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Modelling the spread of brain
tumours
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The study of mathematical biology attempts to use
mathematical models to draw useful conclusions
about biological systems. Here, we consider the mod-
elling of brain tumour spread with the ultimate goal
of improving treatment outcomes.

1 Introduction

Brain tumours, or gliomas, are among the most difficult forms of cancer to treat.
Because the human brain is such an important and complex organ, doctors
must take special care not to damage brain tissue while killing cancer cells.
This is a very difficult task, as brain cancer cells are very diffuse, infiltrating
the brain far beyond the visible tumour mass. This means that if we wish to
effectively treat a brain tumour, we must treat not only what we can see, but
also what we cannot see.

Usually, the first step in treatment is surgery to remove the bulk of the
tumour; but with brain tumours, surgery is sometimes not possible. The
proximity of the tumour to critical brain structures that may be nearby makes
surgical intervention too dangerous. Even when surgery is possible, many cancer
cells are left behind because of their microscopic spread. As such, whether a
patient receives surgery or not, radiation treatment is typically prescribed. To
have an effective treatment we need to determine the location of the invisible
cancer cells. Usually, the region over which the radiation is administered is
determined to be a uniform extension of the visible tumour mass. In other
words, radiation treatment usually extends 2 cm beyond the mass that is visible



using MRIE. This extension of the visible region is chosen in an attempt to kill
the cancer cells that are distributed throughout the healthy brain tissue and
are hard to detect.

To summarize, the problem we face is this: Cancer cells invade the brain
beyond the main mass of the tumour in quantities that are undetected by
imaging methods. We need to figure out where these cells are, as they should
be treated also. In this snapshot, we will describe how we use a mathematical
model to predict where the most invasion has really occurred beyond what is
visible, in the hopes of determining a more beneficial treatment region.

2 A mathematical model

In sciences, we often use mathematical models to try to predict or explain
observations in the real world. These models can be very simple, or quite
complicated. To explain how mathematical models work, we will use the
example of a ball being thrown in the air. The equation for this instance is
given by

1
h(t) = —59.8752 + vot + ho,

where h(t) gives the height of the ball in meters (m) at time ¢ seconds (s), vo
meters per second gives the initial velocity of the ball when it is thrown upwards,
and hg meters is the height from which the ball is released. The constant —9.8
describes the acceleration due to the gravity of the earth. We call vy and hy
parameters of our model, which means we can vary them to change the result.
For example, if we throw the ball from a higher starting point (larger hg), we
would expect a different trajectory. We call h(t) the dependent variable, which
depends on t — the independent variable. The real world has far too many
parameters and subtleties to fully include in a model, so we expect this model
to give us a good approximation for what the height of the ball would be at
time t. For example, the above equation neglects the effects of air resistance,
focusing instead on the effects of gravity. This is something we commonly do in
mathematical modelling: try to pick out the most important things to model,
to prevent our models from becoming too complicated.

To model the spread of glioma (brain tumour) cells, we will use an idea
called diffusion. Diffusion is the process by which substances spread out. A
simple example to think about is a drop of blue food-colouring in a glass of

Magnetic Rosonance Imaging (MRI) is a technique utilizing oscillations in magnetic fields
to create images of the interior of the body.

The earth accelerates the ball downwards (so we get the — sign) at a rate of 9.8m/s?,
which translates (via motion equations) to 4.9m times the square of seconds passed.



water. The concentrated colour droplet will slowly spread out until the whole
glass of water is a uniform pale blue colour. This process is very slow, and will
take a long time to arrive at the uniform colour. This final state is something
we refer to in mathematics as a steady state, which means the state of a system
when it is no longer changing without external interference.

We can describe this process mathematically, taking as our dependent variable
the colour concentration, and taking time and space to be our independent
variables. This means that we are trying to model the concentration of colour
at some spatial location after a certain amount of time has passed. The results
of such a model are shown in Figure 1. The different colours correspond to
different concentrations, with red being a high concentration, and blue being
a low concentration. This figure does not show the steady state, as this would
just be a constant uniform colour, and not very interesting. Instead, the picture
shows what the concentrations would look like while the colour particles still
spread out. The highest concentration is seen in the middle, where the colour
droplet began, with the lowest concentration at the edges as it spreads out.
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Figure 1: Figure showing colour concentration both initially, and after 100
iterations. Note that the highest concentration (red) is seen at the
centre, where the colour drop began. The lowest concentration is
seen farthest from the centre, in a circular shape.

It turns out that cancer cells follow a similar process: spreading through
the brain just as the food-colouring spreads through the glass of water. We
can use mathematical equations to describe this process and to predict the
distribution of cancer cells after some time has passed. We want to predict
the cancer cell concentration at each point in space, and how it changes with
time. A parameter of this model is the rate at which the cells spread. This can
depend on a lot of things, such as the medium they are in, the type of cells, and
the local environment. We call this the diffusion coefficient, and must find the



appropriate value in order to have an accurate model®. ITn Figure 1, a higher
diffusion coefficient would result in a larger circular distribution after the same
amount of time has passed, as the colour would spread out faster.

In reality, the situation is more complicated. The brain is non-uniform, and
is made up of two main types of tissue: grey matter, and white matter. White
matter contains the myelinated axons (the long projections of the nerve cells),
arranged in bundles called tracts, along which electric signals are sent. The
grey matter is the surrounding tissue, composed mainly of the nerve cell bodies,
where the signals are processed. The first model for brain tumour spread was
developed by Swanson in 2000 [1], where the assumption was made that cancer
cells diffused five times faster in white matter than in grey. This is based on
the idea that cancer cells use the white matter tracts as sort of “highways” for
their spread. This would mean that the diffusion coefficient should be five times
higher in the white matter regions than in the grey matter regions, and so it
would be different depending on where the cancer cells are within the brain.

2.1 Anisotropic Diffusion

Cancer cells seem to actually crawl along the fibers of white matter [2], meaning
that the rate of spread is higher along the white matter tract than along the
perpendicular direction. An illustration of this can be found in [2, Figure 2].

Within the grey matter, cancer cells will travel at approximately equal rates
in all directions, resulting in the circular cell distribution seen in Figure 1.
However, when cancer cells travel in the white matter, they spread out more
quickly along the direction of the white matter tract, and more slowly in the
perpendicular directions. This results in an oblong, ellipsoidal cell distribution
that is aligned with the white matter tract. We refer to this type of diffusion as
anisotropic diffusion. An example of such a distribution is seen in Figure 2. So
now we need to take into account that the diffusion coefficient will depend not
only on where a cell is within the brain (higher in white matter regions), but
also on the different directions (higher in the direction of the tracts).

A technique known as diffusion tensor imaging can measure the rates of
diffusion in each direction, at each spatial location within the brain. We can
then use this information to adjust our calculation of the diffusion coefficient to
make our model more realistic. A full description of the model can be found
in [3] and [4]. A similar model can be found in [5]. An excellent description
of all of the models that are being used for this type of problem can be found

As in the thrown ball model in the beginning of this section, where we had to know the
initial speed vp and height ho, and the acceleration of the earth’s gravity, in order to predict
the ball’s height at any given second.

A special type of MRI, also known as Diffusion MRI.
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Figure 2: Figure showing distribution of cells both initially, and after 100
iterations. Notice that because the diffusion rate is higher in the
direction of the horizontal axis, the cells spread out further along
this direction than along the direction of the vertical axis.

in [6]. We can then compute what we call the fractional anisotropy, which is a
measure of “how anisotropic” a particular spot in the brain is. This value varies
between 1 — fully anisotropic, very elongated ellipsoidal (actually a line) cell
distribution, and 0 — fully isotropic, circular cell distribution. An example of
what these values look like within the brain is shown in Figure 3. Notice that
regions containing grey matter appear blue (very isotropic), whereas regions
where we find white matter appear red (very anisotropic).

Figure 3: Figure showing a sample fractional anisotropy plot. The red regions
represent regions of the brain that are very anisotropic (the white
matter), while the blue regions represent areas of the brain that
tend to be more isotropic (grey matter). The data processing was
provided by our colleagues from the group of Dr. Russ Greiner.



Now that we have gained an understanding of the important parameters and
variables, and the tools to measure them, we want to combine all these into
a model. We would like to construct an equation like the one describing the
height of the thrown ball, that will tell us where we can expect cancer cells in
the brain. In order to do so we use a partial differential equation (PDE). This
equation relates a function, describing the concentration of cancer cells in the
brain, and its partial derivatives, encoding the rates of change of the function
along different directions. The equation itself is:

¢ = VV(D(z)c). (1)

This equation involves the function ¢(t,x) (¢, for short) which describes the
cancer cell concentration at a point x in the brain, at time t. This is the
function we want to find, telling us where in the brain cancer cells will be, so
we could apply treatment to these areas. On the left-hand side we have the
time-derivative ¢; — describing how ¢ changes with time. Since we are dealing
with anisotropic diffusion, the rate of spread of cancer cells has different values
in different directions. This is encoded by the matrix D(x) on the right-hand
side of the equation. The notation VV involves second order spatial derivatives
of ¢ (with the information in D) — that is, the rates of change in the speed by
which cancer-cells spread along the various directions — effectively describing
the diffusion process.

So now to solve equation (1), that is, to find ¢, we need to find the afore-
mentioned derivatives of c¢. This is an interesting characteristic of PDEs: they
have functions we want to find on one side and derivatives (which are therefore
unknown also) on the other. This makes such equations seem impossible to solve.
It is, indeed, very hard to solve such equations (and many times impossible),
but in the case of equation (1), adding initial conditions — information about
the concentration of cancer cells at some point of time — can yield a solution®,

3 Model Simulations

Once we have developed our model and measured the diffusion rates in the
brain of a sample patient, we can use this information to predict the spatial
distribution of cancer cells in the brain. Figure 4 shows the cell distribution
as predicted by the diffusion model for a sample patient. The black line shows
the outline of the actual tumour, and the white line shows the 0.8 contour

A matrix is an array of values. Matrices are often used to describe quantities in multidi-
mensional circumstances.

6] For more discussion and examples of PDEs, see Snapshot 7/2015 “Darcy’s law and
groundwater flow modelling” by Ben Schweizer.



of the cell density distribution. Note that the mathematical model provides
more information about the density of cancer-cells in different directions, and
so enables a more beneficial application of treatment. It has been suggested
that this is the density that shows up on an MRI scan [7].

Patient 1

Figure 4: Figure showing the predicted cancer cell distribution. Red corre-
sponds to high density, while blue corresponds to low density. The
black line represents the actual tumour boundary as determined
from imaging, and the white line represents the predicted tumour
boundary based on our model.

4 Conclusions

Based on the anisotropic diffusion model, it appears that the distribution beyond
what is seen on an MRI image is not uniform, and in fact extends further beyond
the visible boundary in some areas than others. This is seen in Figure 4. Based
on this, a uniform treatment region may not be the best choice to ensure the best
treatment possible. We believe that a three-dimensional version of our model
will describe the cell distribution beyond what is visible, helping clinicians to
determine where to treat. This should improve the outcome for glioma patients.
We will also work to improve our model by including a mass effect, which
involves incorporating the deformation that the growing tumour will cause in
the brain. There are many challenges involved in this, and we will need to draw
ideas from continuum mechanics (a branch of physics dealing with motion of
substances as if they are not made of clearly distinguishable particles), as well
as sophisticated numerical techniques (methods to find solutions for equations
by approximation).



In the end, the fight against cancer is difficult, and our best chance is to work
together with many scientists from many different disciplines. Cancer is an
interdisciplinary problem, and we must work to find an interdisciplinary solution.
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