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Random sampling of domino and
lozenge tilings

Eric Fusy 1

A grid region is (roughly speaking) a collection of “el-
ementary cells” (squares, for example, or triangles)
in the plane. One can “tile” these grid regions by ar-
ranging the cells in pairs. In this snapshot we review
different strategies to generate random tilings of large
grid regions in the plane. This makes it possible to
observe the behaviour of large random tilings, in par-
ticular the occurrence of boundary phenomena that
have been the subject of intensive recent research.

1 Introduction

Tilings of regular grids have been in-

tensively studied due to their rich n —li
combinatorial properties and the in- |

triguing and challenging macroscopic | | | ] —I
phenomena which occur in random l

tilings of certain regions when the size

gets large. Figure 1: A square grid region and
In this snapshot, we review methods a domino tiling.

for the random generation of tilings,

focusing on two classical types of tilings: domino tilings and lozenge tilings.
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First, we review in Section 3 a random generator for domino tilings of
the Aztec Diamond, which relies on a combinatorial identity for these tilings
discovered by Elkies, Kuperberg, Larsen, and Propp [1] and is described in the
companion snapshot [7], which we assume the reader has read. However, this
combinatorial identity is specific to the Aztec Diamond, and it seems difficult to
adapt the strategy to general regions. We then discuss in Section 4 a technique
based on Markov chains that can be applied in a wide variety of cases. Along
the way, we also discuss running time issues (which is crucial to sample random
tilings of large size).

2 Domino and lozenge tilings

A square grid region is a finite set of elementary cells of the square grid Z?2,
each elementary cell being of the form [z, z + 1] x [y, y + 1] for some (x,y) € Z>
(see Figure 1). Similarly, a triangular grid region is a finite set of elementary
cells of the (regular) triangular grid, each cell being an equilateral triangle of
side length 1 pointing either left or right, see Figure 2. Two cells of a (square
or triangular) grid region R are called adjacent if they share an edge. We will
only consider connected regions here, that is, regions such that for each pair of
cells ¢q, co of the region R there exists a sequence of successively adjacent cells
of R with ¢; as first element and ¢y as last element.

A domino tiling of a square grid region R is a way of grouping the cells
of R into adjacent pairs; equally, lozenge tiling of a triangular grid region
R is a way of grouping the cells of R into adjacent pairs, see Figure 1 and
Figure 2 for examples. Note that it is not always possible to tile a region R.
(A clear obstacle is when R has
an odd number of cells.) We de-
note by 7 (R) the set of (domino
or lozenge, depending on the
grid) tilings of the grid region R.

Whenever there are any possible

(domino or lozenge) tilings of a

grid region R, we are interested Figure 2: A triangular grid region and a
in designing procedures that out- lozenge tiling of the region.
put a random (domino or lozenge)

tiling, each tiling having the same probability 1/Card(7(R)) of being chosen.2
We call this sampling uniformly at random from the set of tilings T(R). A
motivation is that this allows to observe the qualitative picture of a large random
tiling, especially the boundary behaviour (see Section 5).

Recall that the cardinality Card(S) of a finite set S is the number of elements it contains.



A first naive approach for the random sampling from 7 (R) is to list all the
tilings in 7 (R), and then pick up a tiling from the list at random. However, the
set T(R) is usually very large. (We have seen in the companion snapshot [7]
that for the Aztec Diamond of order n, T(R) has cardinality 2"("*+1)/2 which
is already 36028797018 963 968 for n = 10, far beyond computer possibilities!)
In the algorithms we will describe, rather than choosing among a list of already
constructed tilings, the random tiling is generated “on the fly”, that is, the tiling
can be seen as progressively obtained from a sequence of random choices. In
this way we can obtain much more efficient algorithms, whose running time has
a polynomial (rather than exponential) dependency on the size parameter n 3

Figure 3: Examples of tilings of regions with a regular shape, from left to right:
(1) domino tiling of the Aztec Diamond (of order 4), (2) domino tiling
of the 6 x 6 square, (3) lozenge tiling of the 5 x 5 x 5 hexagon (can
be seen as a heap of cubes stacked in a 5 X 5 x 5 three dimensional
box), (4) lozenge tiling of the 5 x 5 x 5 equilateral triangle region.
The colourings of the lozenges give 3D representations of the tilings.

In computer science, it is always desirable to know about the time complexity of an
algorithm, that is, how fast its running time 7, grows when the size n of the input data gets
larger. For example, quadratic dependency on the size parameter n means that the running
time 7, grows roughly like n? when n is large (this is written as 7, = O(n?)), and, more in
general, polynomial dependency means that it grows approximately like n* for some constant
Ek (in symbols, 7, = O(n*)). Polynomial running times are always preferable to exponential
running times since the exponential function grows faster than every polynomial.



3 A random sampler for the Aztec Diamond

The Aztec Diamond of order n is the square grid region R, made of the cells
that are entirely included in {|z| + |y| < n + 1}. (An Aztec Diamond of size 4
is displayed in the leftmost picture in Figure 3.) As shown in [1] and also
explained in the companion snapshot [7], 7 (R,,) has cardinality 2"("*1/2 and
there is a combinatorial way to prove it using alternating sign matrices.

We denote by A,, the set of alternating sign matrices of size n X n. In [7] we
have seen that the set of domino tilings of the Aztec Diamond 7 (R,) can be
identified with the set of pairs of “compatible” matrices,

{(A,B): A€ A,, B€ Aps1, A~ B},

where the tilde A ~ B denotes some compatibility relation between the matrices
A and B, which is given explicitly in [7]. For an alternating sign matrix A we
denote by N_(A) and N (A) the number of —1 and +1 entries in A, respectively.
We have seen in the snapshot [7] that for A € A, there are 2V+(4) matrices
B € A,4+1 such that B is compatible to A (in symbols, A ~ B), and for
B € A, 41 there are 2V-(B) matrices A € A,, such that A ~ B. This allows to
define (recursively) the following random sampler for T (R, ):

e Ifn =1, output either H or [L, each with probability 1/2,

o Ifn> 1,
1. first, output a random tiling T in T (R,,—1) by calling the random sampler

at order n—1. Let (4, B) € A, _1 X A,, be the associated pair of matrices,
2. then pick uniformly at random a matrix A" € A, ;1 such that B ~ A’
(there are 2V+(B) such matrices, and as it turns out, one can choose A’
by tossing an unbiased coin Ny (B) times),
3. return the tiling in 7(R,,) associated to (B, A’).

One can prove by induction on n that the distribution at size n is indeed the
uniform distribution, that is, every tiling has the same chance to get picked. The
sampler can equivalently be formulated using height functions since these are
closely related to the alternating sign matrices, as explained in the snapshot [7].
Figure 4 shows an example of an execution formulated with the height function.
(It can be checked that the question marks in the 5th picture correspond indeed
to the +1 entries of B) It is easy to turn the recursive procedure into an
iterative procedure where a domino tiling is “grown” from order 1 to order
n, and moreover the procedure can equivalently be formulated using so-called
“domino shuffling” operations [1], see also the nice survey article [2], which gives
animated executions of the domino shuffling iterative random sampler.

Recall from the companion snapshot [7] that an n X n-matrix M is called an alternating
sign matriz if its entries are in {4+1,0,—1} and if in each row or column, the sequence of
non-zero entries alternates between 1 and —1, starting with 1 and ending with 1.
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Figure 4: From a random domino tiling of order 3 to a random domino tiling of
order 4. The tiling of order 3 is rotated clockwise by 45 degrees, and
the height function is computed, giving two matrices gathering the
rows of even and odd rank, respectively. The odd matrix is discarded,
and the coefficients of the even matrix are increased by 1 (making
it an odd matrix). The next drawing shows all the even matrices
that are compatible with the obtained odd matrix. (Question marks
correspond to the coefficients with two possible values.) Choosing
such a compatible matrix uniformly at random (by tossing a coin
for each question mark entry), we obtain a random domino tiling of

order 4.




As for the time complexity, it can be shown by induction that the running
time 7,, of a call to the sampler at order n satisfies 7,, = 7,_1 + 0., Where o,
consists of operations (such as computing the height function and choosing
a compatible matrix) that each require a traversal of the Aztec regions R,,_1
or R,, whose number of cells is quadratic in n. Therefore, 7, is cubic in n, that
is, 7, = O(n?).

To conclude, the Aztec Diamond is a very nice kind of region in the sense that
its tilings can be set in correspondence with a simpler set where the random
generation can be efficiently performed. But such a correspondence can in
general not be established for arbitrary regions, 2 and it is therefore desirable
to have a uniform random sampling strategy that works for any region. This is
described in the next section.

4 Random samplers based on local moves

We now describe a random sampling strategy that works for any grid region R
with non-empty 7 (R). We just require that R is hole-free, meaning that for
any connected “necklace” of cells of R, the entire area inside the necklace is
covered by cells belonging to R. The strategy relies on local moves, which we
describe for domino tilings. (The approach for lozenge tilings is very similar.)

Given a domino tiling of a square grid region R, a flip consists in turning a
pair of adjacent horizontal dominoes into a pair of vertical dominoes (inside the
surrounding 2 x 2 square), and a flop is the reverse operation, see the upper-left
part of Figure 5. If the grid region R is hole-free, then it can be shown that the
set T(R) of possible tilings is connected under the flip-flop relations [8], that
is, for any tilings 77, 7% in T (R), one can move from 77 to T5 by a sequence of
flip/flop moves (see the right part of Figure 5).

We can now describe a simple process based on local moves: 2! start from
an arbitrary tiling in 7 (R) and at each step do the following operations:

1. choose uniformly at random a 2 x 2 square S of cells of R,

2. if the square S is made of two adjacent horizontal (respectively vertical)
dominoes, then with probability 1/2 perform a flip (respectively a flop)
inside S. In all the other situations, stay idle.

The number Ly of lozenge tilings of the n x n X n hexagon also satisfies a simple formula:
L, = HlSiJ}kSn zi;flz:; There is a combinatorial proof of this formula [4] (based this time
on “15-puzzle principles”) giving rise to a uniform random sampler, also of time complexity
O(n?).

6] For lozenge tilings, one uses the local moves in the lower-left part of Figure 5, which in
the 3D representation correspond to adding/removing a unit cube.
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Figure 5: Left: local moves for domino and lozenge tilings. Right: the local
move relations for domino tilings of the Aztec Diamond of order 2
(note that the set 7(R) is connected under these relations).

In that process, it is clear that what is decided at each step only depends
on the current state and not on the past history; such a process is called a
Markov chain. This Markov chain satisfies a symmetry property (the probability
of moving in one step from one tiling to another tiling is the same as the
probability of returning to the original tiling in the next step), which implies
that the uniform distribution is stable for this process, that is, if the probability
distribution of the current state is uniform, then the probability distribution of
the next state is also uniform. Combined with a few other properties that need
to be checked (in particular the fact that the flip/flop relations make T(R) a
connected set), it implies that, starting from any fixed tiling, the distribution
on T (R) approaches the uniform distribution as the number of executed steps
gets large.

In general, there is a “threshold” time, called the mizing time t;x, such that
after tiix steps the distribution gets quickly close to the uniform distribution.
In our case, we typically have a family {R,, : n € N} of regions indexed by a
side-length parameter n € N (such as the coloured regions shown in Figure 3),
so that for each n we have a mixing time ¢yix(n), which quantifies how long
the Markov chain has to be run at size n to get close enough to the uniform
distribution. It is strongly believed that for any natural family {R,, : n € N}
of regions indexed by a side-length parameter n, tnix(n) should grow like
n*log(n) (with log denoting the logarithm function); however, rigorous bounds
of the form tyi(n) = O(n*log(n)) are still unproved. 0 It is therefore more
desirable to have a procedure with a guaranteed uniform distribution; the
seminal papers [5, 6] give such a strategy called “coupling from the past”, where

A bound tmix(n) = O(n*log(n)) is proved in [9] for a slightly non-local modification of
the Markov chain on lozenge tilings, where at each step a pile of cubes (instead of a single
cube) might be added or deleted.



instead of running the Markov chain forward, it is run “from the past”, with
the benefit that it automatically detects when to stop in order to output a
tiling under the uniform distribution. The algorithm is stopped once a certain
“coalescence” is reached, and the coalescence time is again expected grow like
n*log(n), which is not far from the time complexity O(n?) of the random
sampler of Section 3 (specific to the Aztec Diamond).
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Figure 6: Left: a random domino tiling of the Aztec Diamond of order 512.
Right: a random lozenge tiling of the 40 x 40 x 40 hexagon.

5 Boundary phenomena

A motivation for random generation of tilings is to observe and conjecture
the behaviour of random structures when the size gets large. Figure 6 shows
uniformly random tilings of large size, for the Aztec Diamond (domino tiling)
and the hexagon (lozenge tiling). One observes two rules: inside the circle
tangent to the outer frame, the tiling shows randomness (disorder), outside of
that circle the dominoes/lozenges are aligned and the tiling is totally ordered
(frozen regions). Such phenomena tend to occur when the boundaries of the
region are such that it is difficult to locally change the tiling close to the
boundary. This is the case for the Aztec Diamond and the hexagon. For
lozenge tilings of the n x n x n hexagon one can observe a simple occurrence
of this phenomenon: if we try to have a corner of the hexagon bordering on
two lozenges (instead of one), then the constraint propagates along the two
sides meeting at this corner and determines the tiling around the border of the
hexagon. Such a tiling thus reduces to a tiling of the (n — 1) x n x n hexagon,



which has much fewer tilings, so that such a configuration at a corner of the
hexagon is very unlikely. In contrast, for the square grid region and equilateral
triangle grid region (second and forth drawing in Figure 3), no macroscopic
frozen region can be observed. This so-called arctic circle phenomenon, and
more generally the study of phase transitions in random tilings, has been a very
active subject of research recently, and is now well understood using tools from
various mathematical areas (see [3] for a comprehensive survey).
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