a detailed comparison with the underlying complex microscopic
behaviour, and turn out to be less accurate in certain settings. For example,
with the classical Keller–Segel model, it is possible that the solution ρ(t, x)
concentrates on a single point after a finite amount of time [5, 4], meaning that
all cells move to the same location. In practice however, this is not possible as
one bacteria cannot be exactly in the same point as another. Several approaches
exist to refine the model to be more realistic, such as introducing terms in the
equations that prevent overcrowding [7, 14].

Another example where the classical Keller–Segel model turns out not to be
a suitable model is when we aim to describe cell populations moving towards a

4 We refer here to the “chemoattractant” both as the chemical substance that is produced
by the cells and that they are attracted to.
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Figure 2: E. Coli travelling pulses: the band speed is constant and the profile is asymmetric.
Source: [24], p2.

given food source. The seminal paper analysing E. Coli’s chemotaxis is Adler’s
Chemotaxis in Bacteria [2] where he experimentally demonstrates that motile
strains of E. Coli respond to nutrient presence (oxygen, galactose, glucose etc.)
by collective motion towards high concentration regions of these substances.
The resulting moving bands are commonly referred to as travelling waves.

The travelling waves observed by Adler have later been reproduced by others,
see for example the experiment described in [24] of a bacterial suspension in a
one dimensional channel filled with a nutrient (Figure 2). These observations
are in contradiction with predictions given by the Keller–Segel model, which
does not allow for travelling waves to occur at all. In other words, functions
ρ(t, x) of a shape that would describe moving bands of bacteria are not solutions
of the equations. As these moving bands are observed in practice however, this
is an indication that the Keller–Segel model is over-simplified in certain settings,
and fails to capture crucial dynamics of the system. To understand what is
going on and which mechanisms are responsible for travelling waves to occur,
one has to look at the microscopic scale.

If we understand the behaviour of a single cell in response to its environment,
we can then develop a corresponding kinetic description. On the kinetic level,
we do not expect to observe large scale phenomena such as travelling waves.
This is where mathematical scaling techniques play a crucial role: they allow us
to connect the kinetic model to a macroscopic model, and ultimately reveal the
driving forces on the cellular level that are responsible for macroscopic patterns
such as travelling wave to arise.
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3.3 Microscopic bacter ia l dynamics

As mentioned above, when observing E. Coli under the miscroscope, it looks as
if the cells perform a “random walk”. This means that they travel for some time
in a given direction and then “randomly” change to another direction of travel,
and so on. If this was true, how then is it possible that we observe groups of
cells moving at a constant speed towards the food source as in Figure 2?

By now, we understand much more about the behaviour of a single E. Coli
cell. Motile strains of E. Coli swim by the mean of several flagella assembled
into a coherent rotating bundle which turns counter-clockwise propelling the
bacterium forward. In absence of any external stimulus E. Coli in fact do
perform a random walk, alternating between two phases: runs and tumbles.
During runs a cell undergoes a smooth straight line swim for about one second.
Then it performs a completely random change of direction, a tumble, caused by
the change of the rotational direction by one or more flagella.

Since individual bacteria are generally 1-3 µm in length, they are too short
to detect changes in chemical concentration along their body, which is why they
use a temporal mechanism instead. More precisely, they compare the average
number of bound receptors over the past 1 second with their average number
during the past 3 seconds [17]. In order to stay close to the majority of the
bacterial population and to reach nutrients, a cell therefore simply tumbles
more often if it is going in a bad direction, that is, away from the group/food
source, and less often if it is going in a good direction, that is, towards the
group/food source. On average, this will generate a movement in the desired
direction. Hence, on the microscopic level, chemotaxis is a consequence of the
fact that sensing the variation in a present chemical concentration biases the
tumbling frequency, causing a biased random walk. Mathematically, we want to
be able to build a rigorous link between the travelling waves observed on the
macroscopic scale and this microscopic tumbling mechanism.

3.4 Kinet ic framework

A kinetic model of the bacterial population describes the density of cells f(t, x, v)
located at position x, at time t and swimming with velocity v. The term “kinetic”
here refers to the fact that we not only track the position of cells, but also their
velocities. Taking inspiration from the kinetic theory of gases, we think of each
cell as a gas particle, and instead of a physical model for collisions between gas
molecules, we need instead a biological model for the “collision” of cells, that
is, how a single cell responds to the presence of another. We can encode this
behaviour in what is called a communication function, using our knowledge
about the microscopic behaviour of a single cell. To do this, we adapt the
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Boltzmann equation modelling gas dynamics for the purpose of modelling the
kinetic dynamics of E. Coli [19].

In order to explain this equation, we need to introduce some more notation.
First of all, we let the function S(t, x) be the concentration of chemoattractant
produced by the cells at a given time t and position x, and we let N(t, x) denote
the concentration of nutrients, also at time t and position x. We define the
probability that a cell travelling at velocity v changes direction to a new velocity
v′ to be given by the function TS,N (v, v′), and summing over all possible new
velocities v′ gives the probability for a cell travelling at velocity v to tumble:

λS,N (v) =
∫

TS,N (v, v′) dv′.

Note that these probability functions only depend on the functions S and N
defined above. Now, we obtain the following equation:

∂tf + v · ∇xf︸ ︷︷ ︸
run

=
∫

TS,N (v′, v)f(t, x, v′) dv′ − λS,N (v)f(t, x, v)︸ ︷︷ ︸
tumble

. (1)

This equation expresses mathematically that we assume changes in the
distribution of cells occur due to only two mechanisms: (i) bacteria changing
position during a run phase, and (ii) bacteria changing velocity due to a tumble
event. The left-hand side of the equation encodes the change in cell density along
the trajectory of a cell at point x travelling with velocity v; this term represents
the run phase of the bacterial motion. The term “∂tf” denotes the rate of
change of the density function f(t, x, v) with respect to time, and the term
“∇xf” denotes the rate of change of the density with respect to the position
vector x. Note here that the velocity is not changing. On the right-hand side,
we account for the change in f(t, x, v) due to tumbling: we add all the cells that
change direction from any other velocity to velocity v, and then subtract all
the cells that tumble at velocity v to change to some other new velocity. Since
the overall mass of cells is assumed to remain the same during this process,
the changes due to runs have to be equal to the changes due to tumble events,
resulting in the equation as stated.

3.5 Zooming-out to see the bigger picture

Once we have an accurate kinetic model, we can draw a mathematical connection
to the macroscopic scale where large-scale patterns can be observed. The rigorous
connection between the kinetic description and the macroscopic equations can
be established by mathematically “zooming out” to change the viewpoint from
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micro to macro 5 . In other words, we move from a scale where we observe
the speed of a single cell, to a new, coarser scale, where we observe the speed
of a whole group of cells in a travelling wave. We expect the ratio between
these speeds to be small as a result of the fact that a single cell makes many
turns in different directions when moving within the group, even if the group
at a macroscopic level is moving at a constant speed in a straight line. The
speed of the macroscopic travelling wave is then necessarily slower than the
speed of the individual cells, as it results from an average of the microscopic
movements. Experimental evidence indeed confirms that the bulk velocity of
a moving bacterial wave is much lower than the speed of a single bacterium.
More precisely, they differ by only one order of magnitude, as observed in the
micro-channel experiment in [24]. So, we rescale time and space in our kinetic
model (1) in such a way that the ratio between the macroscopic speed of a
travelling wave and the microscopic speed of a single cell vanishes:

speed of a macroscopic travelling wave
speed of a single bacterium → 0 .

Sending this ratio to zero (when in reality it is small), provides an approximation
of the dynamics when we are only interested in the macroscopic patterns. More
precisely, making this simplification will reduce the complexity of the equation
after going step by step through a mathematical limiting procedure, and will
allow us to focus on changes in time and position only, neglecting changes in
velocities. By changing our modelling framework, we lose some information
(here, on the distribution in terms of microscopic velocities), and gain instead
information on the bigger picture (here, being able to mathematically capture
the macroscopic travelling wave).

This rescaling allows us to derive a new macroscopic model for the bacterial
cell population, now interpreted as the kinetic cell density at location x summed
over all possible velocities:

ρ(t, x) =
∫

f(t, x, v) dv .

In contrast to the classical Keller–Segel model, the equation we obtain by this
procedure takes the microscopic dynamics into account; it also turns out to be
much more complicated: the term describing the drift of the cell population due
to the presence of the nutrient and the chemoattractant is nonlinear [24]. This
means that the term is raised to at least a power of 2, and as a consequence, it
is much harder to find an explicit solution for this model.

Linearizing this term as a simple approximation, the equation reduces to
the classical Keller–Segel model. This explains why the Keller–Segel equations

5 Technically, this is called hydro-dynamic scaling.
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provide a sufficient model for bacterial chemotaxis on the macroscopic scale in
most cases (when the linear terms represent a good approximation), and also
why it fails to capture certain phenomena such as travelling waves (because it
neglects the nonlinear dynamics that give rise to these patterns).

The bacterial chemotaxis models described here are just one example, illus-
trating how mathematical scaling techniques enable us to understand emerging
behaviour at different scales. Multi-scale techniques enable us to test and
identify which are the driving forces behind the dynamics we observe, and to
make sure we work with the correct models to capture the key phenomena we
are interested in.

4 A unique contr ibut ion of mathematics to science

This is an exciting time to be a mathematician working in applications of
kinetic theory. It has been with the help of abstract thinking, in particular,
mathematics, that we have been able to understand and write the laws of physics
in simple, understandable and useful forms. The paramount example of this
are Newton’s laws. Now, mathematics is providing again a unique contribution
to science: to bypass the limitations of experimental sciences and establish the
links between the different layers of knowledge to explain how the world that
we experience emerges from its underlying microscopic structure.
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