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The Brown complex in non-de�ning
characteristic and applications

Damiano Rossi

Abstract

We study the Brown complex associated to the poset of `-subgroups in the case of a �nite
reductive group de�ned over a �eldFq of characteristic prime to `. First, under suitable hypothe-
ses, we show that its homotopy type is determined by the generic Sylow theory developed by
Broué and Malle and, in particular, only depends on the multiplicative order of q modulo `. This
result leads to several interesting applications to generic Sylow theory, mod ` homology decom-
positions, and `-modular representation theory. Then, we conduct a more detailed study of the
Brown complex in order to establish an explicit connection between the local-global conjectures
in representation theory of �nite groups and the generic Sylow theory. This is done by isolating
a family of `-subgroups of �nite reductive groups that corresponds bijectively to the structures
controlled by the generic Sylow theory.

Introduction

The Brown complex ∆(S⋆` (G)) associated to the poset of non-trivial `-subgroups of a �nite group
G, where ` is a prime dividing the order ofG, was �rst introduced by K. S. Brown in his work on the
Euler characteristic [Bro75]. Its study led to important contributions to `-local group theory, mod
` group cohomology, and `-modular representation theory. In his seminal paper [Qui78], Quillen
presented the �rst systematic study of the Brown complex and proved that its homotopy type co-
incides with that of (the simplicial complex of) closely related sets of subgroups. In particular, for
the case of a �nite reductive group with ` equal to the de�ning characteristic, he showed that the
Brown complex is homotopy equivalent to the Tits building associated to the set of proper ratio-
nal parabolic subgroups [Tit74]. In this paper we are interested in the Brown complex of a �nite
reductive group in the remaining case where ` is di�erent from the de�ning characteristic.

Our �rst theorem provides a description of the homotopy type of the Brown complex in terms of the
generic Sylow theory developed by Broué and Malle in [BM92]. Let G be a linear algebraic group
de�ned over an algebraically closed �eld F of characteristic p and assume that G is connected and
reductive. Let F ∶ G → G be a Frobenius endomorphism de�ning an Fq-structure on (the variety)
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G for some power q of p. The set of Fq-rational points GF , or sometimes the pair (G, F ), is called
a �nite reductive group. Fix a prime ` di�erent form p and denote by e`(q) the multiplicative order
of q modulo `. Using the generic Sylow theory we de�ne the simplicial complex ∆(L⋆e`(q)(G, F ))
associated to the poset of proper e`(q)-split Levi subgroups of (G, F ) (see Section 1.4 for a precise
de�nition).

Theorem A. Let (G, F ) be a �nite reductive group and consider a prime number ` ∈ π(G, F ) (see
De�nition 2.1) not dividing the order of Z(G)F . Then there exists aGF -homotopy equivalence

∆ (S⋆` (GF )) ≃GF ∆ (L⋆e`(q) (G, F )) .

The above theorem tells us, in particular, that the homotopy type of the Brown complex in non-
de�ning characteristics is generic, that is, it does not depend on ` but only on the positive integer
e`(q). In this way, we obtain equivalent local structures at di�erent primes ` and `′ for a �xed �nite
reductive group (G, F ). We mention that, in a somewhat opposite direction, work of Broto, Møller
and Oliver [BMO12] shows that there exist di�erent �nite reductive groups (G, F ) and (G′, F ′)
having (isotypically) equivalent fusion systems at a �xed prime `.

Before discussing the motivation behind Theorem A, we derive some interesting corollaries of this
result. First, inspired by Brown’s homological Sylow theorem [Bro75, Corollary 2], which states
that the Euler characteristic of the Brown complex is congruent to 1 modulo the order of a Sylow `-
subgroup, we obtain the following congruence for the Euler characteristic of the simplicial complex
of e`(q)-split Levi subgroups. This should be interpreted as a homological version of Broué–Malle’s
generic Sylow theorem [BM92, Theorem 3.4 (4)].

Corollary B. Let (G, F ) be a �nite reductive group and suppose that the prime ` is large for (G, F )
(see [BMM93, De�nition 5.1]) and does not divide the order of Z(G)F . Then

χ (∆ (L⋆e`(q) (G, F ))) ≡ 1 (mod (Φe`(q)(q)
a)
`
)

where a is the Φe`(q)(x)-valuation of the order polynomial P(G,F )(x) (as de�ned in Section 1.4) and
n` denotes the largest power of ` dividing an integer n.

Next, we consider an application to mod ` homology decompositions. According to the work of
Dwyer [Dwy97], there are three standard ways to reconstruct the classifying space of a �nite group,
up to mod ` homology, by gluing together classifying spaces of subgroups: namely the centraliser
decomposition, the subgroup decomposition, and the normaliser decomposition. All three are guar-
anteed by a property known as ampleness. Once the latter is established, it is often useful to ask
whether any of these three decomposition is sharp. This property yields a closed formula for the
homology of the classifying space in terms of that of classifying spaces of subgroups. We refer the
reader to Section 2.3 and the references therein. Sharpness was extensively studied by Grodal and
Smith [GS06] and obtained for numerous families of subgroups. Thanks to Theorem A, we can show
some of these properties for the family of e`(q)-split Levi subgroups.

Corollary C. Suppose that ` ∈ π(G, F ) does not divide the order of Z(G)F . Then, theGF -simplicial
complex ∆(L⋆e`(q)(G, F )) is ample and normaliser sharp (with respect to the prime `).
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The above corollary shows that the mod ` homology of the classifying space of a �nite reductive
group is determined e`(q)-locally, that is, by the normalisers of (proper) e`(q)-split Levi subgroups.
More generally, the homotopy equivalence of Theorem A allows us to transfer questions involving
the `-structure of the group GF to the more convenient language of generic Sylow theory and hence
to apply powerful techniques from algebraic geometry. This provides a more conceptual explanation
of a connection established in previous works on `-modular representation theory (see, for instance,
[BMM93], [CE94], [CE99], and [KM15]). Our main motivation is to reformulate some important
open conjectures in representation theory of �nite groups in terms of e`(q)-local structures. This is
particularly explicative if we consider Alperin’s Weight Conjecture in the form introduced by Knörr
and Robinson [KR89]. According to work of Webb [Web87] and Thevénaz [Thé93] the latter can
be stated for a given �nite group G using the reduced Lefschetz invariant Λ̃G and the equivariant
Euler characteristic χG respectively (see Section 2.4 for more details). Since these are invariant under
G-homotopy equivalences we can use Theorem A to deduce the following corollary.

Corollary D. Let (G, F ) be a �nite reductive group and consider a prime number ` ∈ π(G, F ) (see
De�nition 2.1) not dividing the order of Z(G)F . Then, the block-free version of the Knörr–Robinson
reformulation of Alperin’s Weight Conjecture holds forGF if and only if

k0 (GF ) = −l` (Λ̃GF (∆ (L⋆e`(q)(G, F ))))

if and only if
k (GF ) − k0 (GF ) = χGF (∆ (L⋆e`(q)(G, F )))

where the functions k, k0 and l` count the number of irreducible ordinary characters, `-defect zero
characters, and `-Brauer characters as explained in Section 2.4.

We now come to Dade’s Conjecture [Dad92, Conjecture 6.3]. A long term plan for the solution of
this conjecture was initiated by the author in [Ros22b] relying on the reduction theorem of Späth
[Spä17] and inspired by ideas of Broué, Fong and Srinivasan [BFS]. In particular, in [Ros22b, Con-
jecture C] the author introduced a version of Dade’s Conjecture for �nite reductive groups adapted
to generalised Harish-Chandra theory by using the e`(q)-local structures arising from the simplicial
complex of e`(q)-split Levi subgroups. Now, in order to prove Dade’s Conjecture we need to show
that:

• [Ros22b, Conjecture C] holds for �nite reductive groups; and

• [Ros22b, Conjecture C] implies Dade’s Conjecture.

The �rst question was reduced to certain extendibility conditions in [Ros22c] and proved for unipo-
tent characters and groups of types A, B, and C in [Ros23]. The second question, was answered
a�rmatively in [Ros22b, Proposition 7.10] under the assumption that ` is large. Our next theorem
extends this result to primes ` satisfying the hypotheses of Theorem A. Unfortunately, in this case
the homotopy equivalence constructed above is not enough to obtain the desired result. The proof
relies instead on the construction of a series of alternations (see De�nition 1.4) used to prove a can-
cellation theorem (see Theorem 4.5) that reduces the study of Dade’s Conjecture from the Brown
complex to the simplicial complex of e`(q)-closed abelian `-subgroups (see De�nition 3.1). The latter
is then identi�ed with the simplicial complex of e`(q)-split Levi subgroups (see Proposition 4.9) and
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this ultimately leads to the following theorem.

Theorem E. Let (G, F ) be a �nite reductive group withG simple of simply connected type. Consider
an odd prime ` good forG and not dividing the order of Z(G)F , with ` ≠ 3 if (G, F ) has rational type
3D4. Then [Ros22b, Conjecture C] and Dade’s Conjecture (see [Dad92, Conjecture 6.3]) are equivalent
for every Brauer `-block B with non trivial defect and every non-negative integer d.

A similar argument can be used to prove a cancellation theorem (see Theorem 4.6) for the Character
Triple Conjecture [Spä17, De�nition 6.3]. This is then used to show that the inductive condition
for Dade’s Conjecture [Spä17, De�nition 6.7] follows from [Ros22b, Conjecture D] and leads to our
�nal result.

Theorem F. Let (G, F ) be a �nite reductive group withG simple of simply connected type and such
that GF is the universal covering group of GF /Z(G)F . Consider a prime number ` ≥ 5 good for G
and not dividing the order of Z(G)F . If [Ros22b, Conjecture D] holds for a Brauer `-block B with
non-trivial defect and a non-negative integer d, then the inductive condition for Dade’s Conjecture (see
[Spä17, De�nition 6.7]) holds for B and d.

The paper is organised as follows. In Section 1 we introduce the main de�nitions and collect vari-
ous results on simplicial complexes, equivariant homotopy equivalences, generic Sylow theory, and
centralisers of abelian `-subgroups in �nite reductive groups. Here, we also introduce the notion
of alternation (see De�nition 1.4) inspired by the work of Knörr and Robinson [KR89]. Section 2 is
devoted to the proof of Theorem A and its applications: Corollary B, Corollary C, and Corollary D.
We also show that all these results can be stated by replacing the simplicial complex of e`(q)-split
Levi subgroups with that of Φe`(q)-tori (see Proposition 2.3). In Section 3 we introduce and study
the notion of e-closure (see De�nition 3.1) and of weak e-closure (see De�nition 3.6). This is then
used to construct alternations (see Proposition 3.9 and Proposition 3.12) inside the Brown complex
of a �nite reductive group and reduce the study to the e`(q)-closed abelian `-subgroups. This leads
us, in Section 4, to cancellation theorems for Dade’s Conjecture (see Theorem 4.5) and the Char-
acter Triple Conjecture (see Theorem 4.6) thanks to which we can state the conjectures by only
using chains of e`(q)-closed abelian `-subgroups. Finally, after showing that the latter correspond
to chains of e`(q)-split Levi subgroups (see Lemma 4.7), we are able to recover Dade’s Conjecture
and its inductive condition, or better the Character Triple Conjecture, from [Ros22b, Conjecture C
and Conjecture D]. This �nally yields Theorem E and Theorem F.

1 Background material

1.1 Subgroup complexes

For every poset X we form a simplicial complex ∆(X) whose n-simplices are the totally ordered
chains σ of cardinality n + 1 consisting of elements of X , that is, the chains of the form σ = {x0 <
x1 < ⋅ ⋅ ⋅ < xn} with xi ∈ X . The dimension of the simplex σ is de�ned as ∣σ∣ ∶= nwhile the dimension
of the simplicial complex ∆(X) is the largest dimension of one of its simplices. When considering
a simplicial complex of the form ∆(X) we will use interchangeably the terms chain and simplex as
well as the terms length and dimension. Now, if φ ∶ X → Y is a map of posets (i.e. order preserving),
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then we get an induced map of simplicial complexes ∆(φ) ∶ ∆(X) → ∆(Y). In particular, if G is a
�nite group acting on X via poset automorphisms, then ∆(X) is a G-simplicial complex as de�ned
in [Ben98, De�nition 6.1.1]. In this situation we say that X is a G-poset. Furthermore a map of
G-posets φ ∶ X → Y is a map of posets that is additionally G-equivariant. Observe that for every
x ∈ X the subposet X≤x ∶= {x′ ∈ X ∣ x′ ≤ x} induces a subcomplex ∆(X≤x). Furthermore, if G
acts on X , then ∆(X≤x) is a Gx-simplicial complex where Gx denotes the stabiliser of x in G. This
remark applies to similarly de�ned subposets X<x, X≥x etc.

In this paper we are mostly interested in the case where X is a poset of subgroups ordered by
inclusion. Fix a prime ` and letZ be a central `-subgroup of a �nite groupG. We denote byS⋆` (G,Z)
the set of all those `-subgroups P of G that satisfy Z < P and by S`(G,Z) the set of those P
that satisfy Z ≤ P . With this notation, we have S`(G,Z) = S⋆` (G,Z) ∪ {Z}. These sets of `-
subgroups have a natural structure of G-posets under the conjugacy action of G and the usual
subgroup inclusion. As explained above, we obtain aG-simplicial complex ∆(S⋆` (G,Z)) consisting
of the chains of `-subgroups σ = {P0 < P1 < ⋅ ⋅ ⋅ < Pn} with Z < Pi. Next, observe that Z is the
minimum in the poset S`(G,Z). In this case, we introduce the convention that every chain σ
belonging to the simplicial complex ∆(S`(G,Z)) has Z as its starting term, that is, σ = {Z = P0 <
P1 < ⋅ ⋅ ⋅ < Pn}. The complex of `-chains ∆(S`(G,Z)) is of fundamental importance in the study
of the local-global counting conjectures and has been studied in [KR89], [Dad92] and [Dad94]. The
reason why we consider chains starting with a �xed `-subgroup is described in the discussion given
in [Dad92, p.193]. When Z = 1, we denote S`(G,1) and S⋆` (G,1) simply by S`(G) and S⋆` (G)
respectively. The simplicial complex ∆(S⋆` (G)) was �rst introduced in [Bro75] and [Bro76] and is
known as the Brown complex. It is important to observe that while the Brown complex is usually
denoted by S`(G), in this paper we use (for technical resons) the notation introduced above and
according to which S`(G) denotes the set of all `-subgroups of G, including the trivial subgroup.

As it is well-known, in many situations one can replace the set of `-subgroups of G with cer-
tain subsets of `-subgroups such as the set of elementary abelian `-subgroups or the set of `-
radical `-subgroups (see, for instance, [Qui78, Section 2], [Bou84] and [KR89, Proposition 3.3]).
For the purpose of this paper, we will only consider the subset of abelian `-subgroups. More
precisely, we denote by Ab`,Z(G,Z) the subset of S`(G,Z) consisting of those `-subgroups P
of G containing Z and such that P /Z is abelian. We also denote by Ab`(G,Z) the subset of
S`(G,Z) consisting of those `-subgroups P containing Z and such that P is abelian. Clearly,
Ab`(G,Z) is contained in Ab`,Z(G,Z) and Z belongs to Ab`(G,Z) since it is abelian. If we
consider the same de�nitions but only considering `-subgroups P strictly containing Z , then we
obtain Ab⋆`,Z(G,Z) ∶= Ab`,Z(G,Z)∖{Z} and Ab⋆` (G,Z) ∶= Ab`(G,Z)∖{Z}. As before we form
the G-simplicial complexes ∆(Ab⋆` (G,Z)) and ∆(Ab⋆`,Z(G,Z)) corresponding to the G-posets
Ab⋆` (G,Z) and Ab⋆`,Z(G,Z) respectively. Notice that also in this case the `-subgroup Z is the
minimum of the posets Ab`(G,Z) and Ab`,Z(G,Z), and therefore we conventionally assume the
`-chains of ∆(Ab`(G,Z)) and ∆(Ab`,Z(G,Z)) to start with the term Z . When Z = 1, we sim-
plify the above notation and just write Ab`(G,1) = Ab`(G) and similarly for the other posets. We
mention that, although Quillen originally considered the set of elementary abelian `-subgroups, for
the purpose of this paper it is necessary to consider the larger set of all abelian `-subgroups. The
reason for this choice will become apparent in Section 3.2.
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1.2 Equivariant homotopy equivalences

We refer the reader to [TW91] and [Ben98, Section 6.4] for the main de�nitions and results on the
equivariant homotopy theory of posets. In particular, see [Ben98, De�nition 6.4.1] for the de�nition
of G-homotopy equivalence that we denote here by ≃G. In what follows, we say that a G-poset X is
G-contractible if the simplicial complex ∆(X) is G-homotopy equivalent to the trivial G-simplicial
complex (with trivial G-action). We start with the following result due to Quillen and extended by
Thévenaz and Webb.

Lemma 1.1 ([Qui78, Proposition 1.6], [TW91, Theorem 1]). LetG be a �nite group and consider two
G-posets X and Y . If φ ∶ X → Y is a map of G-posets such that either

(i) φ−1(Y≤y) is Gy-contractible for every y ∈ Y , or

(ii) φ−1(Y≥y) is Gy-contractible for every y ∈ Y ,

then the induced map of G-simplicial complexes

∆(φ) ∶ ∆ (X) →∆ (Y)

is a G-homotopy equivalence.

The above lemma will be our main tool to construct G-homotopy equivalences of simplicial com-
plexes. This will be used together with a standard result that ensures contractibility. A G-poset
X is called canonically G-contractible if there exists an element x0 ∈ XG and a map of G-posets
φ ∶ X → X such that x ≤ φ(x) ≥ x0 for every x ∈ X . Here XG denotes the subposet of G-�xed
elements.

Lemma 1.2. Let X be a G-poset. If X is canonically G-contractible, then it is G-contractible.

Proof. According to [Ben98, Theorem 6.4.2] it su�ces to show that the simplicial complex ∆(XH)
is contractible for every H ≤ G. By assumption there exists an element x0 ∈ XG and a map of
G-posets φ ∶ X → X satisfying x ≤ φ(x) ≥ x0 for every x ∈ X . In particular, we obtain a map
φH ∶ XH → XH and an element x0 ∈ XH such that x ≤ φH(x) ≥ x0 for every x ∈ XH . Then,
∆(XH) is canonically contractible thanks to [Qui78, 1.5] and the result follows.

There is a particularly simple situation in which the condition considered above is met. We say that
a G-poset X is G-join-contractible (via x0) if there exists an element x0 ∈ XG such that the join
x ∨ x0 exists in X for every x ∈ X .

Corollary 1.3. Let X be aG-poset. If X isG-join-contractible, then it is (canonically)G-contractible.

Proof. Consider the map φ ∶ X → X given by φ(x) ∶= x ∨ x0. Since x0 ∈ XG, we deduce that φ is
G-equivariant and the result follows immediately from Lemma 1.2.

1.3 Alternations for simplicial complexes

In this section, we introduce the notion of alternation for simplicial complexes. This is inspired by
the work of Knörr and Robinson and, in particular, by the proof of [KR89, Proposition 3.3] (see also
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the proof of [Nav18, Theorem 9.16]). As we will see below, the idea is to provide a way to cancel
out the contribution of a set of simplices to certain alternating sums. This often reduces questions
to the study of smaller and better behaved simplicial complexes.

De�nition 1.4 (Alternation). Let ∆ be a simplicial complex and consider a subcomplex ∆′ ⊆ ∆.
We say that a map

φ ∶ ∆ ∖∆′ →∆ ∖∆′

is an alternation of ∆′ in ∆ if it satis�es φ2(σ) = σ and ∣φ(σ)∣ = ∣σ∣ ± 1 for every σ ∈ ∆ ∖ ∆′.
Moreover, if ∆ is a G-simplicial complex and ∆′ is a G-stable subcomplex of ∆, then we say that φ
is a G-alternation of ∆′ in ∆ if it is additionally G-equivariant.

In the next lemma we illustrate how the above construction can be used to reduce problems concern-
ing a simplicial complex ∆ to a subcomplex ∆′. Suppose that ∆ is �nite. For every non-negative
integer r let ∆r be the set of simplices of ∆ of dimension r. Then, the Euler characteristic of ∆ is
given by

χ(∆) ∶= ∑
r≥0

(−1)r ∣∆r ∣

which is a well-de�ned integer since ∆r = ∅ for every r large than the (�nite) dimension of ∆. We
also allow the Euler characteristic to be de�ned on an empty simplicial complex by setting χ(∅) ∶= 0
(this will be relevant in the proof of Corollary 2.5).

Lemma 1.5. Let ∆′ ⊆ ∆ be two �nite simplicial complexes. If there exists an alternation of ∆′ in ∆,
then χ(∆) = χ(∆′).

Proof. As above let ∆r and ∆′
r be the sets of simplices of dimension r in ∆ and ∆′ respectively.

Since the dimension d′ of ∆′ is less than or equal to the dimension d of ∆, we get

χ (∆) =
d

∑
r=0

(−1)r ∣∆r ∣ (1.1)

=
d′

∑
r=0

(−1)r ∣∆′
r∣ +

d

∑
r=0

(−1)r (∣∆r ∣ − ∣∆′
r∣)

= χ (∆′) +
d

∑
r=0

(−1)r ∣∆r ∖∆′
r∣ .

Next, let ∆+ and ∆− be the set of simplices of even and odd dimension respectively and de�ne ∆′
+

and ∆′
− analogously. If φ is an alternation of ∆′ in ∆, then

∣∆+ ∖∆′
+∣ = ∣φ (∆+ ∖∆′

+)∣ = ∣∆− ∖∆′
−∣

and therefore
d

∑
r=0

(−1)r ∣∆r ∖∆′
r∣ = ∣∆+ ∖∆′

+∣ − ∣∆− ∖∆′
−∣ = 0. (1.2)

Now, combining (1.1) and (1.2) we conclude that χ(∆′) = χ(∆).

Next, following [KR89] we de�ne a G-stable function to be a map de�ned on the set of subgroups
of G, with integer values, and that is constant on G-conjugacy classes of subgroups. For instance,
the maps given by f1(H) ∶= k(H) (the number of conjugacy classes ofH) and f2(H) ∶= l`(H) (the
number of `-regular conjugacy classes of H) for every subgroup H of G are G-stable functions.
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Lemma 1.6. Let f be a G-stable function for some �nite group G and consider a �nite dimensional
G-simplicial complex ∆ and a G-stable subcomplex ∆′ ⊆ ∆. If there is a G-alternation of ∆′ in ∆,
then

∑
σ

(−1)∣σ∣f(Gσ) = ∑
σ′

(−1)∣σ′∣f(Gσ′)

where σ and σ′ run over representative sets for the action of G on ∆ and ∆′ respectively.

Proof. Let us �x representative sets S and S ′ for the action ofG on ∆ and ∆′ respectively. Without
loss of generality we may assume that S ′ is contained in S so that T ∶= S ∖ S ′ is a representative
set for the action of G on ∆ ∖∆′. Now, if φ is a G-alternation of ∆′ in ∆, it follows that also φ(T )
is a representative set for the action of G on ∆ ∖ ∆′. Moreover, observe that ∣φ(ρ)∣ = ∣ρ∣ ± 1 and
Gρ = Gφ(ρ) for every ρ ∈ T . Then, since f is constant on G-conjugacy classes of subgroups we
deduce that

∑
ρ∈T

(−1)∣ρ∣f (Gρ) = ∑
φ(ρ)∈φ(T )

(−1)∣φ(ρ)∣f (Gφ(ρ)) = − ∑
ρ∈T

(−1)∣ρ∣f (Gρ)

and therefore the alternating sum on the left-hand side is zero. We conclude that

∑
σ∈S

(−1)∣σ∣f(Gσ) = ∑
σ′∈S′

(−1)∣σ′∣f(Gσ′) + ∑
ρ∈T

(−1)∣ρ∣f(Gρ) = ∑
σ′∈S′

(−1)∣σ′∣f(Gσ′)

as claimed in the statement.

We refer the reader to Section 3.2 for the construction of the alternations relevant to this paper and
to Section 4.2 for further applications.

1.4 Generic Sylow theory

In [BM92] Broué and Malle introduced an analogue of the theory of `-subgroups in the context of
connected reductive groups. The main idea is to replace prime powers with powers of cyclotomic
polynomials. To start, observe that for every connected reductive group G de�ned over an alge-
braically closed �eld F of characteristic p, with a Frobenius endomorphism F ∶ G → G associated
with an Fq-structure onG (q a power of p), we can associate a polynomialP(G,F )(x) ∈ Z[x], known
as the order polynomial of (G, F ), with the property that P(G,F )(q) = ∣GF ∣ (see [GM20, De�nition
1.6.10 and Remark 1.6.15]). Now, for a set of positive integersE, we say that anF -stable torusS ofG
is a ΦE-torus of (G, F ) if its order polynomial P(S,F )(x) is the product of e-th cyclotomic polyno-
mials Φe(x) with e ∈ E. Centralisers of ΦE-tori are called E-split Levi subgroups of (G, F ). When
considering the set E = {e}, we omit parentheses and talk about Φe-tori, e-split Levi subgroups etc.
Moreover, recall that every F -stable torus T contains a unique maximal ΦE-torus denoted by TΦE .
We de�ne TE(G, F ) to be the set of ΦE-tori of (G, F ) containing Z○(G)ΦE and consider its subset
T ⋆E (G, F ) consisting of those ΦE-tori of (G, F ) strictly containing Z○(G)ΦE . Similarly, we write
LE(G, F ) to denote the set of E-split Levi subgroups of (G, F ) while the subset of proper (that
is, strictly contained in G) E-split Levi subgroups of (G, F ) is denoted by L⋆E(G, F ). These sets
have a natural structure of GF -posets with respect to the conjugation action of GF and the usual
inclusion of subgroups. As explained in Section 1.1, we can then form the corresponding simplicial
complexes. By convention, we assume that the simplices of ∆(TE(G, F )) always have Z○(G)ΦE
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(the minimum of the poset TE(G, F )) as a starting term. Similarly, we assume that the simplices of
∆(Le(G, F )) have G (the maximum of the poset LE(G, F )) as a �nal term.

We de�ne e`(q) to be the order of q modulo ` (modulo 4 if ` = 2) and E`(q) ∶= {n ∈ N ∣ n`′ = e`(q)}.
The latter coincides with the set of positive integers n such that ` divides Φn(q). Notice that in this
paper, we will often write A` ∶=O`(A) whenever A is an abelian �nite group.

Lemma 1.7. Assume that ` is good for G and does not divide ∣Z(G)F ∶ Z○(G)F ∣ and consider a
subset E ⊆ E`(q). If L is an E-split Levi subgroup of (G, F ), then L =CG(Z○(C○

G(Z(L)F` ))ΦE).

Proof. First, under our assumption, [CE04, Proposition 13.19] implies that L =C○
G(Z(L)F` ). On the

other hand, L =CG(Z○(L)ΦE) (see, for instance, [GM20, Proposition 3.5.5] or [Ros22b, Lemma 2.5
(i)]). Now, the result follows by combining the above two equalities.

1.5 Centralisers of abelian `-subgroups

In this section we collect some well-known results on centralisers of abelian `-subgroups (see [CE94,
Section 2] and [CE99, Section 3]). Remember that ` is a �xed prime di�erent from the de�ning
characteristic p of G.

Lemma 1.8. Let A be an abelian `-subgroup of GF and assume that ` is good for G. Then C○
G(A)

is an F -stable Levi subgroup of G. If in addition ` does not divide ∣Z(G)F ∶ Z○(G)F ∣ nor ∣Z(G∗)F ∶
Z○(G∗)F ∣, then:

(i) C○
G(A)F =CG(A)F ;

(ii) A ≤ Z○(C○
G(A)); and

(iii) C○
G(A) is an E`(q)-split Levi subgroup.

Proof. The connected centraliser C○
G(A) is a Levi subgroup according to [CE94, Proposition 2.1

(ii)]. Assume then that ` does not divide ∣Z(G)F ∶ Z○(G)F ∣ nor ∣Z(G∗)F ∶ Z○(G∗)F ∣. Under this
assumption, property (i) follows by the argument used to prove [CE94, Proposition 2.1 (iii)], while
the properties (ii) and (iii) follow immediately from (i) as explained in the proof of [Ros22b, Lemma
2.6 (ii)-(iii)].

Corollary 1.9. Let A be an abelian `-subgroup of GF and assume that ` is good for G. Then:

(i) CG(Z○(C○
G(A))Φe) is an e-split Levi subgroup of (G, F );

(ii) if in addition ` does not divide ∣Z(G)F ∶ Z○(G)F ∣ nor ∣Z(G∗)F ∶ Z○(G∗)F ∣, then A ≤
CG(Z○(C○

G(A))Φe).

Proof. Set L ∶=C○
G(A) and notice that this is an F -stable Levi subgroup by Lemma 1.8. Then Z○(L)

is anF -stable torus and by [BM92, Theorem 3.4 (2)] it contains a unique maximal Φe-torusZ○(L)Φe .
Then CG(Z○(L)Φe) is an e-split Levi subgroup of (G, F ). Suppose now that ` does not divide
∣Z(G)F ∶ Z○(G)F ∣ nor ∣Z(G∗)F ∶ Z○(G∗)F ∣. By Lemma 1.8 we get A ≤ Z○(C○

G(A)) and hence A
centralises Z○(C○

G(A)). From this, we deduce that A ≤CG(Z○(C○
G(A))) ≤CG(Z○(C○

G(A))Φe)
as required.
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2 Homotopy equivalences and applications

Let G be a connected reductive group de�ned over an algebraically closed �eld F of characteris-
tic p, F ∶ G → G a Frobenius endomorphism de�ning an Fq-structure on the variety G, and ` a
prime number. The (homotopy type of the) Brown complex ∆(S⋆` (GF )) was described by Quillen
in [Qui78, Theorem 3.1] for the case ` = p. In particular, it was shown that ∆(S⋆` (GF )) is ho-
motopy equivalent to the Tits (spherical) building associated to the set of proper rational parabolic
subgroups. In this section we consider the non-de�ning characteristic case ` ≠ p and show, under
suitable hypotheses, that the homotopy type of the Brown complex is controlled by the generic Sy-
low theory developed by Broué and Malle [BM92]. We then consider applications of this result to
generic Sylow theory, homology decompositions, and Alperin’s Weight Conjecture.

2.1 Equivariant homotopy equivalence via e`(q)-split Levi subgroups

We state a condition on primes that was �rst considered in the work of Cabanes and Enguehard
(see [CE04, Condition 22.1]). This will ensures that non-central abelian `-subgroups correspond to
proper e`(q)-split Levi subgroups under the map of posets consider in the proof below. Recall that
every connected reductive group G gives rise to a simply connected group Gsc ∶= ([G,G])sc as
de�ned in [GM20, Example 1.5.3 (b)]. We freely use the notion of dual group (G∗, F ∗) as in [GM20,
De�nition 1.5.17].

De�nition 2.1. Let π′(G, F ) be the set of primes ` that are good for G, do not divide 2, q or
∣Z(Gsc)F ∣, and satisfy ` ≠ 3 whenever (G, F ) has a rational component of type 3D4. Then, we
de�ne π(G, F ) to be the set of primes ` ∈ π′(G, F ) not diving ∣Z(G)F ∶ Z○(G)F ∣ nor ∣Z(G∗)F ∶
Z○(G∗)F ∣.

We now prove Theorem A.

Theorem 2.2. Suppose that ` ∈ π(G, F ) does not divide the order of Z(G)F . Then

∆ (S⋆` (GF )) ≃GF ∆ (L⋆e`(q) (G, F )) .

Proof. Set e ∶= e`(q) and recall that Ab⋆` (GF ) is the poset of non-trivial abelian `-subgroups of
GF . Since Ab⋆` (GF ) contains the poset of non-trivial elementary abelian `-subgroups considered
by Quillen in [Qui78], we deduce from [TW91, Theorem 2] that the Brown complex ∆(S⋆` (GF )) is
GF -homotopy equivalent to ∆(Ab⋆` (GF )). On the other hand, since opposite posets are associated
to homeomorphic simplicial complexes, there exists a GF -equivariant homeomorphism between
∆(L⋆e(G, F )) and ∆(L⋆e(G, F )op) and hence it is enough to show that the simplicial complexes
∆(Ab⋆` (GF )) and ∆((L⋆e(G, F ))op) are GF -homotopy equivalent. To prove the latter statement,
we apply the results of Section 1.2 and Section 1.5. Consider the map

φe ∶ Ab⋆` (GF ) → L⋆e (G, F )op

A↦CG (Z○ (C○
G(A))Φe

)

and observe that this is a well-de�ned map ofGF -posets. In fact, according to Corollary 1.9 we know
that φe(A) is an e-split Levi subgroup and it is enough to show that φe(A) is strictly contained in
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G. To prove this fact, we �rst apply Lemma 1.8 (iii) to deduce that H ∶= C○
G(A) is an E`(q)-split

Levi subgroup of (G, F ). Moreover, recalling that Z(G)F` = 1, we observe thatA cannot be central
in G and therefore that H <G. If now we assume φe(A) =G, it follows that Z○(H)Φe ≤ Z(G) and
[CE04, Lemma 22.3] (see also the proof of [CE04, Theorem 22.2]) implies that Z○(H)Φe`a ≤ Z(G)
for every a ≥ 0. But then Z○(H)ΦE`(q)

≤ Z(G) and, since H is an E`(q)-split Levi subgroup of
(G, F ), we obtain H = G. This contradiction shows that φe(A) is strictly contained in G and
hence the map φe is well-de�ned. Next, we show that φe is a map of GF -posets. By the de�nition
of φe it follows that φe(Ag) = φe(A)g for every abelian `-subgroupA ≤GF and g ∈GF . Moreover,
letA ≤ A′ be two abelian `-subgroups and set L ∶=C○

G(A) and K ∶=C○
G(A′). Since K ≤ L are Levi

subgroups of (G, F ) (see Lemma 1.8), we obtain Z(L) ≤ Z(K) which implies Z○(L)Φe ≤ Z○(K)Φe

and therefore φe(A′) ≤ φe(A). This shows that φ is a map of GF -posets.

We now want to apply Lemma 1.1 to show that φe induces a GF -homotopy equivalence ∆(φe).
For this purpose, �x an e-split Levi subgroup L of (G, F ) and observe that the elements of the
�bre XL ∶= φ−1

e (L⋆e(G, F )op
≥L) are those abelian `-subgroups A of GF that satisfy φe(A) ≤ L. We

need to prove that XL is NG(L)F -contractible and we do so by showing that XL is NG(L)F -join-
contractible via A0 ∶= Z(L)F` (see Corollary 1.3). First, observe that A0 is an element of the �bre
XL, since φe(A0) = L according to Lemma 1.7, and that A0 is �xed by the action of NG(L)F .
Moreover, whenever A ∈ XL, Corollary 1.9 implies that A ≤ φe(A) ≤ L and therefore [A,A0] = 1
since A0 centralises L. It follows that the product AA0 is a well-de�ned abelian `-subgroup of GF

that satis�es φe(AA0) ≤ L. This shows that AA0, which is the join of A and A0, is de�ned in the
poset XL for every A ∈ XL and the proof is now complete.

The homotopy equivalence constructed above can also be stated in terms of Φe`(q)-tori. In fact,
it is not hard to show that, for every set of positive integers E, the simplicial complex of E-split
Levi subgroups of (G, F ) is GF -homotopy equivalent to that of ΦE-tori of (G, F ). Recall that the
notation T ⋆E (G, F ) is used to denote the set of ΦE-tori S of (G, F ) that properly contain Z(G)ΦE .

Proposition 2.3. For every set of positive integers E we have

∆ (L⋆E (G, F )) ≃GF ∆ (T ⋆E (G, F )) .

Proof. Arguing as in the proof of Theorem 2.2, it is enough to show that the simplicial complex
∆(T ⋆E (G, F )) is GF -homotopy equivalent to ∆(L⋆E(G, F )op). To construct this equivalence, we
consider the map of GF -poset φ ∶ T ⋆E (G, F ) → L⋆E(G, F )op that sends a ΦE-torus S to its cen-
traliser CG(S). Observe that CG(S) is an E-split Levi subgroup of (G, F ) and is a proper sub-
group of G because Z(G)ΦE is properly contained in S. Now let us �x an E-split Levi subgroup
L of (G, F ), set S0 ∶= Z○(L)ΦE and denote by XL the �bre φ−1(L⋆E(G, F )op

≥L). If S ∈ XL, then
S ≤CG(S) ≤ L and [S,S0] = 1 since S0 is central in L. In particular, SS0 is a ΦE-torus of (G, F )
satisfying φ(SS0) ≤ L and it follows from Corollary 1.3 that XL is NG(L)F -contractible. Now the
result follows from Lemma 1.1.

2.2 Homological generic Sylow theorem

The Brown complex of a �nite group was �rst studied by K. S. Brown in [Bro75] where he proved
a homological version of the third Sylow theorem. More precisely, he showed that for every prime
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number ` dividing the order of a �nite groupG, the Euler characteristic χ(∆(S⋆` (G))) is congruent
to 1 modulo the order of a Sylow `-subgroup. On the other hand, Borué and Malle developed a
generic version of the Sylow theorems for �nite reductive groups. In this section, by exploiting the
homotopy equivalence constructed in Theorem 2.2, we obtain an analogous congruence involving
the euler characteristic of the simplicial complex of e-split Levi subgroups when considering large
primes. This gives evidence for a homological generic Sylow theorem.

We say that a prime ` is large for (G, F ) if there exists a unique positive integer e such that Φe(x)
divides the order polynomial P(G,F )(x) and ` divides Φe(q) (see [BMM93, De�nition 5.1]). In this
case, we also say that ` is (G, F, e)-adapted (see [BMM93, De�nition 5.3]). Observe that if ` is large
for (G, F ), then ` is good for G and does not divide ∣Z(G)F ∶ Z○(G)F ∣ nor ∣Z(G∗)F ∶ Z○(G∗)F ∣
according to [BMM93, Proposition 5.2]. Before proving our next result, we point out that Theorem
2.2 holds for large primes ` not dividing the order of Z(G)F .

Remark 2.4. In the proof of Theorem 2.2 we use the hypothesis ` ∈ π′(G, F ) only when invoking
[CE04, Lemma 22.3]. This lemma is used to show that if H is an F -stable Levi subgroup of G
satisfying Z○(H)Φe ≤ Z(G), then we get Z○(H)Φe`a ≤ Z(G) for every a ≥ 0. However, if ` is
large for (G, F ) and (G, F, e)-adapted, then we get Z○(H)Φe = Z○(H)Φe`a for every a ≥ 0 and the
implication above trivially holds.

Corollary 2.5. Suppose that ` is large for (G, F ) and does not divide the order of Z(G)F . Then

χ (∆ (L⋆e`(q) (G, F ))) ≡ 1 (mod (Φe`(q)(q)
a)
`
)

where a is the Φe`(q)-valuation of the order polynomial of (G, F ).

Proof. Set e ∶= e`(q). We may assume without loss of generality that our prime ` is (G, F, e)-
adapted. In fact, since ` divides Φe(q), if ` is (G, F, e0)-adapted for some positive integer e0 then
either e = e0 or Φe does not divide the order polynomial of (G, F ). In the latter case, we con-
clude that a(e) = 0 and there are no non-trivial Φe-subgroups of (G, F ). Thus χ(Te(G, F )) = 0,
Φ
a(e)
e (q)` = 1 and the result follows trivially. Next, observe that the Euler characteristic χ(∆) of

a simplicial complex ∆ only depends on the homology of ∆ and hence it is a homotopy invariant.
Therefore, applying Theorem 2.2 (which holds under our assumption thanks to Remark 2.4) we get

χ (∆ (L⋆e(G, F ))) = χ (∆ (S⋆` (GF ))) . (2.1)

On the other hand, we know from [BM92, Corollary 3.13 (ii)] that

∣GF ∣
`
= Φa

e(q)` (2.2)

where a is the Φe`(q)-valuation of the order polynomial of (G, F ). The result now follows from
(2.1) and (2.2) as a consequence of Brown’s theorem [Bro75, Corollary 2].

Observe that by using Proposition 2.3 we immediately deduce that the congruence of the above
corollary could also be stated in terms of the simplicial complex of Φe`(q)-tori as

χ (∆ (T ⋆e`(q) (G, F ))) ≡ 1 (mod (Φe`(q)(q)
a)
`
) .

We conclude this section with an alternative proof of the above corollary which involves the reduced
Lefschetz module (an analogue of the Steinberg module) and is basically due to Quillen.
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Remark 2.6. The above congruence can also be obtained as a consequence of Quillen’s result on
the projectivity of the generalised Steinberg module. For this purpose, set e = e`(q) and de�ne
the reduced Lefschetz module (see [Ben98, De�nition 6.3.2]) of ∆(L⋆e(G, F )) over an algebraically
closed �eld F` of characteristic `

Ste(G, F ) ∶= L̃GF (∆ (L⋆e(G, F )) ,F`)

whose dimension is χ(∆(L⋆e(G, F )))−1. If we now assume that ` is large for (G, F ) and does not
divide the order of Z(G)F , then Theorem 2.2 (together with Remark 2.4) implies that Ste(G, F )
coincides with the generalised Steinberg module St`(GF ) as de�ned in [Ben98, De�nition 6.7.1]. On
the other hand, by applying [Qui78, Corollary 4.3] we deduce that St`(GF ) is a virtual projective
module and hence its dimension is a multiple of ∣GF ∣`. This shows that that the order of a Sylow
`-subgroup of GF divides χ(L⋆e(G, F )) − 1. Corollary 2.5 now follows from [BM92, Corollary 3.13
(ii)] which shows that (2.2) holds.

2.3 Sharp homology decompositions

The idea of decomposing the classifying space of a �nite group G, up to mod ` homology, in
terms of classifying spaces of subgroups of G was systematically studied by Dwyer in [Dwy97]
building on previous works of Brown [Bro79], Webb [Web87], Jackowski–McClure [JM92], and
Jackowski–McClure–Oliver [JMO92]. The exact de�nition of a homology decomposition can be found
in [Dwy97] and is related to the notion of ampleness (see [Dwy97, De�nition 1.2]). Here, we consider
an extension of Dwyer’s de�nition to more general simplicial complexes.

De�nition 2.7 ([BS08, De�nition 5.6.6]). Let G be a �nite group and ∆ a G-simplicial complex.
Denote by ⋆ the one point space with trivial G-action and by (−)hG the Borel construction [BS08,
De�nition 2.5.9]. We say that ∆ is ample (with respect to the prime `) if the map

(∆)hG → (⋆)hG

given by ∆→ ⋆ induces an isomorphism on mod ` homology.

For every ample G-simplicial complex we get three homology decompositions: the centralizer de-
composition, the subgroup decomposition, and the normalizer decomposition (see [Dwy97, Theorems
1.4, 1.6, 1.8] or [BS08, Theorem 5.6.10]). Moreover, observe that the notion of ampleness is a homo-
topy invariant of the simplicial complex ∆ (see, for instance, [BS08, Lemma 5.6.8]). Since the Brown
complex ∆(S⋆` (G)) is ample, with respect to the prime `, according to [BS08, Theorem 5.1.3 and
Proposition 5.6.7], we get the following consequence of Theorem 2.2.

Corollary 2.8. Suppose that ` ∈ π(G, F ) does not divide the order ofZ(G)F . Then theGF -simplicial
complex ∆(L⋆e`(q)(G, F )) is ample with respect to the prime `.

Next, recall that a homology decomposition is called sharp if the corresponding Bous�eld–Kan co-
homology spectral sequence of the homotopy colimit satis�es E2

i,j = 0 for every i > 0 and every
j (see [Dwy98] for further details). A simplicial complex ∆ is called centraliser sharp, subgroup
sharp, or normalizer sharp (with respect to `) if it is ample (with respect to `) and the correspond-
ing homology decomposition is sharp in the sense described above. This notion was introduced
by Dwyer [Dwy98] and further studied by Grodal [Gro02] and Grodal–Smith [GS06]. Unlike the
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notion of ampleness, being centraliser sharp or subgroup sharp is not a homotopy invariant. How-
ever, according to [Gro02, Corollary 7.2] (see also [BS08, Theorem 5.8.11]) this is true in the case
of normaliser sharpness. Since the Brown complex ∆(S⋆` (G)) is normalizer sharp with respect to
the prime ` (see, for instance, [BS08, Theorem 5.8.8]) our homotopy equivalence from Theorem 2.2
implies the following.

Corollary 2.9. Suppose that ` ∈ π(G, F ) does not divide the order ofZ(G)F . Then, theGF -simplicial
complex ∆(L⋆e`(q)(G, F )) is normaliser sharp with respect to the prime `.

The above result leads to further natural questions. For instance, whether the above simplicial
complex is centraliser sharp or subgroup sharp. Moreover, it would be interesting to know if the
restrictions on the prime ` can be relaxed. Finally, we mention that using recent results of Grodal
[Gro23], theGF -homotopy equivalence of Theorem 2.2 provides a way to study endotrivial modules
for �nite reductive groups (in non-de�ning characteristic ` ∈ π(G, F )) in terms of e`(q)-split Levi
subgroups (or,equivalently, of Φe`(q)-tori according to Proposition 2.3).

2.4 Alperin’s Weight Conjecture

In [Alp87], inspired by the weight theory for the modular representations of �nite reductive groups
in de�ning characteristic, Alperin introduced his celebrated Weight Conjecture. IfG is a �nite group
and ` a prime, we call a pair (Q,ϑ) an `-weight ofG ifQ is an `-subgroup ofG and ϑ is an irreducible
character of NG(Q)/Q of `-defect zero, that is ϑ(1)` = ∣NG(Q) ∶ Q∣`.

Alperin’s Weight Conjecture 2.10. The number of irreducible `-Brauer characters of G equals the
number of conjugacy classes of `-weights of G.

A major breakthrough towards the understanding of the above statement was made by Knörr and
Robinson in [KR89] where they presented a reformulation in terms of the Brown complex of `-
subgroups. In particular, this allows one to show that such a conjecture only depends on the ho-
motopy type of the Brown complex. This fact is even more explicit in the treatment of the Knörr–
Robinson reformulation given by Webb [Web87, Section 6]. This can be stated by saying that

k0(G) = −l` (Λ̃(∆(S⋆` (G)))) (2.3)

where k0(G) denotes the number of irreducible characters ofG of `-defect zero and Λ̃ is the reduced
Lefschetz invariant in the Burnside ring b(G) [Ben98, De�nition 6.3.3]. Here, l`(H) denotes the
number of irreducible `-Brauer characters of a �nite group H and we regard l` as a function on the
Burnside ring b(G) (see [Web87, Section 6] and [Ben98, Section 6.9] for further details). Since Λ̃ is
a homotopy invariant, the term on the right-hand side of (2.3) can be equivalently stated in terms
of various subgroup complexes. In particular, we can restate Alperin’s Weight Conjecture for �nite
reductive groups in terms of the simplicial complex of e`(q)-split Levi subgroups.

Corollary 2.11. Suppose that ` ∈ π(G, F ) does not divide the order of Z(G)F . Then the Knörr–
Robinson reformulation of Alperin’s Weight Conjecture (in the sense of Webb (2.3)) holds forGF at the
prime ` if and only if

k0 (GF ) = −l` (Λ̃ (∆ (L⋆e`(q)(G, F )))) .
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Another approach to Alperin’s Weight Conjecture was introduced by Thévenaz [Thé93] in relation
to the equivariant K-theory of the Brown complex. For every �nite group G and G-simplicial
complex ∆, de�ne the equivariant Euler characteristic of ∆ as

χG(∆) ∶= dim (Q⊗K0
G(∆)) − dim (Q⊗K1

G(∆))

where K0
G and K1

G are the equivariant K-theory groups and ∆ is interpreted as a compact G-
space (see [Thé93] for further details). Thévenaz proved that the Knörr–Robinson reformulation of
Alperin’s Weight Conjecture can be restated as

k (G) − k0 (G) = χG (∆ (S⋆` (G))) (2.4)

where k(G) denotes the number of irreducible characters of G. Once again, observe that the right-
hand side of the above equation is invariant under equivariant homotopy equivalences. Since the
homotopy equivalence constructed in Theorem 2.2 is a GF -homotopy equivalence, we can restate
the right-hand side of (2.4) for �nite reductive groups by using the simplicial complex of e`(q)-split
Levi subgroups.

Corollary 2.12. Suppose that ` ∈ π(G, F ) does not divide the order of Z(G)F . Then the Knörr–
Robinson reformulation of Alperin’s Weight Conjecture (in the sense of Webb (2.4)) holds forGF at the
prime ` if and only if

k (GF ) − k0 (GF ) = χGF (∆ (L⋆e`(q)(G, F ))) .

We point out that while Alperin’s Weight Conjecture is not equivalent to the Knörr–Robinson refor-
mulation for every �xed �nite group, the latter is equivalent to (2.3) and (2.4) for every �xed �nite
group according to [KR89, Corollary 4.5] (see also [Nav18, Corollary 9.23])

Thévenaz approach has recently been considered by Møller to obtain new proofs of Alperin’s Weight
Conjecture (in the Knörr–Robinson reformulation) for general linear, unitary and symplectic groups
with respect to the de�ning characteristic [Møl19], [Møl21] and [Møl22]. Corollary 2.12 together
with the geometric nature of the e-split Levi subgroups might lead to further developments in this
direction for the non-de�ning characteristics.

To conclude this section, we point out that using the homotopy equivalence constructed in Theorem
2.2 is not enough to obtain a reformulation for the blockwise version of Alperin’s Weight Conjecture
in terms of e`(q)-split Levi subgroups. In fact, the latter does not admit (known) formulations in the
form of (2.3) and (2.4). Nevertheless, in the following sections we will extend the arguments that
led to the proof of Theorem 2.2 and obtain results that are compatible with block theory and with
even stronger conjectures.

3 Adapting abelian `-subgroups to e-split Levi subgroups

In the previous section we have constructed a GF -homotopy equivalence between the Brown com-
plex ∆(S⋆` (GF )) and the simplicial complex ∆(L⋆e`(q)(G, F )) whenever ` is a prime di�erent from
the de�ning characteristic of G and satisfying suitable hypotheses. This was enough to reformulate
Alperin’s Weight Conjecture, for the prime `, in terms of chains belonging to ∆(L⋆e`(q)(G, F )).
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However, in order to obtain a similar reformulation for Dade’s Conjecture and its inductive condi-
tion, i.e. the Character Triple Conjecture, we need to re�ne these arguments. More precisely, we
identify a distinguished subset of `-subgroups ofGF that corresponds to that of e`(q)-split Levi sub-
groups of (G, F ) (in a sense speci�ed in Lemma 3.3) and show that the only chains of ∆(S`(GF ))
that contribute to these conjectures are those whose terms lie in this newly de�ned subset of `-
subgroups. This is done by constructing a series of alternations as introduced in De�nition 1.4. Our
approach extends (unpublished) ideas of Broué, Fong and Srinivasan [BFS] that appeared in [Ros22b,
Section 7.2] and were used to settle analogous questions for large primes.

3.1 The (weak) e-closure of an abelian `-subgroup

Recall from Section 1.1 that Ab`(GF ) denotes the set of abelian `-subgroups of GF . Our �rst aim
is to de�ne the following e-closure operator on this class of subgroups. This should be interpreted
as an attempt to adapt these subgroups to the class of e-split Levi subgroups (see Lemma 3.3 below).

De�nition 3.1 (e-closure). For every positive integer e we de�ne the e-closure on Ab`(GF ) as the
map

γ`,e ∶ Ab` (GF ) → Ab` (GF )

A↦ Z○ (CG (Z○ (C○
G(A))Φe

))F
`

and we say that an abelian `-subgroup A ∈ Ab`(GF ) is e-closed if it satis�es A = γ`,e(A). We
denote by Ab`(GF )γ`,e the set of e-closed `-subgroups of GF , that is, the set of γ`,e-�xed elements
of the set Ab`(GF ).

If we assume that ` is good for G, then the connected centraliser of an abelian `-subgroup is a Levi
subgroup according to [CE94, Proposition 2.1 (ii)]. In this case, the map γ`,e satis�es the following
useful properties. Here, we denote by AutF(GF ) the group of automorphisms of GF described in
[CS13, Section 2.4]. As usual, recall that ` ≠ p.

Lemma 3.2. LetA be an abelian `-subgroup ofGF and assume that ` is good forG. For every positive
integer e we have:

(i) γ`,e(A) ≤ γ`,e(A′) for every abelian `-subgroup A′ ∈ Ab`(GF ) with A ≤ A′;

(ii) γ`,e(Aα) = γ`,e(A)α for every automorphism α ∈ AutF(GF );

(iii) Z○(G)F` ≤ γ`,e(A);

(iv) [A,γ`,e(A)] = 1.

Proof. Assuming A ≤ A′ we get the inclusion C○
G(A′) ≤ C○

G(A) and, since C○
G(A′) is a Levi

subgroup of C○
G(A), it follows that Z(C○

G(A)) ≤ Z(C○
G(A′)). Now [BM92, Lemma 3.1 (ii)]

yields Z○(C○
G(A))Φe ≤ Z○(C○

G(A′))Φe and we obtain an inclusion of (e-split) Levi subgroups
CG(Z○(C○

G(A′))Φe) ≤ CG(Z○(C○
G(A))Φe). As before, taking the centre induces a reverse in-

clusion Z○(CG(Z○(C○
G(A))Φe)) ≤ Z○(CG(Z○(C○

G(A′))Φe)) from which we deduce γ`,e(A) ≤
γ`,e(A′). This proves (i) while (ii) follows immediately from the fact that Y` is characteristic in Y
and SΦe is characteristic in S for every abelian �nite group Y and every (F -stable) torus S. To prove
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(iii), observe that Z○(G) is contained in the e-split Levi subgroup CG(Z○(C○
G(A))Φe) =∶ L for ev-

ery abelian `-subgroup A of GF . Then we surely have Z○(G)F` ≤ Z○(L)F` = γ`,e(A). Finally, since
C○

G(A) is a Levi subgroup of G we obtain C○
G(A) = CG(Z○(C○

G(A))) ≤ CG(Z○(C○
G(A))Φe)

(see [DM20, Proposition 3.4.6]) and taking the connected center yields Z○(CG(Z○(C○
G(A))Φe)) ≤

C○
G(A). Thus γ`,e(A) is contained in C○

G(A) ≤CG(A) and (iv) follows.

Next, we provide a characterisation of e-closed abelian `-subgroups. This also explains why the map
γ`,e is called e-closure and clari�es the reason for its de�nition.

Lemma 3.3. Assume that ` is good forG and consider a positive integer e. If A is an e-closed abelian
`-subgroupA ofGF , thenA = Z○(L)F` for some e-split Levi subgroupL of (G, F ). The converse holds
provide that e = e`(q) and ` does not divide ∣Z(GF ) ∶ Z○(GF )∣.

Proof. Assume thatA is an e-closed abelian `-subgroup of GF . If we set L ∶=CG(Z○(C○
G(A))Φe),

then L is an e-split Levi subgroup of (G, F ) and satis�es A = γ`,e(A) = Z○(L)F` . Conversely,
assume that ` does not divide ∣Z(G)F ∶ Z○(G)F ∣ and that e = e`(q). Let L be an e-split Levi
subgroup of (G, F ) and set A ∶= Z○(L)F` . By Lemma 1.7 we deduce that L =CG(Z○(C○

G(A))Φe)
and hence A = γ`,e(Z○(L)F` ) = γ`,e(A) is e-closed.

An immediate consequence of the above lemma is that the connected centraliser of an e`(q)-closed
abelian `-subgroup is an e`(q)-split Levi subgroup.

Corollary 3.4. Assume that ` is good forG and does not divide ∣Z(GF ) ∶ Z○(GF )∣. IfA is an e`(q)-
closed abelian `-subgroup ofGF , then the connected centraliserC○

G(A) is an e`(q)-split Levi subgroup
of (G, F ).

Proof. By Lemma 3.3 there exists an e`(q)-split Levi subgroup L of (G, F ) such that A = Z○(L)F` .
But then C○

G(A) = C○
G(Z○(L)F` ) = L is an e`(q)-split Levi subgroup of (G, F ) thanks to [CE04,

Proposition 13.19].

Remark 3.5. Observe that the converse of Corollary 3.4 does not hold in general. For instance
suppose that the prime ` is good for G, does not divide ∣Z(G)F ∶ Z○(G)F ∣ but does divide the order
of Z○(G)F (consider, for instance, GF = GLn(q) and ` dividing q − 1). Then, for every `-subgroup
Q strictly contained in Z○(G)F` we deduce that C○

G(Q) = G is an e`(q)-split Levi subgroup of
(G, F ) while Q cannot be e`(q)-closed since Z○(G)F` is not contained in Q (see Lemma 3.2 (iii)).

Given any abelian `-subgroup A of GF , we would like to construct a corresponding e-closed sub-
group of GF . To do so we �rst introduce the following notion of weak e-closure. Recall that given
two subgroups H and K of a �nite group G, the product HK is a subgroup of G if and only if
HK = KH . The latter condition is de�nitely satis�ed if [H,K] = 1. Furthermore, in this case, it
follows that HK is abelian if and only if so are H and K .

De�nition 3.6 (Weak e-closure). Assume that ` is good for G and consider a positive integer e. We
de�ne the weak e-closure on Ab`(GF ) as the map

ω`,e ∶ Ab` (GF ) → Ab` (GF )
A↦ Aγ`,e(A)
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which is well-de�ned according to Lemma 3.2 (iii) and the discussion above. We say that an abelian `-
subgroupA ∈ Ab`(GF ) is weakly e-closed if it satis�esA = ω`,e(A) and we denote by Ab`(GF )ω`,e
the set of weakly e-closed `-subgroups of GF , that is, the set of ω`,e-�xed elements of Ab`(GF ).

In the following lemma we collect some basic properties of the weak e-closure ω`,e and of the set
of weakly e-closed `-subgroups. In particular, for any given abelian `-subgroup, we show how to
produce an e-closed abelian `-subgroup by repeatedly applying the maps γ`,e and ω`,e.

Lemma 3.7. LetA be an abelian `-subgroup ofGF and assume that ` is good forG. For every positive
integer e we have:

(i) ω`,e(A) ≤ ω`,e(A′) for every abelian `-subgroup A′ ∈ Ab`(GF ) with A ≤ A′;

(ii) ω`,e(Aα) = ω`,e(A)α for every automorphism α ∈ AutF(GF );

(iii) A ≤ ω`,e(A). In particular, there exists a uniquely de�ned non-negative integer tA minimal with
the property that ωtA`,e(A) is weakly e-closed;

(iv) if A is weakly e-closed, then so is γ`,e(A). In particular, the e-closure restricts to a map

γ`,e ∶ Ab`(GF )ω`,e → Ab`(GF )ω`,e

and there exists a uniquely de�ned non-negative integer rA minimal with the property that
γrA`,e(A) is e-closed;

(v) if A is e-closed, then A is weakly e-closed.

Proof. If A ≤ A′ we know from Lemma 3.2 (i) that γ`,e(A) ≤ γ`,e(A′) and (i) follows. Similarly, (ii)
follows from 3.2 (ii). Next, observe that A ≤ Aγ`,e(A) = ω`,e(A) for every abelian `-subgroup and
we get an ascending chain of `-subgroups {ωi`,e(A)}i≥0 of the �nite group GF . Since this chain
must stabilise, there exists a minimal index tA ≥ 0 such that ωtA`,e(A) = ωt`,e(A) for every t ≥ tA.
Then, the subgroup ωtA`,e(A) is weakly e-closed by de�nition.

Assume now that A is weakly e-closed. This means that A = ω`,e(A) = Aγ`,e(A) and therefore
that γ`,e(A) ≤ A. Then, Lemma 3.2 (i) implies γ`,e(γ`,e(A)) ≤ γ`,e(A) and hence ω`,e(γ`,e(A)) =
γ`,e(A)γ`,e(γ`,e(A)) = γ`,e(A). This shows that γ`,e(A) is weakly e-closed. As before, we can form
a descending chain of `-subgroups {γi`,e(A)}i≥0 which must eventually stabilise. We can then �nd
a minimal index rA ≥ 0 such that γrA`,e(A) = γt`,e(A) for every t ≥ rA and then surely γrA`,e(A) is
e-closed. This proves (iv) while (v) follows immediately from the de�nition.

3.2 Alternations via γ`,e and ω`,e

It is well-known that di�erent sets of `-chains can be considered as equivalent when dealing with
the alternating sums appearing in Dade’s Conjecture. When the alternating sum is a homotopy
invariant, for instance if it is realised as the Euler characteristic of a simplicial complex, these results
follow from the existence of certain homotopy equivalences. This approach was �rst considered by
Webb [Web87, Section 6] and builds on previous results of Bouc, Quillen and Thévenaz. A more
elementary approach was introduced by Knörr and Robinson in [KR89] and is based, implicitly,
on the construction of certain alternations in the sense of De�nition 1.4 (see the proof of [KR89,
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Proposition 3.3]). These are then used to show that the alternating sums under consideration can
be equivalently stated in terms of di�erent simplicial complexes [KR89, Corolary 3.4]. While this
second approach might not o�er a conceptual explanation, it is much more �exible and can be used
to obtain more precise results (see, for instance, [Rob96], [Rob00], [Rob02a], [Rob02b], [KLLS19]
and [Ros]).

In this section, following these ideas, we construct precise alternations that will be used to obtain
cancellation theorems for Dade’s Conjecture and the Character Triple Conjecture in the case of �nite
reductive groups. By using the properties of γ`,e and ω`,e discussed in the previous section, we are
able to remove the contribution of all `-chains that are not abelian and e-closed. This is done in
subsequent steps by considering the inclusions

Ab`(GF )γ`,e ↪ Ab`(GF )ω`,e ↪ Ab`(GF ) ↪ S`(GF )

and assuming suitable hypotheses. In the next section, we then construct a bijection between the
remaining `-chains and the simplicial complex of e-split Levi subgroups

∆ (Ab`(GF )γ`,e) ←→∆ (Le(G, F ))

and we reformulate Dade’s Conjecture and the Character Triple Conjecture in terms of e-split Levi
subgroups. Then, we recover these reformulations by the conjectures proposed by the author in
[Ros22b]. Thanks to this result we can then apply the machinery of Deligne–Lusztig theory and
generalised Harish-Chandra theory to the study of Dade’s Conjecture and the Character Triple Con-
jecture for �nite reductive groups in non-de�ning characteristics.

Lemma 3.8. Let G be a �nite group, ` a prime dividing the order of G and Z a central `-subgroup
of G. For every �nite group of automorphisms A of G stabilising Z there is an A-alternation of
∆(Ab`,Z(G,Z)) in ∆(S`(G,Z)).

Proof. Fix an `-chain σ = {Z = P0 < P1 < ⋅ ⋅ ⋅ < Pn} belonging to the set ∆(S`(G,Z)) but not to
∆(Ab`,Z(G,Z)) and observe that the quotientPn/Z is not abelian, that is, [Pn, Pn] is not contained
inZ . Moreover, notice that ifQ is a maximal subgroup ofPn containingPn−1, thenQ is normal inPn
and the quotient Pn/Q is abelian. This implies that [Pn, Pn] ≤ Q and hence [Pn, Pn]Pn−1 ≤ Q < Pn.
Next, since [Pn, Pn] is not contained in Z = P0, we can �nd a unique index 1 ≤ m ≤ n such
that [Pn, Pn] is contained in Pm but not in Pm−1. In particular, we have Pm−1 < [Pn, Pn]Pm−1 ≤
Pm. We can then de�ne φ(σ) as the `-chain obtained from σ by adding the term [Pn, Pn]Pm−1, if
[Pn, Pn]Pm−1 < Pm, or by removing the term Pm, if [Pn, Pn]Pm−1 = Pm. Observe that the new
`-chain φ(σ) belongs to ∆(S`(G,Z)) but not to ∆(Ab`,Z(G,Z)). In fact, φ(σ) starts with Z = P0

because m ≥ 1 while the �nal term of φ(σ) is Pn because [Pn, Pn]Pn−1 < Pn. Therefore, we have
shown that the assignment σ ↦ φ(σ) de�nes a map of ∆(S`(G,Z)) ∖ ∆(Ab`,Z(G,Z)) to itself.
Moreover, by the above construction and recalling that [Pn, Pn] is a characteristic subgroup of Pn,
we further deduce that φ(φ(σ)) = σ and that φ(σ)α = φ(σα) for all α ∈ A, while it is clear that
∣φ(σ)∣ = ∣σ∣ ± 1. This shows that φ is an A-alternation of ∆(Ab`,Z(G,Z)) in ∆(S`(G,Z)).

Now letG, F , q and ` as in the previous sections. We now consider `-chains whose terms are abelian
but not necessarily weakly e-closed.

Proposition 3.9. Assume that ` is good for G and consider a positive integer e. Then there exists an
AutF(GF )-alternation of ∆(Ab`(GF ,Z○(G)F` )ω`,e) in ∆(Ab`(GF ,Z○(G)F` ).
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Proof. First observe that every weakly e-closed abelian `-subgroup A contains Z ∶= Z○(G)F` by
Lemma 3.2 (iii) and thatZ is e-closed by the de�nition of γ`,e. Now, let σ = {Z = A0 < A1 < ⋅ ⋅ ⋅ < An}
be an `-chain belonging to ∆(Ab`(GF , Z)) but not contained in ∆(Ab`(GF , Z)ω`,e). For every
0 ≤ i ≤ n, de�ne the weakly e-closed abelian `-subgroup Pi ∶= ω

tAi
`,e (Ai) where tAi is the non-

negative integer introduced in Lemma 3.7 (iii). By the choice of the `-chain σ, we know that there
exists an index m such that Am is not weakly e-closed, that is, such that Am < ωtAm`,e (Am) = Pm.
Observe that the above discussion shows in particular that m ≥ 1. Chose the index 1 ≤ m to
be maximal subject to this condition and observe that, whenever m < n, the maximality of m,
together with Lemma 3.7 (i), implies that Pm = ωtAm`,e (Am) ≤ ωtAm`,e (Am+1) = Am+1 and hence that
Am < Pm ≤ Am+1. Now, if m = n, we de�ne φ(σ) to be the `-chain obtained by adding the weakly
e-closed `-subgroup Pm at the end of the `-chain σ. On the other hand, if m < n, then we de�ne
φ(σ) to be the `-chain obtain by adding Pm to σ if Pm < Am+1, and by removing the term Am+1 if
Pm = Am+1. Observe that in any case the new `-chain φ(σ) has Z as �rst term and still contains the
termAm. Moreover, because Pm is weakly e-closed by construction, the indexm coincides with the
maximal index satisfying the condition in the de�nition above with respect to the newly de�ned `-
chain φ(σ). In particular, this shows that φ(σ) is an abelian `-chain belonging to ∆(Ab`(GF , Z))
but not to ∆(Ab`(GF , Z)ω`,e), and that φ(φ(σ)) = σ. In addition, Lemma 3.7 (ii) shows that the
map φ is AutF(GF )-equivariant while it is clear that ∣φ(σ)∣ = ∣σ∣ ± 1. We can now conclude that φ
is an AutF(GF )-alternation of ∆(Ab`(GF , Z)ω`,e) in ∆(Ab`(GF , Z)) as required.

Before proving the next result we need the following lemma. From now on we assume that e coin-
cides with e`(q).

Lemma 3.10. Assume that ` ∈ π(G, F ) and let e = e`(q). If A is an abelian `-subgroup of GF , then
γ`,e(A) ≤ Z(G)F` if and only if A ≤ Z(G)F` .

Proof. To start, observe that if A ≤ Z(G)F` then C○
G(A) =G and therefore we immediately obtain

γ`,e(A) = Z(G)F` . Conversely, assume that γ`,e(A) = Z(G)F` and de�neH ∶=CG(Z○(C○
G(A))Φe)

so thatZ(G)F` = Z(H)F` . Now [CE04, Proposition 13.19] implies that the e-split Levi subgroupH of
(G, F ) coincides with the centraliser C○

G(Z(H)F` ) so that G =C○
G(Z(G)F` ) =C○

G(Z(H)F` ) =H
and hence Z○(C○

G(A))Φe ≤ Z(G). Then, arguing as in the proof of [CE04], we can apply [CE04,
Lemma 22.3] to show that Z○(C○

G(A))Φe`a ≤ Z(G) for every non-negative integer a. This shows
that G =C○

G(A) because the centraliser C○
G(A) is anE`(q)-split Levi subgroup of (G, F ) accord-

ing to Lemma 1.8 (iii). We �nally conclude that A ≤ Z(G)F` as required above.

As an immediate consequence we obtain the following corollary for weakly e-closed abelian `-
subgroups.

Corollary 3.11. Assume that ` ∈ π(G, F ) and let e = e`(q). If A is a weakly e-closed abelian
`-subgroup of GF , then γ`,e(A) = Z(G)F` if and only if A = Z(G)F` .

Proof. This follows immediately from Lemma 3.10 and Lemma 3.2 (iii). In fact, since Z(G)F` ≤
γ`,e(A), the condition γ`,e(A) ≤ Z(G)F` is equivalent to the equality γ`,e(A) = Z(G)F` . On the
other hand, when A is weakly e-closed, we know that Z(G)F` ≤ A and so the equality A = Z(G)F`
is equivalent to the condition A ≤ Z(G)F` .
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Finally, we show how to get rid of those abelian `-subgroups that are weakly e-closed but not e-
closed.

Proposition 3.12. Assume that ` ∈ π(G, F ) and let e = e`(q). Then there exists an AutF(GF )-
alternation of ∆(Ab`(GF ,Z(G)F` )γ`,e) in ∆(Ab`(GF ,Z(G)F` )ω`,e).

Proof. De�ne Z ∶= Z(G)F` = Z○(G)F` and let σ = {Z = A0 < A1 < ⋅ ⋅ ⋅ < An} be an `-chain
belonging to the set ∆(Ab`(GF , Z)ω`,e). Since each term Ai of the `-chain σ is weakly e-closed,
applying Lemma 3.7 (iv) we can �nd a non-negative integer rAi such that the abelian `-subgroup
Pi ∶= γ

rAi
`,e (Ai) is e-closed. Notice also that Pi is contained in Ai since the map γ`,e restricts to the

set of weakly e-closed abelian `-subgroups and satis�es γ`,e(Q) ≤ Qγ`,e(Q) = ω`,e(Q) = Q for ev-
ery Q ∈ Ab`(GF , Z)ω`,e . Now, assume that the `-chain σ does not belong to ∆(Ab`(GF , Z)γ`,e).
In other words, let us assume that there exists some index m such that γ`,e(Am) < Am or, equiv-
alently, such that Pm < Am. We further choose the index m to be minimal with respect to this
property. Firstly, by applying Lemma 3.3 with L = G, notice that m > 0 since Z is an e-closed
`-subgroup. Secondly, it follows by the minimality of the index m that Am−1 is e-closed and hence
Am−1 = γ

rAm
`,e (Am−1) ≤ γ

rAm
`,e (Am) = Pm according to Lemma 3.7 (i). Therefore, we conclude

that Am−1 ≤ Pm < Am. Now, we de�ne a new `-chain φ(σ) by adding the `-subgroup Pm to the
`-chain σ as an intermediate term between Am−1 and Am if Am−1 < Pm. On the other hand, if
Am−1 = Pm, then we de�ne the new `-chain φ(σ) by removing the term Am−1 from σ. Observe
that this construction produces an `-chain φ(σ) that belongs to the set ∆(Ab`(GF , Z)ω`,e) but not
to ∆(Ab`(GF , Z)γ`,e). In fact, each term of the new `-chain φ(σ) is weakly e-closed by Lemma
3.7 (iv), the starting term of φ(σ) is Z because the occurrence Z = Pm implies that Am = Z accord-
ing to Corollary 3.11, and the term Am is not e-closed and belongs to φ(σ). Moreover, observe that
∣φ(σ)∣ = ∣σ∣±1 and that φ is AutF(GF )-equivariant. To conclude, we need to show that φ2 coincides
with the identity map on ∆(Ab`(GF , Z)ω`,e) ∖∆(Ab`(GF , Z)γ`,e). To see this, observe that the
construction of φ(σ) only modi�es the chain σ by adding or removing e-closed abelian `-subgroups
strictly contained in Am. Therefore, the minimal term of the `-chain φ(σ) that is not e-closed is
once again Am and hence φ(φ(σ)) = σ. This shows that φ de�nes an AutF(GF )-alternation of
∆(Ab`(GF , Z)γ`,e) in ∆(Ab`(GF , Z)ω`,e).

4 Dade’s Conjecture and the Character Triple Conjecture

We now apply the results obtained in Section 3, and in particular the alternations described in Sec-
tion 3.2, to prove cancellation theorems for Dade’s Conjecture and for the Character Triple Conjec-
ture in the case of �nite reductive groups. These cancellation theorems allow us to show that, under
suitable hypotheses, the conjectures introduced by the author in [Ros22b] imply Dade’s Conjecture
and its inductive condition in the form of the Character Triple Conjecture. The results of this section
improve those of [Ros22b, Section 7.3] where the simpler case of large primes was considered.

4.1 Statement of the conjectures

LetG be a �nite group and consider an `-blockB ofG, a non-negative integer d, and an irreducible
character λ of a �xed subgroup Z of Z(G). For every chain σ ∈ ∆(S`(G,Z`)) and every `-block
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b of the stabiliser Gσ , observe that the Brauer induced block bG is de�ned according to [KR89,
Lemma 3.2]. Moreover, notice that Z stabilises the chain σ and hence is contained inGσ . We de�ne
kd(Bσ, λ) to be the number of irreducible characters ϑ of Gσ lying above λ, with `-defect d, and
such that bl(ϑ)G = B. Here bl(ϑ) denotes the unique `-block of Gσ that contains ϑ.

Dade’s Projective Conjecture 4.1 ([Dad94, Conjecture 15.5]). Let G be a �nite group and consider
a subgroup Z of Z(G). Then

∑
σ∈∆(S`(G,Z`))/G

(−1)∣σ∣kd(Bσ, λ) = 0

for every `-block B of G whose defect groups strictly contain Z`, every non-negative integer d, and
every irreducible character λ of Z .

The ordinary version of Dade’s Conjecture can be recovered by setting Z = 1. Moreover, by using
a standard argument on the contractibility of the simplicial complex ∆(S`(G,Z`)) due to Quillen,
the above alternating sum vanishes for trivial reasons unless Z` coincides with O`(G).

In [Spä17], Dade’s Projective Conjecture 4.1 was reduced to a statement about quasi-simple groups
known as the inductive condition for Dade’s Conjecture (see [Spä17, De�nition 6.7]). This condition
is stated in terms of the Character Triple Conjecture that we now describe. Let G be a �nite group,
B an `-block of G, and d a non-negative integer as above. Assume now that Z is an `-subgroup
central in G. De�ne the set Cd(B,Z) of pairs (σ,ϑ) where σ is a chain belonging to the simplicial
complex ∆(S`(G,Z)) and ϑ is an irreducible character of the stabiliser Gσ with `-defect d and
such that bl(ϑ)G = B. We write Cd(B) to denote Cd(B,1). Observe that, while in previous papers
(see, for instance, [Spä17] and [Ros22a]) this notation was reserved for the set Cd(B,O`(G)), no
confusion can arise as we can always assume that O`(G) is central (see [Ros22a, Lemma 2.3]) and
the �nal results of this paper assume that the order of Z(G) is prime to `. Next, partition Cd(B,Z)
into its subsets Cd(B,Z)± consisting of those pairs (σ,ϑ) such that (−1)∣σ∣ = ±1. Furthermore,
notice that G acts by conjugation on Cd(B,Z)± and denote by Cd(B,Z)±/G the corresponding set
of G-orbits (σ,ϑ). In what follows we freely use the notion of G-block isomorphism of character
triples, denoted by ∼G, as introduced in [Spä17, De�nition 3.6]. We refer the reader to that paper
for further details.

Character Triple Conjecture 4.2 ([Spä17, Conjecture 6.3]). Let G be a �nite group and consider
a central `-subgroup Z of G and an `-block B of G with defect groups strictly containing Z . Suppose
that G ⊴X . Then, for every non-negative integer d, there exists anNX(Z)B-equivariant bijection

Ω ∶ Cd(B,Z)+/G→ Cd(B,Z)−/G

such that
(Xσ,ϑ,Gσ, ϑ) ∼G (Xρ,χ,Gρ, χ)

for every (σ,ϑ) ∈ Cd(B,Z)+ and (ρ,χ) ∈ Ω((σ,ϑ)).

Next, we describe [Ros22b, Conjecture C and Conjecture D]. As in the previous sections, let (G, F )
be a �nite reductive group de�ned over the �nite �eld Fq and let ` be a prime not dividing q. From
now on, and for the rest of this section, assume that e = e`(q) as de�ned in Section 1.4. Next, consider
an `-block B of GF , a non-negative integer d, and an irreducible character λ of a subgroup Z of
Z(G)F . Let kd(B,λ) be the number of irreducible characters contained in the `-block B, lying
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above λ, and with `-defect d. Similarly, let kdc(B,λ) denote the number of such characters that
are additionally e-cuspidal (see [GM20, De�nition 3.5.19]). For every σ ∈ ∆(L⋆e(G, F )), de�ne
kd(Bσ, λ) as the number of irreducible characters ϑ of the stabiliser GF

σ lying above λ, with `-
defect d, and such that bl(ϑ)G is de�ned and coincides with B. Although the latter condition on
block induction di�ers from the one given in [Ros22b, Section 5.1], the two are equivalent under the
hypotheses considered below thanks to [Ros22b, Lemma 5.5]. Furthermore, here we are considering
a slightly more general statement by allowing the presence of the central character λ as considered
in the projective version of Dade’s Conjecture.

Conjecture 4.3 ([Ros22b, Conjecture C]). Consider an `-block B of GF , a non-negative integer d,
and an irreducible character λ of a subgroup Z of Z(G)F . Then

kd(B,λ) = kdc(B,λ) + ∑
ρ∈∆(L⋆e(G,F ))/GF

(−1)∣ρ∣+1kd(Bρ, λ).

Now, de�ne the set CPe(B) of e-cuspidal pairs (M, µ) (see [GM20, De�nition 3.5.19]) such that
bl(µ)GF is de�ned and coincides with B, and consider its subset CP⋆e(B) consisting of those such
pairs such that M is strictly contained in G. Moreover, let Ab(µ) be the set of irreducible characters
ofMF of the form νµ for some linear character ν ofMF . Finally, de�ne the setLde(B) of quadruples
(σ,M,Ab(µ), ϑ) where σ is a chain of the simplicial complex ∆(Le(G, F )) with smallest term L
(in this case L is contained in each term of σ and hence normalizes the chain), (M, µ) is an element
of the set CP⋆e(B) with M ≤ L, and ϑ is an irreducible character of the stabiliser GF

σ with `-defect d,
whose block bl(ϑ) induces to GF and satis�es bl(ϑ)GF = B, and lying above some character in an
e-Harish-Chandra series E(LF , (M, µ′)) (see [GM20, 3.5.24]) with µ′ ∈ Ab(µ). We refer the reader
to [Ros22b, Section 5.2]) for further details. As for the Character Triple Conjecture, we partition
Lde(B) into two subsets Lde(B)± according to the parity of chains and denote by Lde(B)±/GF the
corresponding sets of GF -orbits.

Conjecture 4.4 ([Ros22b, Conjecture D]). For every `-blockB ofGF and every non-negative integer
d, there exists an AutF(GF )B-equivariant bijection

Λ ∶ Lde(B)+/GF → Lde(B)−/GF

such that
(Xσ,ϑ,G

F
σ , ϑ) ∼GF (Xρ,χ,G

F
ρ , χ)

for every (σ,M,Ab(µ), ϑ) ∈ Lde(B)+ and (ρ,K,Ab(κ), χ) ∈ Lde(B)− whose GF -orbits correspond
under Λ, and where X ∶=GF ⋊AutF(GF ).

Before proceeding to the main results of this section, notice that Conjecture 4.3 is a consequence of
Conjecture 4.4 (see [Ros22b, Theorem E]) and that the latter has been reduced to certain extendibility
conditions for characters of e-split Levi subgroups [Ros22c]. More recently, adaptations of these
conjectures to the subset of unipotent characters have been veri�ed in [Ros23] for groups of types
A, B and C.

4.2 Cancellation theorems for �nite reductive groups

Combining the alternations constructed in Section 3.2 we obtain cancellation theorems for Dade’s
Projective Conjecture 4.1 and the Character Triple Conjecture 4.2. More precisely, we show that the
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only chains that contribute to the alternating sums, and bijections, predicted by these conjectures
are those whose terms are e-closed abelian `-subgroups. We keep G, F , q and ` as in the previous
sections and recall that we are assuming e = e`(q). First, we consider the alternating sum from
Dade’s Projective Conjecture 4.1.

Theorem 4.5. Let (G, F ) be a �nite reductive group and consider a prime ` ∈ π(G, F ) not dividing
the order of Z(G)F . Fix an `-block B ofGF , a non-negative integer d, and an irreducible character λ
of a subgroup Z of Z(G)F . Then

∑
σ∈∆(S`(GF ))/GF

(−1)∣σ∣kd(Bσ, λ) = ∑
ρ∈∆(Ab`(GF )γ`,e)/GF

(−1)∣ρ∣kd(Bρ, λ). (4.1)

Proof. Under the above hypotheses the subgroups Z and Z(G)F` are trivial and hence we have
Ab`(GF ,Z(G)F` ) = Ab`(GF ) = Ab`,Z(GF , Z) and S`(GF , Z) = S`(GF ). Then, by applying
Lemma 3.8, Proposition 3.9, and Proposition 3.12 respectively, we obtain a GF -alternation φ1 of the
simplicial complex of abelian `-subgroups ∆(Ab`(GF )) in the simplicial complex of all `-subgroups
∆(S`(GF )), a GF -alternation φ2 of the simplicial complex of weakly e-closed abelian `-subgroups
∆(Ab`(GF )ω`,e) in ∆(Ab`(GF )), and a GF -alternation φ3 of the simplicial complex of e-closed
abelian `-subgroups ∆(Ab`(GF )γ`,e) in ∆(Ab`(GF )ω`,e). Now, combining φ1, φ2 and φ3 we ob-
tain a GF -alternation of the simplicial complex of e-closed abelian `-subgroups ∆(Ab`(GF )γ`,e)
in the simplicial complex of all `-subgroups ∆(S`(GF )). More precisely, we de�ne the map

φ ∶ ∆ (S` (GF )) ∖∆ (Ab` (GF )γ`,e) →∆ (S` (GF )) ∖∆ (Ab` (GF )γ`,e)

by setting

φ(σ) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

φ1(σ), if σ ∈ ∆ (S` (GF )) ∖∆ (Ab` (GF ))
φ2(σ), if σ ∈ ∆ (Ab` (GF )) ∖∆ (Ab` (GF )ω`,e)
φ3(σ), if σ ∈ ∆ (Ab` (GF )ω`,e) ∖∆ (Ab` (GF )γ`,e)

for every simplex σ belonging to ∆(S`(GF )) but outside ∆(Ab`(GF )γ`,e). From this de�nition it
is immediate to verify that the map φ satis�es the requirements of De�nition 1.4. Next, we de�ne
the GF -stable function

fB,d,λ(H) ∶=
⎧⎪⎪⎨⎪⎪⎩

∣{ ψ ∈ Irr(H)∣ bl(ψ)G is de�ned and equal to B,
ψ has `-defect d and lies above λ }∣ , if Z(G)F ≤H

0, if Z(G)F ≰H

for every subgroup H of GF . Since the centre Z(G)F is contained in every stabiliser GF
σ and

block induction (in the sense of Brauer) is de�ned from GF
σ to GF (see [KR89, Lemma 3.2]), observe

that fB,d,λ(GF
σ ) coincides with kd(Bσ, λ) for every σ ∈ ∆(S`(GF )). The result now follows by

applying Lemma 1.6 with f = fB,d,λ and considering the simplicial complexes X ∶= ∆(S`(GF ))
and X ′ ∶= ∆(Ab`(GF )γ`,e).

Next, we consider the bijection from the Character Triple Conjecture. For this purpose we need
to introduce some further notation. More precisely, let Cdγ`,e(B) denote the subset of Cd(B) con-
sisting of those pairs (σ,ϑ) with σ belonging to ∆(Ab`(GF )γ`,e). We then de�ne Cdγ`,e(B)c to be
the complement of Cdγ`,e(B) inside Cd(B). Notice that AutF(GF )B acts on these two sets because
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Ab`(GF )γ`,e is an AutF(GF )-stable subset of S`(GF ). Then, as usual, we de�ne Cdγ`,e(B)± ∶=
Cdγ`,e(B)∩Cd(B)± and denote by Cdγ`,e(B)±/GF the corresponding set of GF -orbits. A similar no-
tation is used for the complement set Cdγ`,e(B)c. With this notation we have the following theorem.

Theorem 4.6. Let (G, F ) be a �nite reductive group and consider a prime ` ∈ π(G, F ) not dividing
the order of Z(G)F . Fix an `-block B of GF and a non-negative integer d. Then there exists an
AutF(GF )B-equivariant bijection

Υ ∶ Cdγ`,e(B)c
+/GF → Cdγ`,e(B)c

−/GF

such that
(Xσ,ϑ,G

F
σ , ϑ) ∼GF (Xρ,χ,G

F
ρ , χ)

for every (σ,ϑ) ∈ Cdγ`,e(B)c
+ and (ρ,χ) ∈ Υ((σ,ϑ)) and where X ∶=GF ⋊AutF(GF ).

Proof. As in the proof of Theorem 4.5 we can construct an AutF(GF )-alternation φ of the sim-
plicial complex of e-closed abelian `-subgroups ∆(Ab`(GF )γ`,e) in the simplicial complex of all
`-subgroups ∆(S`(GF )). We de�ne the map

Υ′ ∶ Cdγ`,e(B)c
+ → Cdγ`,e(B)c

−

by setting
Υ′(σ,ϑ) ∶= (φ(σ), ϑ)

for every (σ,ϑ) ∈ Cdγ`,e(B)+. Observe that this map is a well-de�ned AutF(GF )B-equivariant bi-
jection because of the properties of φ. In fact, since φ is AutF(GF )-equivariant (and in particular
GF -equivariant), we know that GF

σ = GF
φ(σ) so that ϑ is an irreducible character of GF

φ(σ). More-
over, since ∣φ(σ)∣ = ∣σ∣ ±1, we deduce that the pair (φ(σ), ϑ) belongs to Cdγ`,e(B)c

−. Notice also that
Υ′ is a bijection: the inverse of Υ′ is easily described as (Υ′)−1(φ(σ), ϑ) ∶= (φ(φ(σ)), ϑ) = (σ,ϑ).
In addition, again by using the equivariance properties of φ, observe thatXσ =Xφ(σ) and therefore
that

(Xσ,ϑ,G
F
σ , ϑ) ∼GF (Xφ(σ),ϑ,G

F
φ(σ), ϑ) .

If we now de�ne Υ to be the map induced by Υ′ on the corresponding sets of GF -orbits, we obtain
a bijection with the properties required in the statement.

4.3 Replacing `-chains with e-chains

Our aim is now to use the cancellation theorems described in the previous section in order to es-
tablish a connection between Dade’s Projective Conjecture 4.1 and Conjecture 4.3 as well as be-
tween the Character Triple Conjecture 4.2 and Conjecture 4.4. First, by applying the character-
isation of e-closed abelian `-subgroups given in Lemma 3.3, we construct an equivariant bijec-
tion between the set of e-chains belonging to ∆(Le(G, F )) and the set of `-chains belonging to
∆(Ab`(GF ,Z(G)F` )γ`,e), that is, `-chains consisting of e-closed abelian `-subgroups. Keep G, F ,
q and ` as above and assume e = e`(q).
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Lemma 4.7. Assume that ` is good for G and does not divide ∣Z(G)F ∶ Z○(G)F ∣. Then the maps

ι ∶ ∆ (Le(G, F )) →∆ (Ab` (GF ,Z(G)F` )
γ`,e)

{Li}i ↦ {Z(Li)F` }i

and

δ ∶ ∆ (Ab` (GF ,Z(G)F` )
γ`,e) →∆ (Le(G, F ))

{Ai}i ↦ {CG (Z○ (C○
G(Ai))Φe

)}
i

are AutF(GF )-equivariant bijections satisfying δ = ι−1, and with ∣ι(σ)∣ = ∣σ∣ and ∣δ(ρ)∣ = ∣ρ∣ for every
e-chain σ belonging to ∆(Le(G, F )) and every `-chain ρ belonging to ∆(Ab`(GF ,Z(G)F` )γ`,e).

Proof. Notice that Z(L)F` = Z○(L)F` is an e-closed abelian `-subgroup for every e-split Levi sub-
group L of (G, F ) as explained in Lemma 3.3. Thus, given an e-chain σ ∈ ∆(Le(G, F )), and
recalling that G is the initial term of σ, we deduce that ι(σ) belongs to ∆(Ab`(GF ,Z(G)F` )γ`,e).
On the other hand, the centraliser CG(Z○(C○

G(A))Φe) is an e-split Levi subgroup of (G, F ) for
every `-subgroup A of GF . Since CG(Z○(C○

G(Z(G)F` ))Φe) =G, we deduce that δ(ρ) belongs to
∆(Le(G, F )) whenever ρ is an `-chain of GF with starting term Z(G)F` , and in particular when-
ever ρ ∈ ∆(Ab`(GF ,Z(G)F` )γ`,e). This shows that ι and δ are well-de�ned. It is also immediate
to check that both maps commute with the action of AutF(GF ).

Next, consider an e-chain σ ∈ ∆(Le(G, F )) and observe that the terms of δ(ι(σ)) are given by
CG(Z○(C○

G(Z(Li)F` ))Φe). But the latter coincides with Li according to Lemma 1.7. Conversely,
if ρ is an `-chain belonging to ∆(Ab`(GF ,Z(G)F` )γ`,e), then the terms of ι(δ(ρ)) are given by
Z○(CG(Z○(C○

G(Ai))Φe))F` = γ`,e(Ai) = Ai where the last equality follows from the fact that Ai
is e-closed. This shows that δ = ι−1.

To conclude, we need to show that both ι and δ preserve the length of chains. If L and L′ are e-split
Levi subgroups of (G, F ) with L < L′, then we must have Z(L′)F` < Z(L)F` according to [CE04,
Proposition 13.19]. Furthermore, if A and A′ are e-closed abelian `-subgroups with A < A′, then
we have CG(Z○(C○

G(A))Φe) > CG(Z○(C○
G(A′))Φe). In fact, notice that CG(Z○(C○

G(A))Φe) ≥
CG(Z○(C○

G(A′))Φe) and that we cannot have an equality since this would imply A = γ`,e(A) =
γ`,e(A′) = A′. It follows that ι and δ preserve the length of chains as required.

In the subsequent proofs we make use of the following generalisation of [Ros22b, Proposition 4.18].

Lemma 4.8. Let (G, F ) be a �nite reductive group with dual (G∗, F ∗) and consider a prime ` ∈
π(G∗, F ∗) not dividing the order of Z(G∗)F ∗ . If χ is an e-cuspidal character of GF , then χ has
`-defect zero.

Proof. Let s be a semisimple element of G∗F ∗ whose (rational) Lusztig series contains the char-
acter χ (see [GM20, De�nition 2.6.1 and Theorem 2.6.2]). Proceeding as in the proof of [Ros22b,
Proposition 4.18], and noticing that the �rst part of that argument can be carried out under our
assumption, we deduce that χ(1)` = ∣GF ∣`/∣Z(H)F ∣` where H ∶=C○

G∗(s). It remains to prove that
` does not divide the order of Z(H)F , or equivalently, that Z ∶= Z(H)F` = 1. First, observe that
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Z○(G∗)Φe = Z○(H)Φe according to [CE99, Proposition 1.10] and therefore that G∗ is the unique e-
split Levi subgroup of (G∗, F ∗) containingH. On the other hand, basic properties of Levi subgroups
show that H is contained in K ∶= CG∗(Z○(C○

G∗(Z))Φe) and that K is an e-split Levi subgroup
of (G∗, F ∗). It follows that K = G∗ and therefore that Z(K)F` = Z(G∗)F` . Finally, by noticing
that Z(K)F` = γ`,e(Z), Lemma 3.10 implies that Z is contained in Z(G∗)F ∗` and, since the latter is
trivial by assumption, we deduce that Z = 1 as wanted.

We now apply Theorem 4.5 and Lemma 4.7 to reformulate the alternating sum from Dade’s Projec-
tive Conjecture 4.1 in terms of chains in the simplicial complex ∆(Le(G, F )).

Proposition 4.9. Let (G, F ) be �nite reductive group and consider a prime ` ∈ π(G, F ) not dividing
the order of Z(G)F . Fix an `-block B ofGF , a non-negative integer d, and an irreducible character λ
of a subgroup Z of Z(G)F . Then

∑
σ∈∆(S`(GF ))/GF

(−1)∣σ∣kd(Bσ, λ) = ∑
ρ∈∆(Le(G,F ))/GF

(−1)∣ρ∣kd(Bρ, λ) (4.2)

Proof. By applying Theorem 4.5 we can replace the alternating sum on the left-hand side of the
equality (4.2) with the corresponding sum over GF -conjugacy classes of chains of e-closed abelian
`-subgroups, that is, over the GF -orbits in the simplicial complex ∆(Ab`(GF )γ`,e) (see (4.1)). Next,
notice that under our assumption we have Z(G)F` = 1 and therefore Lemma 4.7 exhibits a bijection
δ between ∆(Ab`(GF )γ`,e) and the simplicial complex ∆(Le(G, F )) corresponding to the poset of
e-split Levi subgroups of (G, F ). Furthermore, the equivariance properties described in Lemma 4.7
imply that the bijection δ preserves GF -orbits and stabilisers, i.e. we have GF

σ =GF
ρ for every σ ∈

∆(Ab`(GF )γ`,e) and ρ = δ(σ). In particular, this shows that kd(Bσ, λ) coincides with kd(Bρ, λ)
whenever δ(σ) = ρ. Since we also know that ∣δ(σ)∣ = ∣σ∣, it follows that the alternating sum over
GF -orbits of chains of abelian e-closed `-subgroups coincides with that over GF -orbits of chains
of e-split Levi subgroups of (G, F ) and hence we obtain the equality (4.2).

Finally, we can show the equivalence of Dade’s Projective Conjecture 4.1 and Conjecture 4.3 under
suitable hypothesis. Our next result extends [Ros22b, Proposition 7.10].

Theorem 4.10. Let (G, F ) be �nite reductive group and consider a prime ` ∈ π(G, F ) ∩π(G∗, F ∗)
not dividing the order of Z(G)F nor that of Z(G∗)F ∗ . Then the following statements are equivalent
for every `-block B ofGF with non-trivial defect, every non-negative integer d, and every character λ
of a subgroup Z of Z(G)F :

(i) Dade’s Projective Conjecture 4.1 holds for B, d, and λ;

(ii) Conjecture 4.3 holds for B, d, and λ.

Proof. To start, we notice that under our assumptionsZ` = 1 and hence Dade’s Projective Conjecture
4.1 holds for B, d, and λ if and only if the alternating sum on the left-hand side of (4.2) is equal
to zero. Therefore, Proposition 4.9 shows that (i) is equivalent to the vanishing of the right-hand
side of (4.2). We now separate the contributions to that alternating sum according to the partition
∆(Le(G, F )) = ∆(L⋆e(G, F )) ∪ {ρ0} and where ρ0 = {G}. Since GF

ρ0 = GF it follows that
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kd(Bρ0 , λ) = kd(B,λ) and therefore (i) is equivalent to the equality

∑
ρ∈∆(L⋆e(G,F ))/GF

(−1)∣ρ∣kd(Bρ, λ) + kd(B,λ) = 0

that we rewrite as
kd(B,λ) = ∑

ρ∈∆(L⋆e(G,F ))/GF

(−1)∣ρ∣+1kd(Bρ, λ). (4.3)

Next, observe that since our `-block B has positive defect it cannot contain a character of `-defect
zero (see, for instance, [Nav98, Theorem 3.18]). Then, by applying Lemma 4.8, we deduce that the
`-block B does not contain any e-cuspidal character, so that kdc(B,λ) = 0. This shows that (4.3) is
equivalent to the equality stated in Conjecture 4.3, and therefore we conclude that (i) and (ii) are
equivalent.

As an immediate consequence of the above result we get Theorem E.

Proof of Theorem E. We now assume thatG is a simple algebraic group of simply connected type and
that ` is an odd prime number good for G and not dividing the order of Z(G)F , with ` ≠ 3 if (G, F )
has a rational component of type 3D4. Then surely ` ∈ π(G, F ) ∩ π(G∗, F ∗). Furthermore, since
G∗ is of adjoint type, [DM20, Proposition 2.4.4] implies that Z(G∗) = 1 and hence the hypothesis
of Theorem 4.10 is satis�ed. The result now follows from Theorem 4.10 by considering the trivial
subgroup Z = 1, with its trivial character λ = 1Z , and noticing that kd(Bσ) = kd(Bσ, λ) for every
σ belonging to ∆(S`(GF )) or to ∆(Le(G, F )).

We now come to the study of the Character Triple Conjecture. In the next proposition we show
that, under suitable hypotheses, the pairs (σ,ϑ) of Cd(B), for an `-block B of GF and a non-
negative integer d, can be replaced with analogous pairs in which we consider chains belonging to
the simplicial complex of e-split Levi subgroups ∆(Le(G, F )). For this purpose, let us de�ne the
set Cde (B) consisting of those pairs (ρ,χ) where ρ belongs to ∆(Le(G, F )) and χ is an irreducible
character of the stabiliser GF

ρ with `-defect d and such that, if bl(χ) denotes the `-block of GF
ρ

containing χ, the induced `-block bl(χ)GF is de�ned and coincides with B. Observe that it is
not clear, in general, whether block induction from GF

ρ to GF is de�ned, however in the results
presented below this will always be the case.

Proposition 4.11. Let (G, F ) be a �nite reductive group and consider a prime ` ∈ π(G, F ) not
dividing the order of Z(G)F . Fix an `-block B of GF and a non-negative integer d. Then there exist
AutF(GF )B-equivariant bijections

Ψ± ∶ Cdγ`,e(B)±/GF → Cde (B)±/GF

such that
(Xσ,ϑ,G

F
σ , ϑ) ∼GF (Xρ,χ,G

F
ρ , χ)

for every (σ,ϑ) ∈ Cdγ`,e(B)± and (ρ,χ) ∈ Ψ±((σ,ϑ)) and where X ∶=GF ⋊AutF(GF ).

Proof. Since our assumption ensures that Z(G)F` is trivial, we can apply Lemma 4.7 to obtain a
bijection δ between the simplicial complexes ∆(Ab`(GF )γ`,e) and ∆(Le(G, F )). Consider now
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σ ∈ ∆(Ab`(GF )γ`,e) and ρ ∈ ∆(Le(G, F )) with δ(σ) = ρ. By the properties of δ we deduce that
these two chains have the same stabiliser GF

σ = GF
ρ and the same length ∣σ∣ = ∣ρ∣. In particular,

this shows that for every irreducible character χ of GF
ρ the `-block bl(χ) induces a block of GF

according to [KR89, Lemma 3.2]. Furthermore, it follows that (σ,ϑ) belongs to Cdγ`,e(B)± if and
only if (ρ,ϑ) belongs to Cde (B)± while, by noticing that Xσ =Xρ, we obtain

(Xσ,ϑ,G
F
σ , ϑ) ∼GF (Xρ,ϑ,G

F
ρ , ϑ) .

Then, using once again the equivariance properties of δ, we can de�ne the map Ψ± by sending
the GF -orbit of the pair (σ,ϑ) ∈ Cdγ`,e(B)± to the GF -orbit of the pair (δ(σ), ϑ) ∈ Cde (B)±. As
explained above, the bijections Ψ± satisfy the required conditions.

By applying Theorem 4.6 and Proposition 4.11 we can show that Conjecture 4.4 implies the Character
Triple Conjecture 4.2. To do so, we use results on e-Harish-Chandra theory for `-singular series
introduced in [Ros22b] that require the assumption [Ros22b, Condition 3.3]. The latter condition
provides a description of the irreducible constituents of Luszitg induction in terms of the order
relation ≪e (see [GM20, 3.5.24]) and is related to a conjecture of Cabanes and Enguehard (see [CE99,
Notation 1.11] and [Ros22b, Conjecture 3.2]) which is inspired by [BMM93, Theorem 3.11]. For the
purpose of this paper, it is enough to know that [Ros22b, Condition 3.3] holds for simply connected
groups whenever e = e`(q) and ` ≥ 5 is good for G (see [Ros22b, Corollary 3.7]). We refer the reader
to [Ros22b, Section 3] for further details.

Theorem 4.12. Let (G, F ) be �nite reductive group and consider a prime ` ∈ π(G, F ) ∩π(G∗, F ∗)
not dividing the order of Z(G)F nor that of Z(G∗)F ∗ . Assume further that ` ≥ 5 and that [Ros22b,
Condition 3.3] holds for (G, F ). If Conjecture 4.4 holds for an `-block B ofGF with non-trivial defect
and a non-negative integer d, then the Character Triple Conjecture 4.2 holds for B and d with respect
to the inclusionGF ⊴GF ⋊AutF(GF ).

Proof. By assumption we know that Conjecture 4.4 holds for B and d, hence there exists a bijec-
tion Λ between the GF -orbits in Lde(B)+ and those in Lde(B)− that is AutF(GF )B-equivariant
and induces GF -block isomorphisms of character triples. We want to use Λ to construct a bijec-
tion Ω satisfying the conditions required by the Character Triple Conjecture 4.2. To start, consider
a pair (σ,ϑ) ∈ Cde (B)+ and denote by L the smallest term of σ. Before proceeding further, we
point out that the results obtained by assuming Hypothesis 4.1 of [Ros22b] are still valid under
our assumption and by letting Lusztig induction (eventually) depend on the choice of a parabolic
subgroup. We can therefore apply [Ros22b, Lemma 5.5] to obtain an e-cuspidal pair (M, µ) of
(G, F ) with M ≤ L and such that ϑ lies above some character of the e-Harish-Chandra series
E(LF , (M, µ)). Next, observe that (M, µ) belongs to the set CP⋆e(B). In fact, since B has non-
trivial defect, Lemma 4.8 ensures that CPe(B) = CP⋆e(B) while, by applying [Ros22b, Proposition
4.8 and Lemma 5.5], we can use the condition bl(ϑ)GF = B to show that (M, µ) belongs to CPe(B).
In particular, this shows that (σ,M,Ab(µ), ϑ) is an element of Lde(B)+. Now, if Λ maps the GF -
orbit of (σ,M,Ab(µ), ϑ) ∈ Lde(B)+ to that of (σ′,M′,Ab(µ′), ϑ′) ∈ Lde(B)−, arguing as above we
conclude that (σ′, ϑ′) belongs to Cde (B)−. By mapping the GF -orbit of (σ,ϑ) to that of (σ′, ϑ′), we
obtain an AutF(GF )B-equivariant bijection

Φ ∶ Cde (B)+/GF → Cde (B)−/GF
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that induces GF -block isomorphisms of character triples (this is because the GF -block isomor-
phisms induced by Λ only depend on (σ,ϑ) and (σ′, ϑ′)). Next, let Ψ± be the bijections introduced
in Proposition 4.11 and de�ne the map

Θ ∶ Cdγ`,e(B)+/GF → Cdγ`,e(B)−/GF

given by Θ ∶= Ψ−1
− ○Φ ○Ψ+. It is immediate to show that Θ is AutF(GF )B-equivariant and, using

the transitivity of ∼GF (see [Spä17, Lemma 3.8 (a)]), that it induces GF -block isomorphisms of
character triples. Finally, let Υ be the map given by Theorem 4.6 and de�ne

Ω ((σ,ϑ)) ∶=
⎧⎪⎪⎨⎪⎪⎩

Θ ((σ,ϑ)) , if (σ,ϑ) ∈ Cdγ`,e(B)+
Υ ((σ,ϑ)) , if (σ,ϑ) ∈ Cdγ`,e(B)c

+.

Since Cd(B)± is partitioned into the AutF(GF )B-invariant subsets Cdγ`,e(B)± and Cdγ`,e(B)c
±, we

deduce that Ω de�nes an AutF(GF )B-equivariant bijection between Cd(B)+/GF and Cd(B)−/GF .
Furthermore, Ω satis�es the condition on GF -block isomorphisms of character triples since this is
also satis�ed by Θ and Υ.

As a corollary of the above theorem we get Theorem F that shows how to recover the inductive
condition for Dade’s Conjecture from Conjecture 4.4.

Proof of Theorem F. We now assume that G is a simple algebraic group of simply connected type
such that GF is the universal covering group of GF /Z(G)F . Suppose further that ` ≥ 5 is good
for G and does not divide the order of Z(G)F . In this case, [Ros22b, Condition 3.3] holds for
(G, F ) according to [Ros22b, Corollary 3.7] (observe that the proof of this result can be carried
out without assuming the Mackey formula simply by allowing the possibility that Lusztig induction
might depend on the choice of a parabolic subgroup). Then, we can apply Theorem 4.12 to obtain
a bijection Ω with the properties described in the Character Triple Conjecture 4.2 and with respect
to the inclusion GF ⊴GF ⋊AutF(GF ) =∶X . In particular, we have

(Xσ,ϑ,G
F
σ , ϑ) ∼GF (Xρ,χ,G

F
ρ , χ)

for every (σ,ϑ) ∈ Cd(B)+ whose GF -orbit corresponds to that of (ρ,χ) ∈ Cd(B)− under the map
Ω. Now, [Spä17, Lemma 3.4] implies that the centre of the restricted character ϑZ(G)F coincides
with that of χZ(G)F . If we denote this group by Z , then we deduce that its order is prime to ` and
therefore [Spä17, Corollary 4.5] yields

(Xσ,ϑ/Z,GF
σ /Z,ϑ) ∼GF /Z (Xρ,χ/Z,GF

ρ /Z,χ)

where we denote by ϑ and χ the characters corresponding to ϑ and χ via in�ation. To conclude,
observe that AutF(GF ) induces all automorphisms of the �nite group GF (see [GLS98, 1.15]) and
apply [Ros22b, Lemma 7.6] to obtain the inductive condition for Dade’s Conjecture for the `-block
B and the non-negative integer d.
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