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Darcy’s law and groundwater flow
modelling

Ben Schweizer

Formulations of natural phenomena are derived,
sometimes, from experimentation and observation.
Mathematical methods can be applied to expand on
these formulations, and develop them into better
models. In the year 1856, the French hydraulic engi-
neer Henry Darcy performed experiments, measuring
water flow through a column of sand. He discovered
and described a fundamental law: the linear relation
between pressure difference and flow rate — known
today as Darcy’s law. We describe the law and the
evolution of its modern formulation. We furthermore
sketch some current mathematical research related to
Darcy’s law.

1 Introduction

Henry Darcy (1803-1858) was interested in the description of flow through a
porous medium such as sand. Everyday experience tells us that water can travel
through sand. Most people are happy with this qualitative fact, few people
ask how the flow can be described in a quantitative way (it seems that nobody
asked the question before Darcy). Darcy designed an experiment to measure
the flow rate in dependence of other physical parameters. His experimental
finding (reported in [4]) is an important law — the linear relation between



pressure differences and flow rate. Until today, his law is used as a basis in
several scientific disciplines concerned with porous media. In the mathematical
community, the name “Darcy” is mentioned in almost 1000 publications of the
last 10 years in title or abstract (as gathered from MathSciNet and Zentralblatt
Math(l).

Linear relations (such as the one of Darcy) are fundamental to the description
of many phenomena of our world. One example is Newton’s law F' = ma, which
relates force F' and acceleration a with a factor m of proportionality (the factor
m turns out to be another important quantity, the mass of the body). Newton’s
law is from 1687; in this sense, Darcy’s discovery from 1856 came late. Certainly,
people have been less interested in porous media than in the description of stars
or moving objects, since water in sand cannot be observed directly. On the
other hand, Fourier’s law of heat conduction (1822) and Ohm’s law of electric
currents (1827) have also been found earlier than Darcy’s law, even though
neither heat-flux nor electric current can be observed directly. The technical
restriction imposed by the fact that important progress in the development of
manometers (devices for the measurement of pressures) has been made only in
the 1840s, might also be of relevance.

2 Darcy’s experiment and his law

Darcy used a (vertical) cylindrical column of 2.5m height and 0.35m diameter.
The column was filled with sand. At the top (which was otherwise closed) was
a water supply tube and a manometer to measure the water pressure. At the
bottom end, a filter kept the sand in place and water could exit through a
tube. The bottom end was also equipped with a manometer. Darcy measured
(with the same sand) the amount of water leaving the column at the bottom
per time, denoted by J (in liter per minute), and the difference between the
pressure of water entering at the top (piop) and the pressure of the water
leaving the column (ppottom). We must take into account the fact that if the
pressure at the bottom is higher than at the top (namely by the pressure of a
water column of height 2.5m), there will be no water flow through the bottom.
Therefore, it is reasonable (and Darcy obviously did so) to measure the water
head, that is, to measure pio, relative to the atmospheric pressure, and to
measure Phottom relative to the gravity-induced expected pressure of a 2.5m
water column. After performing several runs of the experiment with different

Two comprehensive databases of mathematical publications. The first maintained by
the American Mathematical Society; the second by the Leibniz Institute for Information
Infrastructure (FIZ Karlsruhe) and has a partially free access.



pressures, Darcy calculated the ratio and observed it to be essentially constant:

J

——————— = constant. (1)
Ptop — Pbottom

We should additionally take into account the dimensions of the experimental
setup. In a column of doubled cross-section, the flow rate is doubled. Fur-
thermore, a column of doubled height requires a doubled pressure difference
to produce the same flow rate (each half-column is then driven by the original
pressure difference). Denoting by A the area of a cross section of the column
and by d its height, and then dividing by these and rearranging (1), we get
a number k > 0, dependent on the type of sand that is used but not on the
dimensions of the experiment, for which

J Ptop — Pbottom
= =2 oo 2
A d 2)

2.1 A differential form of the law

In equation (2), we have essentially written so-called “differential quantities” on
both sides. The term implies a semblance to the method we use to get derivatives:
measuring the difference of quantities over small ranges and averaging. On
the left we have the flow of water (volume divided by time) that crosses an
arbitrary surface element divided by surface area — the water fluz denoted by j.
This quantity can be assigned to every point in the column: j(x) describes
the water flux in the point z (imagine a thin line of water flowing through z).
On the right, we have a pressure difference divided by the distance of the
measurement points. In a point x (writing p(z) for the pressure at z), and
for small distances around it, this corresponds to a derivative of the pressure
with respect to the spatial variable. Assuming, for the moment, that these
quantities work one-dimensionally (water-flow and pressure move only up/down)
and denoting the vertical variable by x5, the right hand side of (2) corresponds
to k 3872.

‘We make one final step and move to a three-dimensional framework. The
flux j(z) should be regarded as a vector with length being the amount of water
flowing, and the direction is that of the motion of the water. Also, the right
hand side of (2) is related to a vector called the gradient of p and denoted by
Vp. Regarding the pressure as a spatially distributed quantity, Vp(z) is the
vector that points in the direction of the largest pressure variation at x, its
length is the pressure variation per distance in this direction. We can expect
that the direction of the two vectors coincides (up to sign): the water flows
in the direction of the largest pressure variations (towards lower pressures).
This is obviously the case in Darcy’s experiment. The pressure gradient points



upwards, in zz-direction, the flux is exactly downward. Performing these two
steps (writing the law in differential form and with vectors), we obtain the
modern form of Darcy’s law:

j(x) = —kVp(x) for every point x. (3)

We emphasize that we have used some assumptions to obtain (3) from (2).
We have assumed that the law (2) holds in each point z (as noted before, the
law does not depend on the size of the column, so we may think of arbitrarily
small columns containing ). Furthermore, we have assumed that the direction
of the flow coincides with the direction of the pressure gradient (this is justified
if the medium has a rotational symmetry). Based on (1), (3) is a convincing
relation, but we should distinguish between the two equations: While Darcy
obtained (1) as the result of experiments, our modern and stronger law (3) was
obtained from additional assumptions. Nonetheless, today, the law (3) is known
as “Darcy’s law”.

When we compare Darcy’s law with the above-mentioned laws of Fourier
and Ohm, we observe a striking similarity — In all three laws, a flux is related
to a gradient through a conductivity factor (k in the case of Darcy’s law).
Fourier’s law relates the heat-flux ¢ in a medium with the temperature gradient,
q(x) = —AVT(z), where the proportionality factor A is known as the heat
conductivity. Ohm’s law relates the current I in a conductor with a voltage
difference U at the end-points, I = R™1U, where R is the (Ohmic) resistance
and R~ is the conductivity, similar to (1).

3 Partial Differential Equations based on Darcy’s law

From now on, we truly regard our quantities as functions in three-dimensional
space. Points in the porous medium are denoted by = € R3. Associated with
each point z is a pressure p(z) € R and a flux j(z) € R3. Inside the medium,
water can neither vanish nor appear. We can imagine an arbitrary cube Q C R?
in the medium and expect that the total flux into and out of @) vanishes. There
is a mathematical object to describe the behavior of the of the flux j on the
cube, it is called the divergence of j, denoted by V - j (not to be confused with
the gradient), and defined as V - j := a%ljl + a%zjg + %jg. Since the volume
Q can be chosen arbitrarily, the famous Theorem of Gauf} (also known as the
Divergence Theorem) implies that V - j = 0. This law can also be understood
in an elementary way: If z; is the coordinate to the right, the number 0%_1 bl
measures the difference between outflow on the right side of (Q and inflow on
the left side of ). Adding over the three coordinates, we obtain the net fluid
flow into and out of the cube Q. We demand that this quantity should vanish.



Combining Darcy’s law with the law of conservation of mass, we find the
equation
—V - (kVp) = 0. (4)

The equation describes a relation between functions (p and j) and their deriva-
tives (encoded in V). At first look, this seems impossible to solve, that is, to
find the exact form of the functions. After all, we need to know the function
in order to get the derivative; while, in order to solve the equation (find the
function) we need to know the derivative. Such equations are called differential
equations. As it turns out, under certain circumstances, some differential
equations can be solved (or, at least, we can define some properties of possible
solutions). Such circumstances include, for example, adding information by
setting initial and boundary conditions (knowing the values of the function and
derivative at specific points), or by complementing the equation to a system of
equations. Luckily, equation (4) is one of those equations that can be solved
using these methods. Once it is assigned with boundary conditions (one must
prescribe, e.g., the pressure at the boundaries of the porous medium), given k,
equation (4) has a unique solution p = p(x).

3.1 Richards’ equation

More interesting than (4) is the following variant, which describes unsaturated
flow. If we do not assume that the porous medium (the sand) is everywhere fully
saturated with water, we have an additional unknown, the saturation s = s(x),
measuring the volume-fraction of the pores that is occupied by water (and not
air). In this situation, the divergence of the water-flux does not necessarily
vanish. Instead, if water enters a test volume, the saturation in this test volume
must increase, leading to a positive time derivative 0;s = %s. All variables now
depend additionally on the time variable ¢ € (0,00) and we write s = s(x,t),
p=p(x,t), j = j(x,t). The combination of Darcy’s law with an adapted law of
conservation of mass, d;s + V - j = 0, now yields

Os — V- (kEVp) =0. (5)

This equation is known as Richards’ equation (formulated in 1931, see [9]; we
suppressed here some physical parameters such as porosity of the medium or

If we have a function of several variables, we can take a derivative with respect to only one
of its variables. This derivative is called a partial derivative. A differential equation which
relates a multivariable function and its partial derivatives (as in the case of (4)) is then called
a partial differential equation.

This is similar to when we are faced with linear equations concerning more than one
variable. Adding more equations describing relations between the variables makes it possible
to fined their values.



density of the fluid). Since we now have two unknowns (p and s), equation (5)
is not sufficient to determine the solution.

3.2 Capillary pressure

Darcy’s law (3) is commonly accepted as a good model for the relation between
pressure and flux (it is experimentally confirmed and can also be justified with
mathematical methods, see below). In order to complete Richards’ equation
to a solvable system, we additionally have to have a relation between pressure
and saturation. Let us imagine that we want to push water into the medium
(imbibition). We assume here for simplicity that the medium is water repellent,
meaning that water does not like to be in contact with the medium. In order
to push the water inside, we need some pressure. In the beginning (for small
saturation s), this pressure is not very high, since water can easily fill the large
pores of the medium. The more water is inside the medium (larger saturation s),
the more pressure we must exert (larger p), since now we must push the water
also into the small pores. This reasoning suggests that the pressure is a
function of the saturation. For example, we may assume that for some given
function p, : [0,1] — R there holds, at every space-time point (z, t):

p(z,t) = pe(s(x, ). (6)

This law is known as the capillary pressure relation.

Experiments confirm (to a certain extent; see next section) the law (6).
Given an increasing (with s) function p. (obtained from experiments), the
two equations (5) and (6) (together with boundary conditions and an initial
condition) can be solved. This fact makes the approach sketched here (initiated
by Darcy) so extremely useful. One can measure k and p. for a given medium,
some rock type, say. Solving (5)—(6) we find s, p and j and can predict the flow
of water through the medium. This method is used extensively in oil recovery:
In order to plan where to drill the production wells, one studies the medium,
determines the parameters k and p., and solves (5)—(6). This allows to optimize
the recovery.

The process of absorbing water but not forming a solution.

In reality, many times the medium is actually hydrophilic (water likes to stay in contact
with it), and we want to push the water out by, say, pushing air in. In these cases, the
principle is the same, but the process is opposite: the higher the saturation — the less pressure
we need, since it is easier to push the water out of the larger pores; while the lower the
saturation — the more pressure we need to push the remaining water out of the small pores.



4 Current research

We now finally indicate in some aspects how modern mathematics is concerned
with the above equations.

1.

Numerical solution of (4). Computing solutions to equations using methods
of approximation is called numerical analysis (one famous example would
be Newton’s method to find the zeros of polynomials). There are standard
methods that can be used to solve (4) numerically, and many students
of mathematics usually implement these at some point of their studies.
Difficulties appear if the conductivity coefficient k is allowed to vary, k = k(x),
and indeed has large variations (varying by many orders of magnitude,
possibly even across small distances). For such situations, new numerical
methods are currently developed by mathematicians; see, for example, [2, 7]
and the references therein.

The conductivity coefficient k was determined by Darcy not only for some
given type of sand, but also for some fixed saturation, namely s = 1, full
saturation. In the situation of the Richards equation, the permeability k
will depend on s, k(x) = ko(x, s(x,t)). This additional nonlinearity poses
questions regarding existence and uniqueness of solutions of (5)—(6). This
is particularly interesting because the system becomes degenerate: For a
low saturation s, the medium has a low permeability, since there are few
water-conducting channels in the medium. This results in ko(z,0) = 0, a
degeneracy that makes the system of equations hard to analyze; see, for
example, [6].

Derivation of Darcy’s law (or variants thereof) from more elementary equa-
tions. The method of homogenization allows to consider models for porous
media. Let us assume that a porous medium is nothing but free space with
many tiny obstacles (the sand grains). Between the obstacles, water flows
according to a free-flow equation (Stokes or Navier—Stokes). Homogeniza-
tion theory allows us to study the limit of a vanishing obstacle size. The
resulting limit equation is, in a specific scaling, indeed Darcy’s law (3); see,
for example, [1].

4.1 Hysteresis

Another part of research addresses the capillary pressure law (6). So far, this law
cannot be obtained from other, more fundamental, physical laws. Indeed, the
law is even known to be incorrect. Performing an experiment with imbibition
provides one function p., a subsequent drainage experiment (extracting the water
from the medium) provides another function p.. The medium shows hysteresis,
it “remembers” its history (the previous wetting or de-wetting processes). A



simple and crude way to take this well-known fact into account is to work with
two curves, p™P and pdr@i". But in transitions from drainage to imbibition and
vice versa, even more information should be included.

Different models have been suggested for the hysteresis effect in porous media.

We advocate here a model that was suggested in [3], which reads
D € pe(s) + ysign(0gs) + 79;s. (M)

This equation relates the evolution of s (via the imbibition and drainage) to
that of p. The multi-valued function sign is defined as sign(a) = {1} for a > 0,
sign(a) = {—1} for a < 0, and sign(0) = [—1,1]. The coefficient v encodes the
influence of the saturation change. If the saturation s is currently increasing
(0¢s > 0, imbibition), then a high value of the pressure is needed (adding
v to pe(s)). Instead, if the saturation s is decreasing (9ys < 0, drainage),
then a low value of the pressure is needed (subtracting v from p.(s)). Finally,
7 > 0 introduces a dependence on the rate of imbibition. If the imbibition is
faster, then 0;s is larger and so is 70;s, so more pressure is needed. Simply
put, the hysteresis law (7) states that the pressure at any point during the
imbibition-drainage process is around p.(s) £+ (plus the influence of 70;s).

At spacetime points where ;s = 0 (the saturation does not change), it is
convenient to allow the value of p to range over the interval [p.(s) — 7, pe(s) +7].
This is why we use in (7) the symbol “€” (“an element of”) rather than the
symbol “=" (“equals”) and also the function sign(a) (which makes the second
summand into [—v,7] when 9;s = 0). The pressure function p thus becomes
multi-valued at such points.

4.2 Gravity fingering

Some research of the author is concerned with the analysis of the hysteresis
model described by the system (5) and (7). We have shown the existence of
solutions in various settings; see for example, [5, 11]. Furthermore, numerical
schemes to solve the system have been developed and implemented; see [8] for
results and further references.

But let us take another perspective: If we replace (6) by (7), we obtain a
new system of equations to describe water flow in porous media. We ask: Does
this new system provide a better model for water flow in porous media? And:
Can mathematics help to answer this question?

To answer the first question, we refer to modern experiments. Under certain
conditions, one can observe gravity fingering. Pouring water on initially dry
sand in a thin, almost two-dimensional, glass container, one observes that the
water does not travel downward with a single front (showing the same saturation
at each point along a horizontal line). Instead, fingers occur, well-defined long
and thin regions that have a much higher saturation than the surrounding sand.



A mathematical analysis reveals (see [10]) that the original system (5) and
(6) cannot explain the fingering effect; a mathematical stability mechanism
of Richards’ equation prevents the system from forming fingers. In contrast,
system (5) and (7) does not have the stability mechanism for k£ = k(s) and
v > 0. It is, therefore, potentially a better model. The numerical analysis of
the system provides results as in Figure 1; they confirm that system (5) and (7)
shows, at least qualitatively, the physically adequate, behavior of solutions.

We see that mathematics provides a bunch of information: (A) The existence
of solutions for both systems. (B) A numerical scheme to solve the systems,
providing results as in Figure 1(b). (C) A stability analysis that helps to
understand the qualitative features of the two systems.

In closing, we remark that the capillary pressure relation only accompanied
equation (5). Darcy’s law, found more than 150 years ago, is beyond question!

()

Figure 1: (a) Fingered flow in a homogenous layer as observed with transmit-
ted light. (b) A numerical solution of the Richards equation with
hysteresis law (7). In dark regions, the saturation is higher than in
bright regions. We clearly see the formation of gravity fingers.

Image credits

Figure 1(a) Appearsin: F. Rezanezhad, H.-J. Vogel and K. Roth, Ezxperimental
study of fingered flow through initially dry sand, Hydrology and Earth
System Sciences Discussions 3 (2006), 2595-2620.
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June 23, 2015]. Copyright the authors. Licensed under the Creative
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Figure 1(b) Author: Andreas Rétz, TU Dortmund.
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