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A tale of three curves

Jennifer S. Balakrishnan

In this snapshot, we give a survey of some problems
in the study of rational points on higher genus curves,
discussing questions ranging from the era of the an-
cient Greeks to a few posed by mathematicians of the
20th century. To answer these questions, we describe
a selection of techniques in modern number theory
that can be used to determine the set of rational
points on a curve.

1 Introduction

Here’s a question to think about: do there exist a rational right triangle and a
rational isosceles triangle that have the same perimeter and the same area? By
a rational triangle, we mean one whose lengths are rational numbers: that is,
ratios 3 of integers a and b.

This feels like a very classical question — indeed, one that may have been
studied by the ancient Greeks thousands of years ago — but the answer is
somewhat surprising and uses some beautiful 20th century number theory. The
answer was very recently given by Hirakawa and Matsumura [9]. We describe
their proof below and use it to frame some recent advances in studying rational
points on curves.
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Luce Foundation), NSF CAREER grant DMS-1945452, Simons Foundation grant #550023,
and a Sloan Research Fellowship.
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Figure 1: Can these two triangles have the same perimeter and same area while
having rational side lengths?

Suppose that there exists such a pair of triangles (see Figure 1). It turns out
that for them to be rational, their side lengths must have the following form:

(E(1+t2),k(1 —t),2kt) and  ((1+u?), (1 +u?),4u),

respectively, for the right triangle and isosceles triangle, for some rational
numbers ¢, u, and k, where 0 <t < 1,0 < u < 1, and k > 0. Then by equating
the corresponding perimeters and areas of the two triangles, we have the system
of equations

E(1+1t)=(14+u)? and k*(1—t?) = 2u(l —u?).

Changing coordinates shows that solving this system of equations is equivalent
to computing the set of rational points X (Q) on the curve X with equation

y? = (32 + 227 — 67 + 4)* — 82°. (1)

The set of rational points on X is the set of those points (z,y) € Q? that satisfy
the equation above (see Figure 2), along with points “at infinity.”

Before we go on, let us say a little about the types of curves we are considering
and recall some of the main results about them.

We will assume that our curve is algebraic and defined over Q, meaning that
we can write down a set of polynomial equations with coefficients in Q whose
zero locus — the set of points that make the polynomials equal zero — is our curve.
In fact, in all of the problems we discuss, our curve will be described by just one
equation. We will further assume our curves are smooth (meaning that they do
not have any singular points, for instance, a point where the curve crosses itself
or where it has a sharp corner), and that they are geometrically irreducible: if
f(x,y) = 0 is the equation describing the curve, then the polynomial f(z,y)
cannot be written as a product of smaller factors using only coefficients in the
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Figure 2: A plot of the curve y? = (323 + 222 — 62 + 4)? — 825 and its rational
points (in blue).

algebraic numbers 2. Finally, our curves are required to be projective: we think
of them as living in a plane with added “points at infinity” (the “projective
plane”), where they are given by homogeneous polynomials.

Given a curve C, we would like to determine the set of its rational points
C(Q). Note that we don’t just want to find some rational points, but rather, we
want to prove that we’ve found all rational points — in other words, we would
like to have an algorithm that determines C'(Q) — and this is the challenge.

One important characterization of a curve is by its genus. The genus can be
defined in a few different ways, but perhaps the easiest one to visualize is the
following: we consider the curve over the complex numbers, so that it looks like
a 2-dimensional surface. The genus is the number of holes in that surface (after
adding some points at infinity): see Figure 3.

The genus of a curve already tells us quite a bit about the behavior of the
set of its rational points. Curves of genus 0 either have no rational points at all
or infinitely many. They further satisfy a “local-to-global” principle: a genus 0
curve has a rational point if and only if has a rational point in every completion
of the rational numbers Q.

What is a completion of the rational numbers? The best known is a very
familiar one: the set of real numbers R. But there are more, and they are called
the p-adic numbers. Since the p-adic numbers Q,, are an important part of
the discussion to follow, let us pause for a moment and say a bit about these
numbers. Perhaps the first way of looking at a p-adic number is through its

X i i i i .
For example, integers, roots of integers, and rational numbers are algebraic numbers. But
some irrational numbers are not, such as .
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Figure 3: On the left, we see a sphere, which is an example of a genus 0 curve,
followed by a curve of genus 1, which looks like the surface of a donut,
followed by a curve of genus 2.

“base p” expansion. While a real number can be represented by infinitely many
digits to the right (for example, we have the following expression for m:

7=231415...=3-10°4+1-107 ' +4-10724+1-1072 +5-10"* 4 - ..

in base 10), a p-adic number can be thought of as a sequence of infinitely many
digits to the left. That is, we may write it in the form

Con p " H e bt e ptept

where p is a prime, with some n € N and ¢_,,¢_py1,... € {0,1,...,p — 1}.
One also needs a new absolute value for expressions of this form: if only high
powers of p show up in a p-adic number, the p-adic number is considered “small”
— similar to how a real number is small if its only nonzero digits are far to
the right after the decimal point. More precisely, if ¢ = p" 3, where u and v
are integers not divisible by p, then the p-adic absolute value of ¢ is given by
lalp =p7".

We can write some familiar numbers p-adically: the 5-adic expansion of 2 is
just 2, since 2 - 5% = 2, whereas the 5-adic expansion of —% is the infinite series

24+2.-54+2-5242.55+2.50 ...

This might at first seem counterintuitive, but calculating that

1
——_92.59=_2.51
2 )

1
—5—(2-5°+2~51)=—7-52,

N =D -

1 1.
757(2.50+2-51+2-52):—5.53,



one can see that the p-adic absolute value of the first line is 57!, of the second
line 572, of the third 573, etc. Thus the series 2 +2-542-52 4 - .- converges
1

5-adically to —5. In fact, every rational number has a p-adic expansion as

above, for every prime p!

The real numbers include not only the rational numbers but also limits of
sequences of rational numbers whose terms eventually get arbitrarily close under
the usual absolute value; one says that the set of real numbers is a completion
of the rational numbers. Likewise, for any prime p, the set of p-adic numbers
is a completion of the rational numbers, but the closeness between numbers is
now measured by the p-adic absolute value.

Now we return to our discussion about curves of genus 0. Here the problem
about determining the set of rational points is solved, as the local-to-global
principle is a nice criterion that is checked with a finite amount of computation.

Curves of genus 1 can have no rational points, finitely many rational points,
or infinitely many rational points. A genus 1 curve with a specified rational point
is an elliptic curve, and it is a theorem of Mordell from the 1920s that the set of
rational points on an elliptic curve E forms a finitely generated Abelian group
E(Q). Elliptic curves figure prominently in modern number theory, ranging
from the theoretical (for example, the proof of Fermat’s Last Theorem) to the
applied (for example, modern cryptosystems, which are sets of cryptographic
algorithms used for data encryption). There are still many open questions about
rational points on elliptic curves.

One remarkable property of curves of genus 2 or larger is that they have only
finitely many rational points. This was conjectured by Mordell in the 1920s,
and Faltings [8] proved this landmark result in the 1980s.

Now returning to the curve in the triangle problem: it turns out that our curve
X has genus 2. In fact, we know even more: the “Chabauty—Coleman bound”
[6] on the size of the set of rational points for this particular curve yields the
following bound on the number of rational points: #X(Q) < 10. By searching
for points with bounded numerator and denominator, we find a collection of
rational points: {(0,44), (1,£1), (2, £8), (12/11,£868/113)} C X (Q).

Moreover, as X is a projective curve, we must also consider its rational points
at infinity: here X has a pair of such points, which we will denote as co*. We
have managed to find 10 rational points, which is the upper bound given by

We will not give a formal definition here; simply imagine a set (for example, the integers
Z) equipped with an operation (like addition +) and some extra properties. But we will come
back to this idea, in the more general context of Jacobians of curves, momentarily.

The genus of any hyperelliptic curve, that is, any smooth algebraic curve with an equation
of the form y? = f(x) can be read off from the degree of the polynomial f: if deg f = 2g + 2
or 2g + 1, then the genus is g. For the curve we are considering here (see Figure 2),
degf=6=2-2+2,s0g=2.



Chabauty—Coleman! So we have provably determined the set of rational points
on this curve. Furthermore, only (12/11,868/11%) satisfies the inequalities
necessary to correspond to a pair of triangles. This yields the following;:

Theorem 1 (Hirakawa—Matsumura) Up to similitude, there exists a unique
pair of a rational right triangle and a rational isosceles triangle that have the
same perimeter and the same area. The unique pair consists of the right triangle
with sides of lengths (377,135,352) and the isosceles triangle with sides of
lengths (366, 366, 132).

2 The Chabauty—Coleman method

What allowed us to compute the set of rational points X (Q) in the previous
example? We mentioned that the Chabauty—Coleman bound applied to our
curve. This upper bound existed since the rank of the Mordell-Weil group of the
Jacobian of this curve was less than its genus. Let us first give some idea about
the objects involved and then discuss the ingredients of the Chabauty—Coleman
method.

For starters, when the genus g of X is 2 or larger, the set of its rational points
X (Q) is just that: a set. It does not have any obvious additional structure. So
it is helpful to embed our curve X into other objects that have more structure.

One such object is the Jacobian variety J of X. The Jacobian is a g-
dimensional “Abelian variety” associated to the genus g curve X.

The set J(Q), called the Mordell-Weil group, is an Abelian group, and the
Mordell-Weil Theorem states that it is finitely generated, which means that it
has finitely many points from which all others can be generated by repeated
addition and subtraction.

The rank® 7 of the Mordell-Weil group measures the complexity of the
group. Computing the rank r and finding a basis captures all of the information
about rational points on the Jacobian. Unfortunately, computing the rank
and finding a basis of the Mordell-Weil group are very difficult problems: in
general, there is no known algorithm! The situation in smaller dimension is no
easier: the case of elliptic curves, when g = 1, is famously difficult as well, and
figures prominently in the Birch and Swinnerton-Dyer conjecture, one of the
Clay Mathematics Institute’s Millennium Prize Problems.

In the 1940s, Chabauty [5] proved that for curves X of genus at least 2, if
the rank r of the Jacobian is less than g, then X (Q) is finite. Then 40 years

The rank of an Abelian group is analogous to the dimension of a vector space. For example,
the rank of the group (Z&7 +) is 3. Abelian just means that commutativity holds.



later, Coleman made Chabauty’s theorem effective [6], using his theory of p-adic
integration [7], giving the bound

#X(Q) < #X(Fp) +29 -2, (2)

where p > 2¢ is a prime of good reduction® for X , where X denotes the
reduction modulo p of X and [, is the finite field with p elements. Computing
#X (F,) means to compute the number of “F,-rational” points on X. We will
now explain in more detail what all of this means.

the remainders of integers upon division by 5. Essentially, we are taking the
integers modulo 5 and identifying numbers that have the same remainder:

—5=0=5=10=
=—6=1=6=11=
=-T7=2=7=12=
=—8=3=8=13=
=-9=4=9=1d=

So if we start with the curve X, which has equation
y? = (32 + 227 — 62 + 4)* — 82 = 20 +122° — 322" + 522% — 482 + 16,
and reduce modulo 5, we obtain the curve
Xy =a54+22° +32* + 222+ 22 +1 over Fs,
which has the following Fs-rational points:
{oo%, (0,1),(0,4),(1,1),(1,4),(2,2),(2,3)}.

We see that #X (F5) = 8 and g = 2, so Inequality (2) becomes #X (Q) < 10.

Now we briefly give an overview of the ideas behind Inequality (2). The goal
is to give an upper bound on the size of the set of rational points by embedding
the set of rational points inside a finite set of p-adic points and carrying out
some p-adic analysis to bound the size of this auxiliary set. This set of p-adic
points is the zero set of a “p-adic integral”.

The theorem of Hirakawa—Matsumura is a striking application of the
Chabauty—Coleman method: since the upper bound on the size of the set
of rational points is matched just by searching for rational points within a

6 Good reduction means that if one were to look at the equations for X modulo p (the
reduction of X modulo p), this would also give a smooth curve.



small bounded box, this Diophantine equation (1) is solved without needing to
compute any p-adic integrals.

Nevertheless, in many other interesting examples of curves, the upper bound
(2) does not match the size of the set of known rational points. In such a
scenario, one needs to compute the zero sets of the relevant p-adic integrals
and figure out which points in this set are truly rational or merely p-adic. To
do this, it often helps to carry out the Chabauty—Coleman method for several
different primes and to use this information, together with the structure of the
Mordell-Weil group of the Jacobian, to sieve out the merely p-adic points. This
process is known as the Mordell-Weil sieve [4].

3 A question of Diophantus

Now for a question that does indeed date from the era of the ancient Greeks.
Diophantus of Alexandria was a Greek mathematician who lived in the third
century. In Problem 17 of book VI of the Arabic manuscript of the Arithmetica,
Diophantus poses the following problem:

Find three squares which when added give a square, and such that
the first one is the side [the square root] of the second, and the
second is the side of the third.

In other words, Diophantus asked if one can find positive rational z and y
such that the equation
y2 =28 4+ 2t 4 22
is satisfied. He gave the solution = 1/2,y = 9/16. Are there any others?

Removing the singularity of the curve at (0,0) shows that this amounts to
determining the set of all rational points on the genus 2 curve Y with equation

y? =25+ 22 + 1.

This problem was solved in the 1990s by Wetherell [18], who showed that
the set of rational points Y (Q) is precisely

{(O,il), (ié,ii) ,ooi}.

This curve is interesting because it is the only curve of genus 2 and higher
considered in the 10 known books of the Arithmetica. Moreover, this curve is of
interest because it lies just beyond the boundary of what is feasible using the
Chabauty—Coleman method. It turns out that the rank of the Mordell-Weil
group of its Jacobian is two.



Nevertheless, one special property of the curve Y is that it has extra symme-
tries and is said to be bielliptic: indeed, these extra symmetries (automorphisms)
of the curve result in a nice decomposition of its Jacobian into a product of two
elliptic curves. Wetherell gave a solution to Diophantus’ problem by considering
a collection of covering curves™ {F;} of Y, and applying the Chabauty—Coleman
method on the covers F;, from which the result about Y (Q) follows.

4 The cursed curve

Many curves of interest in modern Diophantine geometry come from moduli
problems, which capture information about a family of geometric objects. There
are several families of modular curves that are of interest. One such family
comes to us from a question posed by Serre, on possible images of “residual
Galois representations” attached to elliptic curves — if they are “uniformly
bounded” in some sense. Following extensive work by Mazur [13, 14], Serre
[16], and Bilu—Parent [2] and Bilu-Parent—Rebolledo [3], many cases of Serre’s
uniformity question were answered.

In particular, after the work of Bilu—Parent and Bilu—Parent—Rebolledo on
the “split Cartan case of Serre uniformity”, the set of rational points on the
“split Cartan modular curves” X,(p) at prime level p were determined — except
for the split Cartan curve at level p = 13, the so-called “cursed” level. An
equation and plot of the modular curve X;(13) can be seen in Figure 4.

y4 + 5z — 63:23/2 + 6%z + 26x2yz + 10;cy2z - 10y3z
— 322727 — 4Oxy22 + 24y222 +3222° — 16yz3 =0

Figure 4: A projective visualization of the cursed curve.

Here again, as in Diophantus’ problem, the method of Chabauty—-Coleman
does not apply, since the genus of the curve is 3 and the rank of the Mordell-
WEeil group of its Jacobian is 3. However, the Jacobian of this curve does not
decompose into a product of Abelian varieties of smaller dimension. Also, there

Informally, the idea is that one tries to construct a finite collection of covering curves {F;}
of Y such that every rational point on Y comes from a rational point on one of the F;. Then
one can consequently compute the set of rational points Y (Q) by computing the sets F;(Q).



are no obvious covers to consider, which means that we cannot simply repeat
the procedure used to solve Diophantus’ problem.

Nevertheless, the “non-Abelian Chabauty” program of Kim [10, 11, 12]
suggests that one can use further non-Abelian geometric objects — beyond the
Jacobian (an Abelian variety) — to study rational points on curves, without
restriction on rank. Indeed, one very striking aspect of Kim’s program is that
it is conjectured to give an effective resolution of Mordell’s conjecture for all
curves of genus at least 2.

In joint work with Dogra, Miiller, Tuitman, and Vonk [1], we used the first
non-Abelian step of this program — quadratic Chabauty — to show that the
curve X(13) has exactly seven rational points:

(1:1:1),(1:1:2),(0:0:1),(=3:3:2),(1:1:0),(0:2:1),(=1:1:0).

One key idea behind quadratic Chabauty is to move beyond the linear
relations among p-adic integrals to “bilinear relations” and to further study
“p-adic heights”, which can also be described in terms of p-adic integrals. It turns
out that the Jacobian of the curve X;(13) does have some additional structure:
it has extra symmetries (endomorphisms), and this allows us to apply quadratic
Chabauty to compute rational points in this particular case of higher rank.

5 Going forward

In the study of these seemingly-simple equations, one pulls together ideas from
several facets of mathematics — number theory, (algebraic) geometry, and (p-
adic) analysis — to name a few. Moreover, for each of the three curves discussed,
one has to translate these techniques into computer code that can be run to
carry out some of the key steps: for instance, finding the Mordell-Weil rank of
the Jacobian and doing the p-adic integration are steps for which one typically
uses computer algebra packages such as SageMath or Magma.

There are still many curves whose rational points we would like to understand.
And here is where we confess that really, this is a tale not just of three but of
four curves. Our last curve is the genus 2 curve with equation

y? = 823428002° — 4701351602° + 52485681z + 23960404662+
56720796922 — 985905640z + 247747600.
It has at least 642 rational points. This curve was found by Elkies and Stoll
[17] in 2008 and is the current record-holder for the size of the set of rational

points in genus 2. Conditional on a very important conjecture in mathematics,
the Generalized Riemann Hypothesis, Miiller and Stoll [15] proved that the

10



Jacobian of this curve has rank 22, so it is currently out of reach using the
methods we have described so far.

Indeed, the tale of this fourth curve is not yet finished! Dear reader, perhaps
you can definitively compute its set of rational points?

11



Image credits

Figure 4 Courtesy of the author and Sachi Hashimoto.
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