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If you place a drop of ink into a glass of water, the
ink will slowly dissipate into the surrounding water
until it is perfectly mixed. If you record your exper-
iment with a camera and play the film backwards,
you will see something that is never observed in the
real world. Such diffusive and irreversible behaviour
is ubiquitous in nature. Nevertheless, the fundamen-
tal equations that describe the motion of individual
particles – Newton’s and Schrödinger’s equations –
are reversible in time: a film depicting the motion
of just a few particles looks as realistic when played
forwards as when played backwards.
In this snapshot, we discuss how one may try to

understand the origin of diffusion starting from the
fundamental laws of quantum mechanics.

1 Quantum mechanics on a lat t ice

Despite the spectacular success of Newtonian mechanics 1 for over two centuries,
physicists realized at the beginning of the 20th century that it was woefully

1 Newtonian mechanics was formulated in Newton’s celebrated Philosophiae Naturalis
Principia Mathematica, published in 1687 by the Royal Society of London. It constitutes the
core of classical mechanics, a term coined in the beginning of the 20th century in contrast to
the nascent theory of quantum mechanics.
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inadequate in describing the structure of matter. This led to the development
of quantum mechanics in the first quarter of the 20th century. According
to Schrödinger’s formulation of quantum mechanics (1925), the state of a
quantum particle is given by a wave function, which replaces the three plus
three coordinates of position and momentum from Newtonian mechanics.

Consider a particle moving on a lattice, as depicted in Figure 1. A physical
interpretation is an electron moving on an atomic lattice. In this note, we focus
on a lattice for simplicity of presentation, but all of the following ideas have
counterparts in the continuum, where the particle is moving in Euclidean space.
We call the lattice Λ, and suppose that it is equal to the d-dimensional lattice
Zd, consisting of d-dimensional vectors whose coordinates are integers. Here,
d = 3 is of course the most natural choice, but other values of d are also of
interest, both mathematically and physically (d = 2 and d = 1 can in fact be
realized in experiments).

Figure 1: A portion of the two-dimensional lattice Z2. We draw a quantum par-
ticle schematically using red discs indicating the probability |ψ(x)|2
of finding the particle at the lattice site x.

A wave function is a function, denoted by ψ, on the lattice Λ. It is of great
importance in quantum mechanics that the value ψ(x) of the wave function at
the lattice point x ∈ Λ be a complex number. This motivates a short digression
on complex numbers 2 . Just as a real number may be regarded as a point on
a line, a complex number may be regarded as a point in the plane consisting
of two real numbers a and b. Conventionally, a complex number is written as
z = a + ib, where i is the imaginary unit, a formal object that satisfies the
property i2 = −1. Complex numbers may be added and multiplied exactly like
real numbers, with the simple convention that i2 is always replaced by −1. A
complex number a+ ib is real whenever b = 0.

2 If you would like to learn more about complex numbers, you might want to have a look
at Bruce Reznick’s snapshot What does ‘>’ really mean? (No. 4/2014). This digression,
however, is sufficient for our needs.
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Figure 2: A complex number z = a + ib = reiθ and its complex conjugate
z̄ = a− ib = re−iθ, represented in Cartesian and polar coordinates.

Instead of using the Cartesian coordinates a and b, a complex number may
also be represented using polar coordinates,

z = a+ ib = r cos θ + ir sin θ = reiθ , (1)

where in the second equality we used Euler’s formula cos θ + i sin θ = eiθ; see
Figure 2. We conclude our digression on complex numbers by defining the
complex conjugate z̄ of a complex number z, obtained from z by a reflection
about the horizontal axis. Hence, for the complex number from (1) we have
z̄ = a−ib = re−iθ. The simple rules z + w = z̄+w̄ and zw = z̄w̄ are easy to check
from the definition of the complex conjugate. Finally, by Pythagoras’ theorem,
we find that the distance from 0 to z is equal to |z| =

√
a2 + b2 =

√
zz̄ = r.

Let us now return to the wave function ψ, which, we recall, defines the state
of our quantum particle. A fundamental principle of quantum mechanics states
that, in general, the position of the particle in state ψ is not precisely known,
and that ψ only gives us information about the probability of finding the particle
at a given position. More precisely, the probability of the particle’s being at
position x ∈ Λ is equal to |ψ(x)|2. Since the sum of these probabilities over all
lattice sites must be equal to one, we always impose the normalization∑

x∈Λ

|ψ(x)|2 = 1 (2)

on our wave function ψ. See Figure 1 for an illustration of the probability
distribution |ψ(x)|2 for one choice of ψ.

Now that we know how to describe the state of a quantum particle, we have
to determine how this state evolves in time. As formulated by Schrödinger
in 1925, the dynamics of a quantum particle is governed by a Hamiltonian –
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a linear map 3 H that assigns to each wave function ψ a new wave function
Hψ. The choice of H defines the physical model (below we shall give several
examples of Hamiltonians). Once the Hamiltonian H is given, the evolution of
the time-dependent wave function ψt is given by Schrödinger’s equation

i d
dtψt(x) = (Hψt)(x) . (3)

This is a linear first-order differential equation, which means that it is a linear
equation in the wave function ψt and its time derivative d

dtψt. The solution of
such an equation is uniquely determined by the wave function ψ0 at time t = 0.
Despite being a linear first-order differential equation, the Schrödinger equation
(3) can be extremely difficult to solve. This is because the evolving quantity ψt
is a collection of infinitely many complex numbers ψt(x), x ∈ Λ.

By definition, a Hamiltonian is always required to be self-adjoint. This
means that

∑
x∈Λ ψ(x)(Hψ)(x) is a real number for all wave functions ψ. Using

this fact, combined with the product rule of differentiation and Schrödinger’s
equation (3), we can compute the time derivative of the total probability:

d
dt
∑
x∈Λ

|ψt(x)|2 =
∑
x∈Λ

(
d
dtψt(x)

)
ψt(x) +

∑
x∈Λ

ψt(x)
(

d
dtψt(x)

)
= i

∑
x∈Λ

(
(Hψt)(x)

)
ψt(x)− i

∑
x∈Λ

ψt(x)
(
(Hψt)(x)

)
= 0 ,

where in the last step we used the self-adjointness of H, combined with the fact
that a complex number z is real if and only if z̄ = z. We conclude that the
normalization (2) is preserved under time evolution: if ψ0 is normalized in the
sense of (2), then so is ψt for any time t. Hence, we may define for each time t
a probability distribution

pt(x) := |ψt(x)|2 . (4)

The quantity pt(x) has the interpretation of the probability of finding the
quantum particle at position x at time t.

2 Dif fusion

Let us shift our attention for a while to a classical particle, and consider, for
simplicity, the one-dimensional lattice Λ = Z. The simplest model exhibiting

3 In general, a linear map between two vector spaces V and W is a function H : V →W
satisfying H(aψ + bϕ) = aH(ψ) + bH(ϕ) for any vectors ψ,ϕ ∈ V and numbers a and b. In
our case, V = W is the vector space of wave functions. As is customary, we use the shorthand
notation H(ψ) ≡ Hψ for the value of a linear map.
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diffusion is the simple random walk, where the particle successively jumps to a
neighbouring site with uniform probability.

In order to make such ideas precise, it is helpful to recall some basic ideas of
probability theory in another short digression 4 . For simplicity, we focus on the
discrete case where all random variables take values in a countable set. (As you
may know, similar ideas apply for general random variables, which may have a
continuous distribution.) We have a sample space Ω, which is a set consisting of
all possible outcomes or realizations of our random system. We have a collection
of events, which are subsets of Ω. Moreover, we have a probability P that assigns
to each event A a number P[A] ∈ [0, 1], the probability of A. A random variable
X is a function on Ω, so that X(ω) is the value that the random variable X
takes in the realization ω. The probability that the random variable X is equal
to some value x is written as P[X = x] := P[{ω : X(ω) = x}]. We say that the
random variables X1, . . . , Xn are independent if P[X1 = x1, . . . , Xn = xn] =
P[X1 = x1] · · ·P[Xn = xn] for all x1, . . . , xn. Informally, this means that the
distribution of Xi, i = 1, . . . , n, is not affected by the realization of the other
random variables. Finally, we define the expectation of the random variable X
as E[X] :=

∑
x xP[X = x].

Let us now return to the simple random walk. It is obtained by constructing a
sequence of independent random variables Z1, Z2, Z3, . . . taking values in {−1, 1}.
The interpretation of Zi is the i-th jump of the random walk, whereby Zi = −1
means a jump to the left and Zi = +1 a jump to the right. We require both
directions to have the same probability, so that P[Zi = −1] = P[Zi = +1] = 1/2
for all i ∈ N.

Our particle starts at X0 = 0 and undergoes a simple random walk, making
a jump Zi at time i. Its position Xt at an integer time t ∈ N is therefore given
by the sum of all jumps up to time t:

Xt := Z1 + Z2 + · · ·+ Zt . (5)

Since E[Zi] = 1 · P[Zi = +1]− 1 · P[Zi = −1] = 1/2− 1/2 = 0 for all i ∈ N, we
find that E[Xt] = 0 for all t ∈ N: the expected position is always the origin. A
more interesting quantity is the expected squared distance from X0 to Xt,

E
[
X2
t

]
= E

[
(Z1 + Z2 + · · ·+ Zt)2] = E

[
Z2

1 + Z2
2 + · · ·+ Z2

t

]
= t , (6)

where in the second step we used that if i 6= j then Zi and Zj are independent
and hence E[ZiZj ] = E[Zi]E[Zj ] = 0, and in the third step we used that
E[Z2

i ] = 12 · P[Zi = +1] + (−1)2 · P[Zi = −1] = 1.

4 If you would like to learn more about probability theory, the book Probability essentials
by Jean Jacod and Philip Protter [8] is an excellent place to start.
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This calculation shows that the typical displacement from the origin at time
t, given by

√
E[X2

t ], is proportional to
√
t. Such a relation is the hallmark of

diffusion.
In contrast, suppose that instead of making jumps in a random direction, the

particle always moves to the right. (In the above probabilistic language, this
means that P(Zi = +1) = 1 and P(Zi = −1) = 0.) Then, clearly, Xt = t and
we have E[X2

t ] = t2. This type behaviour is called ballistic, and corresponds
to a particle moving linearly at a constant speed. Finally, if the particle never
leaves a neighbourhood of 0 (for instance if the particle does not move or if
it jumps alternately left and right), the quantity E[X2

t ] remains bounded as t
grows. This corresponds to a trapped particle. Summarizing, we have seen three
different types of behaviour as t goes to infinity:

√
E
[
X2
t

]
∼


t for ballistic motion√
t for diffusive motion

constant for trapped motion .

They are illustrated in Figure 3.

t

√
E[X2

t ] ballistic

diffusive

trapped

Figure 3: The behaviour of the typical displacement from the origin for the
three types of dynamics.

Returning to the probability distribution (4) defined in terms of the quantum-
mechanical wave function that solves Schrödinger’s equation, we may ask
whether the behaviour of pt is ballistic, diffusive, or trapped. To answer this
question, we choose the initial state of the wave function to correspond to a
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particle located at the origin with probability one,

ψ0(x) :=
{

1 if x = 0
0 if x 6= 0 ,

(7)

and we define pt as in (4) in terms of the solution ψt of the Schrödinger equation
(3). Then we investigate the large-time behaviour of the expected squared
distance from the origin ∑

x∈Λ

|x|2 pt(x) , (8)

where |x| is the distance from the lattice point x ∈ Λ to the origin 0.
The answer to the above question clearly depends on the choice of the

Hamiltonian. In general, and in many physically interesting cases, it is extremely
difficult to answer. However, it is easy to concoct examples of Hamiltonians
that result in ballistic or trapped motion.

Suppose first that (Hψ)(x) = v(x)ψ(x) for some real-valued function v on Λ.
As required by the definition of a Hamiltonian, H is a self-adjoint linear map
(you can verify this as a simple exercise). Moreover, the solution of Schrödinger’s
equation (3) is easy to write down: ψt(x) = e−itv(x)ψ0(x). You can easily check
that this ψt solves (3). Hence, pt(x) = p0(x) for all times t, and we conclude
that (8) does not depend on t. The motion is therefore trapped.

A slightly more interesting Hamiltonian is the discrete Laplacian ∆, defined
through

(∆ψ)(x) :=
∑

y:|y−x|=1

(ψ(x)− ψ(y)) , (9)

where the summation ranges over points y of the lattice that are nearest
neighbours of x. (There are 2d of them.) Again, a short calculation shows
that ∆ is self-adjoint. Using Fourier analysis 5 , one can prove that for H = ∆
the behaviour of (8) is ballistic: it grows like t2 for large t. The physical
interpretation of the Hamiltonian ∆ is a free particle moving on the lattice.
This model is the quantum analogue of the naive classical ballistic particle
introduced above.

Of course, both of these models are very simple and not particularly realistic.
Moreover, neither leads to diffusive motion. In order to remedy these deficiencies,
we introduce disorder into our Hamiltonian.

5 Fourier analysis is a powerful way of writing arbitrary functions as superpositions of simple
waves. In Chapter 3 of his snapshot The ternary Goldbach problem (No. 3/2014), Harald
Helfgott gives an introduction to Fourier analysis.
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3 Random Hamil tonians and quantum dif fusion

Think of our quantum particle as an itinerant electron moving on an atomic
lattice. A perfect lattice can be modelled by a Hamiltonian similar to ∆, and,
as explained above, results in ballistic motion 6 . However, a more realistic, and
interesting, model should include imperfections caused for instance by impurities
and thermal fluctuations of the lattice. It is neither possible nor desirable to
define these imperfections precisely one by one; rather, we seek a statistical
description that reproduces an appropriate distribution of imperfections. In
other words, we choose a large collection, or ensemble, of Hamiltonians, and
pick one realization from this ensemble at random. From a physical point of
view, the different realizations of H could correspond to different states of
thermal fluctuation of the atomic lattice, or to different distributions of defects
or impurities in the atomic lattice. Mathematically, considering an ensemble of
Hamiltonians means that the Hamiltonian H ≡ H(ω) depends on the realization
ω in some sample space Ω equipped with a probability P.

If we choose the ensemble of Hamiltonians appropriately, we expect that a
randomly chosen realization will give rise to a diffusive behaviour with high
probability. The randomness is therefore used to rule out exceptional “regular”
realizations of H that occur only with small probability. Hence, taking a
random ensemble of Hamiltonians allows one to make precise the statement
that a “typical” Hamiltonian leads to diffusive behaviour. Such mathematical
modelling of complex disordered systems using randomness has proved extremely
fruitful in many sciences.

So what should we choose as our ensemble of random Hamiltonians? One
important example is the Anderson model

(Hψ)(x) := (∆ψ)(x) + v(x)ψ(x) , (10)

where (v(x) : x ∈ Λ) is a collection of independent identically distributed 7

real-valued random variables 8 . Another important example is the random band
matrix

(Hψ)(x) :=
∑

y:|x−y|6W

(
Axy +Ayx

)
ψ(y) , (11)

6 This seemingly simple fact is in fact a remarkable feature of quantum mechanics, called
Bloch’s theorem. In contrast, in classical mechanics, a particle moving on a regular lattice (the
so-called periodic Lorentz gas) undergoes highly erratic motion. (The precise mathematical
notion is ergodicity of the particle’s motion.)
7 “Identically distributed” means that each v(x) has the same probability distribution.
8 A common and convenient choice for the distribution of v(x) is the famous standard
normal distribution, which you may have encountered in probability theory. Its density is
given by f1 in (12) below.
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Figure 4: Three realizations of the Anderson model (10) for Λ = Z2. Each
lattice site x ∈ Λ is represented by a dot whose brightness depends
on v(x).

where W > 0 is a parameter called the band width, and (Axy : x, y ∈ Λ) is a
collection of independent identically distributed real-valued random variables.
You may check that both of these random Hamiltonians are self-adjoint. More-
over, they are invariant under time reversal. This means that if ψt is the
solution of the Schrödinger equation (3), then the time-reversed wave function
ϕt(x) := ψ−t(x) is also a solution of (3). Informally, the quantum time evolution
generated by (10) or (11) runs equally well forwards and backwards in time.

Both models (10) and (11) have been extensively studied in the physics
literature, ever since the seminal paper of Anderson [1]. There is compelling
evidence to suggest that, on the three-dimensional lattice Λ = Z3 and under
appropriate assumptions on the distribution of the random variables, a randomly
chosen realization ofH gives rise to quantum diffusion with very high probability:
(8) grows like t for large t. (In contrast, on the one-dimensional lattice Λ = Z it
is known [7] that a randomly chosen realization of H leads to trapped motion
with very high probability.)

A rigorous mathematical understanding of quantum diffusion for the models
(10) and (11) is a formidable task. So far, quantum diffusion has only been
established for relatively short time scales, in a so-called scaling limit where
the time t cannot go to infinity arbitrarily fast but is coupled to some internal
parameters of the model, such as the band width W from (11). This analysis
was achieved for the model (10) in [4–6] and for the model (11) in [2, 3].

In fact, in these works it is not only proved that (8) is of order t for large t,
but the actual profile of the probability distribution pt is computed. Roughly,
in [2–6] it is proved that for large t the profile pt is well approximated by a
normal distribution with variance σ2 of order t. Here, a (mean-zero) normal
distribution with variance σ2 is by definition the Gaussian probability density

fσ2(x) := 1√
2πσ2

e−
x2

2σ2 . (12)

(As you may have learned in probability theory, fσ2 is indeed a probability
density on R in the sense that

∫
dx fσ2(x) = 1 for all σ > 0.)
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Figure 5: The evolution of the probability distribution pt under quantum
diffusion on Z3. For increased clarity, we only plot the first coordinate
of x and draw x as a continuous variable. At each time t, the
distribution pt is approximately a normal distribution ft from (12)
with variance t.

The simple random walk from the previous section exhibits exactly the same
behaviour: by the central limit theorem 9 of probability theory, the distribution
of the random variable Xt defined in (5) is well approximated by a mean-zero
normal distribution (12) with variance σ2 = t. See Figure 5 for an illustration
of the evolution of the distribution pt in the diffusive case.

Having discussed diffusion and its emergence from reversible quantum dy-
namics, we now return to the question of irreversibility raised in the abstract.
Indeed, diffusion is a hallmark of irreversible motion. To understand why,
consider a particle at a fixed location x0 at time 0, and suppose that we want
to predict its position xt at a later time t > 0. If its motion is ballistic with
velocity v, then xt is uniquely determined to be xt = x0 + vt. On the other
hand, if its motion is diffusive, our best prediction for xt is a random variable
whose density is ft from (12). Hence, diffusive motion introduces uncertainty,
which grows with time, into the motion of the particle, while ballistic motion
entails no uncertainty.

9 The central limit theorem applies in fact to more general random variables than the Zi

defined above. It states that if Z1, Z2, . . . are independent identically distributed random
variables with expectation E[Zi] = 0 and variance E[Z2

i ] = 1, then the distributions of
the rescaled sums 1√

t
(Z1 + Z2 + · · · + Zt) converge as t → ∞ to a mean-zero normal

distribution with variance 1. This is a remarkable result, since the details of the distribution
of the individual variables Zi are completely washed out. This is the simplest instance of
a “universality result” in probability. See the book [8] of Jacod and Protter for full details,
including a proof.
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How to reconcile irreversible diffusion with reversible microscopic dynamics?
The solution is that diffusion only emerges from reversible microscopic dynamics
in a certain limit, whereby information about the original dynamics is discarded.
This may also be regarded as a separation of scales into microscopic and
macroscopic scales. The microscopic scale is the scale of the individual lattice
sites; on this scale the dynamics is reversible. The macroscopic scale is arrived
at by “zooming out” so that we cannot distinguish individual lattice sites any
more, and they blend together to form a continuum. We observe diffusion on the
macroscopic scale, having discarded large amounts of microscopic information.
It is precisely this loss of microscopic information that accounts for the loss of
reversibility. From a physical point of view, the microscopic scale is the atomic
scale of individual electrons and atomic nuclei, while the macroscopic scale is
the scale that we see with the naked eye or even through an optical microscope.

Establishing quantum diffusion for the models (10) and (11) for arbitrarily
large times t remains a major open problem. Its solution will most likely yield
deep insights into the emergence of diffusion from deterministic, reversible
quantum dynamics.
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