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The Character Triple Conjecture for maximal
defect characters and the prime 2

Damiano Rossi

Abstract

We prove that Späth’s Character Triple Conjecture holds for every �nite group with respect
to maximal defect characters at the prime 2. This is done by reducing the maximal defect case
of the conjecture to the so-called inductive Alperin–McKay condition whose veri�cation has re-
cently been completed by Ruhstorfer for the prime 2. As a consequence we obtain the Character
Triple Conjecture for all 2-blocks with abelian defect groups by applying Brauer’s Height Zero
Conjecture, a proof of which is now available. We also obtain similar results for the block-free
version of the Character Triple Conjecture at the prime 3.

Introduction

Based upon a large body of conjectural and computational evidence, the local-global principle in the
representation theory of �nite groups asserts that, given a prime number p dividing the order of a
�nite group G, the representation theory of G at the prime p is largely determined by the p-local
structure of the group. Here, the group G plays the role of a global ambient and is opposed to the
p-local structure which captures the embedding of the p-subgroups inside G. The questions arising
in this context lead to some of the most important achievements in group representation theory of
the past decades. Among others, we mention the proof of Brauer’s Height Zero Conjecture from
the 1950s recently obtained in [MNSFT22].

The conjectural evidence mentioned above consists of a series of statements that link di�erent rep-
resentation theoretic aspects of the group G to its p-local structure. Apart from a few exceptions
of a more structural �avour, all these statements can be ultimately reduced to proving the so-called
Character Triple Conjecture for all quasi-simple groups. The latter, introduced by Späth in [Spä17],
should be understood as the �nal result of an investigation initiated by Dade during the 1990s
that led to a sequence of increasingly stronger conjectures [Dad92], [Dad94], [Dad97]. While re-
lating global and local information through the notion of p-chains, an idea introduced by Robinson
already in the 1980s and subsequently exploited by Dade, Späth’s conjecture provides a way to con-
trol fundamental cohomological and Cli�ord theoretical conditions that arise when considering the
representation theoretical compatibility of normal group embeddings. This is achieved through the
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notion of G-block isomorphisms of character triples, hence the name of the conjecture. Given the
technical nature of the Character Triple Conjecture, we refer the reader to Section 1 for a precise
de�nition.

The aim of this paper is to show that the Character Triple Conjecture holds at the prime 2 for
maximal defect characters. More precisely, we show that the conjecture holds for every Brauer
2-block B with respect to the non-negative integer d = d(B) as speci�ed in Remark 1.2.

Theorem A. The Character Triple Conjecture holds for every Brauer 2-block B of a �nite group with
respect to the non-negative integer d(B).

As an immediate consequence of Theorem A, and using the if part of Brauer’s Height Zero Con-
jecture [KM13], we deduce that the Character Triple Conjecture holds for all Brauer 2-blocks with
abelian defect groups.

Corollary B. The Character Triple Conjecture holds for every Brauer 2-block with abelian defect
groups.

The proofs of Theorem A and Corollary B rely on the veri�cation of the inductive Alperin–McKay
condition introduced in [Spä13, De�nition 7.2] for the prime 2 that was recently completed by Ruh-
storfer in [Ruh22a]. In order to make use of this result, we prove a reduction theorem that shows the
the maximal defect case of the Character Triple Conjecture can be reduced to the veri�cation of the
inductive Alperin–McKay condition for all (covering groups of) non-abelian �nite simple groups.
In this paper, we will use the reformulation of this condition given in Conjecture 1.4 below. We can
then state our reduction theorem as follows.

Theorem C. Let G be a �nite group and p a prime number. If every covering group of a non-abelian
�nite simple group involved in G satis�es the inductive Alperin–McKay condition at the prime p, then
the Character Triple Conjecture holds for every Brauer p-block B of the group G with respect to the
non-negative integer d(B).

While the above theorem appears to be new in nature, the reverse implication should be expected
(at least among the experts in this research area). In fact, as mentioned above the Character Triple
Conjecture implies most of the so-called local-global conjectures. Theorem 4.1 below shows that
the maximal defect case of the Character Triple Conjecture implies the inductive Alperin–McKay
condition (as stated in Conjecture 1.4). As a consequence, we deduce that these two statements are
in fact logically equivalent.

The arguments used to prove the above results can be easily adapted to obtain analogous block-free
statements. In particular, using recent result of Späth [Spä23], we are able to show that the block-
free form of the Character Triple Conjecture holds at the prime 3 for characters of degree coprime to
3 (see Theorem 5.3) and hence for every �nite group with abelian Sylow 3-subgroups (see Corollary
5.4). This will follow from a reduction of the block-free form of the Character Triple Conjecture to
the veri�cation of the inductive McKay condition for (the universal covering group of) non-abelian
�nite simple groups (see Theorem 5.1).

The paper is organised as follows: In Section 1 we collect some background material and state the
Character Triple Conjecture and the inductive Alperin–McKay condition. Section 2 is devoted to
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the proof of Theorem C. This is then used in Section 3 in order to obtain Theorem A and Corollary B.
In Section 4 we prove Theorem 4.1, a converse to Theorem C. We conclude by sketching the proofs
of the block-free analogues of all these results in Section 5

1 Preliminaries and notation

In this section, we collect some basic de�nitions and the statements of the conjectures considered
below. Throughout this paper we freely use basic results from the representation theory of �nite
groups that can be found in standard texts such as [NT89], [Nav98] but also the more recent [Lin18a],
[Lin18b]. We denote by Irr(G) the set of complex valued irreducible characters of a �nite group G.
If G is a normal subgroup of a larger group A and χ is an irreducible character of G �xed by the
conjugacy action ofA, then we say that (A,G,χ) is a character triple. We assume that the reader is
familiar with notion ofG-block isomorphism, an equivalence relation on the set of character triples
introduced in [Spä17, De�nition 3.6] and denoted by ∼G.

For every prime number p, the set Irr(G) admits a partition into the so-called Brauer p-blocks of
G. Given a p-block B of G, we denote by Irr(B) the set of irreducible characters belonging to B.
Conversely, given an irreducible characterχ ofG, we denote by bl(χ) the unique p-block containing
χ. We will often suppress the p from p-block and simply refer to B as a block of G. Next, recall
that for every χ ∈ Irr(G), the degree χ(1) of χ divides the order of G. We de�ne the p-defect (or
simply the defect) of χ as the non-negative integer d(χ) such that pd(χ) = ∣G∣p/χ(1)p and where
for every n ≥ 0 we denote by np the largest power of p that divides n. If d is a �xed non-negative
integer, then Irrd(G) is the set of irreducible characters of G of defect d while, for a block B, we
denote by Irrd(B) the intersection of Irrd(G) and Irr(B). Next, to each block B it is associated
a G-conjugacy class of p-subgroups D of G called the defect groups of B. If ∣D∣ = pm, then we
call d(B) ∶= m the defect of B. It is well known that d(B) coincides with the maximum d(χ) for
χ ∈ Irr(B). In particular, it follows that a character χ is of maximal defect in its block B if and only
if it is of height zero. Here the height of χ is de�ned as ht(χ) ∶= d(B) − d(χ) and for every h ≥ 0
we denote by Irrh(B) the set of irreducible characters χ belonging toB and with height ht(χ) = h.

In order to state the Character Triple Conjecture, we need to introduce some more notation on p-
chains. We refer here to [Spä17] and [Ros22a]. Let Z be a normal p-subgroup of G and denote by
N(G,Z) the set of p-chains of G starting with Z , that is the set of chains σ = {D0 = Z < D1 <
⋅ ⋅ ⋅ < Dn = D(σ)} of p-subgroups Di of G and where D0 = Z and we denote by D(σ) the �nal
term of σ. The length of σ is the number ∣σ∣ = n of terms strictly containing Z . The reason for this
convention stems from the fact that this de�nition of length coincides with the notion of dimension
of σ when viewed as a simplex (see, for instance, [Ros23a, Section 1.1]). We then obtain a partition
of N(G,Z) into the sets N(G,Z)± of p-chains σ satisfying (−1)∣σ∣ = ±1. Since Z is normal in G,
the groupG acts by conjugation on N(G,Z), by conjugating simultaneously each term of a p-chain
σ, and we denote by Gσ the stabiliser in G of the chain σ, i.e. the intersection of the normalisers
NG(Di) for each term Di of σ. Now, given a block B of G and a non-negative integer d, de�ne
Cd(B,Z)± to be the set of pairs (σ,ϑ) where σ is a p-chain belonging to N(G,Z)± and ϑ is an
irreducible character of the stabiliser Gσ with defect d(ϑ) = d and satisfying bl(ϑ)G = B. Here,
for a block b of a subgroup H of G, we denote by bG the block of G obtained via Brauer induction
as de�ned in [Nav98, Section 4]. The set of such characters is often denoted by Irrd(Bσ). Since
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the action of G �xes B and Z , the group G acts on Cd(B,Z)±. We denote by (σ,ϑ) the G-orbit of
(σ,ϑ) ∈ Cd(B,Z)± and by Cd(B,Z)±/G the corresponding set of G-orbits. We can now state the
Character Triple Conjecture in the form introduced by Späth in [Spä17, Conjecture 6.3].

Conjecture 1.1 (Character Triple Conjecture). Let G ⊴ A be �nite groups, p a prime number, and
assume that Op(G), the largest normal p-subgroup of G, is contained in the centre of G. Then, for
every p-block B of G with non-central defect groups and every non-negative integer d, there exists an
AB-equivariant bijection

Ω ∶ Cd(G,Op(G))+/G→ Cd(B,Op(G))−/G

such that
(Aσ,ϑ,Gσ, ϑ) ∼G (Aρ,Gρ, χ)

for every (σ,ϑ) ∈ Cd(B,Op(G))+ and (ρ,χ) ∈ Ω((σ,ϑ)).

Remark 1.2. We say that the Character Triple Conjecture holds at the prime p for maximal defect
characters, if Conjecture 1.1 holds at the prime p for every p-block B of a �nite group and with
respect to d = d(B).

Observe that the G-block isomorphism of character triples considered in the statement above does
not depend on the choice of representatives (σ,ϑ) and (ρ,χ) in the corresponding G-orbits thanks
to [Spä17, Lemma 3.8 (c)]. Moreover, notice that the assumption on Op(G) is not restrictive. In fact,
we could replace Op(G) with any central p-subgroup Z of G and consider blocks B with defect
groups strictly containing Z (see [Ros22a, Conjecture 2.2]). However, in this case Z ≤ Op(G) and
the result follows trivially whenever Z ≠ Op(G) thanks to a well-known contractibility argument
due to Quillen [Ros22a, Lemma 2.3]. In Section 2 we will consider the case where Z is not required
to be contained in the centre of G. The equivalence of this latter form with Conjecture 1.1 above is
however not immediate to prove (this will appear in a future work of the author [Ros]).

Remark 1.3. In some of the arguments given in Section 2 will be useful to consider normal p-chains.
A p-chain σ is said to be normal if each term Di is normal in the largest term D(σ). Proceeding
as in the proof of [Spä17, Proposition 6.10], and following previous ideas introduced by Knörr and
Robinson (see [KR89, Proposition 3.3]), it follows that when dealing with Conjecture 1.1 it is no loss
of generality to assume that each p-chain considered in the de�nition of Cd(B,Op(G))± is normal.
For these reasons, we will keep using normal p-chains throughout the rest of the paper without
further reference. This approach was also used in [Ros22a] without any comment.

We recall that Conjecture 1.1 implies Dade’s Extended Projective Conjecture [Dad97, 4.10] according
to [Spä17, Proposition 6.4] and, as mentioned already in the introduction, that it should be under-
stood as an analogue of the �nal Dade’s Inductive Conjecture [Dad97, 5.8]. In fact, it was announced
long ago that the latter would reduce to quasi-simple groups although a proof of this result has not
yet appeared. Nevertheless, it was shown in [Spä17, Theorem 1.3] that the if the Character Triple
Conjecture holds for quasi-simple groups then the weaker Dade’s Projective Conjecture holds for
every �nite group. A �nal reduction of the Character Triple Conjecture to quasi-simple group is
currently in preparation [Ros]. Regarding the state of the art of the Character Triple Conjecture, we
refer the reader to [Spä17, Section 9] for the case of sporadic groups, special linear groups of degree
2, and blocks with cyclic defect, to [Ros22a] for the case of p-solvable groups, and to the series of
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papers [Ros22c], [Ros22d], [Ros23b], and [Ros23a] for the case of �nite simple groups of Lie type in
non-de�ning characteristic.

Next, we consider the inductive Alperin–McKay condition. In its most popular form, this condition
is stated for simple groups and their covering groups (see [Spä13, De�nition 7.2]). Nevertheless,
this condition can be stated for every �nite group. In this paper, we consider the following form in
which the cohomological and Cli�ord theoretic requirements are reformulated in terms of G-block
isomorphisms of character triples.

Conjecture 1.4 (inductive Alperin-McKay condition). LetG ⊴ A be �nite groups, p a prime number,
and consider a p-block B ofG with defect groupD and Brauer correspondent b inNG(D). Then there
exists anNA(D)B-equivariant bijection

Θ ∶ Irr0(B) → Irr0(b)

such that
(Aϑ,G,χ) ∼G (NA(D)ϑ,NG(D),Θ(ϑ)) ,

for every ϑ ∈ Irr0(B).

Observe that the condition on character triples in Conjecture 1.4 could equivalently be stated by
using the relation ≥b considered in [Spä18]. Moreover, we point out that, arguing as in the proof
of [Spä17, Proposition 6.8], it follows that the inductive Alperin–McKay condition from [Spä18,
De�nition 4.12] holds for the universal covering groupX of a non-abelian simple groupS if and only
if Conjecture 1.4 holds for every quasi-simple group Y covering S with respect to Y ⊴ Y ⋊Aut(Y ).
Then, [Spä13, Theorem C] can be restated by saying that if Conjecture 1.4 holds for every quasi-
simple group, then the Alperin–McKay Conjecture holds for every �nite group. Finally, a much
stronger version of this reduction theorem was obtained in [NS14, Theorem 7.1] where the authors
showed that Conjecture 1.4 reduces to quasi-simple groups.

2 Proof of Theorem C

In order to prove Theorem C, we need the following slightly stronger statement in which we allow
the p-subgroup Z from Conjecture 1.1 to be non-central. Recall that a group S is said to be involved
in G if there exists subgroups K ⊴H ≤ G such that S is isomorphic to H/K .

Theorem 2.1. Let G be a �nite group, consider a prime p, and suppose that the inductive Alperin-
McKay condition (as stated in Conjecture 1.4) holds at the prime p for every covering group of a non-
abelian �nite simple group involved inG. LetG ⊴ A and U ⊴ G a p-subgroup of order ∣U ∣ = pm. Then,
for every p-block B of G with defect d ∶= d(B) >m there exists anNA(U)B-equivariant bijection

ΩB,U ∶ Cd(B,U)+/G→ Cd(B,U)−/G

such that
(Aσ,ϑ,Gσ, ϑ) ∼G (Aρ,χ,Gρ, χ)

for every (σ,ϑ) ∈ Cd(B,U)+ and (ρ,χ) ∈ ΩB,U((σ,ϑ)).
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We now prove the above theorem by induction on the order ofG and assume that the result holds for
every choice of groups U ′ ⊴ G′ ⊴ A′ with ∣G′∣ < ∣G∣. We proceed by proving a series of intermediate
results. In what follows, given a normal p-subgroup Q of a �nite group H and a collection B of
p-blocks of H , we de�ne the set of pairs

Cf(B,Q) ∶= ∐
b∈B
Cf(b,Q)

for any non-negative integer f . Notice that the partition of each set Cf(b,Q) into Cf(b,Q)± induces
a partition of the union Cf(B,Q) into the naturally de�ned subsets Cf(B,Q)±.

Lemma 2.2. Let Q be a p-subgroup of G satisfying U < Q < D for some defect group D of B and
denote by BQ the set of those p-blocks b of NG(Q) satisfying bG = B and d(b) = d. Then there exists
anNA(Q)B-equivariant bijection

ΩBQ,Q ∶ Cd(BQ,Q)+/NG(Q) → Cd(BQ,Q)−/NG(Q)

such that
(NA(Q)ς,ϕ,NG(Q)ς , ϕ) ∼NG(Q) (NA(Q)%,ψ,NG(Q)%, ψ)

for every (ς, ϕ) ∈ Cd(BQ,Q)+ and (%,ψ) ∈ ΩBQ,Q((ς, ϕ)) where we now denote by (ς, ϕ) the
NG(Q)-orbit of (ς, ϕ).

Proof. Without loss of generality we may assume that U = Op(G). For if it weren’t, the argument
used in the proof of [Ros22a, Lemma 2.3] would give the bijection required in Theorem 2.1. In
particular, the assumption U < Q implies that NG(Q) < G and therefore the statement of Theorem
2.1 holds true for Q ⊴ NG(Q) ⊴ NA(Q). Then, if b is any block belonging to BQ and ∣Q∣ = pl, the
assumption Q <D implies that d = d(b) > l and we obtain an NA(Q)b-equivariant bijection

Ωb,Q ∶ Cd(b,Q)+/NG(Q) → Cd(b,Q)−/NG(Q)

such that
(NA(Q)ς,ϕ,NG(Q)ς , ϕ) ∼NG(Q) (NA(Q)%,ψ,NG(Q)%, ψ) (2.1)

for every (ς, ϕ) ∈ Cd(b,Q)+ and (%,ψ) ∈ Ωb,Q((ς, ϕ)). Here (ς, ϕ) denotes the NG(Q)-orbit of the
pair (ς, ϕ). Next, observe that NA(Q)B acts by conjugation on the set of blocks BQ and choose an
NA(Q)B-transversal S in BQ. For each block b ∈ S , notice that NA(Q)b ≤ NA(Q)B and �x an
NA(Q)b-transversal S+b in Cd(b,Q)+/NG(Q). Since the bijection Ωb,Q is NA(Q)b-equivariant, we
deduce that the imageS−b ofS+b under the map Ωb,Q is anNA(Q)b-transversal in Cd(b,Q)−/NG(Q).
It follows that the set

T ∶= ∐
b∈S
S±b

is an NA(Q)B-transversal in Cd(BQ,Q)±/NG(Q) and that the maps Ωb,Q, for b ∈ S , induce a
bijection between the transversals T + and T −. This bijection can be extended to an NA(Q)B-
equivariant bijection ΩBQ,Q between Cd(BQ,Q)+/NG(Q) and Cd(BQ,Q)−/NG(Q) by setting

ΩBQ,Q ((ς, ϕ)
x) ∶= (%,ψ)x

for every x ∈ NA(Q)B and every (ς, ϕ) ∈ T + corresponding to (%,ψ) ∈ T −. Furthermore, observe
the the NG(Q)-isomorphism required in the statement is the same as the one given in (2.1) by the
bijections Ωb,Q. This completes the proof.
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Before proceeding to the next step, we introduced some further notation. For every p-subgroupQ of
G strictly containing U , we de�ne the subset CdQ(B,U) consisting of those pairs (σ,ϑ) in Cd(B,U)
such that the the p-chain σ satis�es σ = {D0 = U < D1 = Q < D2 < ⋅ ⋅ ⋅ < Dn} for some n ≥ 1. In
other words, CdQ(B,U) is the set of pairs (σ,ϑ) such that Q is the second term of the chain σ. In
this case, we also de�ne CdQ(B,U)± as the intersection of CdQ(B,U) with Cd(B,U)±. If we denote
by NA(U,Q) the intersection NA(U) ∩NA(Q), then NA(U,Q)B acts by conjugation on the sets
CdQ(B,U)±. Using Lemma 2.2, we can construct a bijection between the sets CdQ(U,B)±.

Corollary 2.3. LetQ be a p-subgroup ofG satisfying U < Q <D for some defect groupD ofB. Then
there exists anNA(U,Q)B-equivariant bijection

ΘQ ∶ CdQ(B,U)+/NG(Q) → CdQ(B,U)−/NG(Q)

such that
(NA(Q)σ,ϑ,NG(Q)σ, ϑ) ∼NG(Q) (NA(Q)ρ,χ,NG(Q)ρ, χ)

for every (σ,ϑ) ∈ CdQ(B,U)+ and (ρ,χ) ∈ ΘQ((σ,ϑ)) where we now denote by (σ,ϑ) the NG(Q)-
orbit of (σ,ϑ).

Proof. First, observe that if σ is a normal p-chain of G with second term Q then each term of σ
is contained in NG(Q). It follows that, if we de�ne σU to be the p-chain obtained by removing
U from σ, then the assignment σ ↦ σU de�nes a bijection between the set of normal p-chains
of G starting with U and with second term Q and the set of normal p-chains of NG(Q) starting
with Q. Moreover, observe that ∣σ∣ = ∣σU ∣ + 1 and, by assuming as we may that U = Op(G), that
NA(Q)σ =NA(U) ∩NA(Q)σU =NA(Q)σU . Then, we get a bijection

CdQ(B,U)± → Cd(BQ,Q)∓
(σ,ϑ) ↦ (σU , ϑ)

that preserves the conjugacy action of NA(Q)B . Consider now the map ΩBQ,Q given by Lemma
2.2 and �x pairs (ς, ϕ) ∈ Cd(BQ,Q)+ and (%,ψ) ∈ ΩBQ,Q((ς, ϕ)). Write (ς, ϕ) = (ρU , χ) and
(%,ψ) = (σU , ϑ) for (ρ,χ) ∈ CdQ(B,U)− and (σ,ϑ) ∈ CdQ(B,U)+. We then de�ne the map ΘQ

by sending the NG(Q)-orbit of the pair (σ,ϑ) to the NG(Q)-orbit of (ρ,χ) constructed above.
Notice that ΘQ is NA(Q)B-equivariant since so is ΩBQ,Q. Moreover, observe that the NG(Q)-
block isomorphism is an equivalence relation which is in particular re�exive. Then, since the char-
acter triples (NA(Q)σ,ϑ,NG(Q)σ, ϑ) and (NA(Q)ρ,χ,NG(Q)ρ, χ) coincide with the character
triples (NA(Q)%,ψ,NG(Q)%, ψ) and (NA(Q)ς,ϕ,NG(Q)ς , ϕ) respectively, the NG(Q)-block iso-
morphism in the statement above coincides with that given by Lemma 2.2.

In the next proposition, whose statement will be used in the proof of Theorem 2.1, we combine
the bijections ΘQ for all p-subgroups Q belonging to a G-conjugacy class. Given a p-subgroup Q
satisfying U < Q, we denote by Q its G-orbit and by Cd

Q
(B,U) the subset of Cd(B,U) consisting

of those pairs (σ,ϑ) such that the second term of the p-chain σ is G-conjugate to Q. Equivalently,
Cd
Q
(B,U) is the set of all the pairs of Cd(B,U) that are G-conjugate to some pair of CdQ(B,U).

Notice thatGNA(U,Q)B-acts on Cd
Q
(B,U) and denote by Cd

Q
(B,U)± the intersection of Cd

Q
(B,U)

and Cd(B,U)±.
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Proposition 2.4. Let Q be a p-subgroup of G satisfying U < Q < D, for some defect group D of B,
and denote by Q its G-orbit. Then, there exists a GNA(U,Q)B-equivariant bijection

ΘQ ∶ Cd
Q
(B,U)+/G→ CdQ(B,U)−/G (2.2)

such that
(Aσ,ϑ,Gσ, ϑ) ∼G (Aρ,χ,Gρ, χ)

for every (σ,ϑ) ∈ Cd
Q
(B,U)+ and (ρ,χ) ∈ ΘQ((σ,ϑ)) where we now denote by (σ,ϑ) the G-orbit of

the pair (σ,ϑ).

Proof. Throughout the proof we need to di�erentiate between G-orbits and NG(Q)-orbits of pairs
(σ,ϑ). For this reason, we denote byOG(σ,ϑ) andONG(Q)(σ,ϑ) theG-orbit and the NG(Q)-orbit
of (σ,ϑ) respectively. Suppose that (σ,ϑ) belongs to Cd

Q
(B,U)+ and �x g ∈ G such that (σ,ϑ)g

belongs to CdQ(B,U)+. If ΘQ is the map given by Corollary 2.3, then choose (ρ,χ) in CdQ(B,U)−
such that ONG(Q)(ρ,χ) = ΘQ(ONG(Q)((σ,ϑ)g)). We de�ne

ΘQ (OG(σ,ϑ)) ∶= OG(ρ,χ)

and claim that ΘQ is a well-de�ned GNA(U,Q)B-equivariant bijection between Cd
Q
(B,U)+/G

and Cd
Q
(B,U)−/G. First, suppose that h ∈ G and (σ,ϑ)h belongs to CdQ(B,U)+. If D1 is the

second term of the p-chain σ, then it follows that Qg−1 = D1 = Qh
−1 so that h−1g ∈ NG(Q)

and hence ONG(Q)((σ,ϑ)h) = ONG(Q)((σ,ϑ)hh
−1g) = ONG(Q)((σ,ϑ)g). In particular, we get

ΘQ(ONG(Q)((σ,ϑ)h)) = ONG(Q)(ρ,χ). This shows that the de�nition of ΘQ does not depend
on the choice of the element g ∈ G while it is clear that it does not depend on the choice of the
representative (ρ,χ) in the NG(Q)-orbit ΘQ(ONG(Q)(σ,ϑ)g). It also follows that the map ΘQ is
G-equivariant. Let now x ∈NA(U,Q)B . By the above argument, we can assume that the pair (σ,ϑ)
belongs to CdQ(B,U)+. Then, since ΘQ is NA(U,Q)B-equivariant, we get ΘQ(ONG(Q)(σ,ϑ)x) =
ΘQ(ONG(Q)(σ,ϑ))x = ONG(Q)(ρ,χ)x from which we obtain ΘQ(OG(σ,ϑ)x) = OG(ρ,χ)x. This
proves our claim.

Next, we prove the condition on character triples. Keep (σ,ϑ) and (ρ,χ) as before. Recall that, up
to G-conjugation, we may assume in the de�nition of ΘQ that Q coincides with the second term of
σ and of ρ. Moreover, sinceG-block isomorphisms are compatible withG-conjugation according to
[Spä17, Lemma 3.8 (c)], this assumption is compatible with the condition on character triples. Then,
since the NG(Q)-orbits of (σ,ϑ) and (ρ,χ) correspond under ΘQ, Corollary 2.3 yields

(NA(Q)σ,ϑ,NG(Q)σ, ϑ) ∼NG(Q) (NA(Q)ρ,χ,NG(Q)ρ, χ) . (2.3)

Furthermore, observe that since Q is a term of the p-chains σ and ρ we have Aσ = NA(Q)σ and
Aρ =NA(Q)ρ. We can then rewrite (2.3) as

(Aσ,ϑ,Gσ, ϑ) ∼NG(Q) (Aρ,χ,Gρ, χ) . (2.4)

To conclude we need to show that the NG(Q)-block isomorphism (2.4) is actually a G-block iso-
morphism. This is done by applying [Ros22a, Lemma 2.11]. In fact, if D denotes a defect group of
the block of ϑ in Gσ , then Q ≤Op(Gσ) ≤ D and we get CGAσ,ϑ(D) ≤NGAσ,ϑ(Q) =NG(Q)Aσ,ϑ.
A similar argument shows that CGAρ,χ(P ) ≤NG(Q)Aρ,χ for a defect group P of the block of χ in
Gρ hence verifying the hypothesis of [Ros22a, Lemma 2.11]. The proof is now complete.
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We now come to the �nal step of the proof of Theorem 2.1.

Proof of Theorem 2.1. Recall that U is a normal p-subgroup of G of order ∣U ∣ = pm and let D be a
defect group of the block B. By assumption m < d = d(B) and it follows from [Nav98, Theorem
4.8] that U < D. We claim that every pair (σ,ϑ) ∈ Cd(B,U) is G-conjugate to a pair whose
corresponding p-chain has all of its terms contained in D. For this notice that, if b is a block of
Gσ satisfying bG = B, then we can �nd a defect group P of b and an element g ∈ G such that
P ≤ Dg according to [Nav98, Lemma 4.13]. Now, if D(σ) denotes the last term of σ, then [Nav98,
Theorem 4.8] implies that D(σ) ≤Op(Gσ) ≤ P ≤Dg . By replacing (σ,ϑ) with (σ,ϑ)g−1 we obtain
a pair with the properties required above. Thus, we can write σ = {D0 = U < D1 < ⋅ ⋅ ⋅ < D(σ)}
with D(σ) ≤ D and observe that either ∣σ∣ = 0, which leads to the p-chain σ+ = {D0 = U}, or
∣σ∣ ≥ 1 in which case we can have either U < D1 < D or U < D1 = D, which leads to the p-chain
σ− = {D0 = U <D1 =D}.

Consider the set F of p-subgroups Q of G satisfying U < Qg < D for some g ∈ G. We denote by
F/G the corresponding set of G-orbits and by Q the G-orbit of Q. If Q ∈ F/G and x ∈ NA(U)B ,
then U < Qg <D for some g ∈ G and U < Qgx <Dx. On the other hand, since x stabilises the block
B, we know that Dx is a defect group of B and so there exists h ∈ G such that Dxh =D. It follows
that U < Qgxh < Dxh = D. Furthermore, since G ⊴ NA(U)B , we can write gx = xg′ for some
g′ ∈ G and we conclude that U < Qxg′h <D. This shows that Qx belongs to F/G and therefore the
group NA(U)B acts by conjugation on F/G. Fix an NA(U)B-transversal S in F/G and observe
that, for every Q ∈ S , Proposition 2.4 gives a GNA(U,Q)B-equivariant bijection

ΘQ ∶ Cd
Q
(B,U)+/G→ CdQ(B,U)−/G

such that
(Aσ,ϑ,Gσ, ϑ) ∼G (Aρ,χ,Gρ, χ)

for every (σ,ϑ) ∈ Cd
Q
(B,U)+ and (ρ,χ) ∈ ΘQ((σ,ϑ)). In particular, if we �x a GNA(U,Q)B-

transversal T +
Q

in Cd
Q
(B,U)+/G, then the equivariance properties of ΘQ imply that the image T −

Q

of T +
Q

under ΘQ is a GNA(U,Q)B-transversal in Cd
Q
(B,U)−/G. If we now de�ne CdF(B,U)± to

be the subset of Cd(B,U)± consisting of those pairs (σ,ϑ) such that the second term of σ belongs
to F , then we conclude from the above discussion that

T +F ∶= ∐
Q∈S
T +
Q

and
T −F ∶= ∐

Q∈S
T −
Q

are NA(U)B-transversals in CdF(B,U)+/G and CdF(B,U)−/G respectively. This follows from the
fact that, by a Frattini argument, GNA(U,Q)B coincides with the stabiliser of the G-orbit Q under
the action of NA(U)B . We can then de�ne an NA(U)B-equivariant bijection

ΩF ∶ CdF(B,U)+/G→ CdF(B,U)−/G

by de�ning
ΩF ((σ,ϑ)

x) ∶= (ρ,χ)x
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for everyQ ∈ S , every (σ,ϑ) ∈ T +
Q

corresponding to (ρ,χ) ∈ T −
Q

via ΘQ, and every x ∈NA(U)B . By
the properties of the maps ΘQ, we get that the map ΩF satis�es the required condition on character
triples.

Following the �rst paragraph of the proof, observe that the set Cd(B,U)± can be partitioned into
the subsets CdF(B,U)± and G± where we de�ne G± as the set of those pairs (σ,ϑ) such that σ is G-
conjugate to σ±. Notice that G+ is the set of pairs (σ+, ϑ) with ϑ ∈ Irrd(Gσ+) such that bl(ϑ)G = B.
Equivalently, since σ+ is G-invariant and d = d(B), the set G+ consists of those pairs (σ+, ϑ) where
ϑ is a character of p-height zero in the block B. In particular, if S+G is an NA(U,D)B-transversal in
Irr0(B), then the set T +G of G-orbits (σ+, ϑ) with ϑ ∈ S+G is a GNA(U,D)B-transversal in G+/G.
Next, since by hypothesis we know that the inductive Alperin–McKay condition (as stated in Con-
jecture 1.4) holds for every covering group of a non-abelian �nite simple group involved in G, we
can apply [NS14, Theorem 7.1] with respect to G ⊴NA(U)B to obtain an NA(U,D)B-equivariant
bijection

ΠB,D ∶ Irr0(B) → Irr0(C)
where C is the Brauer correspondent of B in NG(D). Moreover, we have

(NA(U)B,ϑ,G,ϑ) ∼G (NA(U,D)B,χ,NG(D), χ) (2.5)

for every ϑ ∈ Irr0(B) and χ = ΠB,D(ϑ). Now the image S−G of S+G via the map ΠB,D is an
NA(U,D)B-transversal in the set Irr0(C). Noticing that the set G− consists of pairs of the form
(σ−, χ)g for some χ ∈ Irr0(C) and g ∈ G, we deduce that the set T −G of G-orbits (σ−, χ) with
χ ∈ S−G is a GNA(U,D)B-transversal in G−. A Frattini argument also shows that NA(U)B =
GNA(U,D)B . We can now de�ne an NA(U)B-equivariant bijection

ΩG ∶ G+/G→ G−/G

by de�ning
ΩG ((σ+, ϑ)

x) ∶= (σ−, χ)
x

for every (σ+, ϑ) ∈ T +G corresponding to (σ−, χ) ∈ T −G and every x ∈ NA(U)B . The G-block
isomorphism of character triples (2.5) can be rewritten as

(Aσ+,ϑ,Gσ+ , ϑ) ∼G (Aσ−,χ,Gσ− , χ) .

We can now construct a map Ω with the properties required above by de�ning it to be ΩF and ΩG
on the subsets CdF(B,U)+/G and G+/G respectively. This concludes the proof.

3 Proof of Theorem A and Corollary B

We now obtain Theorem A as a consequence of Theorem 2.1.

Proof of Theorem A. As mentioned previously, the statement of Theorem 2.1 implies the Character
Triple Conjecture in the form introduced in [Spä17, Conjecture 6.3] if we assume U ≤ Z(G). Fur-
thermore, in this case it is no loss of generality to assume that U = Op(G) according to [Ros22a,
Lemma 2.3]. In order to apply Theorem 2.1 observe that the inductive Alperin–McKay condition
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has been veri�ed for the prime p = 2 with respect to alternating simple groups [Den14], [Spä13,
Corollary 8.3 (a)], Suzuki and Ree groups [Mal14, Theorem 1.1], sporadic groups [Bre], groups of
Lie type with exceptional Schur multiplier [Bre], [BR22, Lemma 7.3], groups of Lie type in charac-
teristic 2 [Ruh22c, Proposition 14.8], classical groups Lie type in odd characteristic [BR22, Corollary
8.1], and �nally exceptional groups of Lie type in odd characteristic [Ruh22a, Theorem C], [Ruh22b,
Theorem C].

As claimed in the introduction, using Theorem A and Brauer’s Height Zero Conjecture, we can
prove that the Character Triple Conjecture holds for every 2-block with abelian defect groups.

Proof of Corollary B. Let G ⊴ A be �nite groups and U ⊴ G a 2-subgroup. Consider a 2-block B
of G with abelian defect group D such that U < D and write d ∶= d(B). By Theorem A there
exists a bijection Cd(B,U)+/G → Cd(B,U)−/G as required by the Character Triple Conjecture.
So it remains to show that such a bijection can be constructed by replacing d with any other non-
negative integer, say 0 ≤ f ≠ d. For this consider a pair (σ,ϑ) ∈ Cf(B,U)± so that ϑ is an irreducible
character of the stabiliserGσ of defect d(ϑ) = f and whose block satis�es bl(ϑ)G = B. Observe that
σ ≠ σ+ ∶= {D0 = U} and σ ≠ σ− ∶= {D0 = U <D1 =D}. In fact, Gσ+ = G, Gσ− =NG(D) and, since
D is abelian, Brauer’s Height Zero Conjecture (we actually only need the half proved in [KM13])
implies that Irr(B) = Irrd(B) and that Irr(b) = Irrd(b) where b is the Brauer correspondent of B
in NG(D). In particular the 2-chain σ belongs to the set F de�ned in the �nal step of the proof of
Theorem 2.1. Now proceeding by induction on the order ofG and arguing as in Lemma 2.2, Corollary
2.3 and Proposition 2.4, it su�ces to exhibit an NA(Q)b-equivariant bijection Cf(b,Q)+/NG(Q) →
Cf(b,Q)−/NG(Q) inducing NG(Q)-block isomorphism for every U < Q <D and every block b of
NG(Q) satisfying bG = B. In other words, we need to show that the Character Triple Conjecture
holds for the 2-block b of NG(Q) with respect to f . This follows by induction since the condition
bG = B implies that b has abelian defect groups according to [Nav98, Lemma 4.13].

4 A converse to Theorem C

It was shown by Dade in [Dad94] that the projective form of his conjecture implies the Alperin–
McKay Conjecture. Later, Navarro [Nav18, Theorem 9.27] proved that the block-free version of
Dade’s Ordinary Conjecture implies the McKay Conjecture, while Kessar and Linckelmann [KL19]
extended these results by proving that Dade’s Ordinary Conjecture implies the Alperin–McKay
Conjecture. It is therefore natural to ask whether the Character Triple Conjecture, which plays
the role of an inductive condition for Dade’s Projective Conjecture, implies the inductive Alperin–
McKay condition. In this section, we show that this is the case and obtain the following result which
can be seen as a converse to Theorem C.

Theorem 4.1. If Character Triple Conjecture holds for maximal defect characters at the prime p, then
the inductive Alperin–McKay condition (in the generality considered in Conjecture 1.4) holds at the
prime p.

The structure of a minimal counterexample G to Conjecture 1.4 has been studied in [NS14, Section
7]. In particular, according to [NS14, Proposition 7.4] we know thatOp(G) is contained in the centre
of G.
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Lemma 4.2. Let G ⊴ A be a minimal counterexample to Conjecture 1.4 with respect to ∣G ∶ Z(G)∣.
ThenOp(G) ≤ Z(G).

Now, let G ⊴ A be a minimal counterexample as in Lemma 4.2 and consider a block B of G for
which Conjecture 1.4 fails to hold. If D is a defect group of B, then Op(G) < D for if Op(G) = D
then D is normal in G and Conjecture 1.4 follows trivially. Then, for every non-negative integer d
we can de�ne the sets Cd0(B,Op(G)) and Cd1(B,Op(G)) consisting of those pairs (σ,ϑ) belonging
to Cd(B,Op(G)) and such that σ = {D0 = Op(G)} and σ = {D0 = Op(G) < D1 = D}, for
some defect group D of B, respectively. Moreover, set J d+ ∶= Cd(B,Op(G))+ ∖Cd0(B,Op(G)) and
J d− ∶= Cd(B,Op(G))− ∖ Cd1(B,Op(G)). Notice that G acts by conjugation on J d± and let J d± /G
denote the corresponding set of G-orbits. As usual, for any element (σ,ϑ) ∈ J d± , we denote its
G-orbit by (σ,ϑ).

Proposition 4.3. LetG ⊴ A be �nite groups withG a minimal counterexample to Conjecture 1.4 with
respect to ∣G ∶ Z(G)∣ and consider a block B of G, with defect group D, for which the result fails to
hold. If d ∶= d(B), then there exists anNA(D)B-equivariant bijection

Π ∶ J d+ /G→ J d− /G

such that
(Aσ,ϑ,Gσ, ϑ) ∼G (Aρ,χ,Gρ, χ) ,

for every (σ,ϑ) ∈ J d+ and (ρ,χ) ∈ Π((σ,ϑ)).

Proof. De�ne the set Ĵ d± of p-chains σ of G that start with Op(G) and for which there exists a
character ϑ ∈ Irr(Gσ) such that (σ,ϑ) ∈ J d± . Denote by Ĵ d± /G the corresponding set of G-orbits
and by σ the G-orbit of σ ∈ Ĵ d± . Notice that, if σ ∈ Ĵ d± has �nal term D(σ), then there exists g ∈ G
such that

D(σ) ≤Dg ≤ Gσ
and Dg is a defect group of some block of Gσ . In fact, if (σ,ϑ) ∈ J d± and Q is a defect group of
bl(ϑ), then D(σ) ≤ Op(Gσ) ≤ Q according to [Nav98, Theorem 4.8] while [Nav98, Lemma 4.13]
implies that there exists g ∈ G such that Q ≤ Dg . Furthermore, if f denotes the defect of the block
bl(ϑ), then d ≤ f by [Nav98, Theorem 4.6] and hence we have d ≤ f ≤ d(bl(ϑ)G) = d(B) =∶ d. This
shows that Dg = Q ≤ Gσ and thus D(σ) ≤Dg ≤ Gσ as claimed.

Next, we de�ne an NA(D)B-equivariant bijection

Π̂ ∶ Ĵ d+ /G→ Ĵ d− /G

by sending the G-orbit of the p-chain σ to the G-orbit of the p-chain ρ obtained by deleting the
�nal term D(σ) if D(σ) is a defect group of B. If D(σ) is not a defect group of B, then the above
discussion implies that there exists g ∈ G such thatD(σ) <Dg andDg is a defect group of a block of
the stabiliser Gσ . In this case, we de�ne Π̂ by sending the G-orbit of σ to the G-orbit of the p-chain
ρ obtained by adding the term Dg at the end of the p-chain σ. Notice that the above de�nition does
not depend on the choice of Dg , but only on its Gσ-conjugacy class, nor on the representative σ in
σ. Furthermore, as Dg ≤ Gσ , we deduce that the map sends normal p-chains to normal p-chains.
To conclude that Π̂ is well de�ned we need to check that, for every ρ ∈ Π̂(σ), there exists χ ∈ Gρ
such that (ρ,χ) ∈ J d− . Without loss of generality we may assume that ρ is the p-chain obtain from
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σ by adding D as a �nal term and that, if (σ,ϑ) ∈ J d+ , the block b ∶= bl(ϑ) has defect group D.
Notice also that by the de�nition of the sets J d± , since we are excluding the p-chain {D0 =Op(G)},
we get Gσ < G because the last term of σ properly contains Op(G). In particular, we deduce that
∣Gσ ∶ Z(Gσ)∣ < ∣G ∶ Z(G)∣ and thus Gσ satis�es Conjecture 1.4 by the minimality of G. Then, if c is
the Brauer correspondent of bl(ϑ) in NGσ(D) = Gρ, then there exists an Aρ-equivariant bijection

Πσ,b ∶ Irrd(b) → Irrd(c)

such that
(Aσ,ϑ,Gσ, ϑ) ∼Gσ (Aρ,ϑ,Gρ,Πσ(ϑ)) ,

for every ϑ ∈ Irrd(b). Noticing that CAσ,ϑ⋅G(D) ≤ Aσ,ϑ and applying [Ros22a, Lemma 2.11] we can
use the above Gσ-block isomorphism of character triples to get

(Aσ,ϑ,Gσ, ϑ) ∼G (Aρ,ϑ,Gρ,Πσ(ϑ)) .

In particular, for χ ∶= Πσ,b(ϑ), we have (ρ,χ) ∈ J d− and so Π̂ is well de�ned as explained above.
Finally, we use the bijections Π̂ and Πσ,b to de�ne an NA(D)B-equivariant bijection Π ∶ J d+ /G →
J d− /G as required in the statement by sending the G-orbit of (σ,ϑ) to the G-orbit of the pair (ρ,χ)
constructed above.

We can now prove Theorem 4.1.

Proof of Theorem 4.1. LetG ⊴ A be �nite groups and assume thatG is a minimal counterexample to
Conjecture 1.4 with respect to ∣G ∶ Z(G)∣. Let B be a block of G with defect group D and Brauer
correspondent b in NG(D) for which the result fails to holds. By Lemma 4.2 and the discussion
preceding it we know that Op(G) ≤ Z(G) and that Op(G) <D. Then, since we are assuming that
the Character Triple Conjecture holds for the non-negative integer d = d(B) at the prime p, we can
�nd an AB-equivariant bijection

Ω ∶ Cd(B,Op(G))+/G→ Cd(B,Op(G))−/G,

such that
(Aϑ,G,ϑ) ∼G (NA(D)ϑ,NG(D),Θ(ϑ)) ,

for every (σ,ϑ) ∈ Cd(B,Op(G))+ and (ρ,χ) ∈ Ω((σ,ϑ)). Consider the sets Cd0(B,Op(G)) and
Cd1(B,Op(G)) de�ned before Proposition 4.3 and notice that Cd0(B,Op(G))/G is the set of G-
orbits of pairs (σ,ϑ) where σ = {D0 = Op(G)} and ϑ ∈ Irr0(B) while Cd1(B,Op(G))/G is the set
of G-orbits of pairs (ρ,χ) with ρ = {D0 = Op(G) < D1 = D} and χ ∈ Irr0(b). Suppose that the
bijection Ω maps Cd0(B,Op(G))/G onto Cd1(B,Op(G))/G. If the G-orbit of (σ,ϑ) is mapped to
that of (ρ,χ), then we write χ ∶= Θ(ϑ) and obtain an NA(D)B-equivariant bijection

Θ ∶ Irr0(B) → Irr0(b)

such that
(Aϑ,G,ϑ) ∼G (NA(D)ϑ,NG(D),Θ(ϑ)) ,
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for every ϑ ∈ Irr0(B) as required by Conjecture 1.4. This contradicts our choice of G and thus the
image of Cd0(B,Op(G))/G under Ω cannot coincide with Cd1(B,Op(G))/G. However, if Π is the
bijection given by Proposition 4.3, then we get

∣Cd0(B,Op(G))/G∣ = ∣Cd(B,Op(G))+/G∣ − ∣J d+ /G∣
= ∣Ω(Cd(B,Op(G))+/G)∣ − ∣Π(J d+ /G)∣
= ∣Cd(B,Op(G))−/G∣ − ∣J d− /G∣
= ∣Cd1(B,Op(G))/G∣

and therefore there exists some element (σ0, ϑ0) of Cd0(B,Op(G)) whose G-orbit is mapped via Ω

outside the set Cd1(B,Op(G))/G. Now, we proceed as follows: noticing that Ω((σ0, ϑ0)) belongs
to J d− /G, we can apply the the inverse of the bijection Π and de�ne

(σ1, ϑ1) ∶= Π−1 (Ω ((σ0, ϑ0)))

an element of J d+ /G ⊆ Cd(B,Op(G))+/G. We can apply Ω to (σ1, ϑ1). If Ω((σ1, ϑ1)) belongs to
Cd1(B,Op(G))/G, then we stop. Otherwise, as before, the element Ω((σ1, ϑ1)) belongs to J d− /G
and we de�ne

(σ2, ϑ2) ∶= Π−1 (Ω ((σ1, ϑ1))) .

Proceeding this way, for i ≥ 1, we de�ne a sequence of elements of Cd(B,Op(G))+/G by setting

(σi, ϑi) ∶= Π−1 (Ω ((σi−1, ϑi−1))) ,

if Ω((σi−1, ϑi−1)) ∉ Cd1(B,Op(G))/G. It is important to observe that, for every i ≥ 1, the pair
(σi, ϑi) does not belong to Cd0(B,Op(G)) and satis�es the condition

(Aσ0 ,Gσ0 , ϑ0) ∼G (Aσi ,Gσi , ϑi) . (4.1)

Next, we claim that there exists some integer n ≥ 1 such that Ω((σn, ϑn)) ∈ Cd1(B,Op(G))/G.
Assume for the sake of contradiction that this is not the case. Then the set

S ∶= {(Π−1 ○Ω)i ((σ0, ϑ0)) ∣ i ≥ 0} ⊆ Cd(B,Op(G))+/G

is well de�ned and its image under Ω is contained in J d− /G. If we apply Π−1 to Ω(S), then we
obtain a subset of S . Equivalently, the map Π−1 ○Ω maps S to itself. Therefore, since S is �nite, we
must have

Π−1 ○Ω(S) = S.
However, noticing that (σ0, ϑ0) ∈ S ∩Cd0(B,Op(G))/G and recalling that from elementary set the-
ory the image of the intersection of two sets under an injective map coincides with the intersection
of the images of such sets, we deduce that

∣S∣ = ∣Ω(S)∣
= ∣Ω(S) ∩ J d− /G∣
= ∣Π−1 (Ω(S) ∩ J d− /G) ∣
= ∣Π−1(Ω(S)) ∩Π(J d− /G)∣
= ∣S ∩ J d+ /G∣
≤ ∣S∣ − 1,
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a contradiction. This proves our claim. Now, since Cd1(B,Op(G)) is NA(D)B-stable and Ω and Π
are NA(D)B-equivariant, the pairs (σ0, ϑ0) and (σn, ϑn) are not NA(D)B-conjugate. Then, we
can �nd a NA(D)B-transversal T in Cd(B,Op(G))+/G containing (σ0, ϑ0) and (σn, ϑn). We de-
�ne a new NA(D)B-equivariant bijection Ω′ ∶ Cd(B,Op(G))+/G→ Cd(B,Op(G))−/G by setting

Ω′ ((σ,ϑ)x) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ω ((σ,ϑ)x) , if (σ,ϑ) ∈ T ∖ {(σ0, ϑ0), (σn, ϑn)}
Ω ((σn, ϑn)

x) , if (σ,ϑ) = (σ0, ϑ0)
Ω ((σ0, ϑ0)

x) , if (σ,ϑ) = (σn, ϑn)
,

for every (σ,ϑ) ∈ T and x ∈ NA(D)B . Using (4.1) and because the G-block isomorphism is an
equivalence relation according to [Spä17, Lemma 3.8 (a)], we deduce that Ω′ satis�es the require-
ments of the Character Triple Conjecture. Moreover, since by construction (σn, ϑn) ∉ Cd0(B), the
de�nition of Ω′ coincide with that of Ω on the set Cd0(B,Op(G))/G apart from the value of our
"bad" element (σ0, ϑ0) which is now mapped to Cd1(B,Op(G))/G under Ω′. Arguing in this way
we can rede�ne the map Ω for all such bad elements in such a way that the newly de�ned Ω maps
Cd0(B,Op(G))/G to Cd1(B,Op(G)). As explained at the beginning of the proof this implies that
Conjecture 1.4 holds for B. This contradicts our choice of a minimal counterexample and the proof
is now complete.

5 The block-free form of the Character Triple Conjecture

In this section, we consider a block-free analogue of Theorem 2.1. For this purpose, given a non-
negative integer d and a normal p-subgroup U of G, we denote by Cd(G,U)± the union of all sets
Cd(B,U)± forB a block ofG. Equivalently, Cd(G,U)± is the set of pairs (σ,ϑ)where σ is a p-chain
of G starting with U and satisfying (−1)∣σ∣ = ±1, and ϑ is an irreducible character of the stabiliser
Gσ with defect d(ϑ) = d. Moreover, observe that by removing the condition [Spä17, Remark 3.7
(iv)] from the de�nition of G-block isomorphism, we obtain a weaker isomorphism of character
triples. This was called G-central isomorphism in [Ros22b, De�nition 3.3.4]. With these de�nition
at hand, a block-free form of the Character Triple Conjecture was introduced in [Ros22b, Conjecture
3.5.5]. The case of maximal defect characters, which in this context coincide with characters of p′-
degree, can then be deduced by assuming the inductive McKay condition form [IMN07]. Below we
use a reformulation of this condition in the spirit of Conjecture 1.4. We refer the reader to [Ros23c,
Conjecture A] for a precise statement.

Theorem 5.1. Let G be a �nite group, consider a prime p, and suppose that the inductive McKay
condition (as stated in [Ros23c, Conjecture A]) holds at the prime p for the universal covering group
of every non-abelian �nite simple group involved in G. Let G ⊴ A and U ⊴ G a p-subgroup of order
∣U ∣ < ∣G∣p = pd. Then, there exists anNA(U)-equivariant bijection

ΩU ∶ Cd(G,U)+/G→ Cd(G,U)−/G

such that
(Aσ,ϑ,Gσ, ϑ) ∼cG (Aρ,χ,Gρ, χ)

for every (σ,ϑ) ∈ Cd(G,U)+ and (ρ,χ) ∈ ΩU((σ,ϑ)).
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Proof. By replacing the defect group D of B with a Sylow p-subgroup P of G in the arguments
used to prove Lemma 2.2, Corollary 2.3, and Proposition 2.4, we obtain GNA(U,Q)-equivariant
bijections, for U < Q < P a p-subgroup,

ΘQ ∶ Cd
Q
(G,U)+/G→ CdQ(G,U)−/G

such that
(Aσ,ϑ,Gσ, ϑ) ∼cG (Aρ,χ,Gρ, χ)

for every (σ,ϑ) ∈ Cd
Q
(G,U)+ and (ρ,χ) ∈ ΘQ((σ,ϑ)). Then, as in the �nal step of the proof of

Theorem 2.1, we can combine the bijections ΘQ to obtain an NA(U)-equivariant bijection

ΩF ∶ CdF(G,U)+/G→ CdF(G,U)−/G

where F denotes the set of p-subgroups Q of G such that U < Qg < P for some g ∈ G, while
CdF(G,U)± is the set of pairs (σ,ϑ) ∈ Cd(G,U)± such that the second term of the p-chain σ belongs
to F . To conclude we de�ne G+ as the set of pairs (σ+, ϑ) with σ+ = {U} and ϑ ∈ Irrp′(G), and the
set G− of pairs (σ−, χ)g with σ− = {U < P}, χ ∈ Irrp′(NG(P )) and g ∈ G. To construct a bijection
ΩG that induces G-central isomorphisms of character triples between the sets G+/G and G−/G, we
now use the hypothesis that the inductive McKay condition holds for the universal covering group
of every non-abelian simple group involved in G and apply [Ros23c, Theorem B]. The bijection Ω
is then constructed using ΩF and ΩG .

Before proceeding further, we make a remark on the block-free form of Theorem 4.1.

Remark 5.2. By following the argument used in Section 4, while replacing everywhere the defect
group D with a Sylow p-subgroup P and Lemma 4.2 with [Ros23c, Corollary 4.3], one could prove
a block-free version of Theorem 4.1 and hence obtain a converse to Theorem 5.1. More precisely, if
the block-free version of the Character Triple Conjecture holds for every �nite groupG at the prime
p with respect to d ∶= logp(∣G∣p), then the inductive McKay condition (in the formulation given in
[Ros23c, Conjecture A]) holds for every �nite group at the prime p.

While we can obtain the block-free form of the Character Triple Conjecture for the prime 2 and
maximal defect characters as a consequence of Theorem A, the above result can be used to handle
the prime 3 thanks to the results recently obtained in [Spä23].

Theorem 5.3. Let G be a �nite group and write ∣G∣3 = 3d. Then, the block-free form of the Character
Triple Conjecture [Ros22b, Conjecture 3.5.5] holds for G at the prime 3 and with respect to the defect d.

Proof. By Theorem 5.1 it su�ces to verify the inductive McKay condition for �nite simple groups
with respect to the prime 3. This has been veri�ed for Suzuki and Ree groups [IMN07, Section 16-
17], alternating groups [Mal08, Theorem 3.1], groups of Lie type with exceptional Schur multiplier
[Mal08, Theorem 4.1], Sporadic groups [Mal08], groups of Lie type in de�ning characteristic [Spä12,
Theorem 1.1], and groups of Lie type in non-de�ning characteristic unless of typeD [CS13], [CS17a],
[CS17b], [CS19]. The remaining case of groups of Lie type D in non-de�ning characteristic follows
from [MS16, Theorem 3.1] and [Spä23, Theorem A] by applying [CS19, Theorem 2.4].

The above argument used to prove Corollary B, can be used to obtain the block-free form of the
Character Triple Conjecture for the prime 3 and every �nite groupGwith abelian Sylow 3-subgroup.
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Corollary 5.4. The block-free version of the Character Triple Conjecture holds at the prime 3 for every
�nite group with abelian Sylow 3-subgroups.
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