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SHARP CONSTANTS IN THE CLASSICAL WEAK FORM

OF THE JOHN–NIRENBERG INEQUALITY

VASILY VASYUNIN AND ALEXANDER VOLBERG

Abstract. The sharp constants in the classical John–Nirenberg in-
equality are found by using Bellman function approach.

1. Introduction

Bellman function method in Harmonic Analysis was introduced by Burk-
holder for finding the norm in Lp of the martingale transform. Later it
became clear that the scope of the method is quite wide. After Burkholder
a lot of papers followed this method (see, e.g., [11], [9], [10], [22], [17], [14]
and the references section of the present article). It became clear that magic
Burkholder function from [1] is a natural dweller of the area called stochastic
optimal control. Many harmonic analysis problems have their analog of the
stochastic optimal control Bellman function, which is a solution of a certain
partial differential equation (Bellman equation).

In the present paper we solve an extremal problem related to the famous
John–Nirenberg inequality. This is the situation when the Bellman equation
turns out to be the degenerated Monge–Ampère equation. The Bellman
function of the corresponding extremal problem (the definition see below) is
found explicitly. This function carries all the information about the problem:
not only the sharp constants, but, for example, a construction of extremal
test functions (extremizers).

Now we start the formal description of the problem.
For an interval I and a real-valued function ϕ ∈ L1(I), let 〈ϕ〉

I
be the

average of ϕ over I, i.e.,

〈ϕ〉
I

=
1

|I|

∫
I
ϕ,

where |I| stands for Lebesgue measure of I. For 1 ≤ p <∞, let

BMO(J) =
{
ϕ ∈ L1(J) : 〈|ϕ− 〈ϕ〉

I
|p〉

I
≤ Cp <∞, ∀I ⊂ J

}
(1.1)
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2 VASILY VASYUNIN AND ALEXANDER VOLBERG

with the best (smallest) such C being the corresponding “norm” of ϕ. For
ε ≥ 0, let

BMOε(J) = {ϕ ∈ BMO(J) : ‖ϕ‖ ≤ ε}.
The classical definition of John and Nirenberg uses p = 1; it is known that
the norms are equivalent for different p. A crucial property of elements
of BMO-space, the exponential decay of their distribution function, was
established in the classical paper [4]; it is known as the John–Nirenberg
inequality. For every ϕ ∈ BMO(J) and every λ ∈ R the classical John–
Nirenberg inequality consists in the following assertion.

Theorem (John, Nirenberg; weak form)

1

|J |
|{s ∈ J : |ϕ(s)− 〈ϕ〉

J
| ≥ λ}| ≤ c1e−c2λ/‖ϕ‖BMO(J) . (1.2)

We refer to this statement as to the weak form of the John–Nirenberg
inequality to distinguish it from the following equivalent assertion.

Theorem (John, Nirenberg; integral form) There exists ε0 > 0 such that
for every ε, 0 ≤ ε < ε0, there is C(ε) > 0 such that for any function ϕ,
ϕ ∈ BMOε(J), the following inequality holds

〈eϕ〉
J
≤ C(ε)e

〈ϕ〉
J .

The sharp constants in the integral form were found in [17] and [14]. In
the second paper the dyadic analog BMOd is considered as well, for which
every subinterval I of J in definition (1.1) is an element of the dyadic lattice
rooted in J . It appears that the constants in the dyadic case and the usual
one are different.

The Bellman function corresponding to the integral John–Nirenberg in-
equality was found by solving the boundary value problem for the Bellman
equation. In that case the Bellman equation was a second order partial
differential equation with two variables, and due to a natural homogeneity
of the problem, the Bellman partial differential equation was reduced to
an ordinary differential equation, which was successfully solved. The corre-
sponding Bellman equation for the week John–Nirenberg inequality has an
additional parameter λ preventing a similar reduction of the Bellman partial
differential equation to an ordinary differential equation.

The Bellman equations for all these problems are in fact special cases of
the Monge–Ampère equation. After finding possibility to solve this type of
equation explicitly (see [13], [19]) we are able to find the Bellman function
(and therefore, the sharp constants) for the weak John–Nirenberg inequality
as well ([20]).

We work with L2-based BMO-norm, i.e., p = 2 is chosen in (1.1). For
the classical case p = 1, Korenovskii [5] established the exact value c2 =
2/e using the equimeasurable rearrangements of the test function and the
“sunrise lemma”. But to apply the Bellman function method the L2-based
BMO-norm is more appropriate. Some Bellman-type function (so-called
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supersolution) for the weak John–Nirenberg inequality was proposed by Tao
in [16], where there was no attempt to find true Bellman function and sharp
constants. In the present paper it will be proved that for p = 2 the sharp
constant are c1 = 4

e2
and c2 = 1.

2. Definitions and statements of the main results

2.1. Bellman functions. Now the main subject of the paper will be intro-
duced, the Bellman function corresponding to the John–Nirenberg inequal-
ity. First of all we define the following set of test functions

Sε(x) = S(x1, x2; ε) =

{ϕ ∈ BMO(J) : 〈ϕ〉
J

= x1, 〈ϕ2〉
J

= x2, 〈|ϕ− 〈ϕ〉I |
2〉
I
≤ ε2 ∀I ⊂ J} . (2.1)

For any test function ϕ the point x = (x1, x2) = (〈ϕ〉
J
, 〈ϕ2〉

J
) belongs to

the parabolic strip

Ωε = {x = (x1, x2) : x21 ≤ x2 ≤ x21 + ε2} . (2.2)

Indeed, the left inequality x21 ≤ x2 is simply the Cauchy inequality, but the
right one x2 ≤ x21 + ε2 follows from the fact that ϕ ∈ BMOε(J):

x2 − x21 = 〈ϕ2〉
J
− 〈ϕ〉2

J
= 〈|ϕ− 〈ϕ〉

J
|2〉

J
≤ ε2 .

Now we define the Bellman B function corresponding to the weak John–
Nirenberg inequality:

B(x;λ)
def
= B(x;λ, ε)

def
=

1

|I|
sup

{
|{s ∈ I : |ϕ(s)| ≥ λ}| : ϕ ∈ Sε(x)

}
. (2.3)

This function is defined on Ω and it supplies us with the sharp estimate
of the distribution function

1

|J |
|{s ∈ J : |ϕ(s)− 〈ϕ〉

J
| ≥ λ}| ≤ sup

ξ∈[0,ε2]
B(0, ξ;λ) ∀ϕ ∈ BMOε . (2.4)

To check this, we consider a new function ϕ̃
def
= ϕ + c. If ϕ ∈ Sε(x), then

ϕ̃ ∈ Sε(x̃), where x̃1 = x1 + c and x̃2 = x2 + 2cx1 + c2. Therefore, by
definition (2.3), we have

1

|J |
|{s ∈ J : |ϕ̃(s)| ≥ λ}| ≤ B(x̃;λ) .

If we take now c = −〈ϕ〉
J

= −x1, we get x̃1 = 0, x̃2 = x2 − x21, and the
latter inequality turns into

1

|J |
|{s ∈ J : |ϕ(s)− 〈ϕ〉

J
| ≥ λ}| ≤ B(0, x̃2;λ) ≤ sup

ξ∈[0,ε2]
B(0, ξ;λ) .

So, to find the sharp constants in the weak John–Nirenberg inequality we
prove the following theorem.
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Theorem 1. For 0 ≤ λ ≤ ε split Ω in three subdomains (see Fig. 1):

Ω1 = {x ∈ Ω: x2 ≥ λ2} ,
Ω2 = {x ∈ Ω: λ|x1| ≤ x2 ≤ λ2} ,
Ω3 = {x ∈ Ω: x2 < λ|x1|} ,

then

B(x;λ, ε) =



1 , x ∈ Ω1 ,

x2
λ2
, x ∈ Ω2 ,

x2 − x21
x2 + λ2 − 2λ|x1|

, x ∈ Ω3 .

(2.5)

For ε < λ ≤ 2ε split Ω in four subdomains (see Fig. 2):

Ω1 = {x ∈ Ω: |x1| ≥ λ and x2 ≤ 2(λ+ ε)|x1| − λ2 − 2ελ for |x1| < λ+ ε, },
Ω2 = {x ∈ Ω: λ− ε ≤ |x1| ≤ λ+ ε, x2 ≥ max{2λ|x1| − λ2 ± 2ε(|x1| − λ)}},
Ω3 = {x ∈ Ω: x2 < λ|x1|},
Ω4 = {x ∈ Ω: x2 ≥ λ|x1| and x2 ≤ 2(λ− ε)|x1|−λ2+2ελ for |x1| > λ− ε},
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then

B(x;λ, ε) =



1 , x ∈ Ω1 ,

2(λ2 − ε2)|x1| − (λ− ε)x2 + λ(2ε2 + ελ− λ2)
2ελ2

, x ∈ Ω2 ,

x2 − x21
x2 + λ2 − 2λ|x1|

, x ∈ Ω3 ,

x2
λ2
, x ∈ Ω4 .

(2.6)

For λ > 2ε split Ω in five subdomains (see Fig. 3):

Ω1 = {x ∈ Ω: |x1| ≥ λ and x2 ≤ 2(λ+ ε)|x1| − λ2 − 2ελ for |x1| < λ+ ε, },
Ω2 = {x ∈ Ω: λ− ε ≤ |x1| ≤ λ+ ε, x2 ≥ max{2λ|x1| − λ2 ± 2ε(|x1| − λ)}},
Ω3 = {x ∈ Ω: x2 < 2(λ− ε)|x1| − λ2 + 2ελ},
Ω4 = {x ∈ Ω: x2 ≥ 2(λ− ε)|x1| − λ2 + 2ελ and x2 ≤ 2ε|x1| for |x1| < ε},
Ω5 = {x ∈ Ω: x2 ≥ 2ε|x1|},
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then

B(x;λ, ε) =



1 , x ∈ Ω1 ,

1− x2 − 2(λ+ ε)|x1|+ λ2 + 2ελ

8ε2
, x ∈ Ω2 ,

x2 − x21
x2 + λ2 − 2λ|x1|

, x ∈ Ω3 ,

e

2

(
1−
√

1−x2−x
2
1

ε2

)
exp

{
|x1|−λ
ε

+

√
1−x2−x

2
1

ε2

}
, x ∈ Ω4 ,

x2
4ε2

exp

{
2− λ

ε

}
, x ∈ Ω5 .

(2.7)

Corollary. If ϕ ∈ BMOε(I), then

1

|I|
|{s ∈ I : |ϕ(s)− 〈ϕ〉

I
| ≥ λ}| ≤



1, if 0 ≤ λ ≤ ε,

ε2

λ2
if ε ≤ λ ≤ 2ε,

e2

4
e−λ/ε if 2ε ≤ λ,

and this bound is sharp.



SHARP CONSTANTS IN THE THE JOHN–NIRENBERG INEQUALITY 7

6

-

Ω3

Ω2

Ω1

Ω4

Ω5

x2 = x21

x2 = x21 + ε2

q

ppppppp
ppppppp
ppppppp
ppppppp
pppp

q
λ−2ε

q
ppppppp
ppppppp
pp
q

λ−ε
q
λ

q

q

ppppppp
ppppppp
ppppppp
ppppppp

q
λ+ε

q

ppppppp
ppppppp
ppppppp
ppppppp
ppppppp
ppppppp
ppppppp
pppp

q
λ+2ε

Figure 4

Proof. According to formula (2.4) it is sufficient to calculate

sup
ξ∈[0,ε2]

B(0, ξ;λ, ε) .

Since B(0, x2;λ, ε) is an increasing function in x2, this supremum is just the
value B(0, ε2;λ, ε), what yields the stated formula. �

Before we start to prove Theorem 1, where the Bellman function has two
singularities on the boundary at the points x = (±λ, λ2), let us consider the
simplest possible extremal problem with one singularity. We shall consider
two extremal problems simultaneously: one estimate from above and the
second estimate from below. So, we define two Bellman functions: Bmax

and Bmin.

Bmax(x;λ, ε)
def
=

1

|I|
sup

{
|{s ∈ I : ϕ(s) ≥ λ}| : ϕ ∈ Sε(x)

}
,

Bmin(x;λ, ε)
def
=

1

|I|
inf
{
|{s ∈ I : ϕ(s) ≥ λ}| : ϕ ∈ Sε(x)

}
,

For these function the following formula will be proved:

Theorem 2. Split Ω in the following five subdomains (see Fig. 4):

Ω1 = {x ∈ Ω: x1 ≥ λ+ ε, x2 ≥ 2(λ+ ε)x1 − λ2 − 2ελ} ,
Ω2 = {x ∈ Ω: x2 ≤ 2(λ+ ε)x1 − λ2 − 2ελ} ,
Ω3 = {x ∈ Ω: λ− ε ≤ x1 ≤ λ+ ε, x2 ≥ 2λx1 − λ2 + 2ε|x1 − λ|} ,
Ω4 = {x ∈ Ω: x2 ≤ 2(λ− ε)x1 − λ2 + 2ελ} ,
Ω5 = {x ∈ Ω: x1 ≤ λ− ε, x2 ≥ 2(λ− ε)x1 − λ2 + 2ελ} .
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Then

Bmax(x;λ, ε) =



1 , x ∈ Ω1 ∪ Ω2 ,

1− x2 − 2(λ+ ε)x1 + λ2 + 2ελ

8ε2
, x ∈ Ω3 ,

x2 − x21
x2 + λ2 − 2λx1

, x ∈ Ω4 ,

e

2

(
1−
√

1−x2−x
2
1

ε2

)
exp

{
x1−λ
ε

+

√
1−x2−x

2
1

ε2

}
, x ∈ Ω5 ,

(2.8)
and

Bmin(x;λ, ε) =



0 , x ∈ Ω5 ∪ Ω4 ,

x2 − 2(λ− ε)x1 + λ2 − 2ελ

8ε2
, x ∈ Ω3 ,

1− x2 − x21
x2 + λ2 − 2λx1

, x ∈ Ω2 ,

1− e

2

(
1−
√

1−x2−x
2
1

ε2

)
exp

{
λ−x1
ε

+

√
1−x2−x

2
1

ε2

}
, x ∈ Ω1 .

(2.9)

3. How do we proceed?

The consideration of the theorems above can be split to four parts.

• I. In the first part one observes that just by definition Bellman func-
tions B satisfy a certain concavity condition in their domain of def-
inition and boundary conditions on (part of) the boundary of this
domain.
• II. In the second part one considers all function satisfying these con-

cavity and boundary conditions. We denote this class by V. And
one makes the following supposition: as b belongs to V and is the
“best” such function, it has to satisfy not only the concavity con-
dition but also this concavity should become degenerate, i.e., the
inequality has to turns into equality along some vector field on our
domain Ω. This brings to the picture the Monge–Ampère equation.
One solves it using the boundary conditions mentioned above. The
result is a function B ∈ V. Function B carries an interesting geo-
metric information to be used later.

These two steps are in fact not necessary for the proof of the results,
they are needed only to finding a function B, a candidate for a role of the
Bellman function B. For example, in the series of excellent papers [6, 7, 8]
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very complicated Bellman functions appear as deus ex machina. As we
shall see the analysis of Monge–Ampère equation not only supplies us with
a candidate, but it helps in the next two steps as well, namely, in the prove
that the found candidate really is the desired Bellman function.

• III. The third part consists of proving that B ≥ B. In convex do-
mains of definition this is usually not difficult. Otherwise it may
require a non-trivial proof, see [14] and Section 6 below.
• IV. The fourth part consists of proving B ≤ B. This is achieved by

presenting the extremal functions or extremal sequences of functions.
In its turn, such functions are found from the geometric structure of
B (mentioned above in II).

4. Heuristic for the Monge–Ampr̀e equation.
Boundary condition

If in (2.3) we would take the supremum over functions lying only in dyadic
BMOd, then we would get quite easily that the corresponding dyadic Bell-
man function Bd would satisfy the following inequality

Notice first, the local concavity of the function B:

Bd
( x+ + x−

2

)
≥ 1

2

(
Bd(x+) + Bd(x−)

)
, α± ≥ 0, α+ + α− = 1, (4.1)

for any pair x± ∈ Ωε such that the middle point x = 1
2(x− + x+) is in Ωε.

In fact, the definition of Bd does not depend on the dyadic interval I. This
is just the scale invariance of the problem. Therefore, let us choose an almost
best (up to an error η) function ϕ+ ∈ BMOd(I+) for data x+ ∈ Ω, (and for
fixed λ, ε), and let us do the same for x−, we call a corresponding almost
best (again up to an error η) function ϕ− ∈ BMOd(I−). Consider function
ϕ equal to ϕ± on I± correspondingly. We can check that ϕ ∈ BMOd(I). In
fact one should only check that 〈ϕ2〉

I
− 〈ϕ〉2

I
≤ ε2. This easily follows from

the requirement that x = 1
2(x− + x+) is in Ωε. The function ϕ competes to

be the extremal function for the data x ∈ Ω. The supremum given by Bd(x)
is not less than 1

|I| |{t ∈ I : ϕ(t) ≥ λ}|. But

1

|I|
|{t∈I : ϕ(t)≥λ}| = 1

2

( 1

|I+|
|{t∈I+ : ϕ(t)≥λ}|+ 1

|I−|
|{t∈I− : ϕ(t)≥λ}|

)
=

1

2

( 1

|I+|
|{t∈I+ : ϕ+(t)≥λ}|+ 1

|I−|
|{t∈I− : ϕ−(t)≥λ}|

)
,

which is at least 1
2

(
Bd(x+) + Bd(x+)

)
− η. We get (4.1) by choosing η as

small as we wish.
The same consideration for B instead of Bd hits the following difficulty:

we cannot readily say that ϕ built of two functions ϕ± is in BMO(I) and has
norm at most ε. To do that we would need to check the too many intervals,
namely, all intervals containing the center of interval I inside them.
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Our function B does not satisfy (4.1) for all three points x± and x =
1
2(x+ +x−) lying in Ωε. However (4.1) is true for B if the entire straight line
segment [x−, x+] is in Ωε. This means that our function is locally concave,
i.e., it is concave in every convex subset of Ωε. Even though there is no
formal justification of this property, we will see that this is exactly what
happens. For the smooth enough functions, the concavity condition can be
rewritten in the differential form:

d2B

dx2
def
=

(
Bx1x1 Bx1x2

Bx2x1 Bx2x2

)
≤ 0 , ∀x ∈ Ω , (4.2)

where by Bxixj we denote the partial derivatives
∂2B

∂xi∂xj
.

Proposition (Boundary condition).

B(x1, x
2
1) =

{
1 if x1 ≥ λ ,
0 if x1 < λ .

(4.3)

This is obvious, because at every point of the boundary, where x2 = x21, we
can have inly one test function, and this test function is a constant function
ϕ(t) = x1.

If we look for a sharp estimate we need to choose the minimal possible
function from the class of concave functions satisfying this boundary condi-
tion, which must be the Bellman function B. This function, “a candidate
in the true Bellman function” will be denoted by the usual letter B. For
every point x ∈ Ω there exists an extremal function ϕ (or “almost extremal”
function ϕn, i.e., a sequence of functions) realizing the supremum in the def-
inition (2.3). The usual procedure of using the Bellman function consists in
the consecutive application of (6.1), when splitting the interval I, where a
test function is defined. For the extremal test function there has to be no
loss in such procedure, therefore, for the Bellman function the equality has
to occur at least for one splitting the point x into a pair {x+, x−}. For a
concave function this means that it is linear at some direction. If we have
almost extremal functions, i.e., an extremal sequence, then we must have
“almost equality” in (6.1), at least up to the terms of second order. In any
case this means that the Hessian matrix (4.2) has to be degenerated. Thus,
we are looking for the “best” B, on the top of this condition of negativity
of Hessian we will impose the following degeneration condition:

∀x ∈ Ω ∃Θ(x) ∈ R2 \ {0} :
(d2B
dx2

(x)Θ(x),Θ(x)
)

= 0 . (4.4)

Since the matrix d2B
dx2

is negatively defined, we conclude from (4.4) the
following degeneration condition on the Hessian:
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det

(
Bx1x1 Bx1x2
Bx2x1 Bx2x2

)
= 0 , ∀x ∈ Ω . (4.5)

5. Foliation

Our heuristic tells us that to find B we need to guess the right foliations
of Ω. Actually this is rather difficult. Originaly it was made “by hand”
using some heuristic arguments. But now it is clear how to build such a
foliation for almost arbitrary boundary condition. Explanation how to do
this and a general approach to this geometric problem can be found in [2],
[3]. In these papers quite general ruling surfaces with given boundary curve
are built.

6. Proofs of the theorems

Let us show that it is sufficient to prove Theorem 2 only for Bmax, then
we get the lower Bellman function automatically. Indeed, since Bmax is
a continuous function in λ for any fixed x except one point on the lower
boundary (i.e. x2 > x21), for any such x and any η > 0 we have:

|{s ∈ I : ϕ(s) ≥ λ+ η}| ≤ |{s ∈ I : ϕ(s) > λ}| ≤ |{s ∈ I : ϕ(s) ≥ λ}| ,
which yields

B(x;λ+ η) ≤ sup
{
|{s ∈ I : ϕ(s) > λ}| : ϕ ∈ Sε(x)

}
≤ B(x;λ) .

Therefore, the Bellman function for the strict inequality in the definition is
the same as the Bellman function for the non strict inequality, except one
point on the boundary x = (λ, λ2), where we know the Bellman function
from the beginning, because for the points of the lower boundary the set
Sε(x) consists of only the constant test function ϕ = x1 = λ.

At the point x = (λ, λ2), where both Bellman function are equal to 1,
Bmax(x) = Bmin(x) = 1. At all other points we have the following relation

Bmin(x1, x2;λ) = 1−Bmax(−x1, x2;−λ).

Indeed,

Bmin(x1, x2;λ) =
1

|J |
inf
{
|{s ∈ J : ϕ(s) ≥ λ}| : ϕ ∈ Sε(x)

}
= 1− 1

|J |
sup

{
|{s ∈ J : ϕ(s) < λ}| : ϕ ∈ Sε(x)

}
= 1− 1

|J |
sup

{
|{s ∈ J : − ϕ(s) > −λ}| : ϕ ∈ Sε(x)

}
= 1−Bmax(−x1, x2;−λ) .

Using this relation we obtain (2.9) from (2.8).
When proving Theorem 1 we denote by B the function from the right-

hand side of either (2.5), or (2.6), or (2.7), depending on the relation between
λ and ε, and B will be the function from the right-hand side of (2.8) in the
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proof of Theorem 2. In any case B will be a candidate for the role of the
Bellman function, and to prove the theorem we need in each case to check
two inequalities for the corresponding pair B and B: B(x) ≤ B(x) and
B(x) ≥ B(x) for every point x ∈ Ωε.

To prove the upper estimate, we need, first, the local concavity of the
function B:

B(α+x
+ + α−x

−) ≥ α+B(x+) + α−B(x−) , α± > 0, α+ + α− = 1, (6.1)

for any pair x± ∈ Ωε such that the whole straight line segment [x−, x+] is
in Ωε, and, second, the following splitting lemma that can be found in [17]
or [14]:

Lemma 3 (Splitting lemma). Fix two positive numbers ε, δ, with ε < δ.
For an arbitrary interval I and any function ϕ ∈ BMOε(I), there exists a
splitting I = I+ ∪ I− such that the whole straight line segment [xI− , xI+ ] is

inside Ωδ. Moreover, the parameters of splitting α±
def
= |I±|/|I| are separated

form 0 and 1 by constants depending on ε and δ only, i.e. uniformly with
respect to the choice of I and ϕ.

Here the following notation was used: for a function ϕ ∈ BMOε(J) and

a subinterval I ⊂ J we define a Bellman point xI
def
= (〈ϕ〉

I
, 〈ϕ2〉

I
) in the

domain Ωε.
Using this lemma we prove the following result.

Lemma 4. Let G be a locally concave bounded function on Ωδ, δ > ε, and
continuous at almost every point of the lower boundary of Ω. Let E be a
measurable subset of R. If the function G satisfies the following boundary
condition

G(x1, x
2
1) =

{
1, if x1 ∈ E;

0, if x1 6∈ E,
(6.2)

then
1

|I|
|{s : ϕ(s) ∈ E}| ≤ G(x)

for all ϕ ∈ Sε(x).

We will use this lemma to prove the theorem putting G(x) = B(x;λ, δ)
and then, using continuity of B(x;λ, δ) in δ, we pass to the limit δ → ε. In
such a way we get the upper estimate

B(x;λ, ε) ≤ B(x;λ, ε).

Proof of Lemma 4. Procedure of the proof is standard, as in [17] or [14]:
we apply repeatedly main inequality (6.1) each time splitting the interval
according to Lemma 3.

Fix a function ϕ ∈ Sε(x). By the splitting lemma we can split every
subinterval I ⊂ J, in such a way that the segment [xI− , xI+ ] is inside Ωδ.
Since G is locally concave, we have (we drop temporarily parameter δ)

|I|G(xI) ≥ |I+|G(xI+) + |I−|G(xI−)
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for any such splitting. Repeating this procedure n times we get 2n subinter-
vals of n-th generation (this set of intervals we denote by Dn). So, we can
write the following chain of inequalities:

|J |G(xJ) ≥ |J+|G(xJ+) + |J−|G(xJ−) ≥
∑
I∈Dn

|I|G(xI) =

∫
J
G(x(n)(s)) ds ,

where x(n)(s) = xI , when s ∈ I, I ∈ Dn. By the Lebesgue differentiation

theorem we have x(n)(s)→ (ϕ(s), ϕ2(s)) almost everywhere. (We have used
here the fact that we split the intervals so that all coefficients α± are uni-
formly separated from 0 and 1, and, therefore, max{|I| : I ∈ Dn} → 0 as
n → ∞.) Since G is bounded, we can pass to the limit in this inequal-
ity by the Lebesgue dominated convergence theorem. Using the boundary
condition (6.2) we obtain:

|J |G(xJ) ≥
∫
J
G(ϕ(s), ϕ2(s)) ds =

∫
{s : ϕ(s)∈E}

ds = |{s : ϕ(s) ∈ E}| .

Dividing the obtained inequality by |J |, we come to the desired inequality.
�

To complete proving the upper estimate B ≤ B both in Theorems 1 and 2
we need to check local concavity of the functions B defined by (2.5), (2.6),
(2.7), and (2.8).

Let us check the most difficult case (2.7). In all other cases the consider-
ation is analogous.

∂B

∂x1
=



0 , x ∈ Ω1 ,

λ+ ε

4ε2
signx1 , x ∈ Ω2 ,

2(x2 − λ|x1|)(λ− |x1|)
(x2 + λ2 − 2λ|x1|)2

signx1 , x ∈ Ω3 ,

e

2
· ε−|x1|−

√
ε2−x2+x21
ε2

exp

{
|x1|−λ
ε

+

√
1−x2−x

2
1

ε2

}
signx1, x ∈ Ω4 ,

0, x ∈ Ω5 ;
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∂B

∂x2
=



0 , x ∈ Ω1 ,

− 1

8ε2
, x ∈ Ω2 ,( |x1| − λ

x2 + λ2 − 2λ|x1|

)2
, x ∈ Ω3 ,

e

4ε2
exp

{
|x1|−λ
ε

+

√
1−x2−x

2
1

ε2

}
, x ∈ Ω4 ,

1

4ε2
exp

{
2− λ

ε

}
, x ∈ Ω5 .

(6.3)

We see that the function B is C1-smooth on the boundaries Ω5 ∩Ω4, where

Bx1 = 0 , Bx2 =
1

4ε2
exp

{
2− λ

ε

}
,

and on Ω4 ∩ Ω3, where

Bx1 = −λ− 2ε

2ε2
, Bx2 =

1

4ε2
.

On the boundary of Ω2 the first derivatives have jumps of the needed signs
to keep concavity of B. First of all, we note that it is sufficient to consider
a jump along any direction transversal to the boundary, because along the
boundary our functions coincide and their derivatives coincide as well. (By
the way, to check C1-smoothness ofB on the boundary of Ω4, it was sufficient
to verify the continuity of any partial derivatives, another one would be
continuous automatically.) We check the value of jumps of Bx2 , because this
direction is transversal to the boundary for any ε. According to (6.3), on Ω2

the derivative Bx2 is strictly negative and on Ω1 and Ω3 it is nonnegative,
therefore Bx2 monotonously decreases in x2, as we need. To prove local
concavity of B everywhere, it remains to check that the Hessian matrix

d2B

dx2
=

(
Bx1x1 Bx1x2
Bx2x1 Bx2x2

)
is non-positive. On Ω1 ∪ Ω2 ∪ Ω5 the function is linear, and therefore there
is nothing to check. On Ω3 we have

d2B

dx2
=


− 2(λ2 − x2)2

(x2 + λ2 − 2λ|x1|)3
2(λ2 − x2)(λ− |x1|)
(x2 + λ2 − 2λ|x1|)3

signx1

2(λ2 − x2)(λ− |x1|)
(x2 + λ2 − 2λ|x1|)3

signx1 − 2(λ− |x1|)2

(x2 + λ2 − 2λ|x1|)3

 ≤ 0 ,

and on Ω4

d2B

dx2
=

e1+r−
λ
ε

8ε3
√
ε2 − x2 + x21

(
−4ε2r2 2εr

2εr −1

)
≤ 0 ,
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where r = 1
ε

(
|x1|+

√
ε2 − x2 + x21

)
.

In a similar way it is possible to check local concavity of the functions B
defined by (2.5), (2.6), and (2.8). Thus we completed the proof of the upper
estimate B ≤ B both in Theorems 1 and 2.

To prove the converse inequality we construct extremal test functions
(extremizers) realizing supremum in the definition of the Bellman function.
Again, we restrict ourself by the consideration of the most difficult case (2.7)
only. Moreover, it is sufficient to consider only the points with x1 ≥ 0,
because if ϕ is an extremizer for a point (x1, x2), then the function −ϕ is
an extremizer for the point (−x1, x2).

Any point of Ω1 can be represented as a convex combination of the points
of the boundary, where |x1| ≥ λ, i.e. B(x) ≥ 1. Therefore, the corresponding
extremizer can be constructed as a step function consisting of two constants.
Namely, for an arbitrary x ∈ Ω1 we draw the tangent line to the upper
boundary so that the tangent point is to the right from x. First coordinates
of two points of intersection of that tangent line with the lower boundary
are u± = x1 ± ε+

√
ε2 − x2 + x21, and the corresponding extremizer is

ϕ(t) =

{
u−, if 0 < t < u+−x1

2ε ,

u+, if u+−x1
2ε < t < 1.

By direct calculation we check that (〈ϕ〉
[0,1]

, 〈ϕ2〉
[0,1]

) = x and ϕ ≥ λ. First

of all we note that

u+ − u− = 2ε,

u+ + u− = 2
(
x1 +

√
ε2 − x2 + x21

)
,

u+u− =
(
x1 +

√
ε2 − x2 + x21

)2
− ε2.

Therefore,

〈ϕ〉
[0,1]

= u−
u+ − x1

2ε
+ u+

(
1− u+ − x1

2ε

)
= u+ − (u+ − x1)(u+ − u−)

2ε
= x1,

〈ϕ2〉
[0,1]

= (u−)2
u+ − x1

2ε
+ (u+)2

(
1− u+ − x1

2ε

)
= (u+)2 − (u+ − x1)(u+ − u−)(u+ + u−)

2ε
= x1(u

+ + u−)− u+u−

= 2x1

(
x1 +

√
ε2 − x2 + x21

)
−
(
x1 +

√
ε2 − x2 + x21

)2
+ ε2 = x2.

To prove that ϕ ≥ λ we need to check that u− ≥ λ. If x1 ≥ λ + ε, then
everything is trivial:

u− ≥ x1 − ε ≥ λ.
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If x1 < λ+ ε, then the second coordinate of a point x from Ω+
1 satisfies the

following additional condition x2 ≤ 2(λ+ ε)x1 − λ2 − 2ελ. Therefore,

ε2 − x2 + x21 ≥ ε2 + x21 − 2(λ+ ε)x1 + λ2 + 2ελ = (λ+ ε− x1)2,

and hence,

u− ≥ x1 − ε+ |λ+ ε− x1| = λ.

What we need more to check is the fact that the BMO-norm of our ex-
tremizer does not exceed ε. In fact it is equal to ε, since the BMO-norm
of any step function consisting of two steps is equal to the half of the jump
and in our case u+ − u− = 2ε. So, we have proved that B ≥ 1 in Ω1.

Now, we consider a point x from Ω+
3 . A similar step function consisting

of two steps will be an extremizer here. We have to draw a straight line
through the points x and (λ, λ2). It intersects the lower boundary in one

more point with the first coordinate u = λx1−x2
λ−x1 . We take a step function

consisting of steps λ and u:

ϕ(t) =

{
λ, if 0 < t < a,

u, if a < t < 1,

where a =
x2−x21

x2+λ2−2λx1 . By direct calculation we can check that

〈ϕ〉
[0,1]

= λa+ u(1− a) = x1,

〈ϕ2〉
[0,1]

= λ2a+ u2(1− a) = x2.

The fact that ϕ ∈ BMOε is geometrically clear, because a Bellman point
corresponding to ϕ and any subinterval of [0, 1] is in Ω3. However this is
easy to check formally as well. The jump is

λ− u = λ− x1 +
x2 − x21
λ− x1

.

Since x2 ≤ 2(λ− ε)x1 − λ2 + 2λε for x ∈ Ω+
3 , we have

x2 − x21 ≤ (λ− x1)(2ε− λ+ x1),

and hence λ− u ≤ 2ε. So, we conclude that

B ≥ a =
x2 − x21

x2 + λ2 − 2λx1
.

To consider a point x ∈ Ω+
2 we note that this point is a convex combination

of three point Λ and Λ± on the lower boundary with the first coordinates
λ and λ± 2ε respectively. As a result we construct an extremizer as a step
function consisting of these three steps:

ϕ(t) =


λ− 2ε, if 0 < t < a,

λ, if a < t < b,

λ+ 2ε, if b < t < 1.
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For ϕ to be a test function corresponding the point x (i.e. for 〈ϕ〉
[0,1]

= x1

and 〈ϕ2〉
[0,1]

= x2) we need to take

a =
x2 + λ2 − 2λx1 − 2ε(x1 − λ)

8ε2

and

b = 1− x2 + λ2 − 2λx1 + 2ε(x1 − λ)

8ε2
.

The easiest way to prove that ϕ ∈ BMO is the following geometric consider-
ation. Take any straight line, say L, passing through x and not intersecting
the upper parabola. Note that we need to consider the oscillation of ϕ only
over intervals [α, β] containing [a, b], because in other case ϕ would have
on [α, β] only one jump of size 2ε, but as we know the BMO-norm of such
step function is just ε. Our point x is a convex combination of three Bell-
man points x[0,α], x[α,β], and x[β,1]. But since the points x[0,α] = Λ− and
x[β,1] = Λ+ are above the line L, the point x[α,β] has to be below this line
and therefore in Ωε. This means just what we need that the oscillation over
[α, β] does not exceed ε.

It remains to note that the measure of the set where ϕ ≥ λ is 1 − a, i.e.
in Ω2 we have

B ≥ 1− a = 1− x2 + λ2 − 2λx1 − 2ε(x1 − λ)

8ε2
.

To get an extremizer for a point x on the intersection of the upper
parabola with Ω+

4 we need to concatenate the logarithmic function with
the step function corresponding to the upper right corner of Ω+

4 , i.e. with
the step function consisting of two steps of equal size with the values λ and
λ− 2ε. For an arbitrary point x ∈ Ω+

4 we have cut the latter function from
below on the corresponding level. As a result we get the following

ϕ(t) =


λ, if 0 < t < a,

λ− 2ε, if a < t < 2a,

λ− 2ε+ ε log 2a
t , if 2a < t < b,

λ− 2ε+ ε log 2a
b , if b < t < 1.

As in the previous case, we could write down two equations 〈ϕ〉
[0,1]

= x1 and

〈ϕ2〉
[0,1]

= x2 and solving them to find the appropriate value of the parame-

ters a and b. However it is easier to find a and b using other arguments and
after that simply to check that the averages have the desired values. For this
aim we consider splitting of the interval [0, 1] at the point b. In result we get

two Bellman points V = x[0,b] and U = x[b,1]. The point U = (u, u2) is on the
lower boundary, it corresponds to the constant function u = λ−2ε+ε log 2a

b .
The point V has to be on the on the upper boundary and the segment [U, V ]
has to be a segment of the extremal line passing through x, i.e. a segment of
the tangent line to the upper parabola. (We mean here the extremal lines of
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the solution of the corresponding Monge–Ampère equation, which is lurking
behind all our considerations.) But it is easy to calculate the coordinates
of the points of intersection the tangent line to the upper parabola passing
through the point x:

u = x1 − ε+
√
ε2 − x2 + x21 ,

whence

log
2a

b
= 1 +

x1 − λ
ε

+

√
1− x2 − x21

ε2
.

Furthermore, the length of the horizontal projection of [U, V ] is just ε, i.e.
the splitting ratio is

b =
x1 − u
ε

= 1−
√

1− x2 − x21
ε2

,

and finally

a =
e

2

(
1−

√
1− x2 − x21

ε2

)
exp

{
x1 − λ
ε

+

√
1− x2 − x21

ε2

}
.

We omit verification that for this parameters a and b averages of ϕ and ϕ2

have the prescribed values. To finish our proof of the desired estimate

B(x) ≥ a
for any x ∈ Ω4, it remains to verify that the norm of our test function ϕ
does not exceed ε. Again this verification will be geometric. Consider the
following curve in Ωε built by using ϕ mentioned above:

ψ(t) = x[0,t], t ∈ [0, 1].

For t ∈ [0, a] the point ψ(t) stands at Λ = (λ, λ2). At the moment t = a it
starts to move to the left along the tangent line to the upper boundary. At
the moment t = 2a it reaches the upper parabola and continue its movement
along this upper boundary till the point V . It reaches V at the moment t = b
and then continues along [U, V ]. The destination point is ψ(1) = x. Note
that this curve is convex. Take now an arbitrary subinterval [α, β] ⊂ [0, 1]
and draw a straight line L passing through ψ(β) and tangent to our curve ψ
(i.e. tangent to the upper parabola). Since ψ is concave, the point ψ(α) =

x[0,α] is above L (more precisely, not below L). And we conclude that the

point x[α,β] has to be below L (more precisely, not above L), because the
point ψ(β) (on L) is a convex combination of the point ψ(α) (above L) and

x[α,β]. Therefore, the latter point is in Ωε, i.e. the oscillation of ϕ over this
interval does not exceed ε.

Finally, we have to consider the most difficult case x ∈ Ω5. We shall
proceed as in the triangle domain Ω+

2 . Arbitrary point of Ω5 is a convex
combination of three points: the origin and E± = (±ε, 2ε2). Since E± ∈ Ω±4 ,
we already know the extremizers for these points, but for the origin there is
the only test function, namely, the constant zero function. We concatenate
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these three function in the proper order (to get a monotonous function in
result). This will be the desired extremizer:

ϕ(t) =



−λ, if 0 < t < a−,

−λ+ 2ε, if a− < t < 2a−,

ε log t
2a−
− λ+ 2ε, if 2a− < t < b−,

0, if b− < t < 1− b+,
ε log 2a+

1−t + λ− 2ε, if 1− b+ < t < 1− 2a+,

λ− 2ε, if 1− 2a+ < t < 1− a+,
λ, if 1− a+ < t < 1.

The continuity of ϕ at the points t = b− and t = 1− b+ yields

b−
2a−

=
b+

2a+
= exp

(λ
ε
− 2
)
.

From the representation

x = b−E
− + b+E

+ + (1− b− − b+)0

we get two equations for b±:

x1 = −εb− + εb+,

x2 = 2ε2b− + 2ε2b+,

whence

b± =
x2 ± 2εx1

4ε2
,

and therefore,

a± =
1

2
b± exp

(
2− λ

ε

)
=
x2 ± 2εx1

8ε2
exp

(
2− λ

ε

)
.

Again we omit verification that 〈ϕ〉
[0,1]

= x1 and 〈ϕ2〉
[0,1]

= x2, we only say

few words how to check that the norm of ϕ does not exceed ε. We shall
proceed as in the triangle domain Ω+

2 . Take any straight line L passing
through x and not intersecting the upper parabola. Note that we need to
consider the oscillation of ϕ only over intervals [α, β] containing [b−, 1− b+],
because in other case ϕ on [α, β] is a part of test function considered for the
domain Ω4. Our point x is a convex combination of three Bellman points
x[0,α], x[α,β], and x[β,1]. It is clear that the points x[0,α] and x[β,1] are above
the line L (they are somewhere on the left and right curves considered for

the points from Ω4
±). Therefore, the point x[α,β] has to be below the line

L, i.e. in Ωε. This means just what we need that the oscillation over [α, β]
does not exceed ε.

It remains to note that the measure of the set where ϕ ≥ λ is a+ and the
measure of the set where ϕ ≤ −λ is a−, i.e. in Ω5 we have

B ≥ a− + a+ =
x2
4ε2

exp
(
2− λ

ε

)
.
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This completes the proof of formula (2.7). Extremizers for all other cases
of Theorem 1 and Theorem 2 are absolutely similar to those just built. �

7. How to find the expression for the Bellman function
and formulas for extremizers

The theorems presented in this paper were proved in 2006, when the
problem of finding a Bellman function was a kind of art. Using some heuristic
arguments the whole domain was splitting in several subdomains, thereafter
the corresponding boundary value problem for the homogeneous Monge–
Ampère equation was solved. The solutions were glued together continuously
to get a locally convex function in the entire domain. After that, using
known foliation of the domain by the extremal lines of the solution of the
Monge–Ampr̀e equation, the extremizers were constructed for every point of
the domain. We refer the reader to two papers [2] and [15] for explanation
of methods of solving Monge–Ampère equation in the parabolic strip, and
to [19] for more general cases.

The same can be said about finding extremal test functions and especially
about the proof that the found function has the desired BMO-norm. The
geometric method of proving that the BMO-norm of the extremizers does not
exceed ε first appeared in [15] for some special cases and then was generalized
in [2], where the notion of delivery curves appeared. Traces of this notion
the reader can see in the presented proof. We have to say that this part of
the proof is modernized, not the original one. The calculation of the BMO-
norms of extremizers in 2006 was made by the straightforward calculation.
These were awful calculations, enormous amount of calculations. There were
impossible to place them in any paper. That was one of the reasons why
this result is prepared for publication six years after it was proved.
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