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Abstract. This was the sixth workshop on mathematical and statistical
methods for the transmission of infectious diseases. Building on epidemio-
logic models which were the subject of earlier workshops, this workshop con-
centrated on disentangling who infected whom by analysing high-resolution
genomic data of pathogens which are routinely collected during outbreaks.
Following the trail of the small mutations which continuously occur in dif-
ferent places of pathogens’ genomes, mathematical tools and computational
algorithms were used to reconstruct transmission trees and contact networks.
In the past three years these methods were developed and used particularly
in the context of the SARS-Cov-2 (Covid-19) pandemic.

Mathematics Subject Classification (2020): 05C05, 05C12, 05C82, 37E25, 37N25, 62F15, 62H30,

62M05, 62M09, 62N01, 62N02, 62P10, 92-04, 92-08, 92C60, 92D20, 92D30.

Introduction by the Organizers

The workshop Design and Analysis of Infectious Disease Studies, organized by
Caroline Colijn (Burnaby, Canada), M. Elizabeth Halloran (Seattle, USA), Philip
O’Neill (Nottingham, UK) and Pieter Trapman (Groningen, the Netherlands), was
well attended with 48 participants with broad geographic representation. The par-
ticipants came from Australia, New Zealand, USA, Brazil, and several countries in
Europe, including the UK, Germany, Sweden, Denmark, Finland, Italy, Belgium,
and the Netherlands. Thirteen of the 48 participants were women. About ten of
the participants were at MFO for the first time. Isaac Goldstein (UC Irvine, USA)
and Nicola Mulberry (Simon Fraser University, Canada) were the video conference
assistants. One person attended virtually for part of the conference.
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Since the last workshop on this topic in 2018, the SARS-Cov-2 (COVID 19)
pandemic swept the globe beginning in early 2020. Nearly everyone at this work-
shop was involved with the response to the pandemic at either the local, national,
or international level. There was much discussion among the participants infor-
mally about the pandemic. There was a general feeling of elation that this meeting
at MFO offered a forum for mathematical, statistical and theoretical discussion
free of the daily demands of the pandemic.

The focus of the workshop was on integrating genomic data on pathogens with
dynamic epidemiological analysis of infectious disease data either in the endemic
or outbreak setting. This is a particularly exciting and challenging area for the
analysis of infectious disease data. Now that sequencing the RNA or DNA of
viruses, bacteria and other pathogens has become very inexpensive, such data are
being obtained from most field studies of infectious diseases. This type of data and
evolutionary analysis can contribute a lot to determining who infected whom. Such
insight can contribute greatly to public health interventions. The analysis of such
data poses statistical, mathematical, theoretical, and computational challenges all
at the same time.

There were 24 talks in total, including talks by all five OWLG students. Some
of the talks spoke more about the statistical models that were being developed to
do such analyses. Other talks dealt with details of computational algorithms. All
talks on these related subjects produced active discussions during and after the
talks. Other topics included the relevance of social contact patterns for spread of
infectious diseases, survival analysis of observational data, and disease burden in
transient situations.

As in previous MFO workshops on Design and Analysis of Infectious Disease
Studies, there was much discussion in the breaks and in the free periods including
consideration of possible collaborations.

The previous workshop in the series has led to several collaborations and pub-
lications, e.g.
by Michael Meehan, Daniel G. Cocks, Johannes Müller, Emma S. McBryde (2019)
in J. Math. Biol., which was initiated by Müller and McBride at the 2018 work-
shop and
Xiaoyue Xi, Simon E.F. Spencer, Matthew Hall, M. Kate Grabowski, Joseph Ka-
gaayi and Oliver Ratmann (2022) in Journal of the Royal Statistical Society: Series
C which was initiated by Spencer and Ratmann at the 2018 workshop.

The 2023 workshop generated many ideas and collaborations as well. Examples
include:

• Caroline Colijn and Eben Kenah figured out that a statistical test Col-
ijn proposed for neutral evolution on phylogenetic trees can be rewritten
in terms of a score test from a Cox proportional hazards model with a
time-dependent exposure. This corrects one problem with the way that
the original test handled lineages that go extinct, and it opens up the
possibility of controlling for other covariates.
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• Oliver Ratmann and Valerie Isham discovered that their mathematical
model for estimating time since infection from deep sequence data has an
inbuilt bias. At MFO, they developed a better model that should at least
in theory resolve the bias. This work builds on early work from the 1980’s
that Valerie Isham was involved in, and they would not have seen it if it had
not been for the great mix of participants at the meeting. Andrea Brizzi
(one of the OWLG students) is now taking this model further. This is an
important question because they will be using the updated mathematical
model to estimate factors associated with late diagnosis of HIV in Africa,
a public health question important to UNAIDS and African in-country
branches of the Center for Disease Control.

• Niel Hens and Oliver Ratmann sketched out a first version of a statisti-
cal model to estimate changes in the distribution of contact patterns that
occurred during non pharmaceutical interventions during the COVID-19
pandemic over the past 2 years. This is at present just a very new and
attractive mathematical idea, but they believe it should work. It is im-
portant because current mathematical models focus on estimating trends
in means, whereas in reality one expects time trends in zero-inflation (i.e.,
a large proportion of individuals stay at home) mixed with other patterns
that affect the entire distribution. Hens and Ratmann hope to apply the
new model to interpret the data that were collected in Germany and Bel-
gium over the past 2 years and potentially also in the Netherlands and the
UK (together this constitutes perhaps the world’s largest effort in under-
standing dynamics in social contacts in the COVID-19 era).

• Claudio Struchiner has initiated conversations with John Edmunds regard-
ing potential collaboration activities. Struchiner invited Edmunds to visit
Brazil in August this year (2023) as a first step in strengthening the ties
(training activities for students) between the Brazilian and UK institu-
tions.

Most of the participants took the usual Wednesday afternoon hike to St. Ro-
man and back. In St. Roman, we had Schwarzwälderkirschtorte and a choice of
beverage.

On Thursday evening, we had our usual musical talent show and cultural event
in the lovely music room available at MFO. Dr. Lorenzo Pellis (Manchester, UK)
organized the program. The evening’s program is presented below.
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MFO Talent show, February 23, 2023, 7:30 pm

Lorenzo Pellis (flute)
Michiel van Boven (piano)

Franz Schubert Ständchen “Serenade”,
(adaptation by Van Boven)

Denis Mollison (voice)
Kari Auranen (piano)

Ralph Vaughan Williams

From far, from eve and morning,
words by AE Housman, 2nd song of
song cycle “On Wenlock Edge” (1909)

Michiel van Boven (piano) Felix Mendelssohn Lieder ohne Worte, Opus 30/6

Kari Auranen
Michiel van Boven
(4-handed piano)

Johannes Brahms Hungarian dance no. 1 in G minor

Caroline Colijn (voice)
Kari Auranen (piano)

Wolfgang Amadeus Mozart

Laudate Dominum
from Vesperae solennes de confessore
for solo, choir, orchestra and organ
(adaptation by Colijn)

Denis Mollison (voice) Denis Mollison Poem “Reflections”

Lorenzo Pellis (flute)
Michelle Kendall (piano)
Simon Spencer (viola)

Ludwig van Beethoven Trio II from Serenade, Opus 25

Caroline Colijn (voice)
David Earn (piano)

Traditional

Paul Simon

Siuil a Riun, traditional Irish song
Bridge over troubled water

Kari Auranen
Elizabeth Halloran
(4-handed piano)

Francis Poulenc Finale from Sonata for 4 hands

Interval

David Earn (piano) Improvisation

Lorenzo Pellis (flute)
Caroline Colijn (piano)

Georg Philipp Telemann

Antonio Vivaldi

Cantabile from SOLO no. 8
of Essercizzi misiici
Largo from Winter from
The four seasons

Martin Eichner (voice) Sam Walter Foss

The calf path, originally called
“The walk to St. Roman”
by Martin Eichner

Kari Auranen (piano) Leǒs Janáček
A blown-away leaf,
from On an overgrown path

Michelle Kendall (violin)
Lorenzo Pellis (flute)

Wolfgang Amadeus Mozart

James Rae

Duet arrangement of Papageno’s
Aria “Der Vogelfänger bin ich ja”
from Die Zauberflöte
Duet no. 2 from Jazzy duets
for 2 flutes

Leandro Vendrama (guitar) Mariano Mores Gricel

Lorenzo Pellis (flute)
Caroline Colijn (piano)

Telemann
Cantabile
from Essercizii Musici

Chris Wymant (voice)
Michelle Kendall (piano)

Sebastian Yatra
Dos Oroguitas,
from the animation film Encanto

Lorenzo Pellis (flute)
Elizabeth Halloran
Kari Auranen
(4 handed piano)

Georg Friedrich Händel
Arrival of the Queen of Sheba
from Solomon

Encore

The bottle blowers
Traditional

Bob Dylan

Frère Jacques
Blowin’ in the wind

Lorenzo Pellis (flute)
Kari Auranen (piano)

Gaetano Donizetti Sonata for flute and piano
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Abstracts

A Bayesian inference method to estimate transmission trees with
multiple introductions applied to SARS-CoV-2 in Dutch mink farms

Martin C.J. Bootsma, Don Klinkenberg

(joint work with Bastiaan R. van der Roest, Egil A.J. Fischer,
Mirjam E.E. Kretzschmar)

Background

We work on a model and method to infer who infected whom during an infectious
disease outbreak, with genetic sequence data. The method applies to the following
situation: we have a dataset of an outbreak of an infectious disease that has come to
an end. The data of the outbreak consist of the times of detection of all cases, and
genetic sequences of the pathogens (e.g. viruses) that infected each host. By using
these data, we try to infer who infected whom during the outbreak, and when. We
recently developed an extension to the model, that relaxes the assumption that the
outbreak started with a single index case. Instead we allow multiple index cases.
This extension was developed to analyse a dataset of an outbreak of SARS-CoV-2
in mink farms in the Netherlands [1, 2], that took place in parallel to the epidemic
in humans in 2020. In the presentation, we started with an introduction to the
method as it was before the extension. Then we presented the model extension for
multiple introductions, and discussed some numerical issues and solution related to
implementation of the extension in the package phybreak in statistical software R.
We finished with results on simulated outbreaks and on the SARS-CoV-2 outbreak
in minks.

Methods

In the model we distinguish four submodels for which we can write likelihoods to
infer the model parameters and the two variables of interest for each host: when
was s/he infected, and by whom. The first is the infection model. In the original
model, this starts from one index case, and continues as a branching process of
new cases, with each new case having an infector among the existing cases, and
an infection time one random generation interval after the infection time of its
infector. The second is the detection model: each host is detected (and sampled)
one random detection interval after its infection time. The third is the phylogenetic
tree model, to create a binary tree describing the ‘family’ history of the sampled
sequences. That is modelled as a coalescent process within each host, conditional
on the sampling times and infection times of infectees of that host. This creates
phylogenetic minitrees in each host, which are linked through the transmission tree
to create one phylogenetic tree. The fourth is the mutation model, conditional on
the phylogenetic tree, which creates the genetic variation observed in the sequence
data. Mutation is assumed to occur with a Jukes-Cantor mutation model with
a single mutation rate, implying that mutations occur with a Poisson process on
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the phylogenetic tree, and that each nucleotide change is equally likely. In the
extension for multiple introductions, we changed the infection and phylogenetic
tree models. In the infection model, instead of assuming a single index case, we
now assume a fixed rate by which new index cases can arise after the first index
case, until all cases have been detected. These index cases all give rise to their
own independent transmission tree. To link the phylogenetic trees of the separate
transmission trees, we introduce the concept of a history host, within which the
transmission trees are linked through a coalescent process with a rate that is
different (lower) than in the observed hosts. The mutation model is the same in
observed hosts and the history host.

Implementation

We implemented the extension in an existing package phybreak [3] in statistical
software R [4], which infers the transmission and phylogenetic trees with Bayesian
MCMC. At first, inferring multiple introductions was problematic, as convergence
and mixing of the MCMC chain were slow. We solved slow mixing by implementing
an improved mixing algorithm (MC)3 [5], running parallel chains with higher
acceptance probabilities to the master chain with the posterior distribution. We
solved slow convergence by initializing the MCMC chain with every case as an
index case, i.e. infected by the history host, and using the Neighbour-Joining
algorithm to create the topology of the phylogenetic tree in the history host.

Simulations

We did a simulation study to test performance of the method. In the simulations
of 63 hosts we varied the true number of index cases between 1 and 30, and
evaluated how well the method could identify the true number of index cases and
the true infector. For the latter, we looked at the posterior most likely infector,
and at the posterior 95% set of most likely infectors. It turned out that small
numbers of index cases are well identified, but that numbers of index cases may
be underestimated when there are many, i.e. roughly more than 10. Across all
scenarios with 20 or fewer index cases, the correct infector was identified for 70-
75% of all cases, and more than 95% of cases had the true infector in their posterior
set of infectors. With 30 index cases, performance was a little worse. Generally
two types of errors occurred: incorrect infectors in the correct transmission tree,
or merging of transmission trees, thus underestimating the number of index cases.

Results mink farms

When applying our method to the mink farm data, we identified about 13 index
cases among 63 farms, 8 more than was concluded from a phylogenetic study on
these same data [2]. Because the simulations showed a tendency to underestimate
the number of index cases, we are confident that there must have been many more
virus introductions than those identified with sequence data alone.
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Conclusion and Discussion

We think we developed a useful method to distinguish individual onward trans-
mission from introduction of infections from an outside source, if genetic diversity
is limited. A couple of issues is still open for discussion and further development.
First, the current method assumes that all cases in the outbreak are observed.
This may seem similar to the problem of multiple index cases that we worked
on, but it is essentially different because missing cases can be intermediate cases
so that the phylogenetic tree can switch between observed and unobserved hosts.
The history host in our model is only placed at the root of the outbreak. Missing
cases are part of different models and methods, such as the Transphylo model [6],
which infers transmission trees on a fixed phylogenetic tree and can thus more
easily place unobserved cases between observed cases.

A second point is that in the current model, transmission is described with
a branching process that does not take the susceptible population into account.
Implicitly, the assumption is made that the population is infinitely large and that
there is no depletion of susceptible. In a small population, or in a population with
local contact structures (in space or on networks), this is not realistic. To apply
the method in small-population settings such as hospital wards, it is necessary to
reconsider the transmission model.

A third point concerns the history host. Currently we have assumed a constant-
size population in the history host for both the rate of new introductions and the
coalescent process. If more information is available, it may be better to use a
different population model. For instance, in our own mink farm epidemic we
could have used the epidemic curve of the human population. The advantage
is that this would have created a more natural rate of new introductions, and
an automatic limit of the most-recent common ancestor of the phylogenetic tree
within the period of the human epidemic.
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Bayesian inference of timed phylogenetic networks from
genomic sequences

Nicola F. Müller

Phylogenetic trees denote the ancestral relationship between sampled individuals.
These individuals can be viruses isolated from different hosts, entire species, or
event languages. The continual evolution of genomes (or words in the case of
languages), means that two individuals that are further apart in their evolution-
ary history will likely also have more diverged genomes compared to individuals
that are more closely related to one another. Using models of evolution and phy-
logenetic inference techniques, such as Bayesian phylogenetics, allows inferring
phylogenetic trees. These phylogenetic trees are formed by population-level pro-
cesses, such as the transmission of viruses between people and can be inferred from
genomic sequences. As such, the shape of these phylogenetic trees, that is the tree
topology and branch lengths is different depending on the population process that
created them. In turn, we can utilize trees to recover the past population dy-
namics that created them using phylodynamic models. This allows, for example,
to recover past transmission dynamics of pathogens or their global spread from
pathogen genomes.

The assumption that the ancestral relationship between sampled individuals
can be described by a phylogenetic tree is often necessary to perform inference, at
the same time, this assumption is often invalid. For example, upon co-infection of
a host, viruses from different lineages can undergo a process of genetic recombi-
nation. Different modes of recombination exist, such as reassortment in influenza
viruses, the process at the heart of most novel pandemic influenza viruses. In
coronaviruses, template switching introduces recombination breakpoints and al-
lows viruses to combine genomes from different ancestral lineages. Recombination
occurs frequently in many different coronaviruses, including SARS-like viruses,
where recombination is widespread. The same is true for MERS-CoV in camels,
the 4 seasonally circulating coronaviruses in humans, as well as for SARS-CoV-2.
This poses the question if and how these events are beneficial to those viruses,
particularly since these events are relatively widespread.

These processes mean that the ancestral relationship between sampled indi-
viduals can no longer be described as a tree, but needs to be described using a
phylogenetic network. As such, if we want to learn about how individuals are
related in these cases, we need to be able to infer phylogenetic networks from
genomic sequences, which requires novel phylogenetic tools.

Here, I present recent work on inferring phylogenetic networks using a Markov
chain Monte Carlo approach. First, I describe how the ingredients needed enable
inferring phylogenetic networks. These include being able to:

(1) compute network likelihoods, the probability of observing a sequence align-
ment given a phylogenetic network and model and parameters of sequence
evolution.

(2) compute the network prior, the probability of observing a network given
a network-generating model and its parameters.
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(3) operate on phylogenetic networks to allow exploring the posterior distri-
bution of phylogenetic networks.

1) Simplifies to the product of tree likelihoods. To tackle 2), I present different
coalescent bases models that allow modelling reassortment [1], template switch-
ing [2], and the horizontal movement of plasmids between bacterial lineages [3].
These coalescent models model a joint coalescent and reassortment, recombina-
tion, or plasmid transfer process from present to past where two network lineages
can coalesce (share a common ancestor) or reassort (recombine or have plasmid
jump between bacteria) [1, 2, 3]. They are parameterized by effective population
size (which is inversely proportional to the rate of coalescence) and the rate of re-
assortment (recombination or plasmid transfer). All of which can be inferred using
MCMC. To tackle 3), I touch on the MCMC operations that allow us to relatively
efficiently explore different network structures. In particular, I show how we use
temporarily augment the space of possible network topologies during MCMC op-
erations to facilitate efficient inference of networks [1]. This allows jointly inferring
evolutionary parameters, and phylogenetic networks with the effective population
sizes and rates of reassortment (recombination or plasmid transfer) while account-
ing for uncertainty at each step.

Lastly, I show multiple different applications of phylogenetic network inference.
First, I show how we can use the coalescent with reassortment to infer reassort-
ment rates across different influenza viruses, as well as to show how reassortment
events are accumulated in parts of the phylogenetic networks that seed future vi-
ral variants and therefore that reassortment may contribute to viral fitness [1].
Next, I show how we can use the coalescent with recombination to infer the com-
plex evolutionary history of SARS-like viruses among which are SARS-CoV-1 and
2 [2]. I then show that recombination rates in different coronaviruses, i.e. MERS-
CoV-2 and three seasonal human coronaviruses vary between each other with the
seasonal human coronaviruses having similar rates of recombination as human in-
fluenza viruses reassort, suggesting similar co-infelicitous rates [2]. Lastly, I show
how we can use phylogenetic network inference to track the spread of antibiotic re-
sistance gene-carrying plasmids between the different bacterial lineage of Shigella
sonnei and Shigella flexneri [3].
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Recent advances on integrating epidemiological and whole genome
sequence data for effectively analysing infectious disease outbreak data

Theodore Kypraios

(joint work with Joseph Marsh, Philip D. O’Neill)

A fundamental aim in the analysis of infectious disease epidemics is to identify who
infected whom. However, achieving this is challenging, since transmission dynam-
ics are generally unobserved. A probabilistic estimation of the transmission tree
based on all available data offers many potential benefits. In particular, this can
lead to improved understanding of transmission dynamics, provide a mechanism
to quantify factors associated with heightened transmissibility and susceptibility
to carriage and infection, and help identify effective interventions to reduce trans-
mission.

Pathogen typing can be used to cluster genetically similar isolate samples, which
can rule out potential transmission routes. Whole genome sequence (WGS) data
offers maximal discriminatory power through the identification of individual point
mutations, or single nucleotide polymorphisms (SNPs), potentially leading to more
accurate transmission tree reconstructions than hitherto possible. However, the
joint analysis of genetic and surveillance data poses several challenges, as the
relationship between epidemic and evolutionary dynamics is complex.

Despite recent advances in statistical models and methods for combining ge-
nomic data with traditional epidemiological data (e.g. incidence data), existing
approaches have their own limitations, such as simplifications to the underlying
biological processes, arbitrary phenomenological models or approximations to the
likelihood function, to name a few.

We focus on individual-level transmission, using genomic samples from a sub-
population (eg. hospital, school, jail, farm, community), with the aim of recon-
structing transmission routes. Following our earlier work [1, 2], we present a
modelling framework for integrating epidemiological and whole genome sequence
data where we use the matrix of pairwise horizontal distances between sequences
as a summary statistic for the genetic data. We address the limitations of ex-
isting approaches, in which these distances are modelled using phenomenological
models by explicitly deriving the joint probability distribution of pairwise genetic
distances under the assumption of a microevolution mutation model.

Our proposed framework allows data to be simulated forward in time, a feature
lacking in the majority of existing methods (with reverse time simulation typically
required in phylogenetic methods, and only an incomplete set of genetic distances
simulated from other approaches), which is of fundamental importance in predic-
tive modelling and model evaluation. We provide a framework with the flexibility
to allow for unobserved infection times, multiple independent introductions of the
pathogen, and within-host genetic diversity.

We develop bespoke data-augmentation MCMC algorithms to infer the trans-
mission network and the unobserved pathogen distances at the time of transmis-
sion as well as the times of transmission. We illustrate the predictive performance
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of our methodology using simulated data, as well as analysing data from an an
outbreak of S. aureus in an intensive care unit in Brighton during 2011-2012.
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How did behavioural patterns, seasonality and virus strains affect
transmission during Covid-19? and Optimal intervention strategies for

minimizing total incidence during an epidemic

Tom Britton

(joint work with Felix Gunther, Hilde Kjelgaard Brustad, Arnoldo Frigessi,
Lasse Leskela)

The first part concerns a project where we try to make use of various time-
dependent data sources on: temperature, virus strain frequencies, behaviour met-
rics recorded by google, and vaccination data, to try to infer how these factors
affected the spread of Covid-19. Our focus is on Norway and Sweden, and the
during the year 2021.

Using computer intensive Bayesian methodology we analyse an epidemic model
on a regional level to infer how much of the observed transmission that can be at-
tributed to various behaviour, and how virus strains and temperature (seasonality)
affect transmission dynamics.

Some main findings are that the four google metrics “Work”, “Transit”, “Gro-
cery and pharmacies” and “Retail and recreation” capture 40-70% of all trans-
mission, and the former two, “Work” and “Transit”, have a bigger impact on
transmission than “Grocery and pharmacies” and “Retail and recreation”. The
remaining transmission taking place is captured in nuisance parameters and may
for example happen in the households but also in various other settings. The google
metric “Household”, was left out in the analysis because there was a very strong
negative correlation between this behaviour and all the other factors. Further, the
temperature/seasonality effect imply that transmission is reduced by 40-50% in
summer as compared to winter season.

The estimates of the different regions as well as between the two countries are
fairly robust. The analysis can be used to learn more regarding which behavioural
changes are most important for reducing transmission should a new pandemic
arrive, and also to estimate how much different behaviours need to change in
order to reduce the reproduction number below the critical value 1.

This is work in progress.
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The second part is purely mathematical/theoretical. Here the scientific questions
is how to optimally intervene in an epidemic if the aim is to minimize the total
fraction τ getting infected (or equivalently the total number of hospitalisations or
case fatalities). More specifically, we study the simple deterministic SIR epidemic
and assume that the rate of infectious contact β may be reduced by a factor p(t)
at time t. The optimization problem is then to find which preventive strategy
{p(t), 0 ≤ t < ∞, such that the overall amount of prevention

∫∞

0
p(t)dt ≤ c is no

bigger than some given maximum prevention cost c, minimizes the total fraction
τ getting infected. It is worth pointing out that the space of possible prevention
strategies is very large: full lockdown (p(t) = 1) for c days over some specified
interval, half-lockdown during 2c days, linearly growing/declining lockdown, sep-
arate days/weeks of full/partial lockdown, and so on.

Using optimization and properties of the SIR epidemic model we are able to
prove that that optimal is simple and also quite surprising. More specifically, it
consists of doing nothing until the unrestricted epidemic peaks, and then insert a
maximal lockdown for c days. If it is not possible to reduce transmission more than
some maximum value pmax (so p(t) ≤ pmax for all t), then the optimal solution
is very similar: do nothing up until close to the peak (how close depends on pmax

and then insert a maximal lockdown p(t) = pmax for c/pmax days and then go
back to normality.

It is also shown that the effect of adding (e.g. a week) lockdown before the peak
of unrestricted peak actually increases τ , the total fraction getting infected!

This is joint work with Lasse Leskela [1]
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Doublethink: Identifying epidemiological risk factors in UK Biobank
using simultaneous Bayesian/frequentist model averaging

Daniel Wilson

Epidemiological discovery of risk factors using linear models is a variable selection
problem. Correlation (non-orthogonality) between candidate risk factors creates
a challenge for interpretation: the evidence that variable A is a risk factor often
changes depending on whether correlated variable B is included or not. However,
systematic variable selection is rarely pursued in practice because of (a) disincli-
nation toward Bayesian methods, including (b) the need to use subjective prior
distributions instead of objective frequentist false positive rates, (c) computational
inviability of exhaustive search in big data settings and (d) computational inten-
sity of Monte Carlo methods. To address these challenges, we have developed
Doublethink for simultaneous Bayesian/frequentist inference of risk factors via
model averaging. Doublethink facilitates interchangeable thresholding between
false positive rates and posterior probabilities, and ameliorates the computational
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load through a large-sample-motivated approximate likelihood. We applied the
method to identify risk factors for COVID-19 outcomes (infection, hospitalization,
mortality) among > 100, 000 UK Biobank participants and > 1, 000 candidate risk
factors. We compare and contrast our results to the literature. We find that this
systematic approach produces less sparse accounts of risk factor importance, un-
derlining the importance of many lifestyle, medical and environmental phenomena
on infection and disease outcomes.

Exact Phylodynamic Likelihood

Aaron A. King

(joint work with Qianying Lin, Edward L. Ionides)

The project of phylodynamics is the extraction of information on the nature of a
stochastic population process from data on the relationships among genomic sam-
ples taken from individuals in the evolving population. In its purest form, its core
problem may be factored into two subproblems: the identification of genealogical
trees expressing the relationships between genomic samples and the probabilistic
linkage of these genealogies to the generating stochastic process. In this work, we
focus on the latter. Specifically, we view the genealogy as data and aim to compute
the likelihood of the genealogy under any given Markovian population process.

Two distinct approaches to this problem already exist. The older builds on the
Kingman coalescent [1, 2, 3] and variations thereon; the younger, on generalized
linear birth-death processes [6, 7, 5]. The key element in the tractability of both
approaches has been the computability certain approximate reverse-time transition
probabilities, but these approximations are only accurate in the limit of large
population size and/or small sample fraction. In this work, we aim to eliminate
the need for such approximations.

To accomplish this, we construct a novel class of genealogy-valued Markov
processes, each uniquely induced by any given discretely-structured Markovian
population process. The latter class is sufficiently rich as to encompass most
infectious-disease transmission models of practical interest. Preliminary results
for the unstructured case were given in [4]. We present a theorem giving the exact
probability distribution of genealogies conditional on the history of the popula-
tion process. We then show how integration over the space of population histories
yields a nonlinear filtering equation with continuous and discrete portions. This
equation may be integrated via well understood Feynman-Kaç approaches, which
take the form of certain sequential Monte Carlo algorithms.

The results are a strict generalization and unification of existing approaches.
The proofs rely on several constructions which are both novel and more natural
than the reverse-time constructions used in the more limited coalescent- and birth-
death-process-based theories. Importantly for applications, the implied algorithms
can be carried out entirely in forward time.
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Does branching now imply branching next? Testing for
exchangeability in timed phylogenies and Estimating serial intervals

with genomic data

Caroline Colijn

(joint work with Jessica E. Stockdale, Kurnia Susvitasari, Paul Tupper, Benjamin
Sobkowiak, Nicola Mulberry, Anders Gonçalves da Silva, Anne E. Watt,
Norelle Sherry, Corinna Minko, Benjamin P. Howden, Courtney R. Lane)

In part 1 of the talk, titled Does branching now imply branching next?
Testing for exchangeability in timed phylogenies, by C. Colijn (sole author),
I develop a statistical test for exchangeability on timed phylogenies. The test is
based on nodes in a phylogeny for which one of their child lineages branches
next after them. Under the null hypothesis (exchangeability), the probability
that this occurs is m/k, where m is the number of child lineages and k is the
number of lineages in total at the node’s time. I write a test statistic using these
probabilities, and do hypothesis testing to test for exchangeability. I illustrate this
with simulated data and with sequence data from SARS-CoV-2.

In the second part of the talk, titled Estimating serial intervals with ge-
nomic data, with the full listed authorship group, I present a method that uses
pathogen genomes and symptom onset times to infer the serial interval distribution
in a cluster or outbreak. The serial interval is the time between symptom onset
in a pair A and B, where A infected B; it is a key parameter for infectious disease
modelling. To use genomes to estimate this, we must take uncertainty in the who-
infected-whom pairs into account; we sample many possible transmission trees,
and use a mixture model to account for ways that missing individuals might oc-
cur. Our method can estimate the distribution from data that are often routinely
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collected. This is in contrast to standard methods, which require labour-intensive
and private data.

Likelihood-based Inference for Stochastic Epidemic Models via
Data Augmentation

Jason Xu

Stochastic epidemic models such as the Susceptible-Infectious-Removed(SIR)model
are widely used to model the spread of disease at the population level, but fitting
these models present significant challenges when missing data or latent variables
are present. In particular, the likelihood function of the partially observed data is
typically considered intractable in many common observational settings, such as
when incidence data on new counts are collected. We will discuss recent advances
that enable likelihood computations without model simplifications in the presence
of missing infection and recovery times via efficient data-augmented samplers. Our
methods target the exact posterior without relying on model-based forward sim-
ulation, and apply to several classic stochastic compartmental models and allow
for disease-dependent contact networks to evolve dynamically.

This is part of a broader research effort to revisit classical Bayesian Markov
chain Monte Carlo (MCMC) sampling schemes, such as Metropolis-Hastings and
Metropolis-within-Gibbs, to enable likelihood-based for nonlinear stochastic mod-
els of disease. Arguably, the predominant approach for fully stochastic models
entails simulation methods, which become computationally costly and can face
degeneracy issues for some data settings. Our approach complements this well-
established approach, combining new ideas for designing efficient proposal den-
sities with modern computational statistics to revive a classic line of thought
on direct likelihood-based inference for such models. In the past, we presented
a generating function inversion approach for integrating over the space of pos-
sible configurations of unobserved quantities, accounting for their probabilistic
paths exactly and thereby yielding the marginal data likelihood. In a classic text
Stochastic Population Processes, Renshaw [1] remarks that “the associated math-
ematical manipulations required to generate solutions can only be described as
heroic”. We recently resolved this problem in a class of bivariate competition
processes that includes the SIR model. The method is delicate, however, relying
on continued fraction expansions in the Laplace domain of transition probabilities
that do not carry over easily to generalizations of the model.

Our current work instead focuses on enabling this kind of marginalization
through latent variables in a flexible MCMC framework. We make use of a pow-
erful data augmentation strategy that carefully proposes high-dimensional latent
variables to efficiently explore the possible configurations of unobservable quanti-
ties in nonlinear stochastic models. This opens the door to efficient yet flexible
Markov chain Monte Carlo methods, and allow us to relax stringent classical as-
sumptions. In the context of epidemics, it enables us to model the co-evolution
of the disease process together with a dynamic network describing the contact
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patterns, replacing a stringent well-mixing assumption. The results presented at
this workshop show how the methodology enabled new insights on a mobile health
study of flu-like illness on a college campus.

We also derived extensions to the semi-Markov setting, enabling more realis-
tic renewal distributions for disease latency and time until recovery. The data
augmented framework makes these extensions possible immediately, and we dis-
cuss high-level intuition for the core idea of decoupling non-linear dynamics into
tractable, simpler surrogate processes. By generating proposals from classes such
as multitype branching processes, whose properties enable efficient conditional sim-
ulation to propose trajectories consistent with observed data, we can take large
steps in the latent space. As a result, Markov chain samplers can efficiently explore
the configurations of unobserved variables, avoiding the practical limitations that
lead existing approaches to poor mixing and prohibitively high autocorrelation in
the samples. The methods we propose enable us to perform exact inference on
large outbreaks even using just a single laptop. Many future directions remain
open in making the modelling framework more realistic and extensible, incorpo-
rating various sources of heterogeneity and population stratification.
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Multi-strain models for nosocomial infections

Alice Thompson

(joint work with Philip O’Neill and Theodore Kypraios)

Nosocomial infections have been a growing problem in hospitals for over 50 years,
with most of these infections being due to the introduction and misuse of antibi-
otics. With motivation from a unique data set, this talk discusses how transmission
networks can be reconstructed for a multi-strain outbreak in a hospital environ-
ment. This research focuses on the use of genetic data, collected using Whole
Genome Sequencing techniques, and epidemiological data from patients and sur-
faces to recon- struct transmission networks of various stains and species of Kleb-
siella pneumoniae Carbapenemase (KPC)-producing bacteria. In this talk, we will
first introduce the contents of the data set. This includes a discussion regarding
the quantity of both patient and environmental test data and the diversity of sam-
ples sequenced. Then, we discuss the construction of the multi-strain transmission
model and its augmented likelihood. Next, we discuss the use of MCMC and data
augmentation which enables us to estimate parameters and reconstruct multiple
transmission networks using both genetic and epidemiological data, and the re-
sults yielded when using this method on a simulated data set. We will show the
accuracy of the methods parameter estimates and its successful convergence, along
with applying the method to a data set similar to our motivational data set pre-
viously introduced. Finally, a new environmental model will be introduced which
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also incorporates environmental data and enables envi- ronment to be part of the
transmission network. We also introduce two approaches on handling cleaning on
wards.

Phylogenetic Estimation of HIV Time Since Infection

Andrea Brizzi

(joint work with Oliver Ratmann)

The distribution of the delay from HIV infection to diagnosis is of primary epidemi-
ological interest, as it can inform changes in testing policy. However, determining
the date of infection of a person living with HIV is often hard, due the typical
asymptomatic period lasting years.

In middle- and high-income countries, the dating of infection is therefore gener-
ally based on the modelling of longitudinal biomarker measurements, such as CD4
counts and viral load. Analyses based on these biomarker methods have been
used to determine the place of HIV acquisition for migrants in Europe [1] or to
determine differences in delay to diagnosis among ethnic groups in London [2].

In lower-income countries, where longitudinal studies may be too complicated
or expensive to carry out, phylogenetic methods can help extract as much his-
toric information as possible from a single blood sample. For example, the Ran-
dom Forest algorithm “HIV-phyloTSI” [3], uses features obtained from phyloge-
nies as predictors to estimate the delay from infection to sample collection at the
population level. We coded a pipeline available at https://github.com/olli0601/

Phyloscanner.R.utilities/tree/master/misc_data_analysis_RCCS1519/software

and obtained predictions for 7103 sequences from the Rakai Community Cohort
Study in Uganda.

We then selected for further analysis the subset of 5170 sequences sampled
at most 3 months after diagnosis. We run a Bayesian model to obtain smoothed
group-level estimates from the individual-level estimates obtained from phylo-TSI.
In particular, the individual-level estimates were assumed to follow a Gamma
distribution, and the mean delay to diagnosis was modelled through gender and
cohort specific baselines in to a sex-specific random functions on age at diagnosis
and a random function on year of diagnosis. The model was fit via Hamiltonian
Monte Carlo through Stan and the random functions were modelled as Hilbert
Space Gaussian Process approximations.

The results highlight that delay to diagnosis increases with age at diagnosis.
Although this may seem intuitive, it is interesting to note that the HIV-phylo-TSI
algorithm does not use age of the host as a predictor, and therefore this results is
purely obtained from the phylogenetic signal.

However, the model does not seem to find significant differences in delay to
diagnoses in men and women, or reductions in delay to diagnoses over time, which
are both hypothesised to play a role in the Rakai settings.

https://github.com/olli0601/Phyloscanner.R.utilities/tree/master/misc_data_analysis_RCCS1519/software
https://github.com/olli0601/Phyloscanner.R.utilities/tree/master/misc_data_analysis_RCCS1519/software


506 Oberwolfach Report 8/2023

Further work will try to more rigorously test these differences by including
the limited biomarker data available and including a survival component to the
Bayesian model.
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A nested model for pneumococcal population dynamics

Nicola Mulberry

(joint work with Alexander Rutherford, Caroline Colijn)

Streptococcus pneumoniae is a pathogen of major public health concern globally.
Pneumococcal strains exhibit diversity in their capsular serotype, metabolic pro-
files, and properties of antibiotic resistance (among other traits). Pneumococcal
conjugate vaccines have been successful at targeting a subset of the circulating
serotypes. Following such perturbation, pneumococcal populations have been
shown to undergo significant shifts indicative of competition both between and
within serotypes. Using a nested model with explicit within-host dynamics, we
show how competition between these types, along with heterogeneity in duration
of carriage, may help explain patterns of vaccine-induced population dynamics.

Epidemic models with manual and digital contact tracing

Dongni Zhang

(joint work with Tom Britton)

We consider a Markovian SIR epidemic model in a homogeneous mixing com-
munity with a constant rate of diagnosis (testing) and investigate the preventive
effects of two types of contact tracing (CT): manual and digital CT.

In [1], we introduce the traditional manual CT by assuming that once an in-
fectious individual tests positive, s/he is immediately isolated and each of her/his
contacts are traced and tested independently with some fixed probability. Using
large population approximations, we analysed the early stage of the outbreak when
the process of “to-be-traced components” behaves like a branching process. The
component and individual reproduction numbers are derived. In [2], we focus on
the more recent digital CT via a tracing app (only app-users can trigger and be
traced by digital tracing). We assume that manual or digital CT occurs instan-
taneously and recursively for mathematical tractability. The model with digital
CT is analysed by a two-type branching process relying on a large community,
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where one type of “individuals” are “app-using components” and another is non-
app-users. Further, we investigate the combined preventive effect of manual and
digital CT. This combined model is analysed by a different two-type branching
process with both types being the “to-be-traced components” but starting with
different “roots”. The corresponding reproduction numbers are derived. We con-
clude that it is more essential to control the epidemic to have a large fraction of
app-users compared to the manual tracing probability. Another important con-
clusion is that the combined effect is bigger than the product of two separate
preventive effects.

The ongoing work is to generalize the combined model above by first assuming
that it is not only possible to infect neighbours in a network (e.g. daily/recent
close contacts), but also transmission could happen from random type of contacts
(neighbour or not, e.g. on a bus), which are usually more easily and quickly
identified by using a tracing app; and then incorporate the manual CT only on
the network with tracing delay but the instantaneous digital CT both on network
and among global contacts.
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Flow models to interpret population-based deep- sequence pathogen
data, with application to longitudinal sequence and surveillance data

from East Africa

Oliver Ratmann

(joint work with Melodie Monod, Andrea Brizzi, Alexandra Blenkinsop, Yu Chen
and Shozen Dan)

HIV incidence in eastern and southern Africa has historically been concentrated
among girls and women aged 15-24 years, but as new cases decline with HIV inter-
ventions, population-level infection dynamics may shift by age and gender. Our
mathematical work is concerned with the problem of quantifying how HIV inci-
dence and the population groups driving transmission have evolved over a 15 year
period from 2003 to 2018 in Uganda, based on population-based surveillance and
longitudinal deep-sequence data. The Rakai Community Cohort Study (RCCS)
encompasses both a full census of the study communities and a population-based
survey in each surveillance round, which enables identification and follow up of
unique individuals over time, and thus provides a comprehensive sampling frame to
measure HIV incidence. HIV incidence was estimated using established GAMLSS
inference methods with the R package mgcv. Rather exceptionally, the RCCS also
performed population-based HIV deep-sequencing spanning a period of more than
6 years, from August 2011 to April 2018. The primary purpose of viral deep
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sequencing was to reconstruct transmission networks and identify the population-
level sources of infections, thus complementing the data collected through the
incidence cohort. The RCCS viral phylogenetic transmission cohort comprises of
all participants with HIV for whom at least one HIV deep sequence sample satisfy-
ing minimum quality criteria for deep-sequence phylogenetic analysis is available.
The HIV deep-sequencing pipeline developed by PANGEA-HIV then provided se-
quence fragments that capture viral diversity within individuals, which enables
phylogenetic inference into the direction of transmission from sequence data alone
with the phyloscanner software. First, potential transmission networks were
identified, and in the second step transmission networks were confirmed and the
transmission directions in the networks were characterised as possible. We here
developed a framework for estimating the sources of the population-level HIV in-
cidence dynamics from the dated, source-recipient pairs in the viral phylogenetic
transmission cohort. Overall, inference was done in a Bayesian framework using
a semi-parametric Poisson flow model similar to Xi, X. et al. [3], that was fit-

ted to observed counts of transmission flows Y g→h
p,i,j with transmission direction

g → h (male-to-female or female-to-male), time period p (R10-R15 and R16-R18)
in which the recipient was likely infected, and 1-year age bands i, j of the source
and recipient populations respectively, where

i, j ∈ A = {15, 16, . . . , 48, 49}(1a)

(g → h) ∈ D = {male-to-female, female-to-male}.(1b)

The target quantity of the model is the expected number of HIV transmissions in
the study population in transmission direction g → h (male-to-female or female-
to-male), survey round r (R10 to R18) in which infection occurred, and 1-year age
bands i, j of the source and recipient populations respectively, which we denote by

λg→h
r,i,j . We considered that the expected number of HIV transmissions in the study

population is characterized by transmission risk and modulated by the number of

infectious and susceptible individuals, which prompted us to express λg→h
r,i,j in the

form of a standard discrete-time susceptible-infected (SI) model,

(2) λg→h
r,i,j = βg→h

r,i,j × Sh
r,j × Igr,i ×

∣

∣

(

tendr − tstartr

)∣

∣,

where βg→h
r,i,j > 0 is the transmission rate exerted by one infected, virally unsup-

pressed individual of gender g and age i on one person in the uninfected (“sus-
ceptible”) population of the opposite gender h and age j in a standardized unit of
time in round r. With model (2), we express expected transmission flows with a
population-level mechanism of how transmission rates from individuals with un-
suppressed HIV act on the susceptible population, and we preferred model (2)

over a purely phenomenological model of the λg→h
r,i,j for the generalizing insights it

provides. The main simplifying approximations in (2) are that all quantities on
the right-hand side of (2) are in discrete time and constant in each round, mean-
ing we approximate over changes in population size, HIV prevalence, and viral
suppression at a temporally finer scale, and assume further that one generation of
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transmissions occurs from individuals with unsuppressed HIV in each round. Im-
portantly, in this framework, we can then relate the expected transmission flows to
the HIV incidence dynamics and the data from the longitudinal incidence cohort
by summing in (2) over the sources of infections,

∑

i

λg→h
r,i,j =

(

∑

i

βg→h
r,i,j × Igr,i

)

× Sh
r,j ×

∣

∣

(

tendr − tstartr

)∣

∣(3a)

=: κh
r,j × Sh

r,j ×
∣

∣

(

tendr − tstartr

)∣

∣,(3b)

where κh
r,j is the incidence rate per census-eligible, susceptible person of gender

h and age j in round r (Sh
r,j) and per unit time (|(tendr − tstartr )|). Estimates of

κh
r,j were calculated in units of 100 person-years, and we will constrain the semi-

parametric Poisson flow model using these estimates. From the model output, we
are primarily interested in the transmission flows and transmission sources during
each round as quantities out of 100%, defined respectively by

πg→h
r,i,j = λg→h

r,i,j

/(

∑

i,j∈A,(g→h)∈D

λg→h
r,i,j

)

(4a)

δg→h
r,i,j = πg→h

r,i,j

/(

∑

k∈A

πg→h
r,k,j

)

(4b)

δg→h
r,i =

∑

j∈A

πg→h
r,i,j .(4c)

In words, (4b) quantifies the sources of infection in individuals of gender h and

age j in round r such that the sum of δg→h
r,i,j over i equals one, and (4c) quantifies

the sources of infection in the entire population in round r that originate from

the group of individuals of gender g and age i such that the sum of δg→h
r,i over

g and i equals one. The number Sh
r,j of the susceptible population of gender

h and age j was calculated by multiplying the smoothed estimate Ng
r,j of the

census-eligible population of gender h and age j with 1 minus the posterior median
estimate of HIV prevalence ρhr,j in census-eligible individuals of gender h and age

j of round r (calculated as described further above). To specify the number Igr,i
of individuals with unsuppressed HIV of gender g and age i, we multiplied the
smoothed estimate Ng

r,i of the census-eligible population of gender g and age i
of round r with the posterior median estimate of HIV prevalence in the census-
eligible population of gender g and age i (ρgr,i) with 1 minus the posterior median

estimate νgr,i of the proportion of census-eligible individuals of gender g and age i in
round r that have suppressed HIV. We first present the likelihood of the observed

counts of transmission flows Y g→h
p,i,j under the semi-parametric Poisson flow model

that is parameterised in terms of (2). The phylogenetically reconstructed source-
recipient pairs capture only a subset of incidence events, and so it is important to
characterise the sampling frame. Because we are here integrating data from the
transmission and incidence cohorts, we are able to adjust inferences by detection
probabilities of incidence events. Specifically, we express the detection probability
as the ratio of phylogenetically reconstructed transmission events with a recipient
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of gender h and age j divided by the expected number of incident cases of gender
h and age j in time period p as derived in (3),

(5) ξhp,j =
(

∑

i∈A

Y g→h
p,i,j

)/(

∑

r∈p

κh
r,j × Sh

r,j × |(tendr − tstartr )|
)

.

We assume in (5) that the detection probability does not depend on characteristics
of the source, further characteristics of the recipient beyond their age and gender,
and is constant in time period p. These assumptions imply that infection events are
sampled identically and independently with probability (5), which in turn allows
us to express the likelihood of observing the phylogenetic data similarly as in Xi,
X. et al. [3] with

Y g→h
p,i,j ∼ Poisson

(

ξhp,j
∑

r∈p

λg→h
r,i,j

)

(6a)

λg→h
r,i,j = βg→h

r,i,j × Sh
r,j × Igr,i ×

∣

∣

(

tendr − tstartr

)∣

∣(6b)

log βg→h
r,i,j = ĉ

g→h(i, j) + γ0 + γg + γr + γp(r)+(6c)

f
g→h
0 (i, j) + fg→h

r (j) + f
g→h

p(r) (i),

where ĉg→h(i, j) is the posterior median estimate of the log rate of sexual contacts
within communities in one year between one person of age i and gender g and one
person of age j and gender h that we estimated from the sexual behaviour data,
and the remaining terms quantify the transmission probability per sexual contact
on the log scale. The model is designed in such a way that the log sexual contact
rates describe a fixed age-specific non-zero mean surface, and the remaining pa-
rameters describe age-specific random deviations around the mean surface. With
this approach, any inferred deviations in transmission rates relative to sexual con-
tact rates are informed by the phylogenetic data and robust to prior specifications
on the random deviations. Specifically, γ0 is the baseline parameter characterising
overall transmission risk per sexual contact, γg is a gender-specific offset which
is set to zero in the female-to-male direction and a real value in male-to-female
direction, γr a round-specific offset which is set to zero for the first survey round
10, and γp is a time period specific offset which is set to zero for the first time
period. We assume the age-specific structure of transmission rates in terms of
the transmitting partners (denoted by i) and recipients (denoted by j) are sim-
ilar across similar ages, and so we can exploit regularising prior densities [3] to
learn smooth, latent transmission rate surfaces from the sparse data. In detail, we
modelled the age-specific structure of transmission rates non-parametrically with

2 time-invariant random functions f
g→h
0 with two-dimensional inputs on the do-

main [15, 50]× [15, 50] that characterise age-age interactions in transmission risk

for each gender, 2 × 8 random functions fg→h
r with one-dimensional inputs that

characterise time trends in the age of recipients for each gender for survey rounds
after round 10, and 2 random functions f

g→h
p with one-dimensional inputs that

characterise time trends in the age of transmitting partners for each gender for the
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second time period. We attach to each of these random functions computation-
ally efficient B-splines projected Gaussian process (GP) priors [2], which we con-
structed by describing the random functions with cubic B-splines over equidistant
knots and modelling the prior relationship of the B-splines parameters with GPs
with squared exponential kernels with variance and lengthscale hyper-parameters,
denoted respectively by σ2 and ℓ. The prior densities of our Bayesian model are

γ0 ∼ N (0, 102)(7a)

γmale ∼ N (0, 1)(7b)

γr ∼ N (0, 1) for r > R10(7c)

γp ∼ N (0, 1) for p = R16-R18(7d)

f
g→h
0 ∼ 2D-B-splines-GP(σg→h

0 , ℓg→h
0,i , ℓg→h

0,j )(7e)

f g→h
r ∼ 1D-B-splines-GP(σ̃g→h

r , ℓ̃g→h
r ) for r > R10(7f)

f g→h
p ∼ 1D-B-splines-GP(σ̆g→h, ℓ̆g→h) for p = R16-R18(7g)

σg→h
0,i , σg→h

0,j , σ̃g→h, σ̆g→h ∼ Half-Cauchy(0, 1)(7h)

ℓg→h
0,i , ℓg→h

0,j , ℓ̃g→h, ℓ̆g→h ∼ Inv-Gamma(2, 2),(7i)

where the 2×8 recipient-specific time-varying 1D B-splines GPs each have squared
exponential kernels with hyper-parameters σ̃g→h

r , ℓ̃g→h, the 2 source-specific time-
varying 1D B-splines GPs each have squared exponential kernels with hyper-

parameters σ̆g→h, ℓ̆g→h, and the 2 time-invariant 2D B-splines GPs each have

squared exponential kernels with hyper-parameters σg→h
0,i , ℓg→h

0,i and ℓg→h
0,j decom-

posed as follows,

kg→h
0

(

(i, j), (i′, j′)
)

= (σg→h
0 )2 exp

(

−
(i− i′)2

2(ℓg→h
0,i )2

)

exp

(

−
(j − j′)2

2(ℓg→h
0,j )2

)

.(8)

We constrain the model further with a pseudo-likelihood term so that the model’s
implied incidence rate κh

r,j in (3b) is around the MLE incidence rate estimate
obtained from the incidence cohort. We took this approach in lieu of fitting the
model to both the source-recipient and individual-level incidence exposure data
to bypass extreme computational runtimes, and in the context that the source-
recipient data are not informative of incidence dynamics. Specifically, we fitted
log-normal distributions to the 1, 000 × 50 Monte Carlo replicate rate estimates
for individuals of gender h and age j in round r (see above) using the lognorm R
package, and then set

∑

i λ
g→h
r,i,j

Sh
r,j ×

∣

∣

(

tendr − tstartr

)∣

∣

∼ LogNormal

(

mean− κ̂h
r,j , var− κ̂h

r,j

)

,(9)

where mean-κ̂h
r,j and var-κ̂h

r,j denote respectively the parameters of the fitted log-

normal distributions, and the left-hand side is calculated from (6b) and matches
the model’s incidence rate κh

r,j in (3b). Model (6-9) was fitted with Rstan version
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2.21.0, using Stan’s adaptive HMC sampler [1]. The applied results of our analyses
are available in the preprint [4].
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How immune dynamics shape multi-season epidemics: a
continuous-discrete model in one dimensional antigenic space

Mick Roberts

(joint work with Roslyn Hickson, James McCaw)

We extend a previously published model for the dynamics of a single strain of an
influenza-like infection [1]. The model incorporated a waning acquired immunity
to infection and punctuated antigenic drift of the virus, employing a set of coupled
integral equations within a season and a discrete map between seasons. For the
within season model we used the Kermack McKendrick equations, those infected
entering the removed compartment (R). After spending one season in R, hosts
enter a partially susceptible compartment, with probability of being infected k
times that for the fully susceptible compartment under the same infection pres-
sure, k < 1. To approximate the effects of antigenic drift and population turnover,
the proportion of the population in the partially susceptible and removed com-
partments was multiplied by a constant c < 1, and a proportion 1 − c was added
to the fully susceptible compartment.

The results in [1] show complicated dynamics for a range of parameter values.
However, the model does not differentiate between two paradigms: where immu-
nity to infection depends on the time since a host was last infected, and immunity
depending on the number of times that a host has been infected. To address this
we subdivide the population into a proportion fully susceptible at time t, S∅(t),
those partially susceptible S1(t) . . . Sm−1(t) and those removed Sm(t), for some
m > 2. Those in the Sℓ compartment are kℓ < 1 as susceptible as those in S∅,
with km = 0. At the beginning of a season (t = 0), an epidemic takes off if

R = R0

(

S∅(0) +

m
∑

ℓ=1

kℓS
ℓ(0)

)

> 1
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where R0 is the basic reproduction number. The final size of the epidemic (pro-
portion of the population infected) solves

P = S∅(0)
(

1− e−R0P
)

+
m
∑

ℓ=1

Sℓ(0)
(

e−R0P − e−R0kℓP
)

Now define sn to be the vector whose ℓth component is the initial value Sℓ(0) in
the nth season for ℓ = 1 . . .m, and E(sn) = exp(−R0Pn) where Pn is the final size
of the within season epidemic with initial conditions sn. The between season map
becomes

sn+1 = C(E(sn))sn + q(E(sn))

where C is an m×m matrix, and q is an m dimensional vector valued function.
We iterated the map for m = 4 with R0 = 2.0, c = 0.9 and k1 ∈ (0, 1) for the two
paradigms. For each example we took k2 = k21 and k3 = k31 , with initial condition
in the first season s0 = 0 (entire population susceptible). If immunity depends on
the time since last infection, then

sn+1 = c









0 Ek2 0 0
0 0 Ek3 0
0 0 0 1

E − Ek1 E − Ek2 E − Ek3 E − 1









sn +









0
0
0

c (1− E)









If immunity depends on the number of infections experienced, then

sn+1 = c









E − 1 + Ek1 E − 1 E − 1 E − 1
1− Ek1 Ek2 0 0

0 1− Ek2 Ek3 0
0 0 1− Ek3 1









sn +









c (1− E)
0
0
0









The results are shown in Figure 1, where we plot the effective reproduction number
at the start of each season (R) against k1.

The results for the situation where immunity depends on the time since infection
(Figure 1A) show complicated dynamics for 0.06 6 k1 6 0.39, solutions tend to
a fixed point (epidemic of same size every year) for 0.39 < k1 < 0.63, and a
period two solution (epidemic in alternate years) for k1 > 0.63. For k1 < 0.06
there are four years without an epidemic (R < 1) with an epidemic in the fifth
year. Further simulations with different values of R0 and c (not shown) resulted
in similar patterns for most (but not all) parameter combinations. In addition, a
simulation with R0 = 2.0 and c = 0.9, but with different initial conditions (also
not shown) revealed a second attractor for some values of k1.

The results for the situation where immunity depends on the number of infec-
tions (Figure 1B) show solutions tending to a fixed point (epidemic of the same
size every year) for all values of k1. A similar outcome was observed for all values
of R0 and c investigated. In all cases the fixed point of the map solves

s⋆ = (I−C(E⋆))
−1

q(E⋆)
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Figure 1. Orbit diagrams showing the effective reproduction
number R as a function of the immunity coefficient k1. A: The
time since infection determines immunity. B: The number of in-
fections determines immunity. The map was iterated 1500 times,
the last 500 iterations are plotted. The horizontal line is at R = 1.

where E⋆ = exp(−R0P⋆) and corresponds to an epidemic with final size

P⋆ = 1− E⋆ +

m
∑

ℓ=1

s⋆ℓ
(

E⋆ − E⋆kℓ

)

In summary, if immunity to infection depends on the time since a host was last
infected the model exhibited chaotic dynamics in some regions of parameter space,
and regions of parameter space with more than one attractor. If immunity depends
on the number of times that a host has been infected, the attractor was a stable
fixed point corresponding to an identical epidemic each season. We also examined
the model with both paradigms in combination, almost but not exclusively observ-
ing a stable fixed point or periodic solution. Adding stochastic perturbations to
the between season map failed to destroy the model’s qualitative dynamics. Our
results suggest that if the level of host immunity depends on the elapsed time since
the last infection then the epidemiological dynamics may be unpredictable.
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Revealing disease ecology from historical records over the last
seven centuries

David J. D. Earn

Historical records allow us to reconstruct patterns of disease spread in the past, in
some cases going back hundreds of years. The questions we can address depend on
the available data, which has varied enormously over time. I presented data, going
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back as far as 1348, which we have acquired and studied at McMaster University
in the last few years. I discussed the strengths and limitations of the various types
of data for mechanistic modelling, and how these data have so far contributed to
improving our understanding of infectious disease epidemics.

The largest part of the talk focussed on plague (which is caused by the bacterium
Yersinia pestis), and more specifically on plague epidemics in London, England. I
discussed three types of data from London that we have digitized for analysis over
the last 20 years:

• Weekly mortality attributed to plague, as listed in the London Bills of
Mortality (LBoM) from 1563 to 1666;

• Weekly mortality from all causes, aggregated from surviving London parish
death registers going back to 1538; and

• Daily counts of Last Wills and Testaments written during the 14th century
(and probated in the Court of Husting).

I explained how we have used these data to estimate the initial growth rates of
plague epidemics in London between 1348 and 1665, and highlighted our recent
discovery that plague epidemics in the 17th century grew approximately four times
faster than those in the 14th century [3]. I also showed a number of animations
of the Great Plague of London in 1665, displaying the initial pattern of spread
in early 1665 (from the outskirts to the city centre over several months) and the
raging epidemic that ensued by mid summer.

I then described our analysis of the four 19th century cholera pandemics in
London [8]. We found that three of the four pandemics (in 1832, 1849, and 1854)
were preceded by an out-of-season “herald wave”, whereas no such out-of-season
wave preceded the 1866 pandemic.

My attention next turned to our analysis of the 1918 influenza pandemic in
London. A puzzling feature of that pandemic was the occurrence of three distinct
waves within a year. I described our mechanistic modelling of the three waves
[4, 5], from which we inferred that the primary mechanism that contributed to
generating three waves was likely behavioural change (reducing contact with oth-
ers) in response to high disease prevalence or mortality. We found that weather
and school closures also had detectable effects, but without behavioural response
our model was unable to reproduce all three waves.

Finally, I briefly discussed our detailed analysis of weekly smallpox mortality
in London between 1664 and 1930 [7]. Over the decades and centuries there were
striking changes in smallpox dynamics that were correlated with demographic
changes, historical events, and uptake of control measures. We hope to make
sense of all of these dynamical changes using mechanistic modelling and analysis
tools that have previously allowed us to understand transitions in childhood disease
dynamics in the 20th century [2, 1, 6].

I mentioned COVID-19 only in passing in this talk, but all of the types of
modelling and analysis that we have applied to the diseases I did discuss are
relevant to COVID-19. Some of these techniques have been applied to COVID-19
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already, and others—which concern dynamical changes over long timescales—are
certain to be applied in the future.
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Digital Contact Tracing for COVID-19: from Initial Theoretical
Evidence to Evaluation

Chris Wymant

(joint work with Luca Ferretti, Michelle Kendall, Daphne Tsallis, Marcos
Charalambides, Robert Hinch, Luke Milsom, Matthew Ayres, Lele Zhao,

Anel Nurtay, Michael Parker, Chris Holmes, Mark Briers, Lucie Abeler-Dörner,
David Bonsall, Christophe Fraser)

In March 2020 we published a proposal to enhance COVID-19 contact tracing by
making it digital: using proximity-detecting mobile phone apps to record close
contact events [1]. Key motivations were greater speed, automatic scaling of the
tracing process with the epidemic size, and detection and memory of contacts
unknown to or forgotten by the index case. Our initial mathematical modelling
(adapting the double-integral renewal-equation approach of reference [2]) and that
of follow-up studies (including our bespoke agent-based modelling) provided the
evidence for many countries to develop national digital tracing programmes.

The highly privacy-preserving framework Google and Apple built into their mo-
bile device operating systems to facilitate the intervention securely made epidemi-
ological evaluation difficult. However, with anonymous analytics data collected
by the NHS COVID-19 app in England and Wales, we were able to estimate the
app’s initial epidemiological impact from its launch on 24 September 2020 to the
end of December 2020 [3]. It was used regularly by approximately 16.5 million
users (28% of the total population), and sent approximately 1.7 million exposure
notifications: 4.2 per index case consenting to contact tracing. We estimated that
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the fraction of individuals notified by the app who subsequently showed symptoms
and tested positive (the secondary attack rate, SAR) was 6%, similar to the SAR
for manually traced close contacts. We estimated the number of cases averted
by the app using two complementary approaches. First, we performed a regres-
sion comparing different spatial areas (lower-tier local authorities), subsetting and
matching for comparability, inspired by causal inference methods on big obser-
vational data [4]. This method gave an estimate of 594,000 cases averted (95%
confidence interval 317,000–914,000). Second, we used mathematical modelling
linking the number of individuals traced, the SAR, the proportion of the infec-
tious period reachable by tracing, the effect on the period of quarantining, and
the size of downstream transmission chains averted by averting one case at their
start. This method gave an estimate of 284,000 cases averted (central 95% range
of sensitivity analyses 108,000–450,000). Approximately one case was averted for
each case consenting to notification of their contacts. We estimated that for every
percentage point increase in app uptake, the number of cases could be reduced by
0.8% (using modelling) or 2.3% (using regression).
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The NHS COVID-19 contact tracing app for England and Wales:
epidemiological impacts and insights

Michelle Kendall

(joint work with Luca Ferretti, Daphne Tsallis, Andrea Di Francia,
Yakubu Balogun, Xavier Didelot, Christophe Fraser)

The NHS COVID-19 app was launched on 24 September 2020 across England and
Wales, with millions of users installing it in the first few days after its launch [1].
Its development was motivated by the theoretical finding that rapid, scalable and
anonymised contact tracing could help reduce transmission of SARS-CoV-2 [2, 3,
4, 5]. It uses Google and Apple’s Bluetooth exposure notification platform [6] to
quickly perform contact tracing with the aim of reducing transmission of SARS-
CoV-2.

We show that the NHS COVID-19 app’s uptake, user engagement, and impact
varied according to changing social and epidemic characteristics. We describe
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the interaction and complementarity of manual and digital contact tracing ap-
proaches. Using anonymised, aggregated app data we show that app users who
were recently notified were more likely to test positive than app users who were
not recently notified, by a factor that varied considerably over time. We explain
how we adapted the modelling approach of Wymant and Ferretti [1] for estimating
cases, hospitalisations and deaths averted, building upon the approach to incor-
porate the background of changing epidemic dynamics including emerging viral
variants, population-level restrictions and vaccination roll-out. We estimate that
the app’s contact tracing function in the first year alone averted about 1 mil-
lion cases (sensitivity analysis 450,000–1,400,000), corresponding to 44,000 hos-
pital cases (20,000–60,000) and 9,600 deaths (4,600–13,000). These results were
recently published [7].

In the second part of the talk we describe results which will be presented in a
manuscript which is currently in preparation; these are not to be shared outside
of the group of registered participants of the workshop. Here we provide a brief
overview.

Although the app is privacy-preserving by design and collects only minimal data
to ensure it is functioning correctly, we show that app data has provided valuable
insights into the progression of the epidemic, including local and national measures
of population contact rates, and the infectiousness of those contact events. To-
gether these have provided a way to directly measure aspects of the reproduction
number R(t) in a timely manner, available earlier than estimates of R(t) derived
from case numbers or surveys [8]. The decomposition of R(t) into contact rates
and infectiousness of contact events enables a more detailed analysis of the drivers
of changes in R(t) than is available from case data alone. Finally, we present par-
ticular insights from app data concerning regional variations in epidemic dynamics
and the impact of behavioural changes during significant national events such as
Christmas holidays and major football matches.
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Parameter estimation from contact-tracing data in graph-based models

Johannes Müller

(joint work with Mirjam Kretzschmar, Augustine Okolie)

We adopt a maximum-likelihood framework based on a stochastic susceptible-
infected-recovered (SIR) model with contact tracing on a contact graph that con-
sists of a rooted random tree, as developed in [1]. Given a randomly chosen index
case, we are able to find formulas for the distributions of time since infection of
that index case, and the number of cases detected by contact tracing, respec-
tively. Based on these results, we derive a maximum likelihood estimator for the
parameters of the model. This estimator is influenced by the downstream degree
distribution of the underlying contact tree, the basic reproduction number, and
the tracing probability.

We inspect different random graph based contact models, that all imply their
own degree distributions. As the selected random graphs look locally like trees
in case of a large number of nodes, we use our tree-based methods to find those
random contact graphs that are consistent with contact tracing data. Thereto, we
use a data set from India [2], where simply the number of detectees identified by
forward tracing are given. It turns out, that scale free networks, having a power
law as degree distribution, is the best explanation of the given data. We not
only are able to distinguish between different degree distributions/contact graph
structures, but it is also possible to identify the tracing probability. In practical
applications, we expect that the estimation of the tracing probability could be a
valuable tool in monitoring the efficiency of tracing programs.
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An iterated block particle filter for inference on coupled dynamic
systems with shared and unit-specific parameters

Edward L. Ionides

(joint work with Ning Ning, Jesse Wheeler, Kidus Asfaw, Jifan Li, Joonha Park
and Aaron A. King)

We extend the classes of models for which it is numerically tractable to carry out
likelihood-based statistical inference on a collection of partially observed, stochas-
tic, interacting, nonlinear dynamic processes. Each process is called a unit, and
our primary motivation arises in biological metapopulation systems where a unit
is a spatially distinct sub-population. In this context, the collection of units is
called a metapopulation. We consider partially observed Markov processes hav-
ing this spatiotemporal unit structure, and these are called SpatPOMP models.
Likelihood evaluation for SpatPOMP models can be carried out recursively via
filtering algorithms. Each increment of a filtering recursion can be broken down
into two components, a one-step forecast (in which the latent state propagates
according to the Markovian model) and an assimilation step in which a new data
point is accounted for by adjusting the forecast. In high dimensional situations
(i.e., a more than a few units) the reweighting procedure arising in the assimilation
step for the widely-used particle filter fails [2], and so algorithms with improved
scalability are required.

Advanced algorithms applied to complex dynamic models require consideration
of software implementations, and we discuss these in the context of the R package
spatPomp [1]. A range of spatiotemporal filters are coded in spatPomp, and the
filtering approach that has proved most effective for metapopulation models is a
block particle filter [7]. The block particle filter replaces the The empirical success
of this filter on epidemiological metapopulation models was presented by Ionides
et al. [3]. Filtering is not sufficient for inference, prima facie, since it provides an
evaluation of the likelihood rather than a parameter estimate. However, iterating a
filter while perturbing parameters can approach the maximum likelihood estimate
(MLE) for a general class of POMP models [4].

We present an iterated block particle filter which provably approximates the
MLE for a class of SpatPOMP models while avoiding the “curse of dimensionality”
that affects previous iterated filtering algorithms [6]. We demonstrate an extension
of this algorithm that is applicable to models having some “shared” parameters
(common to all units) and some “unit-specific” parameters which take a distinct
value for each unit [5]. We apply this method to study pre-vaccination measles
cases in collections of towns in England and Wales, via Susceptible-Exposed-
Infectious-Recovered dynamics for each unit (i.e., town) with a gravity model for
coupling. We find that unit-specific parameters are required to explain the data,
and that gravity coupling does not provide substantially better explanation of these
data than an uncoupled model. More importantly, we have demonstrated methods
enabling continuation of this investigation in the search for better metapopulation
models.
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Statistical and mathematical details of trials for estimating vaccine
effectiveness for emerging infectious disease threats

Ira Longini

(joint work with M. Elizabeth Halloran, Claudio Struchiner)

We are facing a global assault of emerging infectious disease threats. Some re-
cent examples are Ebola, Zika, Covid-19, Lassa fever and monkeypox[1, 2]. When
these threats emerge, there is an urgent need to evaluate the effectiveness of candi-
date vaccines as they are rolled out; first as experimental products with unknown
effectiveness, and later in terms of optimal deployment for disease control. In
this presentation, we develop a series of designs and estimating equations for the
evaluation of the direct effectiveness (i.e., efficacy) and the indirect (i.e., herd)
protection of these vaccine candidates [3, 4].

We develop a model formulation to estimate the direct, indirect, total, and
overall vaccine effects combining data from trials with two types of study designs:
individual-randomization within cluster and cluster-randomization, based on a
Cox proportional hazards model, where the hazard of infection depends on both
vaccine status of the individual as well as the vaccine status of the other individ-
uals in the same cluster [5]. The estimating equations are derived as the partial
likelihood score function for the marginal proportional hazards model. Then the
estimators for the vaccine effectiveness estimators are derived as functions of the
estimated parameters from the proportional hazards model.

We illustrate the use of the proposed model and assess the potential efficiency
gain from combining data from multiple trials, compared to using data from each
individual trial alone, through two simulation studies, one of which is designed
based on a cholera vaccine trial previously carried out in Matlab, Bangladesh [6].
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We provide these estimators over a seamless adaptive design for an overall
platform vaccine trial [3, 7]. We give further examples of this approach from a
past ring vaccine trial for Ebola in Guinea[8], and an upcoming vaccine trial for
Lassa fever in Nigeria [9].
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An epidemic model with short-lived mixing groups

Frank Ball

(joint work with Peter Neal)

Almost all epidemic models make the assumption that infection is driven by the
interaction between pairs of individuals, one of whom is infectious and the other
of whom is susceptible. However, in society individuals mix in groups of varying
sizes, at varying times, allowing one or more infectives to be in close contact
with one or more susceptible individuals at a given point in time. In this talk
we investigate the effect of mixing groups beyond pairs on the transmission of an
infectious disease in an SIR (susceptible → infective → recovered) model. The
talk is based primarily on Ball and Neal [1], which should be consulted for further
details.

We consider the following model for the spread of an SIR epidemic, having an
infectious period that follows an exponential distribution with mean γ−1, among
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a population of size n. Infection is spread via instantaneous mixing events, which
occur at the points of a Poisson process having rate nλ. The sizes of mixing
events are independent and identically distributed according to a random variable
C(n), which takes values in {2, 3, . . . , n}. Suppose that a mixing event has size c.
Then c individuals are chosen uniformly at random from the population to form
the mixing event. At a mixing event of size c, any infective has probability πc

of making an infectious contact with any given susceptible, with all such contacts
occurring independently. Any susceptible that is contacted by at least one infective
at a mixing event becomes infected. Infectives cannot infect susceptibles at the
mixing event in which they were infected. Initially there are mn infectives and
n −mn susceptibles. The epidemic ends when there is no infective remaining in
the population. The same model was introduced independently by Cortez [2]. If
all mixing events have size 2 (i.e. P(C(n) = 2) = 1), the model is identical to
the standard homogeneously mixing stochastic SIR epidemic with individual-to-
individual infection rate 2λπ2

n−1 and recovery rate γ.
We consider sequences of epidemic processes, indexed by n, under the assump-

tion that C(n) D
−→ C as n → ∞, where P(C = c) = pC(c) (c = 2, 3, . . . ). Further

assumptions required for the results are given in Ball and Neal [1].
The early stages of an epidemic with few initial infectives can be approximated

by a branching process, which assumes every mixing event that contains infectives
has one infective with all others at the mixing event being susceptible. The basic
reproduction number R0 for the epidemic is given by the mean of the offspring
distribution of this branching process, i.e.

R0 =
λ

γ

∞
∑

c=2

πcc(c− 1)pC(c).

The early exponential growth rate of the epidemic is r = γ(R0−1), which coincides
with that of the standard homogeneously mixing SIR epidemic. Let z denote the
extinction probability of this branching process assuming one initial individual.
For sufficiently large n, the probability that an epidemic with one initial infective
takes off and leads to a major outbreak is approximately 1− z.

Let S(n)(t) and I(n)(t) be the numbers of susceptibles and infectives at time t.
Then {(S(n)(t), I(n)(t)) : t ≥ 0} is an (asymptotic) density dependent population
process. Exploiting the theory of such processes yields the following law of large
numbers for {(S(n)(t), I(n)(t)) : t ≥ 0}. Suppose that n−1mn → ǫ as n → ∞,
where ǫ > 0. Then, for any t0 > 0,

sup
0≤t≤t0

∣

∣

∣n−1(S(n)(t), I(n)(t))− (x(t), y(t))
∣

∣

∣

p
−→ 0 as n → ∞,

where {(x(t), y(t)) : t ≥ 0} satisfies the following ODE

(1)
dx

dt
= −λxg(y),

dy

dt
= λxg(y)− γy, (x(0), y(0)) = (1− ǫ, ǫ),



524 Oberwolfach Report 8/2023

with

g(y) =

∞
∑

c=2

pC(c)c
[

1− (1− yπc)
c−1
]

.

A functional central limit theorem for fluctuations of {n−1(S(n)(t), I(n)(t)) : t ≥ 0}
about {(x(t), y(t)) : t ≥ 0} is given in Ball and Neal [1].

Let T (n) = n− S(n) be the total size of the epidemic. By exploiting a random
time-scale transformation of {(S(n)(t), I(n)(t)) : t ≥ 0} we obtain the following
law of large numbers for T (n). (A corresponding central limit theorem is given
in Ball and Neal [1].) Suppose that n−1mn → ǫ as n → ∞, where ǫ > 0, and

without loss of generality that γ = 1. Then n−1T (n) p
−→ τǫ as n → ∞, where

τǫ = inf{t > 0 : ỹ(t) = 0} and ỹ(t) is the solution of the ODE

dỹ

dt
= λ(1 − ỹ − t)g̃(ỹ)− 1, ỹ(0) = ǫ,

where g̃(y) = y−1g(y), if y 6= 0 and g̃(0) = λ−1R0. If m ∈ N is fixed and mn = m

for all n ≥ m, then n−1T (n) | T (n) > logn
p

−→ τ0 as n → ∞, where τ0 is
obtained by setting ǫ = 0 in the above ODE. (Note that under these conditions,
P(T (n) > logn) → 1− zm as m → ∞.)

We now assume that πc = π for all c and consider epidemics with fixed R0 and
γ. Write z and τǫ as z(R0, C, π) and τǫ(R0, C, π), respectively. (In the sequel, it
is assumed implicitly that R0 > 1 if ǫ = 0.) When P(C = 2) = 1, the extinction
probability z and the final size τǫ are independent of π ∈ (0, 1]; denote them by
ẑ(R0) and τ̂ǫ(R0), respectively. These are the extinction probability and final
size for the standard SIR model. For fixed R0 and event size distribution C, the
extinction probability z(R0, C, π) increases with π and the final size τǫ(R0, C, π)
decreases with π. Further, z(R0, C, π) ↓ ẑ(R0) and τǫ(R0, C, π) ↑ τ̂ǫ(R0) as π ↓ 0.

To compare epidemics with common infection probability π but different event

size distributions C and C′, recall PGF ordering (
g

≤) of random variables:

C′
g

≤ C if and only if fC′(s) ≥ fC(s) for all 0 ≤ s ≤ 1,

where for a random variable C, fC(s) = E[sC ] denotes its probability-generating
function. For a random variable C taking values in {2, 3, . . .}, with E[C2] < ∞,

let Ĉ be the random variable with “size-biased” distribution

P(Ĉ = c) =
pC(c)c(c − 1)

E[C(C − 1)]
(c = 2, 3, . . . ).

Suppose that Ĉ′
g

≤ Ĉ. Then, z(R0, C
′, π) ≤ z(R0, C, π), with strict inequality if

R0 > 1 and C
D

6= C′. Further, τǫ(R0, C
′, π) ≥ τǫ(R0, C, π), with strict inequality

if C
D

6= C′. Note that if P(C′ = 2) = 1 then C′
g

≤ C for any random variable C
taking values in {2, 3, . . .}. Thus the extinction probability and final size of the
model with mixing events are respectively greater than and less than those of the
standard SIR model with the same R0.



Design and Analysis of Infectious Disease Studies 525

We now consider epidemics in which all mixing events have size c and ǫ > 0 is
small. Letting π = πc, it follows from the second ODE in (1) that y(t) ≤ R0

(c−1)π

for all t ≥ 0. If R0 > 1 and π are held fixed, the peak of an epidemic decreases
with c and its duration increases. Moreover, if c is large, an epidemic has very
long duration and its size is only marginally greater than the herd immunity level
1−R−1

0 .
If an exposed period having length which follows an exponential distribution

with mean δ−1 is added to the above model, R0 and the extinction probability z
remain unchanged, though the early exponential growth rate does change, as does
the final size τǫ, which decreases with δ and tends to that of the SIR model as
δ → ∞. As δ ↓ 0, the final size τǫ increases to τ̂ǫ(R0).

Finally, we briefly consider adding demography to the above SIR model. We
assume that individuals are born at rate µn, where n now is the equilibrium popu-
lation size in the absence of disease, and die at rate µ, independent of disease sta-
tus. All newborns are assumed to be susceptible. Mixing events now occur at rate
λ[S(n)(t)+ I(n)(t)+R(n)(t)], where R(n)(t) is the number of recovered individuals
at time t. For epidemics with fixed R0, γ and µ, and constant event size c, the prob-
ability of fade out after the first wave of infection decreases with c and increases

with π, provided c > 2. Let E[T
(n)
Q ] be the mean time to disease extinction start-

ing from the quasi-stationary distribution of {(S(n)(t), I(n)(t), R(n)(t)) : t ≥ 0}.
Using a functional central limit theorem for {(S(n)(t), I(n)(t), R(n)(t)) : t ≥ 0} to

approximate that quasi-stationary distribution, and hence E[T
(n)
Q ], for large n, we

find that E[T
(n)
Q ] decreases with both c and π.
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Semiparametric Inference of the Effective Reproduction Number
Dynamics from Wastewater Gene Counts with Minimal

Compartmental Models

Isaac H. Goldstein

(joint work with Daniel Parker, Sunny Jiang, Volodymyr M. Minin)

Introduction

Pathogen RNA counts collected from wastewater have recently become available
as a new data source to use when modelling the spread of infectious diseases.
There is a need for new statistical models which can use this data source effec-
tively. Compartmental models, such as the SEIRS model, are one possible class
of models. Infected individuals can emit pathogen RNA well after the end of
the infectious period. Compartmental models can account for this characteristic
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through an additional recovered but still emitting compartment in the model (the
SEIRRS model). One drawback of this class of models is that assumptions must
be made about the initial number of susceptible individuals and the rate at which
recovered individuals become susceptible again. These assumptions are often un-
verifiable and can greatly influence inference of model parameters, including the
effective reproduction number. Inspired by birth-death modelling in infectious dis-
ease phylodynamics, we propose an alternative model (the EIRR model), where
the time-varying immigration rate into the E compartment can be interpreted as a
compound parameter equal to the product of the proportion of susceptibles in the
population and the transmission rate. This model allows us to correctly estimate
the effective reproduction number while avoiding difficult to verify assumptions
about the susceptible population. We apply our new model to estimating the
effective reproduction number of SARS-CoV-2 in Los Angeles, California, using
pathogen RNA collected from a large wastewater treatment facility.

Methods

Pathogen RNA Count Data. Suppose counts of pathogen are collected from
wastewater treatment facilities a total of T times. It is common practice to have
multiple measurements taken from the same sample of wastewater at the same
time. Often, an average taken across the multiple measurements is reported. These
measurements are called replicates. We define Xj = (Xt1,j , Xt2,j , . . . , XtT ,j) where
Xti,j be the jth replicate of the counts of the gene collected at time ti. We will
model Xti,j as a noisy representation of the unobserved total number of currently
infectious and recently recovered individuals.

The EIR Model. The classic SEIR model models a population moving through
four stages susceptible (S), infected but not yet infectious (E), infectious (I) and
recovered (R). For the EIR model, we define αt to be the product βt × S/N .
The deterministic EIR model is described with an abbreviated system of ordinary
differential equations:

dE

dt
= αt × I − γ × E,

dI

dt
= γ × E − ν × I,

dR

dt
= ν × I.

The rate of new latent infections is an immigration rate which does not depend on
the S compartment. Importantly, using the EIR model, the effective reproduction

number is recoverable, as Rt = βtS(t)
νN

= αt

ν
. The EIR model allows us to avoid

having to specify the initial number of susceptibles and rates of recovery.
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modelling RNA gene counts collected from wastewater. We follow Nour-
bakhsh (2022) in modelling SARS-CoV-2 RNA gene counts as a realization of both
currently infectious and recently recovered individuals. This requires a revision of
our ODE model. We split the R compartment in two, with equations for each
compartment:

dR1

dt
= ν × I − η ×R1,

dR2

dt
= η ×R1.

The R1 compartment represents individuals who are no longer infectious, but are
still shedding pathogen RNA via fecal matter. With this modified ODE, we model
the log of pathogen RNA counts as follows:

logXti,j ∼ Generalized T(log (I(ti) ∗ λ+ (1− λ) ∗R1(ti)) + log (ρ), τ2, df).

Here I(ti) is the number of currently infectious individuals at time ti, R1(ti) is the
number of non-infectious but still shedding individuals at time ti. The parameter
λ represents, at an individual level, the proportion of shedding which occurs during
the infectious period. We use the parameter ρ to allow for flexibility in translating
between counts of individuals and counts of RNA. Parameter τ accounts for vari-
ation from the mean, and df is the parameter governing the degrees of freedom of
the T distribution.

modelling the time-varying reproduction number. We use a random walk
prior for the effective reproduction number.

R0 ∼ Log-Normal(µ0, σ0),

σ ∼ Log-Normal(µrw, σrw),

log (Rki
)|Rki−1

, σ ∼ Normal(log (Rki−1
), σ).

We also use priors on the initial compartment sizes, and on all other model pa-
rameters.

We use Hamiltonian Monte Carlo, implemented in the Julia package turing

to sample from the target posterior distribution.

Results

The delta variant was introduce in Los Angeles in June 2021, the omicron variant
in November 2021, which are reflected in increases in the counts of pathogen RNA
seen in the data (Figure 1). The posterior estimates of the effective reproduction
number show peaks in mid July 2021 and early December 2021, with wide credible
intervals at both peaks.
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Figure 1. Estimation of the effective reproduction number of
SARS-CoV-2 in Los Angeles, CA from July 2021 through Feb-
ruary 2022. The left plot features the pathogen RNA counts
collected from wastewater samples used to create the estimate,
displayed in the right plot. Blue regions represent credible inter-
vals, while black lines represent the posterior median.

Discussion

Currently, our method provides quite uncertain estimates of the reproduction num-
ber, reflecting high noise levels in the data. Future work will explore how these
noise levels might be reduced by more sophisticated priors on the effective repro-
duction number and through simulations testing how many replicates would be
needed to reduce the noise produced during data collection. Currently, we ignore
factors related to the sewer system such as changes in population or changes in
water flow. Our model could be adapted to allow for covariates to account for
these changes.
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Open science approaches to the mathematical modelling of
infectious disease

Simon Frost

A large number of mathematical and computational models of infectious disease
have been developed, particularly in the last fifty years. Despite this rich resource,
numerical analysis of these models by third parties is complicated by many factors,
including the lack of detail in how the model was developed and the numerical
methods used, and the use of unmaintained software packages. Models of infectious
disease can be made more findable, accessible, interoperable, and reproducible
through a combination of; (a) specific formulations of the models; (b) packaging
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of the model and any dependencies; and (c) adding a programming interface to
these models.

Construction of a compartmental model of disease transmission usually starts
by writing down equations for the rates of change of each compartment, e.g.
(S)usceptibles, (I)nfecteds, and (R)ecovereds. However, a more flexible approach
starts with writing equations for the processes underlying the rates of change e.g.
transmission and recovery, an approach widely taken e.g. in chemical kinetics
models. This representation of Markovian models can be easily converted into or-
dinary differential equations, stochastic differential equations, or jump processes,
and enables the automated construction of models for the moments and the proba-
bilities of a given state of the stochastic system at a particular time. Many models
are complex, but can be made simpler to understand if they are constructed from
smaller building blocks, wired together using a causal approach, where outputs
from one submodel are fed into the inputs of another model, or an acausal ap-
proach, with potentially bidirectional inputs/outputs, and where common states
in the submodels are identified. Use of specific software can also make models
easier to use e.g. the use of domain-specific languages to describe a model that
make the computer program look more similar to the mathematical equations,
or more powerful, e.g. the use of software that can use automatic differentiation
to calculate gradients, allowing techniques such as local sensitivity analysis and
inference using Hamiltonian Monte Carlo to be used.

For models with numerical results, the written equations are an incomplete
description of the entire system. The numerical precision used, the numerical
solver used (along with the associated discretization of continuous variables), and
even the underlying computer package can all affect the output. In addition,
software systems evolve over time, and may become unmaintained. To overcome
this, a model along with all the dependencies and data required to run the model
should be packaged together in order to allow a third party to exactly replicate
the results of a model. One technique to do this is to use a ‘container’, a kind of
lightweight virtual machine. One advantage of this approach is that it also allows
running the model in cloud computing environments, allowing much bigger models
and larger parameter spaces to be considered.

Even with a model running in a container, a third party is likely to want to
be able to change the parameter values of the model and observe changes in the
associated output. Each model may have its own formats for model inputs and
outputs, making it time consuming as well as potentially error-prone to run a
model. One potential remedy is to build an interface to the model through the
use of Uniform Resource Identifiers (URIs), which are used to interact with web
pages. Not only does this allow running of a model through a web browser or a
command line, but it also allows verification of model inputs, reducing the risk
that misleading outputs will arise as a consequence of inappropriate choice of input
parameters. Modern computer tools allow this to be done with a few extra lines
of code.
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By following these open science practices, modelers can take advantage of plat-
forms that can run models in an automated way, such that multiple models can be
more easily compared. Interoperability of models means that developments e.g.
in modelling transmission or in numerical approaches can be quickly and easily
incorporated. By defining models in terms of their inputs and outputs, modelers
can work with e.g. data scientists to build platforms that feed data to the models,
without the data scientists needing to know the details of the model architecture.
Through an open science approach, theoretical and applied model development
can be accelerated and distributed more widely, increasing its impact in multiple
areas of scientific endeavour.

Reporter: Pieter Trapman
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