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Statistical visualization uses graphical methods to
gain insights from data. Here we show how a tech-
nique called principal component analysis is used to
analyze mortality in Spain over about the last hun-
dred years. This data decomposition both reflects
expected historical events and reveals some perhaps
less expected trends in mortality over the years.

1 Data visual izat ion

Statistical analysis is the study of data sets. Simple data sets can be thought
of as (a collection of) tables which list variables and the values they get at
data points (measurement points). For example, a data set can be a list of
places and the temperature measured at these places on the 3rd of February,
1900, at 9 am. Or, it can be a list of all children in school and their height
and age. A statistical analysis of these data sets employs techniques to gather
understanding from the raw data – children of age of twelve years are more
likely to be 150 cm tall than 190 cm tall 1 . An important, but all too often
ignored, part of a statistical analysis is to look at – visualize – the data set.
Common visualization methods can be in the form of graphs or charts. For
modern complex data sets, it is not always clear how such visualization should
be done, so this is an active research area.

1 For more examples of statistical analysis see Snapshot 6/2014 “Statistics and dynamical
phenomena” by H. Tong.
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Figure 1: Raw mortality curves on the left, using mortality on the vertical axis,
with standard rotating palate of colors. Log mortality is seen on
the right to be the more natural scale, with rainbow color scheme
indicating years. Shows overall age effects, plus long term trend
towards lower mortality.

In this snapshot we will focus on curves as data objects, using the terminology
of Object Oriented Data Analysis (OODA) coined by Wang and Marron [4].
See Marron and Alonso [1] for a detailed discussion of this idea, and also for
further discussion of the data set studied here.

We will illustrate the main ideas of OODA data visualization using amortality
data set. Mortality reflects one’s chance of dying, usually at some type of
population level (for example, age). This is quantified, for a given group of
people in a given time interval, as the fraction of the number who died out of the
total number in the group. In our case the time intervals are the calendar years
1908–2002. In each year people are grouped according to ages from 0 to 90, and
the mortality ratio is computed. Such a data set, for Spanish males, is studied in
Figure 1. Each curve in the left panel corresponds to one year (1908–2002) and
is a plot of mortality on the vertical axis as a function of age on the horizontal
axis. Note that the different curves are distinguished by different colors. Most
graphics software offer this as a default. Here the default palate of 7 colors from
the Matlab software package was used to generate these graphics.

One limitation of the data view in the left panel is that much of the variation
between curves is hard to see. This is because mortality ranges over several
orders of magnitude, so it is hard to distinguish small values, especially in
the childhood years when all curves appear to be essentially 0. A standard
approach to this type of visualization challenge is to plot logarithms of the data.
A logarithm of a number is the power to which another number (in our case,
10) needs to be taken to get that first number; for example, the logarithm of
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100 is 2, as 102 = 100. Since the differences between the curves are very small,
smaller than 0.1, the logarithms of the death rates and their variations are
relatively big (in the sense of absolute value) negative numbers. For example, at
a point where the value of one curve was only 0.001 of that of another curve, in
the logarithmic scale these two values are three units apart (as 0.001 = 10−3) 2 .
Note how on the right panel, plotting the logs (short for logarithms) of the
curves, variations at all ages are better revealed.

Another limitation of the mortality plot on the left is that it is hard to
understand which year is which. This is overcome in the right panel of Figure 1
by using a different color scheme. Here a single color cycle is used for the
entire time range 1908–2002, with colors following a rainbow color scheme with
purple for 1908 through blue, cyan, green, yellow to red for the year 2002.
This coloration already shows a clear trend: there has been a steady overall
improvement in the mortality of Spanish males over the last century. This is
due mostly to improvements in medicine and public health over that time range.

2 Curves as data objects

Until now, the data we analyzed – our data set – was comprised of death-
rates, ages and years. We visualized this data as curves in various ways as
to better understand it. Let us take a step further, and see if we can glean
more information, by regarding the curves themselves as data to be analyzed.
Thinking of the curves as a data set, it is natural to think about the center
point. The left panel of Figure 2 shows the curve which is obtained by plotting
the mean at every point (along the horizontal axis) of the curves in the right
panel of Figure 1. Note that this mean curve shows expected human life-cycle
patterns. The far left is high because it is dangerous to be an infant. After
that mortality drops rapidly through childhood, then gradually grows, as older
people have a proportionally higher chance of dying.

A perhaps unexpected feature is a series of small peaks. Note that these peaks
are not occurring at random times, and instead are equally spaced. Furthermore,
they appear only at decade ages (multiples of 10). This is because these peaks
are an artifact of poor record keeping in the earlier part of the time range. In
the earlier years, when an older person died, there was sometimes uncertainty
as to the precise age, so there was some rounding in the reported age. This
is clear from the peak at decade ages, with valleys in both the immediately
preceding and following ages.

2 Incidentally, this technique is also very useful when dealing with very large variations
of very large positive numbers. By regarding the logarithms of very large quantities we get
smaller numbers (we exchange 100 for 3, say), and so get the data into a manageable size; for
such a use, see Figure 3 in Snapshot 5/2015 Chaos and chaotic fluid mixing by T. Solomon.
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Figure 2: Mean (center) curve on the left, containing main age effects. Mean
residuals on the right showing overall improving mortality and no
age effects.

While the mean curve is interesting, additional insights are available from
careful consideration of the variation about the mean. A simple view is shown
in the right panel of Figure 2, which is the mean residuals. These curves are
just the data curves from the right of Figure 1, with the mean in the left of
Figure 2 subtracted. As expected, the overall improvement (drop) in mortality
is strongly apparent in these residual curves. Also note that the main age
impacts on mortality are essentially missing, showing that these are overall
average effects which have not noticeably changed over time.

A more refined view of the data comes in the left-hand panel of Figure 3, the
first principal component (PC1) loading plot. This is a technique to highlight
major differences by filtering out lesser ones.

To understand what we do, it is helpful to think of a space of curves. This
would be a space with dimensions for all possible variables: one dimension for
each age-group. For example, in Figure 1 we had one dimension for ages and
one for mortality, so each point in that (two-dimensional) space represented the
mortality at an age-group. Such spaces, where we are interested in the values
of points according to different dimensions (called coordinates) are called vector
spaces, and the points in vector spaces are called vectors. In our new space
each point (vector) will represent an entire mortality curve; that is, each point
encodes the mortality at all ages at one year. Now that we have a space of
curves, we mark the mean-centered residuals from the right panel of Figure 2
in this space and find the direction of maximal variance 3 . Each data point

3 Simply put, variance measures how much a data-set is spread out.
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Figure 3: PC1 Loadings plot on the left, showing overall improvement is domi-
nant mode of variation. PC1 scores on the right show the dominant
mode of variation.

(mean-residual curve) can be projected on this direction vector. This projection
can be thought of as measuring where the shadow of each point falls on the line
that marks the direction of maximal variation. The resulting curves, all of them
represented as points lying on the same line, will be multiples of the common
direction vector curve. This can be seen on the left panel of Figure 3, where the
projected points (again as mortality curves) are multiples of the same shape
(negative multiples are mirror images). In a sense, this procedure reveals the
variation among the data points in the most varied aspect. Both the magnitudes
of the projected curves (called scores) and the shapes of the curves give useful
insights.

The common shape of the curves reflects the expected fact that overall health
improvements benefit essentially the entire population. However, the amount
of improvement is a decreasing function of age, because the positive effects of
medical technology wane with age. Note also that the decade age blips that
appear in the mean curve on the left in Figure 2 are also important features
here. This time they go upwards in the earlier years, showing the age rounding
was stronger in earlier years. The blips go downwards later, but this is because
the age effect disappeared later, and here we look at the difference with the
mean.

A deeper look at the scores, can be found in the right panel of Figure 3 4 .
These are the coefficients of the 1st PC projection. Each dot corresponds to
a mortality curve, where the horizontal coordinate marks where it lies on the

4 The dark plot at the background of the right panel (and in Figure 4) represents density
estimation. It shows the probability of a curve to have a certain score-value.
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maximal variance vector. Since we are dealing with the residual curves, the
mean curve is the zero point. This means the farther the score-value of a dot is
from zero, the farther the curve is from the mean – the more it contributed to
the mean, positively or negatively. The colors of the dots correspond to each
year, and they are arranged vertically in year order – the earlier years are lower
and the later ones are higher. The bluish purple on the far right is 1918. It has
the highest positive score, meaning it contributed most to the mean. That was
the year of the perhaps most important epidemiological event in world history.
Soldiers returning from World War I carried a horrible strain of flu that killed
millions world wide. The large death toll in Spain that year is reflected by the
position of this dot. The fact that this year is an outlier is apparent even in the
raw data plot (see the same shade of magenta curve) in the right of Figure 1.
After that, there were some overall improvements, until the next swing to the
right. Some might guess that was World War II, but in fact Spain was not a
combatant in that war. Actually, the light blue dots correspond to the late
1930s when there was a terrible civil war fought in Spain. After that there
has been a steady shift to the left, especially as overall health conditions have
improved over time.

20 40 60 80

−0.6
−0.4
−0.2

0
0.2
0.4

age

lo
g 10

(m
or

ta
lit

y)

−1 0 1 2
PC2 Scores

Figure 4: PC2 Loadings on the left.

Figure 4 gives a deeper look at how mortality has changed over time. This
time the focus is on the second principal component (PC2). The procedure
is the same as in the PC1 case, only now we look at a direction of maximal
variation which is perpendicular to the direction we found for the first principal
component. In a sense, this procedure ignores the variation of the first direction
in order to emphasize the next most prominent variation. The loadings plots are
again all multiples of a single curve and are color-coded by year. Now the color
pattern is less easy to interpret. However an important point for the pattern of
curves is that this direction is about the difference between the group of 20–45
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year old males and the union of the young and old.
While it is not so clear from the color pattern on the left, some clear trends

do emerge from the scores plot on the right (same format as Figure 3). Again
the year 1918 (bluish purple) and the Spanish Civil War (light blue) are very
prominent, because the 20–45 year old males were dying at a relatively greater
rate during these years. Then there was rapid improvement up to the mid 1950s
(green), when things began to get worse (not overall, but for the 20–45 year
old males). During this era, automobiles became commonly available, and the
tendency for unsafe driving in this demographic led to steadily increasing death
rate. That trend was fortunately reversed during the early 1990s (orange–red)
with the advent of seat-belts and other car safety features, as well as much
improved road design.

These examples show the power of principal component analysis for the
decomposition of complex data sets of curves into more easily interpretable
pieces. For much more on this type of analysis, often called Functional Data
Analysis, see Ramsay and Silverman [2, 3].
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