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QUASI-EQUILIBRIA AND CLICK TIMES FOR A VARIANT OF
MULLER’S RATCHET

ADRIAN GONZALEZ CASANOVA, CHARLINE SMADI, AND ANTON WAKOLBINGER

ABSTRACT. Consider a population of IV individuals, each of them carrying a type in No. The
population evolves according to a Moran dynamics with selection and mutation, where an
individual of type k has the same selective advantage over all individuals with type k' > k,
and type k mutates to type k + 1 at a constant rate. This model is thus a variation of
the classical Muller’s ratchet: there the selective advantage is proportional to k' — k. For a
regime of selection strength and mutation rates which is between the regimes of weak and
strong selection/mutation, we obtain the asymptotic rate of the click times of the ratchet
(i.e. the times at which the hitherto minimal (‘best’) type in the population is lost), and
reveal the quasi-stationary type frequency profile between clicks. The large population limit
of this profile is characterized as the normalized attractor of a “dual” hierarchical multitype
logistic system, and also via the distribution of the final minimal displacement in a branching
random walk with one-sided steps. An important role in the proofs is played by a graphical
representation of the model, both forward and backward in time, and a central tool is the
ancestral selection graph decorated by mutations.
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1. INTRODUCTION

A well-known model of population genetics named Muller’s ratchet (cf. [18] 22] &, 20, [17]
and references therein) considers, in its bare bones version, the interplay between selection
and stepwise (slightly) deleterious mutation, for a population of constant size N > 1. Here
is a brief description of the model and of the main questions we will address in this paper.
For more details we refer to Sections [2] and [3

Each individual carries, as its current type, a number s of deleterious mutations. The num-
ber of mutations along each lineage increases by 1 at a rate my, and as soon as an individual
reproduces, its current type is inherited to its 'daughter’. Reproduction happens according
to a Moran dynamics with selection, where the fitness difference between two individuals of
type k and x’ is 2¥ ®(k' — k) for a selection parameter sy and a non-decreasing antisymmetric
function ® : Z — R. (For the classical variant of Muller’s ratchet, ® is the identity function
on Z.) The individual-based dynamics in this model, which we briefly call the ®-ratchet,
arises as an independent superposition of the following three ingredients:

Moran resampling. For each pair of individuals (i, 7), irrespective of their types, j is
replaced by a newborn daughter of individual ¢ at rate ﬁ

Selective reproduction. For each pair of individuals (, ) for which ¢ currently has type x
and j currently has type x’ > k, individual j is replaced by a newborn daughter of individual
i at rate Y ®(k' — k).

Stepwise mutation For each individual, its type is increased by 1 at rate my.

This dynamics leads to a sequence of times at which the currently lowest (and thus selec-
tively "best’) type in the population disappears. These times will be referred to as ’click times
of the ratchet’. In certain regimes of the parameters sy and my, the click times happen
rarely as N becomes large, and a quasi-stationary type profile builds up in between the click
times, fastly compared to the duration from click to click.

The following questions thus call for an answer:

A. What is the rate of the ratchet?

B. What is the quasi-stationary type profile?
For the classical variant of Muller’s ratchet, an asymptotic analysis of these problems beyond
existence results is a notorioulsy difficult - and still unsolved - task, see e.g. [15].

We propose a variant of the fitness function ® which leads to a model that turns out to be
tractable by modern probabilistic techniques, allowing for quantitative results for the rate of
the ratchet and the quasi-stationary type profile. This specific choice, denoted by ¢, is

(K" — k) = 10 _ws0y — Liw—r<o}- (1)
The essential difference to the classical variant of Muller’s ratchet thus is that this selective
advantage does not depend on the value of the difference of s’ and &, but only on the sign
of this difference. This corresponds to binary tournament selection [3]: the effect of selection
may be imagined as due to pairwise fights between randomly chosen individuals, where the
individual of ’better’ type outcompetes that of worse type.

2. MODEL AND MAIN RESULTS

We now give a definition of the jump rates of the type frequencies of the ¢-ratchet with
selection strength sy and mutation rate my. For fixed N € N and for k € Ny, let £,(t) =

§,(£N) (t) be the proportion (or frequency) of type k-individuals at time ¢. (Here and below we
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will sometimes suppress the index N.) Denoting by (e;,7 € Ny) the canonical basis of NNO,
the process (&4, k € Ny) jumps with the following increments:

e Mutation: for xk € Ny,

(ext+1 —€x)/N is added at rate muyN¢E, (2)
e Selection: for k <

(ex —€)/N is added at rate syNE&w (3)

e Coalescence: for k # K/
N
(ex, —exr)/N is added at rate 55,{5,4. (4)

Intuitively spoken, the type s-subpopulation is 'fed through mutations’ from the type(x — 1)-
subpopulation, is ’selectively attacked’ by the type(< k)-subpopulation and ’selectively at-
tacks’ the type(> k)-subpopulation. Consequently, these rates imply that for any &, (&, ..., &x)
is an autonomous process.

Definition 2.1 (Click times). a) The best type at time ¢ is defined as
K5(t) == min{neNozggm(t) > 0}. (5)

b) The {-th click time fyéN) is the £-th jump time of Ky, £ =1,2,...

To obtain quantitative results for the click rates and the quasi-stationary type profile, we
will throughout the paper consider the case of moderate selection and mutation

o p
NEFNY YT RN ©

where u < a, f(N) — oo and f(N) = o (%) as N — oo. In particular, this implies
that my — 0, Nmy — oo, and my and sy are of the same order.

Theorem 2.2 (Asymptotic rate of clicks). Assume that all individuals at time 0 are of type 0,
i.e. f,gN)(O) = 6or, k € Ng. Then there ezists a sequence (On) with

N
InfOy ~ 2(a—u+uln(u/a))m as N — oo, (7)
such that the sequence of rescaled click times
(N)
e
——— (€N,
f(N)ON

converges in distribution as N — oo to a rate 1 Poisson point process.

In particular, for the case of nearly strong selection sy = 1/I(N), where [(N) is any slowly
varying function that converges to infinity with N, Theorem says that the expected time
between clicks is only slightly smaller than exponential in N. In contrast to this, for nearly
weak selection with (Inln N)/N < sy < (InN)/N, Theorem says that the timescale
f(N)Ox of clicks is asymptotically only slightly larger than the evolutionary timescale N.
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Theorem 2.3 (Quasi-stationary type frequency profile). a) Again assume that all indi-
viduals at time O are of type 0. Introduce the empirical type profile at time t (seen
from the currently best type)

N N
xM¢) = §§(;v)(t)+k(t), k € No. (8)
Let (tn) be a deterministic sequence of times such that
IN
—_— N .
f(N)lnN_>OO as N — oo 9)

Then for all k € Ny
X,EN) (tn) — px  in probability as N — oo,
where (pr)keN, S a sequence of probability weights given by the recursion

k—1
% ) p %
—1-2 and prop|1-E -2 ) =Ly, k>0 10
Po ~ and p} pk< - %m) i1, k> (10)

b) The recursion is equivalent to the (mutation-selection equilibrium) system

ape | > ow (Lwswy — Lwary) | =0k —pr-1), k>0, (11)
k’eNp
with the boundary conditions p—1 =0, po >0, > pp=1.
keNy
c) Let (px)ken, be the probability weights given by . Then
(i) for0 < £ < %, k — pg is strictly monotonically decreasing,
(ii) for g = %, k — pg is monotonically decreasing with pg = p1 > pa > -+,

(iii) for 2 < £ <1,  (pr)ren, is unimodal in the sense that there exist ky < ko with
ko — k1 <1 for which po < p1 < -+ < Diy = Dky ANA Diy > Dhgt1 >« -
I

In any case, pi, ~ C - (L) as k — oo for some constant C' depending on <.

fita
d) Two alternative probabilistic descriptions of (pr)ken, given by are as follows:

o Consider a Yule tree with splitting rate o whose branches are decorated by a rate
w Poisson point process. Then py, is the probability that there is an infinite lineage
carrying exactly k points but no infinite lineage with less than k points.

e Consider a branching random walk on Ng starting with one individual at the origin
with binary branching at rate a (and no death) and with migration of individuals
from k to k+1 at rate . Then, ast — oo, the minimal position of the individuals
alive at time t converges in law to a random variable with distribution (pi)ken, -

Remark 2.4. a) Eq. characterizes the type frequeny profile (pi)ren, as the fixed point of
a deterministic mutation-selection equilibrium, with the out-flux due to mutation on its right
hand side and the in-flux due to selection on its left hand side. The latter can be written
as pra Y ey, (K — k)pr with ¢ as in (I]). If ¢ would be replaced by ®(k' — k) := k' — Fk,
then (cf. [12]) the solution of (11)) would be the Poisson weights with parameter p/a. An
essential advantage of the for of the fitness function is that it opens the way to a
mathematically tractable analysis of the probabilistic system via a dual process within a
graphical representation. This graphical representation together with the analysis of the dual
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process will be the main tool in our paper. The quasi-stationary center of attraction of the
dual process turns out to be proportional to (pg)ken, given by , see Remark e).

b) The graphical representation allows for a clear interpretation of the ’first passage perco-
lation’-description of the type frequency profile given in part d) of Theorem [2.3| For large
population size N and on a suitably short timescale, the decorated Ancestral Selection Graph
(see Definitions and of a typical individual (sampled from the population) looks like
a Yule tree with mutations. It merges quickly with the best class within the equilibrium
Ancestral Selection Graph [21] between clicks, and the type of the sampled individual is
(asymptotically as N — oo) determined by the minimal load of mutations collected along the
lineages of the Yule tree. All this will be made precise in the sequel.

3. GRAPHICAL REPRESENTATION OF THE MODEL

The type frequency process £V of the p-ratchet, which was introduced at the beginning of
Section 2] can be constructed (in a similar way as in [11} [7, 10]) on top of a Moran graph with
selection parameter sy, with mutations added by means of an independent Poisson process.

Definition 3.1 (Graphical elements). For fized N € N, we consider three independent Pois-
son point processes, CN), SN and MWN) . The processes CN) and SW) are supported by
{(i,j) : 9,7 € [N],i # j} x R and have on each component {(i,5)} x R the constant in-
tensity ﬁ and %, respectively. The third process, MW) | is a Poisson point process on
GW) .= [N] x R with constant intensity my on each component {i} x R.

Remark 3.2. When there is no risk of confusion, we will suppress the index N and write
G,C, S, M. We will speak of the points (i,t) € G, i € [N], as the individuals living at time t.
Each point (i, 7,t) € CUS can be visualized as an arrow pointing from line 7 to line j at time ¢.
At an (i,7,t) € C, the individual (i,t), irrespective of its type, bears a daughter (j,¢) who
replaces the individual (j,t—). At an (4,j,t) € S, the same happens, but only provided the
individual (i,t) carries less mutations than the individual (j,¢—). The process M describes
the mutations occurring along the lines; each point of M increases the mutational load along
the lineage by 1. This is made precise in Definition [3.3] and illustrated in Figure [1}

Definition 3.3 (Type configurations and their transport). A type configuration is an element
of No!™, thus assigning a (nonnegative integer) type to each i € [N]. The process (C,S, M)
gives rise to a transport of type configurations (n(i,t));cn) as t € R increases. Specifically,
think of an initial type configuration (n(i,s))ie[n) being given at some time s. At timest > s,
the three Poisson point processes C,S and M act as follows:

e if the point (i,j,t) belongs to C, then
U(j,t) - n(iat_) (: n(iat) a.s.)
e if the point (i,7j,t) belongs to S, then

. _ 77(j>t_> Zf ﬁ(jat—)ﬁn(iﬂt—)
niit) = { n(it=) if ni,t—) <n(j,t-)

e if the point (i,t) belongs to M, then

n(i,t) =n(i,t—) + 1.
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0, — 3 0, . .3
0 vV 10 \ A
0 3 0, o3
0 B 2 0 2

FIGURE 1. Graphical elements and their impact on the transport of types.
Time is running from left to right, and in each of the four panels two levels (i =
1,2) are considered, with the initial type configuration (0,0). Selective and
neutral arrows are drawn with dashed and solid shafts, respectively. Mutations
are drawn as circles. Because of the rules described in Definition some of
the mutations do not have an effect on the outcome of the types at the final
time; these mutations are represented as filled black circles.

In the next section and thereafter we will use the Poisson point processes (C,S, M) also
for a transport (of potential ancestral paths and mutational loads) backwards in time. In
order to clearly distinguish between forward and backward concepts, we define two filtrations
generated by (C,S, M).

Definition 3.4 (Forward and backward filtrations). For t € R let C<; and S<; be the re-
strictions of C and S to |J  {(i,7)} x (—o0,t], and let M<; be the restriction of M to
i,J€[N],i#£]

U {i} x (—o0,t]. Likewise, define C>¢, S>¢, M>, replacing (—oo,t] by [t,00). Let F and
1€[N]

P, be the o-algebras generated by C<y, S<i, M<y and C>¢, S>¢, M>¢, respectively. The forward
filtration is . := (%)~ and the backward filtration is & = (Z),cp; note that P in-
creases as t decreases. All these objects are understood for fized population size N ; sometimes
we will write PN and FWN) instead of P and F, to make the dependence on N explicit.

Remark 3.5. With s := 0 and 7(4,0) := 0, i € [N], and with 7(.,¢), t > 0, constructed accord-
ing to Definition the process of type frequency evolutions that figures in Theorems [2.2
and can now be represented as the .#-adapted process

En(t) = %# (i €[N]:nGit) =k}, k€N, £ 0. (12)

Indeed it is straightforward that this process has the jump rates given in , , . In
terms of 7, the best type at time ¢ (defined in () has the representation

K (t) = min{n(j,t) : j € [N]}. (13)
4. POTENTIAL ANCESTRAL PATHS AND THEIR LOADS

While the graphical representation given in the previous section was a forward in time con-
struction, we now take a backward in time point of view. This is based on the concept of po-
tential ancestral lineages which goes back to pioneering work of Krone and Neuhauser [14], [19].
The key idea is to construct in a first stage an untyped version of the (potential) genealogy
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backwards in time and decide in a second stage forwards in time which lineages become “real”.
Specifically, a “selective arrow” (i, 7j,t) € S introduces the two potential parents (i,t—) and
(j,t—) of the individual (j,¢). Thus, a potential ancestral lineage backwards in time should
jump from (j,t) to (i,t—) as soon as it ecounters the head j of a “neutral arrow” (i, j,t) € C,
and should branch into two selective lineages as soon as it ecounters the head j of a “selective
arrow” (i,7,t) € S. We will formalize this by the concept of (potential ancestral) paths.

Definition 4.1 (Paths and potential ancestors). Let (i,5s), (j,t) € G with s < t.
A (potential ancestral) path connecting (i,s) and (j,t) is a subset of G of the form

({ir} x [s0,51)) U ({ia} x [s1,52)) U ... U ({in} X [5n-1, 8n)),

with the following properties

a) s=890< 81 <+ < Sp_1 <8, =t,

b) i:ilaj:in}

c) (ig,ig+1,8¢) €CUS forg=1,...,n—1,

d) C((INJ\{ig}) x {ig} x (sg-1,84)) =0 forg=1,....,n—1.
We write (i,s) < (j,t) if there is a path connecting (i,s) and (j,t). In this case we say that
(i,8) is a potential ancestor of (j,t).

In words, the conditions mean that jumps between different levels h,h’ € [N] may only
occur at time points of either neutral or selective arrows, and that none of the time intervals
(sg—1,5¢), g = 1,...,n, may be hit by a neutral arrow whose arrow-head is at i,.

As a consequence of this definition we observe (see Figure [2f for an illustration):

e If the point (i,j,t) belongs to C, the point (j,t) is disconnected with (j,t—) and
connected with (i,t—).

e If the point (7,7,¢) belongs to S, the point (j,t) is connected both with (i,t—)
and (j,t—).

Definition 4.2 (Ancestral selection graph (ASG)). Fort € R and J; C [N] x {t} we define,
suppressing the index N,

At = {(i,s) : (i,8) < v for somev € J;} and A’ := UA;]t.
s<t
Thinking of A% as a union of paths jointly with the graphical elements from C and S by which
it was induced, we call A”t the ASG bapk from J;. '
For a singleton J; = {(j, 1)} we write A" instead of Ag(]’t)}, and for Jy = [N] x {t} we briefly
write AL instead of ALN]X{t}, and At instead of AWNI*{t},

Definition 4.3 (Load and M-distance). (i) The load of a path is the number of points of M
carried by the path.

(ii) The M-distance da((7, s), (j,t)) of two points (i,s), (j,t) € G with s < t is the minimal
load of all paths connecting them, with the convention that the minimum over an empty set
is infinity. We say that (i,s) is a load k potential ancestor of (j,t) if dm((, ), (J, 1)) = k.
(iii) For s <t and I; C [N] x {s}, J; C [N] x {t} we put

dm(Is, Ji) == min{dm(v,w) 1 v € Is,w € Ji }.

Remark 4.4. For three points (i, s), (4,t), (g9,u) € G with s <t < u one may have (i,s) < (j,t)
and (i,8) < (g,u) but (j,t) 4 (g,u). This shows that in general d violates the triangle
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inequality. If, however, the three points satisfy (i,s) < (j,t) < (g,u), then one has

dpm((is ), (9, u) < da((, 8), (4,1) + daa((5, 1), (9, w))-
Indeed, in this case the concatenation of a path of minimal load connecting (i, s) and (j,t)

with a path of minimal load connecting (j,¢) and (g, ) is a path connecting (i, s) and (g, u);
hence d a4 follows the claimed “restricted” triangle inequality.

2 02 , 0
1 N4 0 3 \ 4 0
2, o0 2 0

:\W/o 0

Figure 2. This figure contains the same graphical elements than Figure
but now the paths are followed backwards. Let us think of the left hand
side of each of the four panels corresponding to time s and the right hand side
corresponding to ¢ > s. At time s, the M-distance between the set {1,2} x {t}
and its potential ancestors at time s is annotated. A comparison with Figure
shows differences and similarities between the backward and forward transport.

The next remark is immediate from the graphical construction.

Remark 4.5 (Flow of type configurations). Let n = n(™) be as specified in Definition
Then for any j € [N], 0 < s < t, one has a.s.

n(;t) = min {nGi ) + dam((@, 5), (G £)}-

In particular, if n(é,0) = 0 for all 7 € [N], then

77(.77 t) - dM([N] X {0}7 (.77 t)) - dM(Agtv (Ja t)) (14)
and
KN (t) = min{n(j,t) : j € [N]} = dam ([N] x {0}, [N] x {t}). (15)
Definition 4.6. a) (Load k potential ancestors) Let k € Ng and s <t € R. For J, C [N]x{t}
we define AJt(k) as the set of individuals (i, s) which are load k potential ancestors of some
individual in J; (cf. Definition . Taking the union over s € (oco,t] we define A’ (k) as
the set of all individuals which are load k potential ancestors of some individual in J;.

b) Minimum load potential ancestors. We define the set of minimum load potential ances-
tors at time s of the population J; as

At = Al (k) (16)
where
k= k(s,t) := min{k € Ng : A/t (k) # 0}.

To ease notation we write ﬂg instead of fl[SN]X{t}, and Ai’t instead of Ai(i’t)}.
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¢) The definitions in a) and b) extend directly from determinisitc t and J, to a &-stopping
time T and a Pp-measurable random set 1 C [N] x {T'}.

5. PERCOLATION OF LOADS ALONG THE ANCESTRAL SELECTION GRAPH

In this section we fix a population size N € N which we suppress in the notation. For fixed
t € Rand J; C [N] x {t}, as s < t decreases, the evolution of the set-valued processes A7t (k),
k € Ny, is driven by the Poisson point processes (C,S, M), now in a H-adapted manner.
In view of Definitons and the actions of (C,S, M) on the sets AJt(k) are as follows
(note the analogy and the differences to Definition for the transport of type configurations
which there was forward in time):

e Coalescences: Let (i,j,5) € C; k, k' € No. If (i, s) € AJ*(k) and (j, s) € AJ(K),
then for & < &’

AlL(K) = A (K)\{(,8)} and  AJ (k) = AJ (k)
whereas for k > &/
AL (K) = (AF ()N {0 9)}) UL s)} and AL (k) = Al (k) \ {(i, )}
e Selective branching: Let (i, j,s) € S; k € No. If (i,s) € At (k) and (j, s) ¢ A, then
Al (k) = Al (k) U{(5. 9)}-

e Selective competition: Let (i, j,s) € S; k, k' € No. If (i,5) € ALt (k) and (j,s) € At (K'),
then for & < &’

AJL(K) = A (K)\{(j,;5)} and AL (k) = AJ (k) U{(j, )}
whereas for k > £’
AL (K) = Al (K)U{(i,s)} and AJ(k) = AL (k) \ {(i,)}.
e Mutation: Let (i,s) € M; k € Ng. If (i,s) € Alt(k) then
At (k) = AT (k) \ {(i,5)} and A (k+1) = AT (k+1)U{(i,s)}.

Due to the symmetry properties of the dynamics (backwards in time) that is induced by the
just described transitions, we may focus our attention on the configuration of cardinalities of
the sets AJt(k), and define

Alt(k) == #AT(k), keN,.

For J; = [N] x {t} we write A%(k) instead of A[SN]X{t}(k:), and A'(k) instead of AINP>AH(k).
The following lemma is immediate from the above described actions of the Poisson point
processes (C,S, M) on the sets A (k).

Lemma 5.1. For allt € R and all sets J; C [N] x {t}, the process
(AT (0, A7 (1), oy AT (R), s
is Markovian when randomized over (C,S, M). Its state space is the set
N ={2=(20,21,---,) 2k €ENg,20+ 21+ - < N} (17)

Its jump rates from z € Zn are (with ey, as in Sectz’on@ and sy, my as in @)
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Coalescences: for any k € N,

1 1
z— z—e, with rate ﬁzk(zk —1)+ N Z 2t (18)
0<k/<k

Selective branching: for any k € Ny,

. SN
z— z+e, with rate ~ %k N — Z P I (19)
0<k’<o0o

Selective competition: for any pair of integers (k, k') such that 0 < k < ¥/,

s
z— z+ e, — e with rate WNzkzkr. (20)

Mutation: for any k € Ny,
z—>z+epr1 —ep with rate mpyzg
and for any k € N,
z—=z4e,—ep_1 with rate myzi_1. (21)

Remark 5.2. In Lemma 5.1 we may replace the deterministic time ¢ by a Z-stopping time T,
and the deterministic set J; by a Zp-measurable random set #7 C [N] x {T'}, with the
backward filtration & specified in Definition

-t>

O
O O

F1Gure 3. Key to the analysis of the click times of the ratchet are the instances
at which (seen backward in time) the paths with minimal load are lost. In this
figure we observe how the click times forward and backward are different, but
strongly related to each other and also close in time. Both panels contain the
same graphical elements, with the left panel showing the forward transport
and the right panel showing the backward transport of M-distances. In each
case, the points with M-distance 0 from the left respectively from the right
boundary are shown by thick lines, and clicks are indicated by a large circle.

6. A HIERARCHY OF LOGISTIC COMPETITIONS

Throughout this section we consider, for any given N € N, a Markovian jump process
ZWN) .= (ZWN)(r)),>0, whose state space is 2y defined in and whose jump rates are
given by to . When there is no risk of confusion, we suppress the superscript N and
write e.g. Zo instead of Z(V).
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Remark 6.1. a) The processes Zy and (Zy, Z1) are Markovian. Specifically, the process Z
jumps with the following rates:

20 — 20+ 1 atrate syzg (1 — %) =: 20 bo(20, N),

Zo—l
2N

(22)

20— 20— 1 atrate 2z (mN—I— ) =: zo dp(z0, N).

b) We may consider the process Z; as living in an environment given by Zp: Given that the
current state of Zy is zg9 € Ny, the process Z; jumps with the rates

20 + 21
N

z1 —~> 21+ 1 atrate syz; (1 — > + mny=2o,

z1(z1 — 1)
2N

2021

21 — z1 — 1 at rate —i—zl(mN—i—@)—i-sNN.

N

c¢) For each k € N the process (Zy, ..., Zk_1) is Markovian, and given that the current state
of (Zo+ -+ Zk_1,Zk_1) is (Z, zx_1), the jump rates of Z; from a state zj are

zr =z +1 atrate syzp(1-— 2t 2k +myzE_1,
), -
Ze\Zk — ZEZ ZLZ
— -1 t rat _ + — — .
2k 2k at rate N + N +sNN + MmNz

d) An inspection of the rates in and an application of a dynamical law of large numbers
from [9] shows that if Z(()N) (0) is of order N/f(N), the process (f(N)ZM(f(N)r)/N),>o is
on each time interval [0, rg] for large N close (uniformly in r € [0,79]) to the solution of the
dynamical system

k—1
dn;t(t) = pnp_1(t) + np(t) (a — - ”’“2“) — an-(t)> , k>0 (24)
=0

with n_; := 0. Without going into all details here, let us mention that two steps are needed
to prove this convergence. First, we consider a modified version of the process Z(Y), namely
ZW ), where the rates in and are replaced by syzp and 0 respectively. Choosing as
the mass rescaling parameter the carrying capacity N/f(N), we can directly apply Theorem
11.2.1 in [9] to the process (Z(N)(f(N)r))Qo. Then applying Lemma C.1 in [6] as in the proof

of Lemma we obtain that the sum of the components of the process (Z(N)(f(N)r) .

does not reach a size of order N within a time of order In NV with a probability close to 1 for
large N. The modification of the jump rates is thus negligible on a time scale of order 1, and
the claimed convergence holds for the process (ZMN)(f(N)r)),>o.

e) The system has a unique attracting equilibrium (7%)ren, which follows the recursion

_ k—1
no:=2(a—p) and png_q + ng (a—,u— % —an> =0, k>1. (25)
=0
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The process (Z(SN), vy ZliN)) has a quasi-stationary equilibrium (see e.g. [5l, Example 7]) which
we denote by V](\];). We thus obtain that for any r > 0,

Nz ()
7

Iim E &
N—oo VN

oo
Summing over k in and defining n := Z ng, we get

k=0
R 1
0=an—; > np+2 Z TigTi; :aﬁ—iﬁQ.
k=0 0<i<k<oco
This yields
oo
n=>Y ng=2a (26)
k=0

Remark 6.2. Let (k) ken, be defined by the recursion . In view of and it is clear
that $£, k = 0,1,..., is a sequence of probability weights which satisfies the recursion ({10)
and thus coincides with the probability weights px, k € N, that are defined in Theorem [2.3p).

The next lemma roughly says that for any k& € Ny the process Z,(CN) with high probability
grows quickly to a size of order N/ f(N) and stays there at least for a time of order f(N)In N,
provided only that for some ¢ < k the initial size of ZéN) is not too small. In view of
Lemma the quantity N/f(N) thus characterizes the typical size of the ASG on the
f(N)In N - timescale.

Lemma 6.3. Let (ny, g € No) be given by the recursion ([25)). Let (Zy, Z1,...) = (Z[()N), ZEN), o)
be a process with jump rates given by to , and let R > 0. Then for any k € Ng and
e > 0, there exist finite constants Cy and Ci(e) such that

N
lim ianP’(f( )Zk.(r) € [ng — Cre, g, + Cye] for all v such that
N—oo N

.
F(N)InN

where () = 0 as € = 0.

(27)
€ [C(e), Cu(e) + R ]34 <k such that Zs(0) > 1/5) —1-4(e),

The proof of this lemma (as well as the proofs of the other lemmata of this section) will be
given in Section
For the process Z(()N) with jump rates , we introduce the first time at which Z(()N) hits
the trap O:
a2 = inf{r >0, 28" (r) = 0}. (28)
Lemma 6.4. Let vy = y](\(,)) denote the quasi-stationary distribution of Z(()N). For every N
there exists On such that

Py (HSY > 1) = 00y, (29)
where the sequence (On) satisfies (7).
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Lemma 6.5. a) There exists C > 0 such that for e >0
%Ilian( ZzM(HM) > 9 ZM(0) > 1/5> =1-4(e),
—00

where () = 0 as € — 0.
b) With (On) as in Lemmam let (rn) be a sequence with ﬂ]&)ﬁ — 00 as N — oo, and

define ky := min{k € N: ZW)(ry) > 0}. Then
hmlnf]P’(Z( )( ’Z >1/E) =1-4(e),

N—o00
where () = 0 as € = 0.

These two lemmas are key for obtaining the renewal structure of the dynamics of the
potential ancestors with minimal load. They imply in particular that when the set of potential
ancestors with the currently minimal load gets extinct, the number of minimum load potential
ancestors that “come next” is large enough for reaching a size of order N/ f(N) given by the
quasi-stationary distribution vy. As we will see in Section this will ensure, using duality,
that the succession of several clicks (in the sense of Definition within a time frame of
order smaller than f(IN)fy is not likely.

7. TOWARDS THE QUASI-STATIONARY TYPE FREQUENCY PROFILE VIA TIME-REVERSAL

A principal tool in this section will be the equilibrium ASG AN°4. Its definition relies on
the observation that for each fixed N € N and ¢ > 0 there exists some ug > t such that

A= A" N ([N] x [0,4]) %2 A* N ([N] x [0,2])  for all u > ug.
In accordance with we observe that for (j,t) € AN “,

(5, t) = dpm (A, (4, 1))
We define for v > 0 and (4,0) € Aé\f,eq7

Gi(1,0) = dpq((i, 0), A %),
It was proved in [21, Lemma 2.3] that A~ is time-reversible in the sense that for all ¢ > 0

N,q d ,N,eq

oAt = Al
where R}, is the bijection on [N]x [0, t] that takes (i, s) into (i, —s); note that this time-reversal
takes coalescences into branchings and vice versa. Since time-homogeneous Poisson point
processes are time-reversible, this equality in distribution carries over to the M-decorated
version of Ag’zq as well. As a consequence we have the following equality in distribution for

the configuration of M-distances observed backwards and forwards in Ag’f]q:

d

(Ct (iv 0))(i70)eAé\”eq = (TI(J} t))(j,t)eAév’eq (30)

Next we define
ZN(t) = # {(i,O) e AV ¢,(i,0) = k} , ke N,
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It is clear from the definition of Z,iN) at the beginning of Section |§| and from Lemma that

for all fixed t > 0
(N) d (5N
7z =7 . 1
(2 <t>)k€NO ( m)keNa (31)

For » > 0 we define

k(r) := ky(r) := min {k‘ : Z,E,N)(T) > 0} and k(r) := ky(r) := min {k‘ : Z,E,N)(T) > 0} . (32)
Let tn be a sequence in Ry with f(]\;)% — oo and ty = O(f(N)fn). The three lemmata
at the end of Section [6] together with Remark [6.2] show that for all k € Ny, as N — o0,

FN) )

2aN k+k(tN)
In view of this implies that for all £ € Ny, as N — oo,

FN) Zn)

2aN  k+k(tn)
In analogy to we define

K} (t) == min{n(j,t) : (j,t) € A"} (: A (AY 9, A ) = min{¢(i,0) : (i,0) € Aév’eq}> .
The distributional identitiy implies that for all £k € Ny and ¢t > 0
. . N’e . s,k d &5(N
#{i € IV): Gt € AN m(i,t) = K () + k) £ 20 (o).
Together with this shows that for all £ € Ny, as N — oo,

N (S} . kok . . . .
J;((IN)# {j € [N]:(j,tn) € Agv’ U n(,tn) = Ky (ty) + k} — pr in distribution.  (34)

Remark 7.1. The convergence assertion comes close to a proof of Theorem ) Indeed,
since Agfv’eq is Z;,-measurable, the individuals in that set can be seen as a random sample of
size close to 2aN/f(NN) > 1 taken at time t;y. What is still missing to complete the proof of
Theorem ) is to check that Ag\;eq contains with high probability as N — oo an individual
that is of best type among all the individuals in [N] x {¢tx}, or in other words to prove that

P(K%(ty) = K (ty) =1 as N — cc. (35)

(tn) — pr  in distribution.

(tn) — pr  in distribution. (33)

This convergence will be proved in Lemma [9.5] and Remark [9) which thus completes our
first proof of Theorem [2.3h).

8. QUICK MERGING ALONG THE ANCESTRAL SELECTION GRAPH

The main result of this section, which will be a key ingredient in the proofs of Proposition|9.2
and Theorem as well as in our second proof of Theorem ), is an upper estimate for the
time it takes for the merging of the sets of load k potential ancestors of two Zp-measurable
random sets £ and _#2 of [N] x {T}, where T is a Z-stopping time. Roughly stated, this
result (stated as Proposition says that this merging happens with high probability as
N — oo within a time frame of order f(N)In N, provided only that the sets ¢} and _¢2
are sufficienly large. With reference to Definition we define the (random) merging time

of the two load k ASG’s A/7 (k) and A7 (k) as
/Tt = sup{ng;A;%(k): {%(k)}. (36)



QUASI-EQUILIBRIA AND CLICK TIMES FOR A VARIANT OF MULLER’S RATCHET 15

Proposition 8.1. Let T be a &-stopping time and let #3, /7% be Pp-measurable random
subsets of [N] x {T'}. Then, for any k > 0 and € > 0, there exists a finite constant C(e) s.t.

lin inf P (%,;’“Tl’/% > T - CE)f(N)InN|# 7t > 1/e and # 77 > 1/¢) > 1-6() (37)

with d(g) — 0 as e — 0.

Proof. The strategy of the proof consists in showing by induction that for all £k > 0 the sets
AT (0)U...UAZT(K) and AZ7(0)U..UAST (k)

merge within a time of order f(/N)In N. Let us begin with the case k = 0. For abbreviation

we will write s :=T —r, r > 0, and .Aé = AS’%(O), i=1,2
We will study the dynamics of the set-valued process

A}F_TAA%_T - ('A%ﬂ_r U ‘A%—T) \ (A%“—r n 'A%—r) , r=>0,

and of its cardinality # (AlerAAzT,T) = #(AL UAZ ) — #(Al N A% ) as r increases.
Four possible types of elements of the processes (C,S, M) may have an impact on ALA A%
e (i,5,s) € S with (j,s) € ALAA? and (i,5) ¢ AL U A% then
AL AA2 = ALAA2U{(],9)}.
The rate of this event is
@ = sn# (ALAAZ) <1 — #(A‘%]\LTJ Ag))
e (i,j,s) € C with (j,s) € ALAA2 and (i,s) € AL N .A2; then
A DAL = ALDAT\{(, 9)}-
The rate of this event is
B = oA (AL # (A0 A2)
e (i,j,5) € C with (4, s) and (i,s) € ALAA?; then
A DAL = ALDAZ\{(G,9)}-
The rate of this event is
15 = st (MDA (# (ALLAD) —1) (39)
o (i,5) € M with (i,s) € ALAA?; then
AL ANAZ = ALAAZ {(i,5)}.
The rate of this event is
g1 = my# (ALAAD) . (40)

The sum of ¢o, g3 and g4 equals

ALUA2) + #(A N A2) -1
QQ+q3+q4 :#(A;AAg) (mN+#( S s) 2%( S s) )

N #AL+ #A2 — 1
2N )

—(ALAL) (mN
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From Lemma Remark and Lemma [6.3] we know that for any ¢ > 0 there exists a
constant C'(e) such that if

H#AL > 1/e,i=1,2,
then for any R > 0, with a probability close to 1 for € small enough and N large enough,

2N IN
T e rTEs #HAL_,, #AT, < (@t n2)
for C(e)f(N)InN <r < (C(e) + R)f(N)In N. In such a time window, we have
L 1A 2
q1 < 19 (#(ALAAY))
and

a+ (a—p—5be)
f(N)
for N large enough. The process (#(AIT#AA%%))OO is thus stochastically dominated by

+#A§+#A3—1
2N

@2+ g3+ @ 2H(ALAAT) <mN ) > #(ALNA?)

a branching process with individual birth rate a/ f(IV) and death rate
(a+(a—p—>5¢))/f(N).
The extinction time of such a process, with an initial state smaller than N, is smaller than
5 f(N)InN
o — [ — D

with a probability converging to 1 when N goes to infinity (see e.g. [4] Lemma A.1). This
concludes the proof of the proposition for the case k = 0.
Assume now that the sets

AZT(0)U..UAZT(k—1) and AZ7(0)U..UASF(k—1)

merge at time Ty = T — Rj_1, where Ry = O(f(N)InN). From Lemma we know
that there exists R < oo such that for any K < oo, with a probability close to one the size of
this union is close to

during the time interval [Tp—1 + Rf(N)InN,Tp—1 + (R + K)f(N)In N], and remains to
be so during any time frame of order f(N)InN. We also know that the sizes of AT (k)
and A7 (k) are close to Nny/f(N) during the same time frame. Let us again use the
abbreviations s := T'— r and A} and A2, now for

A= A7) U UATT(R), i=1,2.
By definition of T_1 we have the equality
71 2
# (A%kil,rAAzTHfO S (A;i fl_T(k)AA;fifl_T(k)) . r>0. (41)

Another crucial observation is that the upward and downward jump rates of the process

#(Ab 0 )
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are the same as those of the process
1 72
# (AT 077 (0)
r>0
resulting from — . (In particular, for s < Tj_1, the mutational events only affect
1 2

the set ./4;/ r (k;)AA;Z¢ T(k), whose cardinality by equals that of ALAA2.) The rest of the
proof now follows that same lines as in the case k = 0. O

Similarly as in , we define the (random) merging time of the ASG’s AZT and A7 as
¢/ Ft ::max{ng:A's T gﬁ}

Since in the special case my = 0 the load zero ASG ASJT(O) equals the ‘untyped’ ASG Agj,
we immediately obtain the following corollary by putting ¢ = 0 and k£ = 0 in Proposition [8.1

Corollary 8.2. Let T, #1, #2 be as in Proposition . Then for any € > 0, there exists a
1 72
finite constant C(e) such that also holds for €ISt in place of ‘Kk/T/T.

9. CLICK TIMES ON THE ANCESTRAL SELECTION GRAPH. 1ST PROOF OF THEOREM [2.3]r)

Definition 9.1. For N e N, t € R and £ =0,1,... we define (again partially suppressing N
in the notation) the click times on the ASG back from [N]| x {u} as follows

TEN’U :=min{s < wu:dpm(AY, [N] x {u}) =1¢}.

We thus get a point process
g .= {TKN’U,E S No} .

The proof of the following proposition will be based on results in Sections [5] [6] and
Roughly stated, Proposition [9.2] says that the process of click times on the ASG, back from
times that are large on the f(N)fy-scale, converges on that scale locally around time 0 to
a standard Poisson process. This result is key for the proof of Theorem Indeed, in
Section |10 we will argue that the process of (forward) click times figuring in Theorem
which are represented as the jump times of , is locally on the f(N)fy-scale with high
probability (as N — oo) close to the process figuring in Proposition This latter process,
however, can be read off from the ASG together with the points of M. See Figure [3] and also
Figure [4] for illustrations.

For later reference we will consider a sequence (uy) of time points with the property

_UN o as N o oo (42)

Onf(NV)

Proposition 9.2. Let (uy) obey ([42). Let (Tgfv’uN)lggggN be the points contained in the set
TNuN [0, uy] ordered such that

Nyun N,u
0 < T <o < TN <y,

Putting Tév’uN := 0, we have for n € N the following convergence in distribution as N — 0o:

Tg]VﬂLN _ TNfil'N
- = (W) ,
( f(N)QN >1<g<n s
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where (Wg)geN is a sequence of i.i.d. standard exponential random wvariables. Consequently,
the sequence of processes NN defined by

N . _
A= 2 g <oy £20
g>1

converges as N — 0o to a standard Poisson process.

A large part of the remainder of this section is devoted to the proof of Proposition For
any N € N and any 2N)-stopping time T we define the ZN)-stopping time ST

SNT .= sup {s<T: AT(0) = 0}. (43)

In words, among all times at which all the potential ancestral paths of the population that
lives at time T carry at least one mutation, the time SN is the one which is closest to 7.
Let us also note that for fixed N the distribution of 7' — S™7 does not depend on the choice
of the 2N _stopping time T, c¢f. Lemma and Remark A key step in the proof of
Proposition [9.2] is provided by

Lemma 9.3. For any sequence of W) -stopping times T the sequence
TN - SN’TN
f(N)ON

converges in law to an exponential random variable with rate parameter 1.

Proof. The process Z(()N) (r) == A%NV_T(O), r > 0, has the jump rates and starts in N.

Lemmashows that the quasi-equilibrium of Z(()N) builds up within a time of order f(N)In NV

when started in Z(()N)(O) = N. But notice that the assumption f(/N) = o(N/Inln N) yields

f(N)gN 6lnlnN
1.
F(MInN = N

The asymptotic exponentiality of T — ST~ with the claimed time scaling thus follows from
Lemma [6.4 O

Let us now consider a sequence of (deterministic) times uy as in Proposition and recall

the definition of SN in . For each fixed N € N define recursively

Naun |
SO = Un,

) 44
g = gV g Z 1 “
The following corollary is now immediate from Lemma [9.3]

Corollary 9.4. Let Sév’uN be defined by (44).

a) The sequences
st — sy
F(N)On e>1

converge as N — oo in the sense of finite dimensional distributions to a sequence of i.i.d.
standard exponential random variables.
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() O °°* O (o] o]

FIGURE 4. This cartoon reflects two main insights that help to prove The-
orems and First, ASGs started from the entire population merge
“quickly” (i.e. on the scale f(N)InN) into a “backbone” ASG (coloured in
grey). Along the latter, clicks (depicted by thick circles) happen asymptoti-
cally at scale Oy fn, and these can be coupled locally on that scale with the
clicks forward in time. Second, most of the variability on the number of mu-
tations among contemporaneous individuals comes from mutations acquired
in their recent past. These recent mutations can be studied via duality by
means of a Yule process approximation on the scale f(IV)In N, leading to the
quasi-stationary type frequency profile (pg).

b) Let C be an arbitrary positive constant. The sequence of point processes

Nyun

S
Nun . 4 . —_
B : {f(N)GN'EeNO}’ N=12,...

converges, when restricted to [0,C| in distribution to a standard Poisson point process re-
stricted to [0, C].

Proof of Proposition[9.2. From Deﬁnitionwe recall the point process .7 VU~ of click times
on the ASG back from [N] x {un}. The strategy of the proof will be to compare this process
“locally on the f(N)fy-timescale” to the process .#’V“N which on that scale according to
Corollary [9.4] is approximately Poisson.

To this purpose we define for each time N € N and each time point s > 0

SNUN () := min (YN’“N N[s,00)), TNUN () := min (ﬂN’“N N[s,00)),

Let A% be the set of minimum load potential ancestors at time s of the population at some
(deterministic or random) time ¢, as specified in Definition . For abbreviation we put

BY = AS™6),

For any fixed C' > 0 we abbreviate sy := C f(N)fy. We will use the following properties:
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The process (#AUN . r > 0) follows the dynamics of Z; = (Zg(ry(r))r>0, where k

uN—7"?

has been defined in . According to Lemmas and
o 1
l}wgof]? (#As]{\]’ > €> =14 06(e).

e A similar reasoning yields

1
. . N > - — ]
l}\gg@f@(#BsN > 5) 1+ 46(¢e)
e Take a sequence vy such that f(N)In N < vy < f(N)On. Then according to part a)
of Corollary
limsup P ([SN — UN, SN] N f(N)&NyN7“N = @) =1.
N—oo

Finally, according to Proposition (on the quick merging of load zero ASG’s),

AYN N

Ay, B -
hminf[P’(‘Ko N2TEN ZSN—UN’#A?:]I\\,’ > 1/e and #Bé\]]\, >1/6> >1-9(¢g).
N—o0

From these facts we deduce that

lim P (TNv“N(sN) - SN’U’N(SN)> =1

N—oo

We proceed in a similar way to cover the timeframe [0, sy, which contains a random number
of points of .”V:“N that has a finite expectation. We thus add a sum of errors that converges
to 0 as N — 0o, which allows us to conclude the proof. [l

The following lemma says, roughly spoken, that at generic, suitably large times ¢ty the
minimum load ASG (which is a backward in time construction) with high probability not
only is appreciably large but also contains an indivdual whose type is best among the total
population at time ¢p. This lemma is a building block in the second proof of Theorem )
that will be carried out in Section It will also help completing the first proof of this
theorem, see the end of the current section.

Lemma 9.5. Let (ty) be as in (9) and (un) be such that (uy —tn)/(Onf(N)) — oo as
N — co. Let AZ]VV be the minimum load ASG at time ty of the total population at time uy,
as specified in Definition[].6] . Then

i (#Aygy > /NJF(NY; 3o € A% (o) = K}(,(tN)> 41 asN = oo. (45)

Proof. Let Ay be such that f(N)InN < Ay < f(N)0n Aty. From Lemma5.1] we know that

the law of the process (#A,N_,.,r > 0) is the same as the law of the process (Z]—gj(\g (r),r>0)
studied in Section [6] (defined in (32)), with initial state (N, 0, ...,0,...). Thus from Lemma[6.4]
we obtain that the distribution of #A,N __ at a given time s > f(N)y is of order N/f(N)

with a probability close to one. We may thus apply Corollary with jt%v = _,LI;‘;]V and
Ji = [N] x {tn} to obtain

lim P (7 VA > gy ) =1, (46)

N—o0

Take an individual (i,¢y) belonging to the best class at time ¢y, that is to say
n(i, tn) = Ky(tn) =: 9" (47)
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On the event é‘}g,l) = {%j:]yy[N]X{tN} > tn — Ay} we have
it ALY
AN cA Y =: 9N,

tN—AN tN—AN

and consequently also

n(i,tx) > min {n(v) v e AP } > min{n(v) : v € In} = dpm (A’ng,dN) .

tN—AN

Now consider the event that there is no click on the ASG between times ¢y — Ay and ty, i.e.

éD]E]2) = {T;X’UN <ty — Ay <ty < T;Y’_:_Lf]}

On this event we have
AN _
dm (AéfN,%N) = dpm (AO N ,AZ{;’) = min {n(v) : v € AN} > Ky (tn), (48)

where the last equality and the last inequality hold by definition. The chain of (in-)equalities
f shows that on the event <§’]S,1) N 6"]&,2)

min {n(v) : v € AN} = Ky(tn).
Propositionand ensure that IP’(é‘}g,l) ﬂéajs,z)) — 1 as N — 00, which ends the proof. [

Completion of the first proof of Theorem a ). Without loss of generality we may choose uy
in Lemma so large that AN = A{l. In this way we obtain as a consequence
of ; hence, as announced in Remark Lemma also concludes our first proof of

Theorem [2.3h). O

10. CLICK RATES: PROOF OF THEOREM

The next lemma relates the click times of the ratchet, defined as the jump times of the
process K} given by , to the times T, ;V N obtained from the point process ZNUN of
backward click times, see Definition [0.1] and Proposition As will become clear from the
following proof, each time TgN "N with high probability ’announces’ a click time of the ratchet,
with waiting times whose lengths on the f(N)6fy-scale tend to zero in probability as N — oc.

Lemma 10.1. For anyt > 0,

P | Ky (f(N)ont) => 1 e ooy | L @8 N oo (49)
g1

Proof. Since K3,(0) = 0 and T;V’UN > 0 a.s. for g > 0, we need only to consider the case ¢ > 0.
For abbreviation we put ty := f(N)fyt. Let us recall the definition (given in formula (L6]))
of the set A“N of minimal load potential ancestors at time s of the total population at time
upy. Let g* be such that

Noun Noun
Tg* S tN < Tg*-i—l

and take (i,ty) € A;'Y. Then by definition

K (tn) < da (AG™ G tn) ) = 9"
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Now, notice that we have the following event inclusion:
t
(5 o) <o) © A%, € A |
g* g*

But according to Proposition [9.2

TN
limsupP | dgeN,———— c[t—¢e,t+¢] | =0d(e),
nsup g F(N)oy [ ] (e)

and according to Corollary the merging time of A“N and A'~ back from time ty is
O(f(N)In N) with a probability close to one for large N. As by assumption f(N)In N <
f(N)fy, this concludes the proof of (49)), and shows the lemma. O

Propositionthen implies that, as N — oo, the sequence of processes (K (f(N)Ont)),~0
converges in distribution to a rate 1 Poisson process. This is the assertion of Theorem ([2.2]).

11. FIRST PASSAGE PERCOLATION IN POISSON-DECORATED Y ULE TREES

In this section we consider a Yule tree ¢ with splitting rate «, and regard ¢ as the union
of the (infinitely many) lineages [ leading from the root to co. Given %/, let II be a Poisson
process on % whose intensity is u times the length measure on . (In Section ﬂ we will
prove that these Poisson-decorated Yule trees indeed appear in the ASG as N — oo, see
Figure [4] for an illustration). Again we assume pu < a and define the minimal I1-load in % as

L := min{II(l) : [ is a lineage of #}. (50)
In this section we will use the abbreviation
1 1 q
q:= === (51)

a+p’ P =1 q
Proposition 11.1. a) L defined by 1s an Ng-valued random variable satisfying

P(L>/¢)=8Bo..06(p), ¢ € Ny, (52)
£ times
where p is as in and
1
&(s) :25(1+p—\/(1+p)2—4p8), 0<s<l. (53)

b) The distribution weights
7 :=P(L=k), k& Ny,

satisfy the recursion , and thus are equal to the probability weights pg, k € Ng appearing
in Theorem [2.3.

Proof. a) Consider a binary branching Galton-Watson tree ¢ with offspring distribution
P (no child) = ¢ = 1 — P (two children).
Let m; be the number of leaves of 4. We put

E[s™], 0<s<1

P(#9 < 00), s=1. (54)

9(s) == E[s™ [{pgcoey] = {
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A first generation decomposition gives
g(s) =as+ (1 —q)g(s)*, 0<s<1.

From the two solutions of this equation only the function & given by is admissible, since
from we have that g(1) < 1. Consequently, we have

E[s™ Ifpgcoy] = 6(s), 0<s<1. (55)

In particular, putting s = 1, we recover the extinction probability of the underlying Galton-
Watson process as

P(#9 < 00) = &(1) = p. (56)
The Galton-Watson tree ¢4 can be seen as embedded in the Yule tree #: when moving away
from the root of %, every first encouter with a point of Il stands for a death in ¢, while every
splitting point of % stands for a birth in ¢. Hence the event that ¢ is finite equals the event
that there is no lineage [ in % with II(l) = 0, which in turn equals the event {L > 0}. In
particular we obtain

P(#9Y < o0) =P(L > 0).
Together with this gives
P(L > 0) = p, (57)
which is in the special case £ = 0.
Exploring the lineages of % beyond the points of Il that are closest to the root of %', we

encounter a self-similar situation: any such point can be seen as the root of an independent
copy of ¢, and the event {L > 1} equals the event that all of these Galton-Watson trees are

finite, which in view of , and has probability
P(L > 1) = E[p™] = &(p).

This is for ¢ = 1. Proceeding further, {L > 2} means that all of the m; many Poisson
points are founders of lineages that carry more than one point of II. This event has probability
P(L > 2) =E[(&(p))™] = 6(8(p)),

which is for £ = 2. Part a) of the proposition now follows by induction.
b) Let ¢ be the edge that is between the root of % and its closest branch point. With ¢ as
in , the random variable II(e) satisfies
P(Il(e) > ¢) = ¢*, (€ Ny. (58)
The random variable L satisfies the stochastic fixed point equation
L LM +min(Ly, Ly) (59)
where L and Ly have the same distribution as L, M has distribution and L, Ly, Lo, M

are independent. We thus obtain
k
P(M + min(Ly, Ly) = k) = Y P(M =k — i)P(min(L;, Ly) = i), k€ N. (60)
i=0
From the independence of L1, Ly we have
P(min(Ly, L) = 1) = 7r2-2 + 2m; Zﬂj =: wj.
j>t
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From we have
P(M =k —i)=¢""(1-q).
Inserting this into and observing we obtain

k
T = qu_i(l —q)w;, k€ No.
i=0

Taking differences yields
k—1
T — 1 = (1= Que — Y ¢" (1 = ¢)*wi = (1 - ¢)(wg — mh—1).
1=0

Observing that (1 — ¢)(1 + p) = 1 we arrive at
L+ p) (e — Tpm1) = | TR +2> 75 | — M (61)
>k

which is equivalent to

p (T — Tp—1) = Tk 7Tk—1+2277j ) (62)
J>k
Since
wk—1+227rj :—wk+1—2+2nk+2zm:—wk+1—2zwj,
>k >k j<k
we see that () satisfies the recursion (10). O

Remark 11.2. a) From we have

&'(s)=p((1+p)? —4dps) *, 0<s<1

and hence &'(0) = (&= =¢ =

Trp . In view of (52} . ) this shows that L has the geometric tails

,LL+

¢
P(L > £) ~ Cyy/a <Mia> . (63)
b) The setting of Proposition gives an instance of Example 40 in [I]: our stochastic
fixed point equation corresponds to Eq. (49) in [I] with a geometrically distributed “toll”
random variable 7. Thus, the results of Proposition [I1.1] apply to a specific case of a sit-
uation which, according to [I], “does not seem to have been studied generally”. As stated
in Theorem [2.3d) and explained in Section this connects to the asymptotic minimum of
a branching random walk whose increment distribution is supported on Ry. (See [13] and
references therein for the asymptotics of minima of random walks with two-sided increment
distributions.)

c) Let # be the Yule tree described at the beginning of the section. For a node v € %, let
a(v) be the path from v to the root, and for h > 0, k € Ny let %},(k) be the set of nodes of %
that have height h and obey II(a(v)) = k. Let L be as in (50). The following lemma says
that the minimal TI-load of the (infinite) lineages in % can with high probability be observed
already at a height wy which is large but of smaller order than In N as N — oco; moreover at
this height there are many nodes of the Yule tree whose ancestral paths collect this load.
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Finally, we define, as an analogue to , the minimal I1-load in % up to height h as
Ly, := min{II(a(v)) : v € %,}. (64)
Lemma 11.3. Let wy — oo with wy = o(In N) as N — oo. Then for all k € Ny,
P (LwN =k, elemuN/2 < gy (k) < 62(0‘*“)“’1\’> — pr as N — oo. (65)

Proof. As described in the proof of Proposition [11.1] an equivalent representation of a binary
branching Galton-Watson tree with mutation at rate p is a sequence of trees of different
types killed at rate u. Descendants of the root are of type 0. Every death of an individual of
type 0 (respectively 1,2,...) leads to a new binary branching Galton-Watson tree of type 1
(respectively 2,3,...). Let us consider the event {L,,, = k}. This event implies that all the
trees of types [ < k — 1 are extinct at time wy. Every such tree is a supercritical tree with
birth rate o and death rate p. Conditioned on extinction, it is thus a subcritical tree with
birth rate p and death rate a. A first step decomposition shows that the expected number
of leaves of this subcritical tree is <&~ = —£— < oo. In particular, this subcritical tree has a

1—p a—p
finite mean extinction time. Hence

lim P <#@/ a() = 0,0 <1<k — 1)Ly, = k) =1
N—oo WN

Moreover, by definition, any tree of type k still alive at time wy is born before the death of
the last alive type k—1 individual. Let us denote by ¢ a binary Galton-Watson tree of type k
with birth rate o and death rate p. On the event of survival (see for instance [2] p.112),

(In %)/t = o —p.

lim
t—o0
On the event
Cpy = {#@wl/Q(Z) —0,0<I<k— 1} A {Luy =k}
N
we know that

e There is a finite mean number of independent copies of Y and a positive number of

them survive after time wy which goes to infinity with V.
e These independent copies have a root born between the times 0 and wjlf.
We deduce that

lim P (@702 < gy, (k) < 270N € ) = 1.

N—oo

Finally, notice that from properties of supercritical Galton-Watson processes,

lim P (#@m(k) > 4%, (k) > e(afmwN/z) .

N—oo

We thus obtain
lim P <L < k|Luy = k, # %, (k) > e(afu)wN/z) L

N—oo
But by definition, L,,, < L, which yields
P (LwN =k, elemen/2 < uay (k) < e2<a—ﬂ>w) —P(L=k) as N — cc.

An application of Proposition ends the proof. O
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Lemma 11.4. Let (wy) be as in Lemma[11.5, and assume that the splitting rate ay(h) and
the decoration rate pn(h) may depend on N and h such that, uniformly in h € [0, wy],

lim ay(h)=a and lim puy(h) = p. (66)
N—o00 N—o00

Let #(N) be the corresponding TI™N) -decorated Yule tree, grown up to the height wy. For
0 < h <wpy, define in analogy to (64))

LY = min{TT™ (a(v)) : v € ZM1.
Then, for all k € N,
WIEN) = P(Lq(ujj\,) =k) = 1 as N — oo,

where (7) is as in Proposition . Moreover, the analogue of holds for L&) and (V)
instead of L and %' .

Proof. All the previous quantities (probabilities, mean numbers, growth rates and expected
times) are continuous functions of the parameters « and p. Sandwiching arguments thus
allow to extend the proof of the previous lemma. O

12. FIRST PASSAGE PERCOLATION WITHIN THE ASG. 2ND PROOF OF THEOREM [2.3]A)

In this section we will give a proof of Theorem ) along the program laid out in Fig-
ure [l This program has two parts. The first one says that the M-decorated ASG’s of single
individuals look at the timescale f(IN) like the Poisson-decorated Yule processes studied in
Section We will prove this in Lemma together with the fact that on this timescale
(and slightly beyond it) the ASG’s of finitely many individuals are asymptotically indepen-
dent. Roughly stated, Lemma says that (with wy as in Lemma the minimal-load
potential ancestors at time ¢ty — wy f(N) of an individual (i,¢y) are numerous and that the
minimal load L., ¢y acquired over the time span wy f(IN) has asymptotically as N — oo
the distribution (pg)ken, given by the recursion , which we encoutered also in Proposi-
tion The second part of the program announced in Figure [4] can be stated as the fact
that a suitably large set of individuals that live at a generically late time sy, contains with
high probability an individual that is of the best type among all individuals living at time
sy (or in other words, has type K3 (sn)). This will be proved in Lemma and will be
applied to the set of minimum-load potential ancestors at time sy := ty — wy f(N) of an
individual (i, ty), showing that this individual’s type nV) (i, x) is indeed the sum of the best
type K3 (sn) in the total population at time sy and the minimal load L, F(n) acquired by
the potential ancestry of (i,ty) between times sy and ty.

Lemma 12.1. Let (ty) obey (9). For e > 0 let /t(]\],V) be a sequence of Py, -measurable
subsets of [N] x {tn} with imy_,0 P(#/t(]iv) >1/e) =1. Then

. . . N . (N) _ * _

lﬁloréfﬂ”(mm{n( Jv):ve Hin } —KN(tN)> =1-14(e),

with 6(¢) — 0 as e — 0.

Remark 12.2. Due to the a.s. independence of #;,, and %, , the type distribution within

the set /t(]év) is the same as that within a random sample drawn from the population at
time tn. Theorem ) asserts that the frequency of best type at time ty is, as N — oo,
with high probability close to pg = 1—pu/a > 0. Hence Lemma is in fact a consequence of
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Theorem ), for which we have provided a first proof in Section@, using results of Section
Our aim here is, however, to give yet another conceptual proof of Theorem [2.3n) which (in
contrast to the first proof), does not use the time-reversal arguments of Section [7| Hence our

proof of Lemma which prepares for the second proof of Theorem [2.3p), will build on
Proposition (which guarantees the “quick merging” of zero-load ASG’s), combined with
Lemma

Proof of Lemma[12.1]. Let (uy) be such that (uy —tn)/(Onf(N)) = 0o as N — oo. Recall
the notation of the merging time of two sets in and introduce for brevity the notation

I AN
I =C) N TN

for the merging time of zero-load ASG’s of jt(]frv) and ﬂ;‘j\fv . Since Lemma [9.5| guarantees that
Afj\f is sufficiently large with high probability, an application of Proposition yields
liminfP (In > sy — C(e)f(N)InN) > 1—d(e).
N—o00
On the event that there is no click on A"N between times ¢ty and Z, the minimum load

ASG A"~ does not acquire additional mutations between those times, hence we have on that
event the equality AUN

Ay;N (0) = flq_ﬁ}lvv
One more application of Lemma [9.5] now to the time J in place of ¢y, implies
P (Elv € AF - M (v) = KJ*V(L%V)> —1 as N — co.

Because of the definition of Jy, the individual v is a load zero potential ancestor of some
vt e /t(I\J;V)' Consequently, with probability tending to 1 as N — oo,

Ex(In) =™ () = g™ (v*) = Ky (t),
which ends the proof. O

For the next lemma let us define, as an analogue to , the minimal load of potential
ancestors at time t —r of an individual (i,t) € GV) as

Lit = dpy (A,ﬁfr : (z’,t)) . (67)

Lemma 12.3. Let ty be as in @ and wy be as in Lemma i.e. Wy — 00 and wy =
o(InN) as N — oo. Choose a sample size n € N, let i1,...,i, € N be pairwise distinct, and
ki,...,kn € Ng. Then, for all e > 0,

) ot 0.t _
lim P (L}f(NN)wN — ke, AN (k) > 1/e 1< < n) = Pry o Dh-

Proof. First notice that if we take independent Yule trees (% ()1 < ¢ < n) as in Lemma [11.3
and denote their minimal II-load accordingly, we get from an application of Lemma [11.3]

P (L(Z) kp, eloe—mwN/2 < #Q/HS? (ko) < AN | < p < n) — Dky * Pk, &8 N — 00.

wN: n

According to Lemma this result still holds true if the splitting rate ax(h) and the
decoration rate py(h) of the Yule trees (9,1 < ¢ < n) may depend on N and h in such a
way that is fulfilled. Hence, to prove the lemma we need to show two properties on the
processes (Aif\’[tfr, r>0)
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e The rates of the processes (Aifv’ti\’h F(N) h > O) indeed follow
e They are asymptotically independent in the following sense

lim P (] AL, =0,vr < f(N)wy | =1.

N—oo N
1<4<n

Recall the rates of the processes (Aifv’tivr, r > 0) as stated in Lemma In particular, they
imply that these processes are dominated by a Yule process with birth rate o/ f(N). Hence,
if we introduce the event

5(N,notbig) — sup A;f\,]tivr < e2awN ’
r<i(

N)wy,1<0<n
and apply Lemma A.1 in [0], we get
mnP@WMWQZL (68)

N—oo

Recall 73 in which describes the rate at which two currently disjoint ASG’s acquire a
common point. On the event WV mowig)} the mean number of such events during the time
[0, f(N)wy] for two processes among (Ai‘j\’]tfr, 1 < ¢ < n) is thus bounded by

1

ﬁ(2€2aw1\r)(262aw1\7 _ 1)U)N,

which converges to 0 as N — co. Applying the Markov inequality and ends the proof. [

Proposition 12.4. Let the type configurations n™)(i,t), i € [N], t > 0, be as in Section@
with n™N)(3,0) := 0, and let K%(t) be as in (15). Let (tn) be a sequence of time points
which obeys @ Choose a sample size n € N, let i1,...,1, € N be pairwise distinct, and
ki,...,kn € Nog. Then, with (pr)ken, given by the recursion ,

Jim P (9™ t) = K (tn) = ko™i tn) = Kxe(En) = k) = pry b

Proof. Let wy be as in Lemma and sy =ty —wy f(N). Once again we let (uy) satisfy
(uny —tn)/(ONf(N)) = 00 as N — oo. Applying Lemma 1] to the set A% of minimum
load potential ancestors at time sy of the individual (i, tx) (see Definition |4.6|) yields
P (min{n(N)(v) tv e AUINY = K]’(,(SN)> —1 as N — oo.
From Theorem 2.2l we know that
P(Ky(ty) = Kxn(sny)) =1 as N — oo.
Hence we conclude, using the notation ,
P (n(N)(ie,tN) = Ky(tn) + L“”tN(N)> —1 as N — oo.
An application of Lemma thus concludes the proof. U

In accordance with the graphical representations of £V)(t) and K% (t) in and (|13]),
the empirical type frequency proﬁle seen from the currently best type (defined in ) is

represented as
X(N 2577(1\[ ’Lt K* ), kGNo,tEO
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The following corollary concludes our second proof of Theorem a).

Corollary 12.5. For (ty) as in Proposition and all k € Ny, XIEN)(tN) converges in

probability as N — oo to py, with (pg)ken, given by .

Proof. For all k € Ny, the second moment E[X IEN) (tn)?] is asymptotically equal to the prob-
ability that, for Ji, Jo randomly sampled from [N], the types nN)(Ji,ty) — K (ty) and
7N (Ja,tn) — K% (tn) both are equal to k. Proposition tells that this probability con-

verges to pi as N — oco. By the same proposition, pz is the limit of IE[XIE.N) (tn)]? as N — oo,

hence the variance of X IEN) (tn) vanishes as N — oo. O

13. THE QUASI-STATIONARY TYPE FREQUENCY PROFILE: PROOF OF THEOREM )-D)

Part b). Choosing k£ = 0 in and using the assumption that pg +p; +--- = 1, we see that
implies pg = 1— g The equivalence of and is then immediate from the identity

k—1 ) k—1
—Pk+1—22pk'= Z pk'—Zpk'-
k=0

k'=0 k'=k+1
Part c). Abbreviating 1 — u/a = 8 we get from :

2
po =5, plz\/@) rpa-p -2

Therefore, p3 > p? < 962 > 82 +48(1 — B) <= 28 > 1 — B < [ < 1/3, with equality iff
B =1/3. This proves the assertions (i) and (ii). For checking (iii), we define

P::max{kENgz Zpk/ < Zpk/}.

k'<k k'>Ek
For k := ¢+ 1, the Lh.s. of is strictly negative, hence pgy1 < pe. Since the Lh.s. of
is strictly decreasing in k and thus can be zero for at most one k, it must be strictly positive
for k := £ — 1, hence, again because of we have pg_o < pp_1.
The claim concerning the geometric tail of (py) follows immediately from combined with
Proposition [11.1p).
Part d). The characterisation of (pk)ken, in terms of minimal Poisson loads of infinite lineages
in a Yule tree has been proved in Proposition b).

To see the equivalence to the characterisation via the eventual minimim in a branching
one-sided random walk, we think of the latter as a family of random walks, indexed by the
infinite lineages [ of a Yule tree .7 with branching rate . All the random walkers move on N,
starting at 0 and jumping from k to k+ 1 at rate u. The (correlated) dynamics of the walkers
can thus be seen as driven by a Poisson point process II with rate y on .7: each point of II
induces an upwards jump by one, and the (continuous) time of the walks corresponds to the
height in 7. Thus the position at time ¢ of the walker that is indexed by an infinite lineage
[ of 7 is the number of Poisson points which [ carries between heights 0 and ¢. Denoting
by M (t) the minimum of the position of all the walkers alive at time ¢, we see that M(t)
increases to the NoU {oco}-valued random variable K := min{II(l) : [ € 7}, i.e. the minimum
over the numbers of Poisson points carried by the infinite lineages in 7.

This concludes the proof of Theorem
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14. PROOF OF LEMMATA [6.3] AND

This section is dedicated to the study of the process (ZN)(r),r > 0). The proof of Lemma
6.3| relies essentially on the fact that a stochastic Lotka-Volterra process with large carrying
capacity K resembles a supercritical process when its size is small and once close to its
carrying capacity, stays in a neighboorhoud of this latter during any time of order In K. This
last property is stated in Lemma C.1 in [4], which will be instrumental in the following proof.

Proof of Lemmal6.3. We will prove this result by induction. Let us first consider the case
k = 0 and introduce, for ¢ € (0,« — p), the notation

e(ay pye) :i=2(a — pp — ).
Notice that for N large enough and n < e(a, p,) N/ f(N), the birth and death rates defined
in (6.1 obey

bO(na N) >

-

7 (1—&) and do(n,N)g%Q—%).

Thus, if Zy(0) < e(a, p,e) N/ f(N), before its hitting time of e(«, u,e)N/f(N), Zy stochasti-
cally dominates a supercritical branching process with growth rate

=3

F(N)da ~ 4f(N)

and initial state 1/e. From well known results on supercritical branching processes (see for
instance [2]), and since e(a, 1, €) < 2(av — ), we get that

N
f(N)

where 6(¢) — 0 as € — 0. With similar computations, we obtain that

f(]j\r)} < gf(N) lnN> —1

By definition, the process Zy cannot exceed N. As a consequence, for any r > 0,

N—oc0

lim inf P <inf {'r >0, Zy(r) > e(a, p,e) } < gf(N) lnN’Zo > 1/5) =1-4(e),

lim P <inf {r >0,Zo(r) <e(a,p,—e)

N—oo

a a B M
bo(Zo(r),N) < ﬁ and do(Zy(r),N) > f(N)E = f(N)
]

Thus, applying Lemma C.1 in [4], we obtain that for any R < oo,

N
lim P sup Zo(r)} <eN|Zp(0) < e(a, p, —¢) =1.
N—roo <r§Rf(N)1nN{ ()} f(N)
Moreover, as long as Zy(r) < eN, the per capita birth rate of Zy satisfies:
Q Q@
—— (1 =€) <bo(Zo(r),N) < —,
Favy ) = WA S

and since —e/f(N) + 1/2N < 0 for large N, then the per capita death rate of Zy may be
bounded as follows

a (p—e  Zr)f(N)
f(N)< a + 2aN

)édowo(r),zv)s o (MW)'

f(N) \a 20N
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Applying again Lemma C.1 in [4], we obtain that for any R < oo,
I
im P(—==2Z(r) € [e(a, p,2¢), e(cx, p, —2¢)] for all r < Rf(N)In N
N—o00 N
f(N)
N

(0) € [e(ar, ), e, i, _5)}) — 1.

This proves the lemma for k£ = 0 with Cp(e) = 6/¢ and Cy = 4e.

Let us now take ¢ € N and assume that holds true for £k = 0,...,g — 1. Jointly for
all these k = 0,...,g — 1 we can take a time frame (which may be as long as we want on
the f(IN)In N-timescale) on which f(N)Z,/N € [n, — Cre, g, + Ciel, and Z; < 4aN/f(N).
During this time interval, the birth rate of the Z,-population is larger than

woo, N 4o
7w o1 = Com1®) 75+ 2o >(1 f(N)>

and smaller than

. g N L, e
7 (o=t + Com®) gy + 2oy

Likewise, the death rate is larger than

wo Zg—1 N
Zs (f(N) N2 Ce) f(N)>

and smaller than Z, g1 N
1
A + —|— ng + Cre
g (f(N) 2N kzﬂ VT )

The remaining part of the proof is the same as in the case g = 0, again with an application
of [4, Lemma C.1]. O

Proof of Lemmal[6.4 Equation is a property of quasi-stationary distribution (see for
instance Proposition 2 in [16]).

The second part of the lemma arises from couplings of the process Zy with logistic birth and
death processes and applications of results from [6]. To see this in detail, recall the definition
of by(., N) and dy(., N) in and choose € > 0. Then for N large enough and any n € N,

bo(n, N) < % and % <u—e+ ”J;E\][V)> < do(n, N) < % <u+ ”é?) ,
and for n <eN/a, n
(a _E)f(N) < by(n, N).

Now let us consider two auxiliary birth and death processes Z(()J“N) and Z(()_’N), where

nbo(+,n,N) := 2% from n to n + 1,

Z(()+,N) has jump rates { ndo(+,m, N) = J;((?V)) ( Cex nf(N)> from 1 to n — 1,

Zé_’N) has jump rates { nb()(_?n, N) - (a - E)f(?v)nf(N) rom nto =1

ndo(—,n, N) := 75 (M—l- SN ) from n to n — 1.

(Rv_vN)

In addition we consider the process Z which has the same rates as the process Z(()_’N)
on the set {0,...,|eN/a] — 1} and is reflected from below at Ny := |eN/a|, i.e. jumps from
Ny to Ng — 1 at rate Nodo(—, Ny, N) but never jumps from Ny to Ny + 1 (see Figure |5)).
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leN/a] 7~

Sy
\

\
]
L

0

FIGURE 5. This figure schematically displays Z(()_’N) (path drawn solid) as

well as ZSR’_’N) (path drawn dashed), illustrating how the total length of the
excursioins of Z(()_’N) above level [eN/a] determines the difference of the times

at which the two processes hit 0.

We can couple Zjy and Z(()+’N) such that for any r > 0,

Zo(r) < 250 (r).

Denoting by 1/1(\?[) the quasi-stationary distributions of Z(()i’N) and by 0](\?[) the real numbers

such that
+
B (265900 0) = 008,
N

we thus obtain an upper bound for 0y, namely 6y < 9](\?). Indeed Zj (resp. Z(()+’N)) with an

initial state of order N/f(N) may be coupled with Zj (resp. Zé+’N)) with initial distribution

vn (resp. V](\;r)) in such a way that they coincide after a time of order f(IN)In N (the proof is

similar to that of Lemma .

We can also couple Zp and Z(()Ry—,N)

such that for any r,

Z V) < Zo(r). (69)

Indeed, this relation is fulfilled if Zy(r) > |eN/a], since ZéR’_’N) < |eN/a] by definition.

As long as Z(()R’_’N) < |eN/a], however, the process ZSR’_’N) has a smaller birth rate and a
larger death rate than the process Zj.

The coupling allows us to bound the mean extinction time of Zy by that of ZéR’_’N).

In order to estimate the latter we will prove that the mean extinction times of the processes
Z(()R’_’N) and Zé_’N) are of the same order. We will then apply results of [16] to get an
equivalent of 05\7_), the mean extinction time of the process Z(g_’N). Let us consider a realization
of the process Zé_’N), and denote by (7", de””,i € Np) the successive entrance and exit

times of [|[eN/a| + 1,00) by the process Z(()_’N), defined recursively as follows:
g = gfown —
g = inf{r > 79, 25 (r) = |eNJa) +1},
Fdown = inf{r > 7, 20N (r) = [eN/a}, i €N.
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Then if we ignore the excursions above |eN/«a| and glue together the points beginning and

ending these excursions (that is the point 7" and de’m), we obtain a realization of the

Z(gR’_7N), which is almost surely smaller than the process Z(g_’N) at any time. To

ZO(C,—,N)

process

make this “glueing of excursions” formal, let us introduce the process via

)

25Ny = 2 (= 30 (e - 7)

j=1
for r in the random time interval
i—1 i
up down up up down up
7; —Z(ﬂj _’Z)STS‘Z-&-I_ (‘73 Rz )
j=1 =1

This process obeys
Z§=N £ B2 and 287Ny < 20N @), v >0, as.

Thus, if we prove that the mean time spent above |[eN/«| by the process Zéf’N) is negligible
with respect to its mean extinction time 05\7), we may deduce that the mean extinction time
of the process Z(SR’_’N) is equivalent to 95\7_), which in turn entails that 95\,_) < On.

As v is a quasi-stationary distribution, we have for every r > 0 (see for instance [16]),

v ([eN/a),00) = B, (25 (1) € ([eN/al,00)) (B, (HY) > r))il

. (=)
= Py(—) (Z(() ’N)(T) e (LSN/O[J,OO)) 6r/f(N)eN .

N

Hence, the expected time spent by the process Zé_’N) in the set (|[eN/a], c0) is

E, [/0 1{ZS,N>(T)>LEN/QJ}CZT] :/0 P,c) (ZO (r) > LeN/aJ)dr

= (Nl oc) [t IO dr o) (N ) N6,
0
where we applied Fubini’s Theorem.

Now from Theorem 3.7 in [6], we get that the total variation distance between VJ(Vi) and a

Gaussian law centered at 2(a — p— )N/ f(IN) and with variance N/((a —¢)f(IN)) is of order

f(N)/N. We deduce that
lim v (|eN/a],00) =0,

N—oo

which allows us to conclude that 01(\;) <Oy < Hﬁ).
A direct application of Remark 3.3 in [6] yields that, as N — oo,

e§v‘>~f<N><a—e—u>2\/Wexp(2(“_5_“”1“@:)f<NN>)

and
0\ ~ F(N)(a+e— u)z\/27r(u —g)fz(x) exp (2 (a—i—s — i+ (e —e) 1n“;5) f(NN)) .

This concludes the proof of @, and thus completes the proof of Lemma O
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Proof of Lemmal6.5 To prove part a) of the lemma, we will zoom on a small window before
the extinction time of Zy = Z(SN), namely after the last hitting time of 1/2. The strategy of
the proof consists in showing that this time is short (having a duration of order In1/e) and
that on the way to extinction, Zy will feed the Z; population by producing many individuals
that carry one mutation.

To begin with, we consider the process Zy conditioned to reach 0 before |1/£2]. Its tran-
sition matrix P arises from that of the unconditioned Zp as the harmonic transform

h(i—1) p 4 L)1)
h(i) a(l—%)+u+%7

P(iyi—1) =

where

h(i)::IP’(H() Hﬁ‘% (O):i), i=0,...,[1/2], (70)

and H Z(N) is the first hitting time of z, cf. ( . The form of the harmonic functions for birth
and death chains in terms of ratios of upward and downward jump rates is well know; for
this leads to the expression

i 9l o+ LG
hi)=1-1—=h1))> J[ee where pp:="——-28— 1<k<N.
j=1 k=1 (1 - N)

Hence we need to study the quantity
hi—1) 1= —h(1) X5 T i3
h(i) L= (1= h(1) X5 Iz on

In fact a lower bound will be sufficient in our case. We notice that the expression in ([71)) is
non-decreasing if any of the py’s is increased, and that pr < p/a for any k. We thus get

Mi—1)  1- (1= hO) ST /e 1= G- b)a (1-(5))
h(Z) o 1-— (1 — h(l)) 23'21 Hi;ll M/Oé 1— (1 _ h(l))L (1 _ (H)Z)

a—p «a

(71)

The last step consists in finding an equivalent of 1 — k(1) for large N. As for any k < 1/¢2,

f(V)
I < pp < %7
@ (1_N<€2)

we obtain from classical results on hitting probabilites for Galton-Watson process (see [2])

1/€2 -1 g\ —
1_% _ M <1_h(1)<<1_u><1_<1u,>1/6> 1'
a(l—NLSQ) a(l—i) - - «o @

Ng2
We thus get that

o — 1/5
1-h(1) = =Eo/m ()7
where 6(1/N) — 0 as N — oo, which entalls that for any 1 <i < 1/e2,
h(i—1) «
=2 451N
OR (1/N)
and consequently Plii—1)= a (1/N).
o+ n
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In other words, the process Zy conditioned to reach 0 before 1/c? behaves as a subcritical
branching process with individidual birth and death rates p/f(N) and «/f(N). With a
probability close to one when ¢ is small, it thus takes a time smaller than 4 f(N)/(a—p) In(1/¢)
to reach 0. We will now prove that during this time, on the way of extinction, a number of
order 1/e? of individuals of the Z; population are produced by mutation from Zg individuals.

Let us denote by PEiZJO.)’Zl)((k, 1)) the probability for the process (Zy, Z1) to perform its first
jump to (k,l) when starting in (¢, 7). We then have
P (0= 1,5+ 1), B < H{)))

(Zo20) () — ™)
B (" < 1))

(Zo,21)
(4,9)

((i— 1,j+1)‘Hé < Hl(j?) -

(Z(),Zl) _
B IP’(”) (t—1,7+1)) p\Zo. 1) (H( ) o H(N)
]P)EZO’Zl) (H( )<H( )) (Zvj) 1/6

(¢—1,j+1))

J) 1/e?
(Zo,21)
P ((i—1,j+1)) hi—1
(i.J) (Z0,21) (N) _ 77 (N) (Z0,21) /. , (1—1)
- plZo.2) (N gt — plAoZ) (G 1) L
Zo,20) (g (N) _ (V) <z_1,]+1>< 1/5) (iJ) "
P (Y < B (4)

with h(i) as in . The last equality is a consequence of the autonomy of the law of Zy, cf.
Remark In the same way, we can prove that

(Z0,Z1) (N _ (Z0,21) 44 .
P (=1, | Y < B ) =P (G- 1,9)

This entails that

(Zo,2Z (N) N) 20,2 . .
P (= 1+ D)|HY < H)L) B (1,5 +1))

Z0.Z N N = T o (Z0Z1) /. .
P (- 1)|mE” < (D) B (- 1.9)

In other words, conditioning on the event that Zj is on its way to extinction does not modify
the proportion of those deaths in the process Zy which lead to a creation of a new individual
in the Z; population. Hence, if we denote by .# () the number of mutations from Zy to Z;
after the last visit of Zy to |1/¢2], we have

1/€2
Be® [ — L
-y n ().

where the Be(i)()\i)’s are independent Bernoulli random variables with parameter A;. Indeed,
in the considered time interval there are at least 1/e% deaths of individuals in the Zy pop-
ulation, and the parameter of Bel is the probability that a jump from ¢ to ¢ — 1 in the
Zy population leads to the arrival of a new individual in the Z; population. For & small
enough, the random variable .# (¢) is thus larger than 1/(2¢?) with a probability tending to 1
as N — co. The evolution of the Z; population after the last visit of Zg to |1/¢2] can thus
with high probability be coupled to the offspring of [1/(2¢2)| immigrants arriving in a time
interval of length 4f(N)/(av — p)In(1/e), with their offspring suffering an individual death
rate by competition from Zy individuals which is smaller than 1/Ne?, as well as a reduction
of their individual birth rate (compared to «) that is smaller than o/(f(N)e2N). This proves

part a) of Lemma
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To prove part b), in view of Lemmata and it suffices to restrict to the event
{kny > 0}. We can then work iteratively along the extinction times of the Zp, ... Zy, 1
populations, applying part a) by induction.
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