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Character izat ions of
intr insic volumes on convex bodies

and convex funct ions

Fabian Mussnig 1

If we want to express the size of a two-dimensional
shape with a number, then we usually think about its
area or circumference. But what makes these quanti-
ties so special? We give an answer to this question in
terms of classical mathematical results. We also take
a look at applications and new generalizations to the
setting of functions.

1 What makes area and circumference so special?

If we have an object in two-dimensional space, there are several numbers we
can assign to it that express how large it is or that measure its size. The usual
area and the circumference are probably among the first ones that come to our
minds. But what makes these quantities stand out?

In what follows, we will answer this question for what are called convex
bodies. These are sets that are both convex and compact. A set K is convex if
for any two points x, y ∈ K, the line segment connecting x and y is inside K,
see Figure 1. Compact means that the set is bounded and that it is closed, that
is, it is not infinitely large and the boundary is part of the set. In German,
convex bodies also used to be called Eikörper which roughly translates to “egg
bodies”. Indeed, eggs are usually (three-dimensional) convex bodies but not
every convex body looks like an egg.

1 Fabian Mussnig is supported, in part, by the Austrian Science Fund (FWF): J 4490-N.
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Figure 1: The set on the left is convex. The set on the right is not convex,
since the line segment connecting x and y is not inside the set.

1.1 A character izat ion of area

Let us start with the area. Obviously, the area of a convex body does not
change if we move it around in the two-dimensional plane. We thus say that
area is translation invariant. We may also rotate a body without changing its
area. Less obviously, we can even stretch a body in one direction and compress
it in another direction while maintaining its area, see Figure 2.

In mathematics these operations on a body are called special linear transforms
and they are represented by matrices with determinant 1. 2 Hence, we say
that area is SL(2) invariant, where SL(2) stands for the group of special linear
transforms in two-dimensional space.

Figure 2: The original set on the left is stretched in horizontal direction and
compressed in vertical direction to obtain the set on the right. Both
sets have the same area but the set on the right has a larger circum-
ference.

2 The determinant of a matrix is a number that captures important information about
the transformation that the matrix represents. See, for instance, http://mathinsight.org/
determinant_matrix.
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Figure 3: Two convex bodies K and L, their intersection K ∩ L, and their
union K ∪ L.

Another property of area is that it is continuous. This means that if we
change a body slightly, then this will also only cause a small change in its area. 3

Last but not least, area is a valuation. This means that if we take two convex
bodies K and L, then

area(K ∩ L) + area(K ∪ L) = area(K) + area(L).

Here K ∩ L is the intersection and K ∪ L is the union of the bodies K and L. 4

We illustrate this in Figure 3. In a certain way, this means that area is measuring
objects.

In 1937, Wilhelm Blaschke (1885–1962) in [1] answered the following question:
What are all the continuous, SL(2)- and translation-invariant valuations on
convex bodies? As we have just discussed, area is one of them. But there is
also a very trivial candidate, namely that we assign to each convex body the
number 1. This is also called the Euler characteristic. The answer that Blaschke
found is that any valuation of convex bodies in the plane is either a multiple
of the area (for example, assigning to a body 4 times its area is a valuation),
a multiple of the Euler characteristic, or a sum of these expressions. So if we
write K2 for the set of convex bodies in the plane, Blaschke’s result says that
every continuous, SL(2)- and translation-invariant valuation Z : K2 → R is of
the form

Z(K) = c0 + c1 area(K) (1)
with c0, c1 ∈ R. This means that Z is a linear combination of the Euler
characteristic and the area. Conversely, every expression of the form (1) is a

3 To make this more precise, we would need to specify the topology on the set of convex
bodies, which is given by the Hausdorff metric. For full-dimensional bodies this is also
equivalent to the symmetric difference metric, that is, the area (or more generally, n-volume)
of the symmetric difference.

4 Usually when we speak of valuations defined on convex bodies, we need to ask that also
K ∪ L is again convex. However, all the valuations in this article can be extended to finite
unions of convex bodies.
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continuous, SL(2)- and translation-invariant valuation. This also means that
Blaschke could show what makes area so special. Because apart from the very
trivial example of the Euler characteristic, it is essentially the only continuous,
SL(2)- and translation-invariant valuation on K2.

1.2 A character izat ion of circumference

Next, let us discuss circumference. Clearly it is translation invariant. It
is also invariant under rotations, but not under the larger group of special
linear transforms, see Figure 2 again. Circumference is also continuous and
it turns out that it is also a valuation (at this point it might be a good idea
to have a look at Figure 3 again). So similar to Blaschke’s result, in the
1950s Hugo Hadwiger (1908–1981) in [4] gave an answer to the question of
what all continuous, rotation- and translation-invariant valuations on convex
bodies look like. Note that this question is very similar to the one asked by
Blaschke, except that SL(2) invariance is now replaced by rotation invariance.
Since special linear transforms are more than just rotations, this means that
rotation invariance is less restrictive than SL(2) invariance and thus we expect
more valuations to satisfy these conditions. Indeed, we already know that not
only linear combinations of the Euler characteristic and area should appear in
Hadwiger’s result but also circumference. It turns out that there are no further
examples and Hadwiger’s characterization theorem in the plane states that a
map Z : K2 → R is a continuous, rotation- and translation-invariant valuation
if and only if there exist c0, c1, c2 ∈ R such that

Z(K) = c0 + c1 circ(K) + c2 area(K), (2)

where circ(K) is the circumference of K ∈ K2. We can now further modify
this result to obtain separate characterizations of the Euler characteristic,
circumference and area, since they have different degrees of homogeneity. This
means if we scale a body K by a factor λ > 0, then its area will change by λ2. So

area(λK) = λ2 area(K)

and we say that area is homogeneous of degree 2. At the same time the
circumference of K will change by λ1 (so circumference is homogeneous of
degree 1), while the Euler characteristic of K will not change at all. See
Figure 4. So now we know that circumference is essentially the only continuous,
translation- and rotation-invariant valuation that is homogeneous of degree 1.

2 Higher dimensions

While so far we have only discussed the two-dimensional case, everything that
we wrote above also works in general n-dimensional Euclidean space. In this
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Figure 4: If we scale K by 2, then its area is multiplied by 22 = 4 and its
circumference changes by the factor 21 = 2.

case, Blaschke’s result remains more or less unchanged: all continuous, SL(n)-
and translation-invariant valuations on convex bodies in Rn are given by linear
combinations of the Euler characteristic and (n-dimensional) volume, which is
the generalization of area to n-dimensional space.

In Hadwiger’s result for n dimensions we will however obtain linear combina-
tions of a total of (n + 1) different operators: these are the intrinsic volumes
V0, . . . , Vn. We have already encountered V0 and Vn: V0 is the Euler character-
istic and Vn is the n-dimensional volume. That is, if K is a two-dimensional
body K, then V2(K) is its area and if L is a three-dimensional body, then V3(L)
is its usual volume.

The intrinsic volumes V1, . . . , Vn−1 need a bit more explanation. If we are
in two-dimensional space, then Hadwiger’s theorem, now written in terms of
intrinsic volumes, tells us that all continuous, rotation- and translation-invariant
valuations Z : K2 → R are of the form

Z(K) = d0V0(K) + d1V1(K) + d2V2(K),

with d0, d1, d2 ∈ R. If we now compare this with Equation (2) and also consider
that V2(K) = area(K), then we might suspect that V1(K) is proportional to
the circumference of K. Indeed V1(K) = 1

2 circ(K) for K ∈ K2.
In three-dimensional space, V2(K) equals half the surface area of K ∈ K3

and V1(K) is proportional to the mean width of K. For a more thorough but
also very well-presented discussion of intrinsic volumes we refer to the beautiful
snapshot by Liran Rotem [5].

3 Appl icat ions

Let us briefly take a look at an application of Hadwiger’s theorem. For this we
consider a convex body K in three-dimensional space. We place a light source
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Figure 5: A convex body in three-dimensional space and its shadow. The light
source, which is placed to the right of the body and emits parallel
rays of light, is not shown.

that emits parallel rays of light on one side of the body and a sheet of paper
on the exact opposite side. The body K now casts its shadow on the paper
and we can measure its area, which is depicted in Figure 5. We repeat this
construction by letting the light source shine onto the body from all possible
directions (each time placing the sheet of paper on the exact opposite side) and
take an average of the shadow areas that we obtain. 5 We now claim that we
have just calculated the surface area of K (up to a fixed multiplicative factor).
How do we know this?

It turns out that the process we have just described (and which ultimately
assigns to a convex body a number) is a continuous, translation- and rotation-
invariant valuation. Furthermore, it is homogeneous of degree 2. Indeed, if we
scale the body K by a factor λ > 0, then we also scale its shadow by the same
factor and the shadow’s area changes by λ2. Thus, by Hadwiger’s theorem for
three-dimensional space, this valuation must be a multiple of the surface area.

This alternative way to calculate the surface area of a convex body is also
known as Cauchy’s surface area formula. It was first proved roughly 100 years
before Hadwiger proved his famous theorem. Hadwiger’s theorem not only
provides a quick explanation of why this formula is true, it also allows us to
obtain other, much more general formulas, of a similar spirit.

5 Here we really mean all possible directions, which means that the average is taken over
an infinite number of possibilities. Formally, this is expressed in the form of an integral.
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Figure 6: The area above the graph of a convex function u(x) is an unbounded
convex set.

4 From convex bodies to convex funct ions

Next we want to discuss how we can extend intrinsic volumes and valuations from
convex bodies to convex functions. Roughly speaking, a real-valued function u
on Rn is convex if the area above its graph is a convex set. In two dimensions,
this idea is depicted in Figure 6. We will also allow convex functions to attain
the value +∞. Among other reasons, this enables us to represent a convex
body K in Rn by its indicator function

IK(x) =
{

0, if x ∈ K;
+∞, otherwise.

It is not hard to see that IK : Rn → (−∞, +∞] is a convex function if and only
if K is a convex set. Perhaps try to see it for yourself with indicator functions
over sets in R or R2 (where it is at least possible to sketch the graph). Our goal
now is to find operations on convex functions that generalize intrinsic volumes.
This means if we apply such an operation to an indicator function of a convex
body K, then we want to obtain an intrinsic volume of K.

4.1 The one-dimensional case

We will demonstrate our ideas in the case n = 1, which means that we consider
convex functions u : R → (−∞, +∞]. The convex bodies in one-dimensional
space are intervals of the form [a, b] with a, b ∈ R, a ≤ b, and each such body
is represented by the convex indicator function I[a,b], as depicted in Figure 7.
Hadwiger’s theorem in the one-dimensional case describes two intrinsic volumes,
the Euler characteristic, V0, and the usual length of an inverval, V1([a, b]) = b−a.
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Figure 7: The convex indicator function I[2,4] represents the interval [2, 4]. This
function is +∞ if its argument is smaller than 2 or larger than 4. For
better visualization the area above the graph of I[2,4] is colored.

The functional version of the Euler characteristic is easy to describe: we simply
assign to each convex function the number 1. What about length?

Clearly, if we look at the picture of an indicator function I[a,b], Figure 7,
then the length of the interval [a, b] is the same as the length of the visible
graph of I[a,b]. We know from integral calculus that the length of the graph of
a differentiable function f : [a, b] → R is given by∫ b

a

√
1 +

(
f ′(x)

)2 dx, (3)

where the derivation of this formula is depicted in Figure 8. Thus, a naive
approach is to simply consider

I[a,b] 7→
∫ √

1 +
(
I′
[a,b](x)

)2 dx =
∫ b

a

√
1 + 02 dx = b − a,

where we only integrate over those points x ∈ R where I[a,b](x) is finite (and
thus differentiable). That is, we only integrate over x ∈ [a, b], for which we
always have I′

[a,b](x) = 0. We now may try to generalize this and define an
operation

u 7→
∫ √

1 +
(
u′(x)

)2 dx (4)

for convex functions u : R → (−∞, +∞]. However, if for example we take
u(x) = x2, then we obtain∫ +∞

−∞

√
1 + 4 x2 dx = +∞.
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Figure 8: We use the Pythagorean theorem to calculate the hypotenuse of the
triangle. We approximate the graph of f with many such triangles,
use lower Riemann sums and let ∆x → 0 to obtain (3).

In a sense this is expected since the graph of this particular function u has
infinite length. The problem is that we would like to obtain a finite number
for each function while still retrieving the usual length if we consider indicator
functions. In order to solve this problem, we first rewrite (4) as

u 7→
∫

g
(
|u′(x)|

)
dx,

where g(t) =
√

1 + t2. The solution is to now replace g by some other function
that has properties that allow us to obtain the result we want. Thus, we consider

u 7→
∫

h
(
|u′(x)|

)
dx, (5)

where h : [0, +∞) → R is a continuous function with compact support. This
means that h(t) = 0 for every t larger than some fixed positive number. An
example of such a function is depicted in Figure 9. If in addition we ask that
our convex functions “go to +∞ fast enough”, similar to u(x) = x2, then one
can show that the integral in (5) is always finite. Furthermore, if we choose u
to be the indicator function of an interval [a, b], then we obtain∫

h
(
|I′

[a,b](x)|
)

dx =
∫ b

a

h(0) dx = h(0)(b − a).

This means that for indicator functions we retrieve a multiple of the usual
length. Another observation is that if we change u by moving its graph up,
down, left or right, we still obtain the same value in (5). This means that our
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Figure 9: The function in blue is g(t) =
√

1 + t2. The function h(t) in red has
compact support and h(t) = 0 for every t ≥ 1.5.

operation is translation invariant in a functional sense. We may also take the
reflection of the graph of u with respect to the vertical axis while still obtaining
the same value from our operation. Without going into details, it turns out
that (5) is also a continuous valuation on convex functions. We have thus found
our functional version of the first intrinsic volume.

The main result of [2] for the case n = 1 now states that every contin-
uous, reflection- and translation-invariant valuation Z on convex functions
u : R → (−∞, +∞], that “go to +∞ fast enough”, is of the form

Z(u) = c +
∫

h
(
|u′(x)|

)
dx,

where c ∈ R is some constant and h : [0, ∞) → R is continuous with compact
support. This should be understood as a functional version of Hadwiger’s result.

4.2 Higher dimensions and appl icat ions

What we have described above also works in higher dimensions. The functional
version of the n-dimensional volume is then of the form

u 7→
∫

h
(
∥∇⃗u(x)∥

)
dx,

where u : Rn → (−∞, +∞] is convex and h : [0, +∞) → R is again continuous
with compact support. Here, ∇⃗u(x) is the gradient of the function u at x ∈ Rn,
which is a vector that can roughly be described as a higher-dimensional version
of the usual derivative. The expression ∥∇⃗u(x)∥ stands for the norm or length
of this vector. For n > 1 we also find new operations on convex functions that
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generalize the intrinsic volumes V1, . . . , Vn−1. However, these operations use
second derivatives and are more complicated to describe, so we leave out the
details. Again, a characterization of these operations, similar to Hadwiger’s
characterization of the intrinsic volumes on convex bodies, was found in [2].

Finally, let us mention that in many ways these new functional intrinsic
volumes behave like the classical intrinsic volumes. In particular, the new
functional Hadwiger theorem can be used to obtain a functional version of
Cauchy’s surface area formula [3], which generalizes its classical counterpart.
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