Show simple item record

dc.contributor.authorArridge, Simon
dc.contributor.authorde Hoop, Maarten
dc.contributor.authorMaass, Peter
dc.contributor.authorÖktem, Ozan
dc.contributor.authorSchönlieb, Carola
dc.contributor.authorUnser, Michael
dc.contributor.editorMunday, Sara
dc.contributor.editorJahns, Sophia
dc.date.accessioned2019-11-21T15:25:41Z
dc.date.available2019-11-21T15:25:41Z
dc.date.issued2019-11-21
dc.identifier.urihttp://publications.mfo.de/handle/mfo/3686
dc.description.abstractBig data and deep learning are modern buzz words which presently infiltrate all fields of science and technology. These new concepts are impressive in terms of the stunning results they achieve for a large variety of applications. However, the theoretical justification for their success is still very limited. In this snapshot, we highlight some of the very recent mathematical results that are the beginnings of a solid theoretical foundation for the subject.en_US
dc.language.isoenen_US
dc.publisherMathematisches Forschungsinstitut Oberwolfachen_US
dc.relation.ispartofseriesSnapshots of modern mathematics from Oberwolfach;2019,15
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.titleDeep Learning and Inverse Problemsen_US
dc.typeArticleen_US
dc.identifier.doi10.14760/SNAP-2019-015-EN
local.series.idSNAP-2019-015-ENen_US
local.subject.snapshotAnalysisen_US
local.subject.snapshotNumerics and Scientific Computingen_US
dc.identifier.urnurn:nbn:de:101:1-2019112812170558110274
dc.identifier.ppn1685383483


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International