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The Wil lmore Conjecture

Nikolai Nowaczyk

The Willmore problem studies which torus has the
least amount of bending energy. We explain how to
think of a torus as a donut-shaped surface and how
the intuitive notion of bending has been studied by
mathematics over time.

1 Smooth surfaces

When you think of a geometric object, you probably think of a triangle, a
circle or a tetrahedron, because these objects are very popular in high school
geometry. Modern differential geometry is a branch of mathematics which can
study objects of almost any shape. In particular, geometers today are interested
in smooth surfaces. These are objects that can be described locally by two
smooth coordinate functions. The simplest example of such a surface is the flat
Cartesian plane, which we denote by R2, shown in Figure 2. Its coordinates are
usually called x (horizontal) and y (vertical).

Figure 1: The Clifford torus T2.
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Figure 2: The Cartesian plane R2.

The surface of the Earth, which is approximately a round sphere as in Figure 3,
is an example of a curved smooth surface. Its coordinates are traditionally
called latitude and longitude.

Figure 3: The round sphere S2.

There are of course many more examples. We will mainly be interested in
closed orientable surfaces. A surface is called closed if it is without any boundary
and does not extend indefinitely in any direction. It is called orientable if it has
a well-defined inside and an outside.

Of the examples above, the Cartesian plane is not closed, because it extends
indefinitely in all directions. However, the sphere from Figure 3 is a closed
orientable surface: It does not extend indefinitely in any direction and it clearly
has in inside and an outside. The Clifford torus in Figure 1 is another good
example. In fact it will be the star of this snapshot.

2 Embeddings of tor i

A surface is something, which is regarded as a two dimensional object, because
it has two coordinate functions (latitude and longitude in case of the sphere).

2



However, we often think of it as a subset of the three dimensional Euclidean
space R3 as evident from Figures 1 and 3. In general, geometers distinguish
between an abstract surface Σ and how it is embedded in R3. An embedding is a
special type of map f : Σ→ R3, which can be thought of as a parametrization
of its image f(Σ). These images are precisely what you can see in Figure 3 and
Figure 1. In the former f(Σ) is S2 and in the later f(Σ) = T2.

So if what you can see on Figure 1 is the image of the embedding, you might
wonder what the abstract surface and the map f look like in this case. The
abstract torus is denoted by T 2 instead of T2. You can think of T 2 as the
playground for the video game Asteroids: the square, except that when the little
spaceship flies upwards and hits the top edge, it reappears at the bottom, and
when it flies off the left edge it reappears at the right (see the left-hand side of
Figure 4). The abstract torus T 2 has the advantage that it is much easier to do
calculations on it. The embedding f : T 2 → T2 depicted in Figure 1 is given by

f : T 2 → R3, (x, y) 7→

cos(x)(cos(y) +
√

2)
sin(x)(cos(y) +

√
2)

sin(y)

 . (1)

The relationship between the abstract torus T 2 and the embedded torus T2 via
f is visualized in Figure 4.

T 2

f−→

T2

Figure 4: The embedding f : T 2 → T2.

An animation of this map can be found at this link.
Other embeddings of the abstract torus T 2 are given by other maps. For

instance, if you choose f : T 2 → R3 to be

(x, y) 7→

cos(x) cos(y) + 3 cos(x)(1.5 + sin(1.5x)/2)
sin(x) cos(y) + 3 sin(x)(1.5 + sin(1.5x)/2)

sin(y) + 2 cos(1.5)

 , (2)
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Figure 5: The trefoil knot.

you get a torus in the shape of the famous trefoil knot (see Figure 5).
There are many more examples of embedded tori f : T 2 → R3. In fact the

space of all embedded tori is infinite-dimensional. In some sense all tori are
of the same shape — they are shaped like donuts, albeit differently twisted
and knotted. One way to understand the very large space of embedded tori is
to develop ways to measure the complexity of the surface, so we can focus on
understanding what “simple” surfaces look like first.

3 Bending energy

One intuitive feature of surfaces is that some are bent more than others. It is
kind of obvious that the complicated torus from Figure 5 is bent more than
the plane. It also makes sense to describe the complicated torus in Figure 5 as
more highly bent than T2, and T2 as more highly bent than S2, but you might
consider this less obvious. It took quite a while for the notion of bending to
be described on a formal mathematical level. In 1965 Thomas Willmore (see
Figure 6) systematically collected ideas about the phenomenon and developed
the modern differential geometric theory of bending, which we still use today.
This theory associates to every embedding f : T 2 → R3 a quantity called
bending energy (or Willmore energy) denoted by W(f). For the experts, this
energy is defined by

W(f) :=
∫

Σ
H2, (3)

where H denotes the mean curvature, a geometric quantity which is related to
how the area of Σ can be decreased or increased by perturbing it slightly (see
Snapshot N o 2/2015 “Minimizing Energy”, by Christine Breiner). Actually this
definition makes sense for any other closed surface, too. In case this definition
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looks daunting to you, you can rest assured that this bending energy behaves
exactly like you would expect: The plane from Figure 2 has bending energy zero
— it is not bent at all. The bending energy of the complicated trefoil torus from
Figure 5 is much larger (≈ 60.5) than the one of the Clifford torus in Figure 1
(≈ 19.7).

An interesting fact (for the experts) about the bending energy is that it is
scale-invariant: If you scale or inflate the surface by any factor, its bending
energy does not change. Think of the sphere S2 as an example: If you increase
the radius, the surface becomes flatter, so its mean curvature H is decreased.
But at the same time its area gets larger, which increases the value of the
integral in (3). One can show that these two phenomena balance each other
out on any surface. In fact, the bending energy stays the same even when you
apply a more general kind of transformation, called a conformal change, which
preserves angles, but might distort lengths.

Figure 6: Thomas Willmore

4 Wil lmore’s conjecture

After having a formal mathematical description of the bending energy, mathe-
maticians started looking for the surfaces with smallest bending energy. We
already said that the Cartesian plane has zero bending energy. Since one can
see from (3) that no surface can have negative bending energy, it follows that
the plane is a surface with smallest bending energy among all surfaces. In other
words, this question is not so interesting, but recall that the plane is not a
closed surface.

Willmore was interested in finding a surface of minimal bending energy
among all closed oriented surfaces. He calculated the bending energy of the
sphere from Figure 3 to be 4π (≈ 12.6) and proved that this is the absolute
minimum among all closed oriented surfaces. Then he calculated the bending
energy of the Clifford torus from Figure 1 to be 2π2 (≈ 19.7) and conjectured
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Figure 7: A torus which does not minimize bending energy.

that this is the minimum among all tori.
Intuitively, it seems quite clear that the torus in Figure 1 is much less bent

than the torus in Figure 5. However, one can compute that even a slightly
different torus such as the one in Figure 7 has more bending energy than T2

(≈ 59.2). Willmore came up with the following:

Willmore Conjecture. The bending energy W(f) of any embedded torus
f : T 2 → R3 is greater than or equal to 2π2. In symbols:

W(f) ≥ 2π2.

In other words, he conjectured that among all embedded tori f : T 2 → R3,
the Clifford torus from Figure 1 has smallest bending energy. Willmore’s
Conjecture states that T2 is both qualitatively and quantitatively special — not
only is it obtained by revolving one circle about another, the ratio of radii of
the two circles is “just right” at

√
2.

Conversely, if W(f) = 2π2, then f has to be the Clifford torus (up to a
conformal transformation).

Willmore’s conjecture turned out to be very difficult to prove. Since Willmore
posed the conjecture in his 1965 paper [4], the problem has continuously been
under active research. Over the decades, more and more classes of tori were
proven to have bending energy at least 2π2. An overview of the historical
progress can be found in [3]. Finally, in 2014 the conjecture was proven by
André Neves and Fernando Marques (Figure 8).

5 A word about the proof

Why do mathematicians bother for almost half a century to prove something that
is intuitively clear? First of all, if one examines this huge infinite dimensional
space of embeddings f : T 2 → R3 and the precise technicalities of the definition
of the bending energy in (3), the statement becomes much less obvious. And
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Figure 8: André Arroja Neves and Fernando Codá Marques

although “Intuition is our most powerful tool” (Sir Michael Atiyah, see [1]), it is
sometimes wrong. There are other examples in mathematics where a conjecture
was formed from intuition and disproven later. You cannot be sure that a
conjecture is true until you have a proof. The gap between our intuition and our
ability to formally prove the Willmore Conjecture is one reason why it became
so famous. In such a situation one always wonders if one has really understood
the phenomenon — in that case the bending energy of surfaces — as well as
one thinks. If the Willmore Conjecture had turned out to be wrong, this would
have been a sensation just as big as its proof. Much of the research carried out
on the Willmore Conjecture produced tools that have been useful in other fields,
even if they were not powerful enough to give a full proof of the conjecture.

Another reason why mathematicians are interested in the proof is that a
proof is much more than just a verification that a conjecture is true. It also gives
an explanation why it is true. The proof given in [2] has almost a hundred pages
and establishes a connection between surface theory, topology and geometric
measure theory in a way that was unknown before. These new insights are
precisely what mathematical researchers find interesting. Therefore, they are
being discussed vividly for instance at Oberwolfach.
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Image credi ts

Figures 1–5, 7 Courtesy the author.

Figure 6 Author: Konrad Jacobs. Archives of the Mathematisches Forschungs-
institut Oberwolfach, http://opc.mfo.de, 1979.

Figure 8 Archives of the Mathematisches Forschungsinstitut Oberwolfach,
http://opc.mfo.de, 2014; and courtesy Fernando Codá Marques
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