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Footballs and donuts in four
dimensions

Steven Klee

In this snapshot, we explore connections between the
mathematical areas of counting and geometry by stu-
dying objects called simplicial complexes. We begin
by exploring many familiar objects in our three di-
mensional world and then discuss the ways one may
generalize these ideas into higher dimensions.

1 Counting and geometry in three dimensions

Imagine a football. We begin by restricting our attention to the iconic Adidas
Telstar ball, which is constructed by stitching together a collection of leather
patches (see Figure 1). Some of these patches are shaped like hexagons and
others are shaped like pentagons.

Objects such as this football are studied in the area of geometric combina-
torics. Combinatorics is the mathematical science of counting, and geometric
combinatorics applies these counting techniques to geometric objects.

What can we count on a football? First of all, we use patches to construct the
ball. Let’s call the number of patches F' (which stands for faces). In addition,
as we stitch our ball together, we create some seams where two patches come
together. Let’s call that number of seams E (which stands for edges). Finally,
there are some points where many patches mutually meet. Let’s call that
number of meeting points V' (which stands for vertices).

The Telstar football has 12 pentagonal faces and 20 hexagonal faces, so
F = 32. We can also count that £ = 90 and V = 60. How could we do this?
To count the edges, first we notice that each edge is formed as the result of two



Figure 1: The Adidas Telstar ball.

patches being stitched together. Therefore, each pentagonal patch contributes
to five stitches and each hexagonal patch contributes to six stitches. This means
the patches contribute to 12 x 5420 x 6 = 180 stitches. But each edge has been
counted twice here — once for each of the contributing patches — so the total
number of edges is 180 + 2 = 90. As for counting the vertices, we can notice
that each vertex is the meeting point of one black pentagonal patch and two
white hexagonal patches. Each pentagonal patch contributes 5 vertices to the
ball. Since there are 12 pentagonal patches, there must be a total of 5 x 12 = 60
vertices.

An important quantity to consider in the area of geometric combinatorics is
the Euler characteristicX, which is defined as the sum y = V — E 4+ F. For the
Telstar football, y = 60 — 90 + 32 = 2.

Now suppose we change the rules for how we construct a football. Instead of
using only hexagonal and pentagonal patches, we might want to use patches
shaped like other polygons, such as triangles, squares, octagons, or decagons.
The only constraint is that we still must stitch all these patches together to
form a football2 As an example, we could have started with 6 square patches
that would be stitched together to form a cube. In this case, F' =6, E' = 12,
and V = 8. Once again, V — F + F = 2.

In general, it still makes sense to count the number of vertices, edges, and
faces in any football we could possibly stitch together out of polygonal patches.

Named after the famous Swiss mathematician Leonhard Euler (1707-1783) who contributed
immensely to the study of polyhedra.

FIFA may not be excited to use the resulting ball in the next World Cup. But we are still
interested in these objects mathematically.



The most fundamental result in this field states that no matter how we choose
to stitch these patches together, no matter how many patches we use, and no
matter how nonsensical it would be to use the resulting ball, it will always be
the case that V — E+4 F' = 2. This fact justifies the use of the term characteristic.
Indeed, every geometric object which is sufficiently similar to a football — that
can be deformed and smoothed into the shape of a sphere without tearing or
stitching new patches — will have x = 2. Proofs of this result can be found in
the website Twenty proofs of Euler’s formula [2].

1.1 From footballs to donuts

Given a collection of polygonal patches, what other geometric objects could you
construct by stitching the patches together?

As an example, let us consider the following object, which is constructed
from a collection of square patches.

In this case, the labels on the vertices suggest there is additional stitching
that must occur. For example, the edge (2,3) on the bottom of the figure and
the edge (2,3) on the top of the figure are meant to be identified. In fact, every
edge around the perimeter of this figure is meant to be sewn to its corresponding
edge on the opposite side of the figure.

We illustrate this process in Figure 2. We begin with a flat square on the left
side of the figure. If we first sew together the edges along the top and bottom
of this figure, the resulting object becomes a cylinder (Figure 2 center). If we
then glue together the edges along the sides of the figure, we stitch the left side
of the cylinder to its right side and obtain a torus, or a donut (Figure 2 right).

Within reason. When stitching two patches together, we will choose an edge of the first
patch and an edge of the second patch, and the patches will be sewn together along the entire
length of their respective edges. In contrast, we do not allow three patches to meet along
a single stitching. Nor do we allow a “half-stitching" in which an edge from one patch is
stitched only to half of an edge of another patch. As such, we should think of our patches as
being relatively flexible (perhaps they are made of rubber rather than leather) so that the
lengths of the edges of the patches do not prevent them from being stitched together.


https://www.ics.uci.edu/~eppstein/junkyard/euler/

Figure 2: Forming a torus by identifying the sides of a square

Now let us compute the Euler characteristic of this torus. After we have
made all of our identifications, we have 9 vertices, 18 edges, and 9 square faces,
which means V =9, E =18, and F =9. Sox =V — E+ F = 0. This is
important because it tells us that the Euler characteristic of a torus is different
than the Euler characteristic of a sphere. As a corollary, we have discovered
an incredibly important fact: a torus and a sphere are fundamentally different
objects. Informally, this encodes the observation that a torus has a hole in the
middle, while a sphere does not. More formally, these objects are different in
the sense that it is not possible to transform one into the other in a continuous
manner.

2 Moving into higher dimensions

In our previous examples, the football and torus we constructed should be viewed
as 2-dimensional objects, even though they live in our 3-dimensional world. The
reason for this is that the polygonal patches we use are 2-dimensional.

From here, we can describe many faces of modern mathematical research.
For the remainder of this note, we will describe just one area of research. For
these two-dimensional objects, we might begin by restricting our attention to
those objects that can be constructed by using only triangular patches.

Mathematically, we call a triangle a 2-simplez. One way to describe a triangle
is to say that it is the convex hull of three non-collinear points (that is, points
that do not all lie on the same line) in the plane. Informally, the convex hull of
a set of points is the smallest portion of space that is enclosed by those points
— imagine that the points are all connected by lines and we then color in the
space inside the lines. The following diagram illustrates three possibilities for
what the convex hull of four non-collinear points in the plane could look like.



Figure 3: Examples of convex hulls

In general, a d-dimensional simplex can be defined as the convex hull of a
set of (d+ 1) points in d-dimensional space that do not all lie in a common plane
(or in higher dimensions, a common hyperplane). For example, a 1-dimensional
simplex is a line segment (the convex hull of two points) and a 3-dimensional
simplex is a tetrahedron. Similarly, a 0-dimensional simplex consists of a single
point. For this reason, we refer to 0-dimensional simplices as wvertices and
1-dimensional simplices as edges.

Figure 4: A tetrahedron

One important structural feature of a d-dimensional simplex is that its
boundary is built from simplices of lower dimensions. For example, the boundary
of a tetrahedron consists of four triangles, six edges, and four vertices. These
are called the boundary faces of the tetrahedron. In general, a d-dimensional
simplex has d + 1 vertices and hence (‘fill) boundary faces of dimension 7 for
each 0 <7 < d— 1 because we can choose any i + 1 of its vertices to form an
i-dimensional boundary face.

The plural of ‘simplex’ is ‘simplices’.
The notation (Z) tells us the number of ways to choose k objects from a set of n objects
when order does not matter. This is sometimes written as ,C}. It can also be expressed as

(v) = momr



A simplicial complex is a geometric object that is constructed from a given
set of simplices (these are analogous to the patches we used to construct our
footballs earlier) with the property that any two simplices intersect either along
a single one of their boundary faces (just as the patches in our footballs were
stitched together along a common edge or met at a single vertex) or not at all.

If A is a simplicial complex, the most natural objects to count are the face
numbers of A. We write f;(A) to denote the number of i-dimensional simplices
in A. For example, fo(A) denotes the number of vertices in A; f1(A) denotes
the number of edges in A; f3(A) denotes the number of triangular faces in
A; f3(A) denotes the number of tetrahedra in A; and so on. We typically
add an extra condition stating that f_;(A) = 1, which corresponds to the
(ngl) =1 way to choose the empty set as a subset of zero vertices contained in
the boundary of any simplex.

If A is a d-dimensional simplicial complex, we arrange its face numbers in
a list called the f-vector of A, which we write as f(A) = (fo, f1, fo,- -, fd)-

Furthermore, we define the Fuler characteristic of A as

X(A)=fo—fi+ fo— -+ (=1)fa

As in the 2-dimensional case, two simplicial complexes that can be smoothly
deformed to one another without tearing will have the same Euler characteristic.

In the previous section, we saw that the Euler characteristic of a two-
dimensional sphere (a football) is equal to 2. In 1964 Victor Klee [3] proved
a much more general result, known as the Dehn—-Sommerville Equations, that
extends this result to spheres of all dimensions. For concreteness, a 1-dimensional
sphere is a circle and a 2-dimensional sphere is a football. In higher dimensions,
we can still define a sphere as all points that lie at some fixed distance from the
origin.

Theorem 1 Let A be a simplicial complex that forms a d-dimensional sphere.
Then for any —1 < j <d,

d )
V8 = e ()R 0
For example, if we take d = 2 and j = —1 in Equation (1), we get
1 ii(lv (5@
== [-1(A) + fo(A) = f1(A) + f2(A)
=—14+V—-E+F,

which is equivalent to saying that x(A) = 2.



Similarly, taking d = 3 and j = —1 in Equation (1) tells us that the Euler
characteristic of a three-dimensional sphere is equal to 0. More generally, the
Euler characteristic of a d-dimensional sphere is equal to 2 when d is even and 0
when d is odd.

The Dehn—Sommerville equations mark a first major constraint that can
be put on the f-vectors of simplicial spheres. Many other geometric objects,
that generalize the sphere and the torus (called manifolds), can be smoothly
deformed into simplicial complexes. Thus, they can be investigated using results
such as the Dehn—Sommerville equations. For example, we can decide that
two manifolds cannot be smoothly deformed from on to the other (geometric
property) since they do not have the same Euler characteristic (combinatorial
property). The questions that have motivated and continue to motivate modern
research seek additional relationships between the combinatorics of the f-vector
and the geometric structure of manifolds.

Somewhat surprisingly, even though these questions of understanding f-
vectors of spheres and manifolds seem to be deeply rooted in geometry and
combinatorics, many of the landmark results in this field have made significant
use of machinery of other branches of mathematics. Specifically, tools from
the fields of commutative algebra and algebraic geometry are essential in the
modern field of geometric combinatorics.

Further reading

Messer and Straffin [4] give a very approachable introduction to topolgy, which
is the mathematical discipline interested in answering questions such as why the
sphere and the torus are mathematically different objects. The recent book of
De Loera, Ramau, and Santos [1] provides an excellent introduction to simplicial
complexes and polytopes from a theoretical and applied viewpoint. Ziegler’s
book [5] on polytopes is a fantastic resource for more advanced students.
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