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Abstract For a Hamiltonian matrix with purely imaginary eigenvalues, we
aim to determine the nearest Hamiltonian matrix such that some or all eigen-
values leave the imaginary axis. Conversely, for a Hamiltonian matrix with
all eigenvalues lying off the imaginary axis, we look for a nearest Hamiltonian
matrix that has a pair of imaginary eigenvalues. The Hamiltonian matrices can
be allowed to be complex or restricted to be real. Such Hamiltonian matrix
nearness problems are motivated by applications such as the analysis of pas-
sive control systems. They are closely related to the problem of determining
extremal points of Hamiltonian pseudospectra. We obtain a characterization
of optimal perturbations, which turn out to be of low rank and are attrac-
tive stationary points of low-rank differential equations that we derive. This
permits us to give fast algorithms - which show quadratic convergence - for
solving the considered Hamiltonian matrix nearness problems.
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1 Introduction

In this paper we propose and study algorithms for the following optimization
problems:

(A) Given a Hamiltonian matrix with no eigenvalues on the imaginary axis,
find a nearest Hamiltonian matrix having some purely imaginary eigen-
value.

(B) Given a Hamiltonian matrix with all eigenvalues on the imaginary axis,
find a nearest Hamiltonian matrix such that arbitrarily close to that matrix
there exist Hamiltonian matrices with eigenvalues off the imaginary axis.

The notion of “nearest” depends on the choice of norm, for which we consider
the matrix 2-norm. The Hamiltonian matrices can be allowed to be complex
or restricted to be real.

Such Hamiltonian matrix nearness problems arise in several important
applications: in the solution of algebraic Riccati equations whose Hamilto-
nian matrix has eigenvalues on the imaginary axis (see, e.g., [And98,Hes09,
PaVL81]), in passivation of linear time invariant control systems (see, e.g.,
[ABKMM11]), and in the stability of gyroscopic systems (see, e.g., [HKLP00]).

Both problems (A) and (B) are closely related to the problem of finding ex-
tremal (locally leftmost or rightmost) points of the structured pseudospectrum
(for this notion see, e.g., [BK04,WA05,Ru06,HP05,TE05,KKK10,Ka11]) of a
given matrix A ∈ M with respect to perturbed matrices on a matrix manifold
M ⊂ C

n×n that are ε-close to A in a norm ‖ · ‖:

Λε(A,M, ‖ · ‖) = {λ ∈ C :λ is an eigenvalue of some

B ∈ M with ‖B −A‖ ≤ ε}.

We will always consider the matrix 2-norm ‖ · ‖ = ‖ · ‖2 in this paper. In
the Hamiltonian case considered here we take M as the real-linear space of
Hamiltonian matrices, i.e., those satisfying (with even dimension n = 2d)

JA is complex hermitian (or real symmetric), where J =

(
0 Id

−Id 0

)
.

We recall that the eigenvalues of a Hamiltonian matrix lie symmetric to the
imaginary axis.

The paper is organized as follows. In Section 2 we characterize extremal
complex Hamiltonian perturbations, which correspond to a locally leftmost or
rightmost point in the ε-pseudospectrum. In Section 3 we deal with extremal
real Hamiltonian perturbations. In both cases, in analogy to [GL11,GL11b,
GL12] (see also [GO11]) we derive low-rank matrix differential equations that
have the extremizers as attractive stationary points. The ranks are 2 in the
complex case and 4 in the real case.

Our approach to solving the Hamiltonian matrix nearness problems (A)
and (B) consists of a two-level procedure, where we determine an extremizer
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for a fixed perturbation size ε by following the differential equation into a
stationary point, and then optimize over ε.

From an algorithmic point of view we are interested in robust variants
of (A) and (B). We therefore introduce a thin vertical strip symmetric with
respect to the imaginary axis and compute distances with respect to this strip
instead of the imaginary axis itself, in agreement with [ABKMM11].

In Section 5 we present a fast algorithm for solving problem (A) and in
Section 6 for problem (B). The first algorithm computes a Hamiltonian pertur-
bation of minimal norm such that some pair of eigenvalues of a Hamiltonian
matrix with purely imaginary spectrum is moved outside a vertical strip lying
symmetric with respect to the imaginary axis, of a preassigned arbitrarily small
size. The second algorithm computes a Hamiltonian perturbation of minimal
norm such that a pair of eigenvalues of a Hamiltonian matrix A with spectrum
bounded away from the imaginary axis is taken inside a given small strip that
is symmetric with respect to the imaginary axis. In the examples we shall also
deal with the following third problem, which is related to problem (B).

(C) Given a Hamiltonian matrix with all eigenvalues on the imaginary axis,
find a nearest Hamiltonian matrix such that arbitrarily close to that matrix
there exist Hamiltonian matrices with all eigenvalues off the imaginary
axis.

This is associated to passivity measures. In Section 7 we present in some
detail two interesting applications: passivation of linear control systems and
gyroscopic stability.

There are various extensions to the present work, which we do not re-
port here: While we consider only the matrix 2-norm in this paper, a related
but different theory and corresponding algorithms can be given also for the
Frobenius norm. Analogous matrix nearness problems to this paper can be
studied also for symplectic matrices, where the unit circle assumes the role
of the imaginary axis for the Hamiltonian case. Another interesting extension
is to Hamiltonian matrices with additional (block) structure, as they arise in
control systems.

We will make frequent use of the following standard perturbation result
for eigenvalues; see, e.g., [Kat95, Section II.1.1]. Here and in the following, we
denote ˙ = d/dt.

Lemma 1.1 Consider the differentiable n×n matrix valued function C(t) for
t in a neighborhood of 0 . Let λ(t) be an eigenvalue of C(t) converging to a
simple eigenvalue λ0 of C0 = C(0) as t → 0. Let x0 and y0 be left and right
eigenvectors, respectively, of C0 corresponding to λ0, that is, (C0 − λ0I)y = 0
and x∗(C0 − λ0I) = 0. Then, x∗

0y0 6= 0 and λ(t) is differentiable near t = 0
with

λ̇(0) =
x∗
0Ċ(0)y0
x∗
0y0

.
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2 Rank-2 dynamics to extremal points in complex Hamiltonian
pseudospectra

In this section we study Hamiltonian perturbations to the given Hamiltonian
matrix A that correspond to extremal (locally leftmost or rightmost) points in
the Hamiltonian ε-pseudospectrum. It is shown that to each extremal point the
corresponding extremizer can be chosen of rank at most 2. We then proceed to
derive and study a differential equation on the manifold of Hamiltonian rank-2
matrices that has the rank-2 extremizers as attractive stationary points.

2.1 Extremizers

Theorem 2.1 For a Hamiltonian matrix A ∈ C
n×n and ε > 0, let λ∗ /∈

iR be a locally rightmost point in the Hamiltonian 2-norm ε-pseudospectrum,
implying that there exists a Hamiltonian matrix E ∈ C

n×n of unit 2-norm such
that λ∗ is an eigenvalue of A+ εE. If λ∗ is a simple eigenvalue of A+ εE and
not an eigenvalue of A, then there exists a unique matrix E∗ of rank 2 such
that λ∗ is an eigenvalue of A+ εE∗ with the same left and right eigenvectors
as for A+ εE. Moreover, the nonzero eigenvalues of JE∗ are +1 and −1.

The proof of Theorem 2.1 shows that there always exists an extremizer of
rank 2, but there are also extremizers of any rank ≥ 2.

A characterization of the rank-2 extremizers is given in the following result.

Theorem 2.2 Assume that E∗ = JTV

(
1 0
0 −1

)
V ∗, where V ∈ C

n×2 has

orthonormal columns. Let λ∗ /∈ iR be a simple eigenvalue of A + εE∗, with
left and right eigenvectors x and y, respectively, both of unit norm and with
x∗y > 0. Let Y = (Jx, y) ∈ C

n×2, and T ∈ C
2×2 be defined by

T = RPR∗ with R = V ∗Y ∈ C
2×2 and P =

(
0 1
1 0

)
.

Then the following two statements are equivalent:

1. Every differentiable path (E(t), λ(t)) (for small t ≥ 0) such that E(t) is
Hamiltonian with ‖E(t)‖2 ≤ 1 and λ(t) is an eigenvalue of A+εE(t), with
E(0) = E∗ and λ(0) = λ∗, has Re λ̇(0) ≤ 0.

2. Y and V have the same range, and T =

(
+τ1 0
0 −τ2

)
with τ1, τ2 > 0.

Proof (of Theorem 2.1) (a) Let V̂ ∈ C
n×n be a unitary matrix obtained from

a QR factorization of Y = (Jx, y):

Y = V̂

(
R
0

)
with R ∈ C

2×2.
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Let E(t), for small t > 0, be a continuously differentiable path on the set of
Hamiltonian matrices of unit 2-norm, with E(0) = E, which we write as

E(t) = JT V̂ Ŝ(t)V̂ ∗

with a hermitian matrix

Ŝ(t) ∈ C
n×n =

(
S11(t) S

∗
21(t)

S21(t) S22(t)

)
, S11(t) ∈ C

2×2,

We can choose the first 2 columns of the unitary matrix V̂ such that

S11(0) =

(
σ1 0
0 σ2

)
.

Clearly, σ1, σ2 are real and have absolute value at most 1. In the following, we
will in fact show that |σ1| = |σ2| = 1 and that σ1, σ2 have opposite sign.

(b) Let λ(t) be the rightmost eigenvalue of A + εE(t), so that λ(0) = λ∗.
Since λ∗ is locally rightmost, we have

0 ≥ Re λ̇(0) =
ε

x∗y
Re(x∗Ė(0)y).

Denoting by 〈A,B〉 = trace(A∗B) the standard matrix inner product and by
Aherm = 1

2 (A+A∗) the hermitian part of a matrix, we observe

0 ≥ Re(x∗Ė(0)y) = 〈(Jxy∗)herm, JĖ(0)〉 = 〈Y PY ∗, V̂
˙̂
S(0)V̂ ∗〉

= 〈V̂ ∗Y PY ∗V̂ ,
˙̂
S(0)〉 = 〈RPR∗, Ṡ11(0)〉 = 〈T, Ṡ11(0)〉.

(2.1)

This inequality holds for every path Ŝ(t) of unit norm, which in turn implies
that it holds for every path S11(t) of norm at most one.

Suppose that one of the diagonal entries of S11(0), say σ2, has absolute
value less than one. Then, locally, the following three different paths are ad-
missible:

S
(1)
11 (t) =

(
σ1 0
0 σ2 ± t

)
, S

(2)
11 (t) =

(
a(t) ±t
±t b(t)

)
, S

(3)
11 (t) =

(
a(t) ∓it
±it b(t)

)
,

where in the latter two cases a(t), b(t) are chosen such that the matrices have
the eigenvalues σ1 and σ2 and ȧ(0) = ḃ(0) = 0. We then obtain from (2.1) that

〈T, Ṡ
(1)
11 (0)〉 = ±t22 =⇒ t22 = 0,

〈T, Ṡ
(2)
11 (0)〉 = ±(t21 + t21) =⇒ Re(t21) = 0,

〈T, Ṡ
(3)
11 (0)〉 = ±(t21 − t21) =⇒ Im(t21) = 0.

In particular, this means that T = RPR∗ is singular and hence R itself is
singular. By the definition of R, this would imply that the eigenvectors Jx and
y are linearly dependent, which can only happen for an eigenvalue λ∗ on the
imaginary axis, in contradiction to our assumption. Therefore, |σ1| = |σ2| = 1.
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(c) Now suppose that σ1 and σ2 have the same sign, so that S11(0) = ±I2.
We then choose

S11(t) = ±e−tM

with a hermitian positive definite matrix M , so that Ṡ(0) = ∓M . The in-
equality 0 ≥ 〈T, Ṡ(0)〉 = ∓〈T,M〉 would then hold for every positive definite
hermitian M , which would imply that T is positive semi-definite (negative
semi-definite). This is not possible, as P and therefore also T = RPR∗ is an
indefinite nonsingular matrix. In view of this contradiction, S11(0) must have
two eigenvalues of different sign, +1 and −1.

(d) Finally, |σ1| = |σ2| = 1 implies that S21(0) = 0, since otherwise one
of the first two columns of Ŝ(0) has norm larger than one, in contradiction to
‖Ŝ(0)‖2 = 1. This shows that A+ εE∗, with

E∗ = JT V̂

(
S11(0) 0

0 0

)
V̂ ∗,

satisfies (A+εE∗)y = (A+εE)y = λ∗y and x∗(A+εE∗) = x∗(A+εE) = λ∗x
∗.

The rank-2 matrix E∗ is unique because the block structure of Ŝ(0) and the

orthogonality of the columns of V̂ show that for every other rank-2 reduction
of E(t) we have Ey = 0 or EJx = 0, which would imply that λ is an eigenvalue
of A, contrary to the assumption. ⊓⊔

Proof (of Theorem 2.2)
1. implies 2.: We know from the proof of Theorem 2.1 that Y and V have

the same range, and we write Y = V R with an invertible 2 × 2 matrix R.
We note that T = RPR∗ is the matrix of which we want to show that it is
diagonal with entries of different sign. Let us denote

D =

(
1 0
0 −1

)
.

We consider the path of matrices of unit 2-norm

JE(t) = V etZDe−tZV ∗ with a skew-hermitian matrix Z ∈ C
2×2

and the corresponding path of eigenvalues λ(t) of A + εE(t) with λ(0) = λ∗.
By 1., we have

0 ≥ Re(x∗Ė(0)y) = 〈Y PY ∗, Ė(0)〉 = 〈T,ZD −DZ〉 ,

which holds for every skew-hermitian matrix Z. The matrix ZD − DZ is
hermitian with zero diagonal. It thus follows that T is diagonal. Since T =
RPR∗ is hermitian, indefinite and nonsingular, its diagonal entries must be
real and have opposite sign. Using the paths

E(t) = V e−tMDe−tMV ∗ with a diagonal positive semi-definite matrix M

we then conclude from

0 ≥ Re(x∗Ė(0)y) = −〈T,MD +DM〉
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that the (1, 1) entry of T is positive and the (2, 2) entry is negative. This proves
2.

2. implies 1.: Let E(t) be a continuously differentiable path of Hamiltonian
matrices of 2-norm at most one, with E(0) = JTV DV ∗. We extend V ∈ C

n×2

to a unitary matrix V̂ ∈ C
n×n and write V̂ = (V, V ⊥). We write E(t) as

JE(t) = V̂ (t)Ŝ(t)V̂ (t)∗

where we may choose V̂ (t) = (V (t), V ⊥) with range R(V (t)) = R(V ) and
V ∗(t)V̇ (t) = 0. By 2., this implies Y ∗V̇ (0) = 0, and therefore, with the matrix

T = RPR∗ = V ∗Y PY ∗V satisfying T =

(
τ1 0
0 −τ2

)
with τ1, τ2 > 0, and with

S(t) denoting the upper left 2× 2 block of Ŝ(t),

Re(x∗Ė(0)y) = 〈Y PY ∗, Ė(0)〉

= 〈Y PY ∗,
˙̂
V (0)Ŝ(0)V̂ (0)∗ + V̂ (0)

˙̂
S(0)V̂ (0)∗ + V̂ (0)Ŝ(0)

˙̂
V (0)∗〉

= 〈

(
R
0

)
P (R∗, 0),

˙̂
S(0)〉 = 〈RPR∗, Ṡ(0)〉 = 〈T, Ṡ(0)〉

= τ1ṡ11(0)− τ2ṡ22(0) ≤ 0,

since s11(0) = 1 and s22(0) = −1 imply ṡ11(0) ≤ 0 and ṡ22(0) ≥ 0. This yields
1. ⊓⊔

2.2 Rank-2 dynamics for the complex case

Theorem 2.1 motivates to search for a differential equation on the manifold

M = {E ∈ C
n×n : E is Hamiltonian of rank 2 and the nonzero eigenvalues

of JE are equal to +1 and −1}

such that it leads to a rightmost point in the Hamiltonian 2-norm pseudospec-
trum. We represent matrices in M in a non-unique way as

JE = V QV ∗,

where V ∈ C
n×2 has orthonormal columns and Q ∈ C

2×2 is a hermitian
unitary matrix with eigenvalues +1 and −1. Such a Q can be written as a
complex Householder matrix

Q = I2 − 2uu∗, u ∈ C
2, u∗u = 1.

For a given choice of V and Q, tangent matrices Ė ∈ TEM can then be
uniquely written as (cf. [KL07])

JĖ = V̇ QV ∗ + V Q̇V ∗ + V QV̇ ∗ with V ∗V̇ = 0, u∗u̇ = 0. (2.2)

We have given up a unique representation of E for the benefit of the very
useful orthogonality relations for V̇ and u̇.
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Our objective is to find differential equations for u(t) and V (t) along which
the rightmost eigenvalue λ(t) of A+ εE(t) increases monotonically with t and
which have attractive stationary points where the extremality condition of
Theorem 2.2 is satisfied. Assuming that λ(t) is simple for all t under consider-
ation, we denote the left and right eigenvectors by x(t) and y(t), respectively,
both of unit norm and with x(t)∗y(t) > 0. We let Y (t) = (Jx(t), y(t)). We omit
the argument t in the following when its presence is clear from the context.

Motivated by the orthogonality relations in (2.2) and the objective that
Y and V have the same range when V̇ = 0, we make the ansatz, with as yet
unknown f ∈ C

2 and G ∈ C
2×2,

u̇ = (I2 − uu∗)f

V̇ = (In − V V ∗)Y G. (2.3)

We now maximize Re λ̇ = εRe(x∗Ėy)/x∗y under the normalizing constraint
that Ė has unit Frobenius norm. With R = V ∗Y and T = RPR∗ - with P

given by P =

(
0 1
1 0

)
- we have, inserting (2.2) and (2.3),

Re(x∗Ėy) = 〈(Jxy∗)herm, JE〉 = 〈Y PY ∗, JĖ〉

= 〈Y PY ∗, V̇ QV ∗ + V Q̇V ∗ + V QV̇ ∗〉

= 〈Y PR∗Q, V̇ 〉+ 〈T, Q̇〉+ 〈QRPY ∗, V̇ ∗〉

= 〈T, Q̇〉+ 2Re〈Y PR∗Q, V̇ 〉.

We further note that, with the hermitian positive semi-definite 2× 2 matrices

L = I2 − uu∗, M = Y ∗(In − V V ∗)Y,

we have

〈T, Q̇〉 = −2 〈T, u̇u∗ + uu̇∗〉 = −4Re〈Tu, u̇〉 = −4Re〈LTu, f〉

2Re〈Y PR∗Q, V̇ 〉 = 2Re〈MPR∗Q,G〉.

The normalizing constraint becomes, on inserting (2.2),

1 = ‖JĖ‖2F = ‖V̇ QV ∗‖2F + ‖V Q̇V ‖2F + ‖V QV̇ ∗‖2F = ‖Q̇‖2F + 2‖V̇ ‖2F .

Because of (2.3) we obtain

‖Q̇‖2F = 4‖uu̇∗ + u̇u∗‖2F = 8‖u̇‖22 = 8 f∗Lf

‖V̇ ‖2F = trace(G∗MG).

Summing up, we want to find f ∈ C
2 and G ∈ C

2×2 that maximize

−4Re〈LTu, f〉+ 2Re〈MPR∗Q,G〉

under the quadratic constraint

1 = 8 f∗Lf + 2 trace(G∗MG).
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We thus have an optimization problem for z = vec(f,G) of the type

Re(c∗z) → max, z∗Kz = 1

with a symmetric positive semi-definite matrix K. Up to a positive factor, this
has the same solution as the quadratic minimization problem with a linear
constraint

1
2z

∗Kz → min, Re(c∗z) = 1,

which has the optimality condition

Kz = µc

with a positive Lagrange multiplier µ. In our situation, this equation reads

(
8Lf
2MG

)
= µ

(
−4LTu

2MPR∗Q

)
.

Ignoring the scalar factor µ, we are thus led to choose in (2.3)

(
f
G

)
=

(
− 1

2Tu
PR∗Q

)
.

This gives us the following system of differential equations for u and V :

u̇ = − 1
2 (I2 − uu∗)Tu

V̇ = (In − V V ∗)Y PY ∗V Q. (2.4)

We recall that here Y = (Jx, y) contains the left and right eigenvectors x and
y, of unit norm and with x∗y > 0, corresponding to an eigenvalue λ of A+ εE
with JE = V QV ∗ and Q = I2 − 2uu∗ with u ∈ C

2 of unit norm. Moreover,

P =

(
0 1
1 0

)
and T = V ∗Y PY ∗V . Our derivation of these differential equations

immediately gives the following monotonicity result.

Theorem 2.3 Let E(t) = JTV (t)(I − 2u(t)u(t)∗)V (t)∗ with u(t), V (t) satis-
fying the differential equations (2.4) and with initial values such that u(0) ∈ C

2

has unit Euclidean norm and V (0) ∈ C
n×2 has orthonormal columns. If λ(t)

is a simple eigenvalue of A+ εE(t), then

Re λ̇(t) ≥ 0.

As the following result shows in comparison with Theorem 2.2, stationary
points of (2.4) are extremizers. Let u⊥ be a vector of unit norm orthogonal to

u, and let T̃ = (u⊥, u)∗T (u⊥, u).

Theorem 2.4 If λ /∈ iR, then (u, V ) is a stationary point of (2.4) if and only

if Y and V have the same range and T̃ is diagonal.
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We note that the transformation Ṽ = V (u⊥, u) yields JE = Ṽ

(
1 0
0 −1

)
Ṽ ∗,

and therefore T̃ corresponds to T of Theorem 2.2. T̃ has the same eigenvalues
as the hermitian matrix T = RPR∗, which are of different sign.

Proof From (2.4) it is immediate that (V, u) is a stationary point if and only
if the range of Y is contained in the range of V and (u⊥)∗Tu = 0. Since Y has
rank 2 for an eigenvalue λ /∈ iR, this yields the result. ⊓⊔

2.3 An illustrative example

Consider the Hamiltonian matrix




1
4

1
5

1
6

1
7

1
8

1
9

1
5

1
6

1
7

1
8

1
9

1
10

1
6

1
7

1
8

1
9

1
10

1
11

−1 − 1
2 − 1

3 − 1
4 − 1

5 − 1
6

− 1
2 − 1

3 − 1
4 − 1

5 − 1
6 − 1

7

− 1
3 − 1

4 − 1
5 − 1

6 − 1
7 − 1

8




(2.5)

Its eigenvalues are given by

±0.4060i, ±0.002078i, ±0.000002745i.

In Figure 2.3 we show the boundary of the Hamiltonian ε-pseudospectrum,
computed by Structured Eigtool [KKK10], and the path of rightmost eigen-
values of A+ εE(t) for ε = 0.1, where E(t) = JTV (t)(I − 2u(t)u(t)∗)V (t)∗ is
computed by solving (2.4).

We note in the right picture of Figure 2.3 that the trajectory approaches
the rightmost point of the Hamiltonian ε-pseudospectrum tangentially, as it
happens for the unstructured ε-pseudospectrum case. This can be explained
by analogous arguments.

3 Rank-4 dynamics to extremal points in real Hamiltonian
pseudospectra

3.1 Extremizers

We have the following real analog of Theorem 2.1.

Theorem 3.1 For a Hamiltonian matrix A ∈ R
n×n and ε > 0, let λ∗ /∈ R ∪

iR be a locally rightmost point in the Hamiltonian 2-norm ε-pseudospectrum,
implying that there exists a real Hamiltonian matrix E ∈ R

n×n of unit 2-norm
such that λ∗ is an eigenvalue of A+εE. If λ∗ is a simple eigenvalue of A+εE
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Fig. 2.1 Hamiltonian pseudospectrum of the matrix A in Example (2.5) for ε = 0.1 and
trajectory of the rightmost eigenvalue λ(t) (in blue) associated to the solution of (2.4). Right
picture: zoom close to the rightmost point.

and not an eigenvalue of A, then there exists a unique matrix E∗ of rank 4 such
that λ∗ is an eigenvalue of A+ εE∗ with the same left and right eigenvectors
as for A+εE. Moreover, the nonzero eigenvalues of JE∗ are +1 and −1, each
of multiplicity 2.

For λ∗ ∈ R we have the rank-2 matrix E∗ of Theorem 2.1, which is real for
real λ∗. The following characterization of the rank-4 real extremizers is given in
the following simultaneous analog of Theorem 2.2 and of [GL12, Theorem 3.2]
on extremizers for unstructured real perturbations.

Theorem 3.2 Assume that E∗ = JTV diag(1, 1,−1,−1)V T , where V ∈ R
n×4

has orthonormal columns. Let λ∗ /∈ R∪ iR be a simple eigenvalue of A+ εE∗,
with left and right eigenvectors x and y, respectively, both of unit norm and
with x∗y > 0. Let Y = (JxR, yR, JxI , yI) ∈ R

n×4 and T ∈ R
4×4 be defined by

T = RPRT with R = V TY ∈ R
4×4 and P =

(
P2 0
0 P2

)
with P2 =

(
0 1
1 0

)
.

Then the following two statements are equivalent:

1. Every differentiable path (E(t), λ(t)) (for small t ≥ 0) such that E(t) is
real Hamiltonian with ‖E(t)‖2 ≤ 1 and λ(t) is an eigenvalue of A+ εE(t),
with E(0) = E∗ and λ(0) = λ∗, has Re λ̇(0) ≤ 0.

2. Y and V have the same range, and T =

(
+T1 0
0 −T2

)
with symmetric

positive definite blocks T1, T2 ∈ R
2×2.

Proof (of Theorem 3.1) Let V̂ ∈ R
n×n be an orthogonal matrix obtained from

a QR factorization of Y = (JxR, yR, JxI , yI):

Y = V̂

(
R
0

)
with R ∈ R

4×4.



12 Nicola Guglielmi et al.

Let E(t), for small t > 0, be a continuously differentiable path on the set of
real Hamiltonian matrices of unit 2-norm, with E(0) = E, which we write as

E(t) = JT V̂ Ŝ(t)V̂ T

with a symmetric matrix

Ŝ(t) ∈ R
n×n =

(
S11(t) S

T
21(t)

S21(t) S22(t)

)
, S11(t) ∈ R

4×4,

We can choose the first 4 columns of the orthogonal matrix V̂ such that S11(0)
is diagonal. The diagonal entries σj are real and have absolute value at most
1. Using the same arguments as in the proof of Theorem 2.1 it is shown that
|σj | = 1 for j = 1, 2, 3, 4 and that two of the σj are positive and two are
negative. This implies that S21(0) = 0, which shows that A + εE∗, with the
rank-4 matrix

E∗ = JT V̂

(
S11(0) 0

0 0

)
V̂ T ,

satisfies (A+εE∗)y = (A+εE)y = λ∗y and x∗(A+εE∗) = x∗(A+εE) = λ∗x
∗.

By the same argument as in the proof of Theorem 2.1, E∗ is the unique rank-4
matrix with this property. ⊓⊔

Proof (of Theorem 3.2)
1. implies 2.: We know from the proof of Theorem 3.1 that Y and V have

the same range, and we write Y = V R with an invertible 4× 4 real matrix R.
We denote

D = diag(1, 1,−1,−1).

We consider the path of matrices of unit 2-norm

JE(t) = V etZDe−tZV T with a skew-symmetric matrix Z ∈ R
4×4

and the corresponding path of eigenvalues λ(t) of A + εE(t) with λ(0) = λ∗.
By 1., we have

0 ≥ Re(x∗Ė(0)y) = 〈Y PY T , Ė(0)〉 = 〈T,ZD −DZ〉 ,

which holds for every skew-symmetric matrix Z. The matrix ZD − DZ is
symmetric and its upper and lower diagonal 2 × 2 blocks are zero. It thus
follows that T is block-diagonal with 2 × 2 blocks. Moreover, T = RPRT is
symmetric and nonsingular. Using the paths

E(t) = V e−tMDe−tMV T with positive semi-definite matrices M

that are block diagonal with 2× 2 blocks, we then conclude from

0 ≥ Re(x∗Ė(0)y) = −〈T,MD +DM〉

that the upper diagonal block of T is positive definite and the lower block
is negative definite; compare [GL12, Section 3] for an analogous situation in
the characterization of extremizers among general real ε-perturbations. This
proves 2.

2. implies 1.: This is proven by a direct generalization of the corresponding
argument in the proof of Theorem 2.2. ⊓⊔
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3.2 Rank-4 dynamics for the real case

In view of the preceding theorem, we search for a differential equation for
matrices of the form

JE = V QV T ,

where V ∈ R
n×4 has orthonormal columns and Q ∈ R

4×4 is a symmetric
orthogonal matrix with double eigenvalues +1 and −1, to be determined in
the form of a double Householder transformation

Q = I4 − 2UUT , U ∈ R
4×2, UTU = I2.

For a given choice of V and Q, the tangent matrices Ė ∈ TEM can then be
uniquely written as (cf. [KL07])

JĖ = V̇ QV T + V Q̇V T + V QV̇ T with V T V̇ = 0, UT U̇ = 0. (3.1)

In the same way as in Section 2.2, we derive the following differential equations
for V and U :

U̇ = − 1
2 (I4 − UUT )TU

V̇ = (In − V V T )Y PY TV Q. (3.2)

Let us recall that Y = (JxR, yR, JxI , yI) ∈ R
n×4 contains the real and imag-

inary parts of the left and right eigenvectors x and y, of unit norm and with
x∗y > 0, corresponding to an eigenvalue λ of A + εE with JE = V QV T and
Q = I − 2UUT with U having two orthonormal columns. Further, P ∈ R

4×4

and T ∈ R
4×4 are defined as in Theorem 3.2. We obtain again the desired

monotonicity result.

Theorem 3.3 Let E(t) = JTV (t)(I − 2U(t)U(t)T )V (t)T with U(t), V (t) sat-
isfying the differential equations (3.2) and with initial values such that U(0) ∈
R

4×2 and V (0) ∈ R
n×4 have orthonormal columns. If λ(t) is a simple eigen-

value of A+ εE(t), then Re λ̇(t) ≥ 0.

Let Ũ ∈ R
4×4 be an orthogonal matrix such that its last two columns

are those of U , and let T̃ = ŨTT Ũ . The following characterization of the
stationary points is then obtained by direct inspection of (2.4).

Theorem 3.4 If λ /∈ R ∪ iR, then (U, V ) is a stationary point of (3.2) if and

only if Y and V have the same range and T̃ is block-diagonal with 2×2 blocks.

Note that the transformation Ṽ = V Ũ yields JE = Ṽ diag(1, 1,−1,−1)Ṽ T ,

and therefore T̃ corresponds to T of Theorem 2.2. Since T = RPRT , we know
that T̃ always has two positive and two negative eigenvalues.
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4 An algorithm to compute locally rightmost points in the
Hamiltonian pseudospectrum and their extremizers

We discretize the differential equation (2.4) or (3.2) by the explicit Euler
method with an adaptively chosen stepsize. At each discretization step, we
require – according to the underlying property of the exact solutions – that
the real part of the rightmost eigenvalue of A + εE is increased. In this way
the method determines a sequence (λn, En) such that Reλn > Reλn−1, until
En approaches a stationary point. We consider here the case where the matrix
A and the perturbations are complex.

Given En = JTVnQnV
∗
n ≈ E(tn) of rank 2 and unit 2-norm, where

Vn ∈ C
n×2 with V ∗

n Vn = I2, un ∈ C
2 such that ‖un‖ = 1 and Qn =

I2 − 2unu
∗
n ∈ C

2×2 orthogonal, Algorithm 1 determines an approximation
at the time instant tn+1 = tn + hn. In this algorithm, γ > 1 denotes a given
scaling factor for the stepsize control and Orth(B) denotes the unitary matrix
obtained by orthogonalizing the columns of a given (rectangular) matrix B.

Algorithm 1: adaptive Euler step

Data: En, Vn, Qn, xn, yn, λn and ρn (step size predicted by previous
step)

Result: En+1, Vn+1, Qn+1, xn+1, yn+1, λn+1 and ρn+1

begin
1 Set h = ρn, Yn = (Jxn, yn) and Tn = V ∗

n YnPY ∗
n Vn ∈ C

2×2

2 Compute

ûn+1 = un −
1

2
hQnTnun, un+1 =

ûn+1

‖ûn+1‖

V̂n+1 = Vn + h (In − VnV
∗

n )YnPY ∗

n VnQn, Vn+1 = Orth
(
V̂n+1

)

Qn+1 = I2 − 2un+1u
∗

n+1.

3 Set En+1 = JTVn+1Qn+1V
∗
n+1

4 Compute the rightmost eigentriple λ̂, x̂ and ŷ of A+ εEn+1

5 if Re(λ̂) ≤ Re(λn) then
reject the step, reduce the step size to h := h/γ and repeat from
3

else

accept the step: set hn+1 = h, λn+1 = λ̂, xn+1 = x̂ and yn+1 = ŷ

6 if hn+1 = ρn then
increase the stepsize to ρn+1 := γρn

else
set ρn+1 = ρn

7 Proceed to next step.
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Initial conditions. We make use of the following initial condition:

Ẽ0 = JT(Jx0y
∗

0)herm, V0S0V
∗

0 = JẼ0,

where S0 is diagonal. Then we choose, according to the sign of the (diagonal)
entries of S0,

Q0 =

(
±1 0
0 ±1

)
.

For conciseness we do not formulate the algorithm for the real Hamiltonian
case, which has a similar structure to the one we have described in this section.

We remark that the most expensive step of the algorithm is the compu-
tation of a leading eigentriple, which – for a large sparse matrix – can be
done efficiently by using the Arnoldi method with implicit restarting, as im-
plemented in ARPACK [LeSY98].

5 An algorithm for Problem (A)

In this section, we use Algorithm 1 for addressing a generalization of Problem
(A) from the introduction:

Given a Hamiltonian matrix A with no eigenvalues on the imaginary axis
and a given constant δ > 0, find a nearest (in the 2-norm) Hamiltonian matrix
B having some eigenvalue δ-close to the imaginary axis, that is, such that

min |Re(λ)| ≤ δ, where λ is an eigenvalue of B.

The algorithm has the goal to compute

ε∗ = inf{ε ≥ 0 : Λε(A,M, ‖ · ‖) ∩ Sδ 6= ∅}, (5.1)

whereM is the space of Hamiltonian matrices and Sδ = {z ∈ C : |Re(z)| ≤ δ}.

5.1 The left pseudospectral abscissa

In order to compute the value of ε∗ defined in (5.1), we make use of the
following definition. The left ε-pseudospectral abscissa of a Hamiltonian matrix
A is the real part of the right-most point of the Hamiltonian ε-pseudospectrum
in the left complex plane C

− = {z : Re(z) ≤ 0}, i.e.,

αℓ
ε(A) = max{Re z : z ∈ Λε(A,M, ‖ · ‖) ∩ C

−}. (5.2)

Starting from ε > 0 such that αℓ
ε(A) < 0, we want to compute a root ε∗ of

the equation

αℓ
ε(A) = −δ.

We make the following generic assumption for all ε near ε∗.
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Assumption 5.1 Let λ(ε) with Reλ(ε) 6= 0 be a locally rightmost point in the
Hamiltonian ε-pseudospectrum of A. Then λ(ε) is a simple eigenvalue of the
corresponding perturbed matrix A + εE(ε) (with an extremizer E(ε), of unit
norm and Hamiltonian).

Under Assumption 5.1, the corresponding locally rightmost point λ(ε) of
the pseudospectrum is a smooth function of ε and the same holds for suitably
normalized eigenvectors x(ε) and y(ε). In order to derive an equation for ε
to approximate ε∗, we can compute the derivative of the left ε-pseudospectral
abscissa,

αℓ
ε(A) = Reλ(ε),

with respect to ε.

Theorem 5.1 Let λ(ε), ε ∈ [ε, ε), be a branch of locally rightmost points of
the complex or real Hamiltonian ε-pseudospectrum such that Reλ(ε) 6= 0 for
all ε, and Assumption 5.1 holds. Let x(ε) and y(ε) be left and right eigenvectors
of A+ εE(ε) to the eigenvalue λ(ε), with Hamiltonian E(ε) of unit norm. We
then have

dReλ(ε)

dε
= Re

x(ε)∗E(ε)y(ε)

x(ε)∗y(ε)
≥ 0. (5.3)

Proof By Lemma 1.1 we obtain, indicating by ′ differentiation with respect
to ε,

λ′(ε) =
x(ε)∗

(
E(ε) + εE′(ε)

)
y(ε)

x∗(ε)y(ε)
.

In order to prove the theorem we have to show that

Re (x(ε)∗E′(ε)y(ε)) = 0. (5.4)

The maximality property of the real part of the eigenvalue λ(ε) of A+εE(ε)
yields that

Re (x(ε)∗E′(ε)y(ε)) ≤ 0.

Now suppose that for some ε0 ∈ (ε, ε), this inequality would actually be a

strict inequality. Consider Ẽ(ε) of unit norm such that Ẽ(ε0) = E(ε0) and

Ẽ′(ε0) = −E′(ε0). Then, for all ε sufficiently close to ε0, we would have that

the corresponding eigenvalue λ̃(ε) of A + εẼ(ε) satisfies Re λ̃(ε) > Reλ(ε).
This, however, contradicts the optimality of A + εE(ε) and hence (5.4) must
hold.

The non-negativity of
dReλ(ε)

dε
is due to the monotonicity of pseudospectral

sets. ⊓⊔
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5.2 The algorithm

Let the distance δ > 0 be given, with δ small, and let εM denote the limit
of ε∗ (see (5.1)) as δ → 0+. Close to the imaginary axis we make use of the
second order expansion

ε ≈ εM − γαℓ
ε(A)

2 (5.5)

with γ > 0. Given εk, we use Theorem 5.1 and estimate γ and εM by γk and
εMk using the formulæ (the first of which is obtained by differentiating (5.5)
with respect to ε),

γk =
x∗(εk)y(εk)

2|αℓ
εk
(A)|Re (x∗(εk) (E(εk)) y(εk))

εMk = εk + γk(α
ℓ
εk
)2

and then compute

εk+1 = εMk − γkδ
2.

This results in Algorithm 2, where tol is a tolerance controlling the desired
accuracy of the computed optimal ε. (Note that tol cannot be too small due
to the fact that (5.5) is not exact.)

Algorithm 2: Basic algorithm for solving problem (A)

Data: δ, tol and ε0 (such αℓ
ε0
(A) < 0)

Result: εf
begin

1 Set Reject = False and k = 0

2 while |αℓ
εk

(A)− δ| ≥ tol do

3 if Reject = False then

Store εk and αℓ
εk

into the memory

4 Compute γk and εM
k

5 Set εk+1 = εM
k

− γkδ
2

6 Set k = k + 1

else

Set εk =
εk + εk−1

2

7 Compute αℓ
εk

by integrating (2.4) (or (3.2)) with initial datum E(εk−1) (for

k ≥ 1).

8 if αℓ
εk

(A) ≈ 0 (with tolerance tol) then
Set Reject = True

else
Set Reject = False

9 Set εf = εk



18 Nicola Guglielmi et al.

In order to further refine the value obtained from Algorithm 2, we can
apply, starting from the final value εf , the Newton iteration:

εn+1 = εn −
(
αℓ
εn
(A) + δ

) x(εn)
∗y(εn)

Re (x(εn)∗E(εn)y(εn))
, n = 0, 1, . . .

which yields quadratic convergence.
Since values ε > εM lead to rejected steps, it is necessary to choose a

starting value ε0 < εM and possibly underestimate the initial predicted values
for εk. A good choice for ε0 is the unstructured distance from the imaginary
axis, that is the norm of the smallest unstructured matrix F such that A+ F
has a purely imaginary eigenvalue. Such a distance can be effectively computed
by combining the method proposed in [GO11,GL11] with a Newton iteration.
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Fig. 5.1 Hamiltonian 2-norm pseudospectra of the matrix A in Example 5.1 for ε = 10−0.9

(left picture) and ε = ε4 in Table 5.1 (right picture).

Example 5.1 Consider the Hamiltonian matrix

A =




4 1 3− i −2 −2 + 2i 1− i
i −1− i 1 + 2i −2− 2i 0 1 + i

−2 + i 1− i −1 + 2i 1 + i 1− i 0
−4 −3 −1 + i −4 i 2 + i
−3 −2 −1− 2i −1 1− i −1− i

−1− i −1 + 2i 0 −3− i −1 + 2i 1 + 2i




We set δ = 10−4 and ε0 = 0.1. The following Tables 5.1 and 5.2 report the
results for the 2-norm. Two steps have been rejected by detecting the presence
of purely imaginary eigenvalues. The observed convergence is fast.

A refinement of the value of the approximation of ε∗ can be obtained by
applying a Newton iteration.

Example 5.2 We consider a random 30×30 Hamiltonian matrix with δ = 10−3

and tol = 10−6. Table 5.3 illustrates the observed behavior (there appears only
one rejection).

Also in this case we apply a Newton iteration starting from ε3.
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k εk αℓ
εk

0 0.1 −0.37063002644925
1 0.14178200003380 −0.08483455322963
2 0.14422302327426 −0.00482210859774
3 0.14423095778447 −0.00010118673406
4 0.14423095786597 −0.00009999646472

Table 5.1 Computed values of ε and αℓ
ε for Example 5.1.

k εk αℓ
εk

3 0.14423095778447 −0.00010118673406
4 0.14423095786600 −0.00009999253623
5 0.14423095786549 −0.00009999990084

Table 5.2 Computed values of ε and αℓ
ε for Example 5.1 by a Newton iteration starting

from ε = ε3 in Table 5.1.

k εk αℓ
εk

0 0.2 −1.03039154166432
1 0.22059314066343 −0.05527116512772
2 0.22065271799409 −0.00101261933010
3 0.22065271898506 −0.00099987217016

Table 5.3 Computed values of ε and αℓ
ε for Example 5.2.

k εk αℓ
εk

3 0.22065271898506 −0.00099987217016
4 0.22065271920303 −0.00099999710718
5 0.22065271920521 −0.00099999996525

Table 5.4 Computed values of ε and αℓ
ε for Example 5.2 by Newton refinement.

6 Outer algorithms for Problems (B) and (C)

In this section, we use Algorithm 1 for addressing a generalization of Problem
(B) from the introduction: Given a Hamiltonian matrix A with all eigenvalues
on the imaginary axis and a given constant δ > 0, find a nearest Hamiltonian
matrix B having some eigenvalue δ-far from the imaginary axis, that is such
that

max |Re(λ)| = δ, where λ is an eigenvalue of B.

The infimum value ε = ‖B − A‖ such that the above holds for some δ > 0 is
denoted by εm.
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6.1 The algorithm for problem (B)

The algorithm for solving Algorithm (B) proceeds similarly as the one pre-
sented in the previous section for problem (A). In particular, the Newton
refinement strategy works exactly in the same way.

Let the distance δ > 0 be given and assume δ to be small. (Otherwise, we
make directly use of the Newton iteration).

We have to solve the equation

αε(A) = δ,

where αε(A) denotes the pseudospectral abscissa, that is, the real part of the
rightmost point in the Hamiltonian ε-pseudospectrum.

Close to εm we make use of the second order expansion, with γ > 0,

ε ≈ εm + γαε(A)
2. (6.1)

Given εk, we estimate γk and εmk by the following formulæ:

γk =
x∗(εk)y(εk)

2αεk(A)Re (x
∗(εk) (E(εk)) y(εk))

εmk = εk − γk(αεk)
2

and then compute

εk+1 = εmk + γkδ
2.

This results in Algorithm 3, where εu denotes the corresponding distance for
the unstructured pseudospectrum.
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Fig. 6.1 2-norm Hamiltonian pseudospectra of the matrix A in Example 6.1 for δ = 0.5
and ε0 = 0.5 (left picture) and ε = ε5 in Table 6.1 (middle picture). Zoom close to the
rightmost section (right picture).
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Algorithm 3: Basic algorithm for solving problem (B)

Data: δ, tol and ε0 (such that αε0 (A) = 0) and r ∈ [1/2, 1)
Result: εf
begin

1 Set Reject = False and k = 0
2 while |αεk (A)− δ| ≥ tol do
3 if Reject = False then

Store εk and αεk into the memory
4 Compute γk and εm

k

5 Set εk+1 = εm
k

+ γkδ
2

6 if εk+1 ≤ εu then
Set εk+1 = rεk

else
Proceed

7 Set k = k + 1

else

Set εk =
εk + εk−1

2

8 Compute αεk by integrating (2.4) (or (3.2)) with initial datum E(εk−1) (for
k ≥ 1).

9 if αεk (A) ≈ 0 (with tolerance tol) then
Set Reject = True

else
Set Reject = False

10 Set εf = εk

Example 6.1 Consider the Hamiltonian matrix from [ABKMM11]:

A =




−73 −86 54 −99 93 −58 80 77
1 −4 59 54 −58 −61 4 1

−24 −31 −4 −86 80 4 27 26
−26 −24 1 −73 77 1 26 24
−24 −26 −1 −77 73 −1 24 26
−26 −27 −4 −80 86 4 31 24
−1 −4 61 58 −54 −59 4 −1

−77 −80 58 −93 99 −54 86 73




Setting tol = 10−6, we have obtained for δ = 0.5 and δ = 0.01 the results
reported in Table 6.1 and 6.2 (where we have set r = 0.5 and have counted
two rejections).

In Figure 6.1 we show the initial and final pseudospectra by the proposed
Algorithm when δ = 0.5. In the right picture we show a section of the final
pseudospectrum, which lies - as expected - in the strip {z : |Re(z)| ≤ δ}.

Remark 6.1 It is important, at the initial step ε = ε0, to find an initial per-
turbation E such that A+ εE does not have all eigenvalues on the imaginary
axis, otherwise we cannot produce a trajectory to a locally righmost point
of the Hamiltonian pseudospectrum by integrating (2.4). In subsequent steps,
the optimal matrix E from the previous step usually provides a good choice
for the initial perturbation.
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k εk αεk

0 0.5 6.87824338551888
1 0.25 3.91845140594614
2 0.125 1.41478802483750
3 0.10722950104024 0.52551651210602
4 0.10695570418704 0.50001145712079
5 0.10695558424707 0.50000313432414

Table 6.1 Computed values of ε and αε for Example 6.1 with δ = 0.5.

k εk αεk

0 0.5 6.87824338551888
1 0.25 3.91845140594614
2 0.125 1.41478802483750
3 0.10469321189086 0.18533034160397
4 0.10433209049728 0.00345257718485
5 0.10433196518822 0.00010001932585

Table 6.2 Computed values of ε and αε for Example 6.1 with δ = 0.0001.

6.2 A comparison for the real Hamiltonian case

In [ABKMM11, page 31] the authors report the results for Example 6.1 using
real Hamiltonian perturbations. After setting δ = 10−1 they obtain by their
algorithm a perturbation with norm 0.16768 . . . (and full rank).

Applying our algorithm we compute an optimal value

ε = 0.104437573679967 for which αε(A) = 0.099999720172499

and obtain the optimal perturbation

εE = 10−2 ×


2.4533 2.4889 0.1535 −0.0234 −1.2265 −1.4012 1.3594 −1.1337
3.1866 3.0415 0.3055 0.0969 −1.4012 −1.5915 1.0038 −1.7817

−0.2804 −7.1985 2.9955 2.4656 1.3594 1.0038 0.8808 3.6684
6.9138 −0.2359 3.3212 2.4674 −1.1337 −1.7817 3.6684 1.9671

−2.0387 −3.6151 1.8683 1.1127 −2.4533 −3.1866 0.2804 −6.9138
−3.6151 −0.8938 −0.9839 −1.3348 −2.4889 −3.0415 7.1985 0.2359
1.8683 −0.9839 1.7394 1.4531 −0.1535 −0.3055 −2.9955 −3.3212
1.1127 −1.3348 1.4531 1.2232 0.0234 −0.0969 −2.4656 −2.4674




,

where only the leading 5 digits are shown.
The eigenvalues of A+ εE are the following (to a 6 digit accuracy):

±0.1000− 13.9365i, ±0.1000 + 13.9365i, ±4.3068i, ±17.6914i,

and hence 4 eigenvalues lie on the boundary of the strip Sδ.
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In some runs, it turns out that we follow a branch of locally (but not
globally) extremal points of the real Hamiltonian pseudospectra and determine
a final value

ε = 0.14182248093698 for which Reλ(ε) = 0.10000024415943.

Here the eigenvalues of the corresponding perturbed matrix A+εE are the
following (to 6 digits accuracy):

±0.1000, ±6.6450i, ±16.2781i, ±18.4005i,

so that only 2 (real) eigenvalues lie on the boundary of the strip.

6.3 An algorithm for problem (C)

A natural way to deal with problem (C) from the introduction is a repeated
use of a method for solving (B). In fact, after the computation of the first
Hamiltonian perturbation, which moves a pair of imaginary eigenvalues on
the boundary of the considered thin strip, one can apply a Hamiltonian Schur
decomposition to the perturbed matrix and obtain an Hamiltonian block struc-
ture on which it is possible to apply again the method on a Hamiltonian matrix
of smaller dimension, as done in [ABKMM11].

Let us consider again Example 6.1. Computing the Hamiltonian Schur form
of the matrix A + εE, by an orthogonal symplectic matrix Q, we obtain the
following Hamiltonian matrix,

Q(A+ εE)QT =




F11 F12 G11 G12

O F22 G21 G22

O O −FT
11 O

O H22 −FT
12 −FT

22


 (6.2)

where the block

Â =

(
F22 G22

H22 −FT
22

)
, with F22 =

(
−1.3952 −6.0587
−5.6920 −7.6024

)
,

and

G22 =

(
0.3318 −4.2732

−4.2732 −33.0414

)
, H22 =

(
−3.4288 3.8850
3.8850 12.8889

)
,

has the same purely imaginary eigenvalues as A+ εE, namely ±4.3068i, and
±17.6914i.

Applying Algorithm 3 to the matrix Â we are able to compute the distance
ε̂ = 2.777017377181622 and the following optimal perturbation

ε̂Ê =




−0.4573 −2.4489 −1.0526 0.6305
−2.4489 −0.1079 0.6305 −1.1426
−1.0526 0.6305 0.4573 2.4489
0.6305 −1.1426 2.4489 0.1079


 .
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Combining the steps in this and the previous subsection, this implies that
the 2-norm of an optimal perturbation that takes all eigenvalues of A outside
the strip |Re(z)| ≤ 0.1, is at most 2.8815.

7 Applications

As mentioned in the introduction, Hamiltonian matrices play an important
role in applications from control theory and gyroscopic systems. We will now
illustrate how the algorithms developed in this paper can be used in such
applications.

7.1 Linear control systems

Consider a control system

{
ẋ = Ax+B u,
y = C x+Du

(7.1)

with zero initial condition x(0) = 0 and matrices A,B,C andD either complex
or real. Here x is the state, u is the input and y is the output. In the very
common case where A is an Hurwitz matrix and D is a square nonsingular
matrix, passivity with respect to the supply rate s(u(t), y(t)) = y∗(t)u(t) +
u∗(t)y(t), is equivalent to the following dissipation inequality (for t1 > t0):

d

dt
θ (x(t)) ≤ s (u(t), y(t)) , (7.2)

where θ, the so-called storage function, is a suitable nonnegative function which
generalizes the concept of Lyapunov function to an open system. This means
that for a passive system the change in internal storage θ (x(t1)) − θ (x(t0))
can never exceed what is supplied to the system.

A well-known result (see [Ant05]) states that passivity is equivalent to the
property that the associated Hamiltonian matrix, with R = D∗D − I and
S = DD∗ − I,

M =

(
F G
H −F ∗

)
(7.3)

with F = A−BR−1D∗C, G = −BR−1B∗, H = C∗S−1C,

has no purely imaginary eigenvalues.
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7.1.1 Distance to bounded-realness

Let us now suppose that (7.1) is not passive. In order to make it passive, it is
possible to perturb it in a way that the corresponding perturbed Hamiltonian
matrix has all eigenvalues bounded away from the imaginary axis. The mini-
mal norm of such a perturbation is called distance to bounded-realness. This
quantity is computed by solving Problem (C) and consequently by repeatedly
solving Problem (B). On the other hand, the robustness of a passive system
can be computed by solving problem (A), that is, computing the distance
of the underlying Hamiltonian matrix from the set of Hamiltonian matrices
having at least a pair of imaginary eigenvalues.

As mentioned in [ABKMM11], passivation is very important for those sys-
tems arising from passive physical models which lose the passivity property
after being finitely approximated or discretized, so that it is important to
recover it in the finite dimensional model. The same problem occurs after ap-
plying most model reduction procedures, so that the reduced model may lose
the passivity property of the non-reduced problem.

Recently in [MeXu08] the authors have developed a matrix perturbation
theory for Hamiltonian matrices and in [ABKMM11] a method is proposed to
compute the distance to bounded-realness. Computing minimal norm pertur-
bations is a difficult nonconvex optimization problem. In [ABKMM11] sub-
optimal perturbations are constructed, allowing to get upper bounds for the
minimal norm perturbations.

Example 7.1 We consider the following linear control system from [BBK89]:

A =




−0.08 0.83 0 0
−0.83 −0.08 0 0

0 0 −0.7 9
0 0 −9 −0.7


 , B =




1 1
0 0
1 −1
0 0


 , CT =




0.4 0.6
0 0

0.4 1
0 0




and D = diag (0.3,−0.15). The resulting Hamiltonian matrix M of (7.3) reads
(we represent it by using 5 digits)




−0.0402 0.8300 −0.0216 0 2.1219 0 0.0759 0
−0.8300 −0.0800 0 0 0 0 0 0
0.2239 0 −0.4147 9.0000 0.0759 0 2.1219 0

0 0 −9.0000 −0.7000 0 0 0 0
−0.5441 0 −0.7896 0 0.0402 0.8300 −0.2239 0

0 0 0 0 −0.8300 0.0800 0 0
−0.7896 0 −1.1988 0 0.0216 0 0.4147 9.0000

0 0 0 0 0 0 −9.0000 0.7000




which has all purely imaginary eigenvalues:

±9.6211i, ±8.4523i, ±1.5256i, ±0.4499i
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If we apply – as a first step of passivation – Algorithm 3 with δ = 0.3 we
obtain the perturbation ∆ =

1

10




0.0009 −0.0003 0.0209 −0.1642 −0.0197 0.0002 −0.0478 −0.2058
0.0004 0.0000 0.0153 0.0030 0.0002 −0.0001 0.0192 −0.0065

−0.0459 −0.0013 −2.6639 −0.0986 −0.0478 0.0192 1.0948 −0.2580
0.0009 −0.0039 −0.1114 −2.6521 −0.2058 −0.0065 −0.2580 1.1025
0.0008 −0.0000 0.0324 −0.0112 −0.0009 −0.0004 0.0459 −0.0009

−0.0000 0.0000 0.0001 0.0023 0.0003 −0.0000 0.0013 0.0039
0.0324 0.0001 1.0931 −0.2579 −0.0209 −0.0153 2.6639 0.1114

−0.0112 0.0023 −0.2579 1.0835 0.1642 −0.0030 0.0986 2.6521




of spectral norm ε = 0.2894. The perturbed Hamiltonian matrix M +∆ has
the eigenvalues

±0.3000± 9.0370i, ±1.5266i, ±0.4497i,

so that 4 eigenvalues have been pushed away from a strip of width δ = 0.3.

The second (and final) step of Algorithm 3 is obtained in an analogous way
to Example 6.1. Computing the Hamiltonian Schur form of the matrix M+∆,
by an orthogonal symplectic matrix Q we obtain an Hamiltonian matrix in
the form (6.2) with the block

M̂ =

(
F22 G22

H22 −FT
22

)
, where F22 =

(
0.0 0.3201

−1.1328 0.0993

)
,

and

G22 =

(
1.0826 −0.0619

−0.0619 0.2931

)
, H22 =

(
−1.8178 0.0

0.0 0.5137

)
.

Algorithm 3 applied to M̂ provides the optimal perturbation

∆̂ =




0.0025 −0.3267 0.1380 −0.0040
−0.3267 −0.0059 −0.0040 0.1379
0.1380 −0.0040 −0.0025 0.3267

−0.0040 0.1379 0.3267 0.0059




of norm ε̂ = 0.3546. The imaginary eigenvalues of M̂ (the same of M +∆) are
moved by the perturbation above to ±0.3000± 0.9801i.

Finally, the 2-norm of an optimal Hamiltonian perturbation moving the
eigenvalues of M outside the strip |Re(z)| ≤ 0.3 is at most ε+ ε̂ = 0.6440.

We remark that it is in general not possible to express the final perturbation
as a matrix of the form (7.3). Dealing with this additional structure is beyond
the scope of this paper. We intend to treat this problem in a future work,
building on ideas and techniques of the present paper.



Low rank ODEs for Hamiltonian matrix nearness problems 27

7.1.2 Passivity radius

Similarly, for a passive system, it is interesting to compute the so-called pas-
sivity radius (see e.g. [OvVD05]), that is, its distance to the closest non passive
system. A surrogate for an exact computation of the smallest structured per-
turbation (

A∆ B∆

C∆ D∆

)

which destroys passivity can be obtained by solving problem (A) for the asso-
ciated Hamiltonian matrix (7.3), which gives an indication of the distance to
passivity.

Example 7.2 We consider the following passive linear control system:

A =




−8 −4 −1.5
4 0 0
0 1 0


 , B =




2
0
0


 , CT =




1
1

0.75


 , D = (−0.75) .

Indeed the eigenvalues of the associated Hamiltonian matrix (7.3),

M =




−11.4286 −7.4286 −4.0714 9.1429 0 0
4.0000 0 0 0 0 0

0 1.0000 0 0 0 0
−2.2857 −2.2857 −1.7143 11.4286 −4.0000 0
−2.2857 −2.2857 −1.7143 7.4286 0 −1.0000
−1.7143 −1.7143 −1.2857 4.0714 0 0




are
±6.5856, ±2.5784, ±0.5173

The smallest Hamiltonian perturbation which moves a pair of eigenvalues of
M δ-close to the imaginary axis (with δ = 10−4) is

∆ =
1

100




−0.0500 −1.1629 3.5652 0.5637 0.8216 1.0869
−0.0797 −2.6869 7.0393 0.8216 1.0293 0.9200
−0.1232 −6.1570 14.1464 1.0869 0.9200 −0.5256
−0.0042 −0.0633 0.2424 0.0500 0.0797 0.1232
−0.0633 3.4474 −3.5051 1.1629 2.6869 6.1570
0.2424 −3.5051 −2.3758 −3.5652 −7.0393 −14.1464




where ‖∆‖ = 0.1826 and the eigenvalues of M +∆ are

±6.4616, ±2.9138, ±0.0001.

Again, ∆ cannot be expressed in terms of perturbations of A,B,C and
D and a direct analysis of such structured optimal perturbations will be pur-
sued in future. In [OvVD05] the authors propose a method for computing the
passivity radius. The method depends on computing the smallest structured
indefinite perturbation to a Hermitian matrix that makes it singular, which
is obtained by solving a unimodal optimization problem. We believe that a
method based on similar techniques to those exploited in this paper might be
a promising alternative.
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7.2 Gyroscopic systems

We consider a gyroscopic system of ordinary differential equations taking the
form

Mẍ(t) +Gẋ(t) +Kx(t) = 0, (7.4)

where M is Hermitian positive definite, K is Hermitian, and G is skew-
Hermitian. The stability of (7.4) is determined by the eigenvalues of the
quadratic eigenvalue problem

(
λ2M + λG+K

)
x = 0.

Provided that M is sufficiently well conditioned, we can compute a Cholesky
decompositon M = R∗R and consider instead the eigenvalue problem

(
λ2I + λĜ+ K̂

)
x = 0, (7.5)

with Ĝ = (R∗)−1GR−1 and K̂ = (R∗)−1GR−1. The quadratic eigenvalue
problem (7.5) admits the Hamiltonian linearization [MeWa00]

A =

(
− 1

2 Ĝ − 1
4 Ĝ

2 − K̂

I − 1
2 Ĝ

)
.

Clearly, a gyroscopic system (7.4) can only be stable if all eigenvalues of A
are purely imaginary. If the matrices M,G,K are subject to uncertainties or
parameter dependence, it is of interest to provide a bound on the norm of
the perturbations under which the system remains stable. A possibly rather
conservative bound can be obtained from computing the minimal Hamiltonian
perturbation that moves some eigenvalues of A off the imaginary axis:

γ(A) = inf
{
‖∆A‖2 : ∆A is Hamiltonian, Λ(A+∆A) 6⊂ iR

}
. (7.6)

This is problem (B), which can be solved by Algorithm 3.

Example 7.3 We consider Example 5 in [HKLP00] stemming from a Galerkin
discretization of a partial differential equation that models deflation of an
elastic pipe conveying fluid.

Using as parameters a mass equal to 4 (M = 4I) and a load parameter
l = 0.75 we obtain a stable system, whose Hamiltonian matrix has eigenvalues

±0.2947i, ±1.8343i, ±4.3391i, ±7.8429i, ±12.3440i, ±17.8826i.

Applying Algorithm 3 we find that there exists a Hamiltonian perturbation
εE of norm ε = 0.0959 > γ(A) which moves a pair of eigenvalues out of the
strip of radius δ = 0.1. The corresponding eigenvalues of A+ εE are

±0.1000, ±1.8395i, ±4.3395i, ±7.7982i, ±12.2359i, ±17.9382i,

which means that the two eigenvalues of A of smallest modulus coalesced and
were moved off the strip.

The obtained distance ε identifies a sort of stability radius for the gyro-
scopic system in terms of the associated Hamiltonian matrix. The distance to
instability in terms of perturbations to the original matrices M,G,K is an
interesting topic to investigate, which is beyond the scope of this paper.
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