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Formal punctured ribbons and two-dimensional local
fields

Herbert Kurke, Denis Osipov, Alexander Zheglov ∗

Abstract

We investigate formal ribbons on curves. Roughly speaking, formal ribbon is a
family of locally linearly compact vector spaces on a curve. We establish a one-to-
one correspondence between formal ribbons on curves plus some geometric data and
some subspaces of two-dimensional local field.

1 Introduction

The aim of this paper is to obtain an appropriate generalization of the Krichever map for
algebraic surfaces.

We recall that in the classical 1 -dimensional case it is a one-to-one correspondence
between integer projective curves over a field k plus line bundles (or torsion free sheaves
if the curve is singular) plus some additional data (a distinguished point p of the curve
plus a formal local parameter at p , and a formal trivialization at p of the sheaf) and
Schur pairs, i.e. pairs of k -subspaces (W,A) of the vector space V = k((z)) satisfying a
Fredholm condition with respect to the subspace V+ = k[[z]] (i.e. the complex W → V/V+

as well as the complex A → V/V+ has to be Fredholm) such that A is a k -subalgebra
of V and A ·W ⊂ W .

Parshin and Osipov established the Krichever correspondence in higher dimensions (see
[15], [12], also [14], [17]). In the 2-dimensional case it starts with a ”flag” (X ⊃ C ⊃ p)
(where X is a projective algebraic surface over a field k , C is an ample curve, p is
a k -point, X and C are smooth at p ), a vector bundle F of rank r on X plus
formal trivialization ep of F at p , and formal local parameters u, t at p . By these
data this correspondence associates the k -subalgebra A of V = k((u))((t)) and k -
subspace W of V ⊕r with Fredholm condition for all i for (A ∩ tiV )/(A ∩ ti+1V ) as
a subspace of k((u)) with respect to k[[u]] , and with Fredholm condition for all i for
(W ∩ tiV ⊕r)/(W ∩ ti+1V ⊕r) as a subspace of k((u))⊕r with respect to k[[u]]⊕r . A is the

∗the second and the third authors are supported by RFBR grant no. 05-01-00455, by INTAS grant
05-1000008-8118; besides the second author is supported by grant of Leading Scientific Schools no.
9969.2006.1, and by grant of Russian Science Support Foundation, and the third author is supported
by grant of Leading Scientific Schools no. 4578.2006.1, and by grant of National Scientific Projects no.
2.1.1.7988.
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image of the structure sheaf OX , and W is the image of the sheaf F . If X is Cohen-
Macaulay surface, C is an ample Cartier divisor on X , then the pair (A,W ) contains
all information about (X,C, p,F , ep, u, t) , see [15, theorem 4] and [12, theorem 6].

However there was a problem, because contrary to the 1-dimensional case it is not
true that any such pair of subspaces comes from geometric data. To solve this problem
we introduce another type of geometric objects which we call ”ribbons” (or more exactly
”formal ribbons”, but we will omit in the sequel the word ”formal”). This terminology
comes from [7], where a similar object was defined1. We decompose the Krichever map
into the composition of the following maps

{
geometric data

(X,C, p,F , ep, u, t)
}
⊂

{
geometric data

on ribbons

}
7→

{
pairs of subspaces (W,A)
with Fredholm conditions

}

Ribbons are ringed spaces which are, on the one hand side, more general as the notion of
”formal scheme” of Grothendieck, on the other hand side, they have some extra features.
We explain them exactly in section 2.

In section 3 we clarify the cohomology of sheaves, which we call ind-pro-quasicoherent
sheaves on a ribbon. We investigate the coherence property of ribbons.

In section 4 we clarify the structure of the Picard group of a ribbon.
In section 5 we establish a one-to-one correspondence between the classes of isomorphic

”geometric data” (punctured ribbon plus torsion free sheaf on it plus some extra data) and
the ”Schur pairs” (A,W ) ⊂ (V, V ⊕r) , were A is a k -subalgebra of V , and A ·W ⊂ W ,
satisfying Fredholm conditions for the subquotients (as explained above).

We computed also several examples to illustrate the general theory.
We note that families of Tate spaces (i.e. of locally linearly compact vector spaces)

were studied also in [5].
We think that the ribbons and geometric data on them, which are introduced in this

paper, will help to find geometric solutions of generalizations of Parshin’s two-dimensional
KP-hierarchy, see [14], [18].

Aknowledgements. This research was done at the Mathematisches Forschungsinsti-
tut Oberwolfach during a stay within the Research in Pairs Programme from January 28
- February 10, 2007. We would like to thank the MFO at Oberwolfach for the excellent
working conditions.

We are grateful to A.N. Parshin for his interest to this work.

2 The category of ribbons

2.1 Definition of a ribbon.

Let S be a Noetherian base scheme.

Definition 1. A ribbon (C,A) over S is given by the following data.

1More precisely, our ribbons are more general: the ribbons from [7] are (C,A0) in our terminology
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1. A flat family of reduced algebraic curves τ : C → S .

2. A sheaf A of commutative τ−1OS -algebras on C .

3. A descending sheaf filtration (Ai)i∈Z of A by τ−1OS -submodules which satisfies
the following axioms:

(a) AiAj ⊂ Ai+j , 1 ∈ A0 (thus A0 is a subring, and for any i ∈ Z the sheaf Ai
is a A0 -submodule);

(b) A0/A1 is the structure sheaf OC of C ;

(c) for each i the sheaf Ai/Ai+1 (which is a A0/A1 -module by (3a)) is a coherent
sheaf on C , flat over S , and for any s ∈ S the sheaf Ai/Ai+1 |Cs has no
coherent subsheaf with finite support, and is isomorphic to OCS

on a dense
open set;

(d) A = lim−→
i∈Z
Ai , and Ai = lim←−

j>0

Ai/Ai+j for each i .

Remark 1. It follows from (3c) of the definition that if Cs (for s ∈ S ) is an irreducible
curve, then the sheaf Ai/Ai+1 |Cs is a torsion free sheaf on Cs for any i ∈ Z .

Notation 1. For simplicity we denote a ribbon (C,A) over SpecR , where R is a ring,
as a ribbon over R .

Example 1. If X is an algebraic surface over a field k , and C ⊂ X is a reduced effective
Cartier divisor, we obtain a ribbon (C,A) over k , where

A := OX̂C
(∗C) = lim−→

i∈Z
OX̂C

(−iC) = lim−→
i∈Z

lim←−
j≥0

J i/J i+j

Ai := OX̂C
(−iC) = lim←−

j≥0

J i/J i+j, i ∈ Z,

where X̂C is the formal scheme which is the completion of X at C , and J is the ideal
sheaf of C on X (the sheaf J is an invertible sheaf).

Proposition 1. 1. For any i ≥ 0 the ringed space Xi = (C,A0/Ai+1) , (i ≥ 0) is a
flat family of algebraic curves over S .

2. For any j ∈ Z and any i ≥ 0 the sheaf Aj/Aj+i+1 is a coherent sheaf on Xi ,
which is a flat sheaf over S .

3. If X∞ = (C,A0) , then X∞ is a locally ringed space, and we have closed embeddings
of schemes

X0 ⊂ X1 ⊂ X2 ⊂ . . . Xi ⊂ Xi+1 ⊂ . . .

such that X∞ = lim−→
i≥0

Xi in the category of locally ringed spaces.
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Proof. We prove the first statement of the proposition.
At first, we show that Xi are locally ringed spaces. By definition, we have that X0 is

the scheme (C,OC) . Therefore X0 is a locally ringed space. We have that for every i ≥ 0
the subsheaf Ai/Ai+1 ⊂ A0/Ai+1 is a nilpotent ideal sheaf because of (3a) of definition 1.
We consider the following exact triple of sheaves on C :

0 −→ Ai/Ai+1 −→ A0/Ai+1
//

πi A0/Ai −→ 0. (1)

For each point P ∈ C we consider the stalks at P of each sheaf from this sequence. We
obtain the following exact sequence:

0 // (Ai/Ai+1)P // (A0/Ai+1)P //
(πi)P

(A0/Ai)P // 0. (2)

We apply now induction arguments on i . By induction hypothesis, we assume that the
ring (A0/Ai)P is a local ring with the maximal ideal M . Let M′ be the ideal π−1

i (M) .
Then this ideal is a unique maximal ideal in (A0/Ai+1)P . Therefore this ring is a local
ring. Indeed, if a ∈ (A0/Ai+1)P\M′ , then a must be invertible in the ring (A0/Ai+1)P ,
since (πi)P (a) is invertible in the ring (A0/Ai)P , and (Ai/Ai+1)P is a nilpotent ideal in
the ring (A0/Ai+1)P .

At second, we show that there are natural morphisms Xi
//

τi
S of locally ringed

spaces for each i ≥ 0 , and that these morphisms are flat. We apply induction on i ≥ 0 .
For every i ≥ 0 the morphism τi consists of the topological morphism τ : C → S and
of morphism of sheaves

τ ]i : OS → τ∗(A0/Ai+1), where

τ ]i (U) : OS(U) 3 a 7−→ a · 1 ∈ A0/Ai+1(τ
−1(U))

for each open subset U ⊂ S . For each P ∈ C the morphism

(τ ]i )P : (OS)τ(P ) −→ (A0/Ai+1)P

is a local morphism, because its composition with the morphism (πi)P is a local morphism
by induction hypothesis.

Now for every i ≥ 0 the morphism τi is a flat morphism by standard results on
flat modules (see e.g. [10, ch. 2, §3]), because for each P ∈ C the (OS)τ(P ) -modules
(Ai/Ai+1)P and (A0/Ai)P are flat (OS)τ(P ) -modules by induction hypothesis on i and
by (3c) of definition 1. Therefore we obtain from exact sequence (2) that (A0/Ai+1)P is
a flat (OS)τ(P ) -module.

At third, we show that a locally ringed space Xi is scheme for each i ≥ 0 . We consider
any affine open subset U ⊂ C . The sequence (1) leads to the following exact triple:

0→ Ai/Ai+1(U) −→ A0/Ai+1(U)
π−→ A0/Ai(U) −→ 0. (3)

This sequence is an exact sequence, because the sheaf Ai/Ai+1 is a coherent sheaf on C ,
and U is an affine set. We have that A0/Ai+1(U) and A0/Ai(U) are rings, and we are
going to show that (U, (A0/Ai+1)|U) ' Spec(A0/Ai+1(U)) .
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It is clear that the topological space Spec(A0/Ai+1(U)) = U . Using that Ai/Ai+1(U)
is a nilpotent ideal in the ring A0/Ai+1(U) , from exact sequence (3), by induction on i we
obtain that the identical map on the ring A0/Ai+1(U) induces a well-defined morphism
of sheaves on U :

γ : ˜A0/Ai+1(U) −→ (A0/Ai+1) |U ,

where for any A0/Ai+1(U) -module N by Ñ we denote the corresponding quasicoherent
sheaf on Spec(A0/Ai+1(U)) . The map γ is an isomorphism, since it follows from the
following exact diagram of sheaves on U :

0 −→ ˜Ai/Ai+1(U) −→ ˜A0/Ai+1(U) → ˜A0/Ai(U) −→ 0
↓ ↓ ↓

0 −→ (Ai/Ai+1)|U −→ (A0/Ai+1)|U → (A0/Ai+1)|U −→ 0

The left vertical arrow in this diagram is an isomorphism by (3c) of definition 1. The right
vertical arrow is an isomorphism by induction on i . Therefore, the middle vertical arrow
γ is also an isomorphism. Thus we proved that Xi is a scheme for each i ≥ 0 . It finishes
the proof of the first statement of the proposition.

We prove now the second statement of the proposition. As above, the proof is by
induction on i . We have the following exact triple of OXi

-modules:

0 −→ Aj+i/Aj+i+1 −→ Aj/Aj+i+1−→Aj/Aj+i −→ 0.

By definition, the sheaf Aj+i/Aj+i+1 is a coherent sheaf on Xi , and a flat sheaf over
S . The sheaf Aj/Aj+i is a coherent OXi−1

-module sheaf, and a flat sheaf over S by the
induction hypothesis. Therefore, this sheaf is also a coherent OXi

-module sheaf, because
both module structures coincide on this sheaf. Thus, the sheaf Aj/Aj+i+1 is a coherent
sheaf by [6, prop. 5.7] and flat over S by [6, prop. 9.1]. We proved the second statement
of the proposition.

The third statement of the proposition easily follows from exact sequence (1).

¤

Definition 2. 1. A morphism ϕ of ribbons over S

ϕ : (C,A)→ (C ′,A′)

is a morphism of ringed spaces over S that preserves the filtrations, i.e. we have for
the map ϕ] : A′ → ϕ∗(A) , for any i ∈ Z

ϕ](A′i) ⊂ ϕ∗(Ai).

2. An isomorphism of ribbons is a morphism that has right and left inverse.
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2.2 Base change.

Notation 2. We will also denote the ribbon (C,A) by X̊∞ .

For a ribbon X̊∞ = (C,A) over S , and a morphism α : S ′ −→ S of Noetherian

schemes we define a base change ribbon X̊
′
∞ = (C ′,A′) over S ′ in the following way:

C ′ := C ×S S ′,
A′j := lim←−

i≥1

(Aj/Aj+i) £OS
OS′

for any j ∈ Z . From statement 2 of proposition 1 we have for any j ∈ Z , any i ≥ 0

(Aj+1/Aj+i+1) £OS
OS′ ⊆ (Aj/Aj+i+1) £OS

OS′ .
Therefore we have

. . . ⊂ A′j+1 ⊂ A′j ⊂ A′j−1 ⊂ . . .

and we define
A′ := lim−→

i∈Z
A′i.

By definition we have A′j/A′j+1 = (Aj/Aj+1)£OS
OS′ for any j ∈ Z , and all axioms from

definition of ribbon are satisfied.

Proposition 2. For the base change α : S ′ −→ S we have that for the base change

ribbon X̊
′
∞ = (C ′,A′) the following properties are satisfied.

1. X ′
i = Xi ×S S ′ for any i ≥ 0

2. A′j/A′j+i+1 = (Aj/Aj+i+1) £OS
OS′ for any j ∈ Z and any i ≥ 0

Proof. The proof is clear from definition of a ribbon and proposition 1.

¤

3 Coherent sheaves on a ribbon.

3.1 Ind-pro-quasicoherent sheaves.

Definition 3. Let X̊∞ = (C,A) be a ribbon, and F a sheaf of A -modules. We will call
F ind-pro-coherent (ind-pro-quasicoherent) on X̊∞ if it has a descending sheaf filtration
(Fi)i∈Z with the following properties.

1. AiFj ⊆ Fi+j .

2. Fj/Fj+1 is a coherent (quasicoherent) OC -module for all j .

3. Fi = lim←−
j

Fi/Fi+j .
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4. F = lim−→
i

Fi .

We recall that projective system (Di, i ∈ N) of abelian groups with transition maps
φi′i satisfies the ML-condition (the Mittag-Lefler condition), iff for every i ∈ N the
descending family of subgroups {φi′i(Di′) ⊂ Di | i′ ≥ i ∈ N} will stabilize.

We will need the following lemma, which is easy to prove, using [6, prop. 9.1].

Lemma 1. If
0 −→ (Ki) −→ (Ai) −→ (Bi) −→ (Ci) −→ 0

is an exact sequence of projective systems of abelian groups with respect to N , and pro-
jective systems (Ki, i ∈ N) and (Ai, i ∈ N) satisfy the ML-condition, then the induced
sequence of projective limits

0 −→ lim←−
i∈N

Ki −→ lim←−
i∈N

Ai −→ lim←−
i∈N

Bi −→ lim←−
i∈N

Ci −→ 0

is also exact.

Proposition 3. Let X̊∞ = (C,A) be a ribbon and F an ind-pro-quasicoherent sheaf on
X̊∞ . Then we have the following.

1. Fi/Fi+j+1 is a quasicoherent OXj
-module for any j ≥ 0 , i ∈ Z .

2. We have that Fi(U)/Fj(U)→ (Fi/Fj)(U) is an isomorphism for all i < j and for
any affine open subset U ⊂ C .

3. If X̊∞ is a ribbon over an Artinian ring, then for any affine open subset U ⊂ C
we have H1(U,Fi) = H1(U,F) = 0 .

Proof. The proof of statement 1 of the proposition is analogous to the proof of statement
2 of proposition 1.

We prove statement 2 of the proposition. We always have an exact sequence

0→ Fj(U)→ Fi(U)→ (Fi/Fj)(U),

and we have exact sequences for i < j < k

0→ (Fj/Fk)(U)→ (Fi/Fk)(U)→ (Fi/Fj)(U)→ 0,

since, by statement 1, Fj/Fk is a quasicoherent sheaf of OXk−j−1
-modules.

Now since Fi(U) = lim←−
k≥i

(Fi/Fk)(U) and all maps (Fj/Fk+1)(U) → (Fj/Fk)(U) are

surjective, we also have surjections Fi(U)→ (Fi/Fj)(U) (see lemma 1).
We prove statement 3 of the proposition. Since C is a curve over an Artinian ring,

every open subset of an affine open set U is again affine. We take an embedding Fi ↪→ W
into a flabby sheaf, then H1(U,Fi) is the cokernel of W (U)→ (W/F)(U) , and we have
to show that any section of (W/F)(U) lifts to a section of W (U) .
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Since the underlying space U is Noetherian, we have a largest open set U ′ ⊆ U where
a lifting w′ of the given section exists. We will show that the assumption U ′ $ U leads
to a contradiction. Assume p ∈ U\U ′ , then we find a neighbourhood U ′′ ⊂ U of p
and a lifting w′′ on U ′′ of the given section. If U ′ ∩ U ′′ = ∅ we could extend (U ′, w′)
to (U ′ ∪ U ′′, w′ on U ′, w′′ on U ′′) . If U ′ ∩ U ′′ 6= ∅ , we get a section a = w′ − w′′ of
Fi(U ′ ∩ U ′′) .

We claim that Fi(U ′)⊕Fi(U ′′)→ Fi(U ′∩U ′′) is surjective, so we can write a = a′−a′′
with a′ ∈ Fi(U ′) , a′′ ∈ Fi(U ′′) . Then w|U ′ = w′ − a′ and w|U ′′ = w′′ − a′′ would give a
lifting to U ′ ∪ U ′′ , hence U ′ was non maximal.

Proof of the claim. We have an exact sequence of projective systems

↓ ↓ ↓
0→ Fi/Fj+1(U

′ ∪ U ′′) → Fi/Fj+1(U
′)⊕Fi/Fj+1(U

′′) → Fi/Fj+1(U
′ ∩ U ′′) → 0

↓ ↓ ↓
0→ (Fi/Fj)(U ′ ∪ U ′′) → (Fi/Fj)(U ′)⊕ (Fi/Fj)(U ′′) → (Fi/Fj)(U ′ ∩ U ′′) → 0

↓ ↓ ↓
where all transition maps are surjective. Thus the projective limit stays exact (see lem-
ma 1). For F the assertion follows since cohomology commute with lim−→ .

¤
Corollary 1. Let X̊∞ = (C,A) be a ribbon over A , where A is an Artinian ring. Let
F be an ind-pro-quasicoherent sheaf on X̊∞ , and C be a projective curve over A .

1. If C = U1 ∪ U2 , where U1 and U2 are affine open subsets, then we have an exact
sequence

0→ H0(C,F)→ H0(U1,F)⊕H0(U2,F)→ H0(U1 ∩ U2,F)→ H1(C,F)→ 0.

2. If F is an ind-pro-coherent sheaf, then

H∗(C,F) = lim−→
i

lim←−
j≥i

H∗(Xj−i,Fi/Fj+1).

Proof. The first assertion of this corollary is the Mayer-Vietoris exact sequence, due to
assertion 3 of proposition 3, because U1 and U2 are affine sets.

We prove now the second assertion of this corollary. We note that for any j ∈
Z a projective system (H0(C,Fj/Fj+i), i ∈ N ) satisfies the ML-condition, because
H0(C,Fj/Fj+i) is an Artinian A -module for any i, j , and the maps in projective system
are the maps of A -modules.

We note that, since C is a curve over an Artinian ring, there are some affine open
subsets U1 and U2 of C such that C = U1 ∪ U2 . For any fixed j ∈ Z a projective
system (H0(U1,Fj/Fj+i) ⊕ H0(U2,Fj/Fj+i), i ∈ N) satisfies the ML-condition because
of assertion 2 of proposition 3.

Now, since the cohomology commutes with direct limits, the second assertion of this
corollary follows from the first one, using lemma 1.

¤
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3.2 Coherence property

Remark 2. The sheaf A may be not coherent in the usual sense (due to H. Cartan, see
[16]).

We recall that a sheaf F of A -modules on a topological space X is coherent if it
satisfies the following two properties.

1. F is locally of finite type, i.e. for any point x ∈ X there exist an open U 3 x and
finite number of sections s1, . . . , sp ∈ F(U) such that for any y ∈ U the stalk Fy
is generated by the images of s1, . . . , sp over Ay .

2. The sheaf K = ker((A|U)⊕q
(f1,...,fq)−→ (F|U)) , where fi ∈ F(U) for an open U , is

locally of finite type. Here the map
(f1,...,fq)−→ maps an element (a1, . . . , aq) to

∑
aifi .

The sheaf A is called coherent if it is coherent as A -module.

Let’s consider the following ringed space: (C,OC((t))Q) , where C is a reduced alge-
braic curve over a field k , Q ∈ C is a closed point, and the sheaf OC((t))Q is defined
by

OC((t))Q(U) := {
∞∑

i=l

cit
i, where ci ∈ OC(U) for i ≥ 0 and ci ∈ JQ(U) for i < 0 },

where JQ is the ideal sheaf of the point Q . Clearly, this is a sheaf, and (C,OC((t))Q) is
a ribbon over the field k . This sheaf is an analogue of the sheaf OX((t))

√
from [8].

Example 2. This is an example of non-coherent sheaf A of a ribbon.
Let C be a plane affine singular cubic curve given by the equation y2 = x2(x + 1)

over a field k , Q ∈ C is a closed point x = y = 0 . We show that the sheaf A = OC((t))Q

is not coherent.
If it were coherent, then, by definition, for each q ≥ 1 and f1, . . . fq ∈ A(U) the sheaf

K = ker((A|U)⊕q
(f1,...,fq)−→ (A|U)) must be locally of finite type. We take U 3 Q , q = 2 ,

and let f1, f2 be the images of x, y in OC(U) . Let V ⊂ U , Q ∈ V be an open set such
that K(V ) is finitely generated in each point.

We consider an element (b1, b2) ∈ K(V ) such that b1, b2 are the images of −y, x
in OC(U) . Then (b1, b2) ∈ JQ((t))⊕2(V ) , but (b1, b2) /∈ J 2

Q((t))⊕2(V ) . We note that
elements (b1t

m, b2t
m) ∈ K(V ) for any m ∈ Z , and also satisfy this condition.

We note that for each (a1, a2) ∈ K(V ) we have ai =
∑
aijt

j , where aij ∈ JQ(V ) .
Indeed, we must have f1a1j + f2a2j = 0 for all j , and this equality holds only if aij are
polynomials in f1, f2 without free terms, i.e. belong to the ideal JQ(V ) .

Let g1, . . . gl be generators of K(V ) . Let they have orders (qi, q
′
i) , i = 1, . . . l , where

the order of an element a ∈ A(V ) is equal to the degree (with respect to t ) of the lowest
term of a . For each m ∈ Z we must have

(b1t
m, b2t

m) =
l∑
i=1

wimgi (4)
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with wim ∈ A(V ) . If M = min{q1, . . . , ql, q′1 . . . , q′l} , then all coefficients of tj with
j < M on the right hand side of formula (4) must belong to J 2

Q(V )⊕2 for each m . But
if m ¿ 0 then there will be coefficients of tj with j < M on the left hand side of
formula (4) that do not belong to J 2

Q(V )⊕2 (and the same is true for their images in the
stalk of Q ). We have a contradiction.

The same arguments show that the ideal JQ(V )((t)) ⊂ A(V ) is not finitely generated,
i.e. the ring A(V ) is not Noetherian.

For convenience, we introduce also the following definition.

Definition 4. The sheaf of rings F on a topological space X is called weakly Noetherian,
if there exists an open affine cover {Uα}α∈I such that F(Uα) is a Noetherian ring for
any α ∈ I .

Example 3. This is an example of coherent, but not weakly Noetherian sheaf A of a
ribbon.

We consider the ringed space (C,A = OC((t))Q) , where C is a reduced algebraic
curve over a field k , Q ∈ C is a smooth point. We will prove that the sheaf A is
a coherent sheaf of rings. To prove that the sheaf A is a coherent sheaf of rings, it is
enough to prove that the sheaf K from definition of coherence (see remark 2 above) is
locally of finite type.

We consider an open U ⊂ C . If U 63 Q , then we have (A|U)⊕q ' (OC((t))|U)⊕q and
therefore for any affine open subset V ⊂ U the ring (A|U)(V ) is Noetherian. Clearly,
K(V ) = (K′(V ))t and A(V ) = (A′(V ))t , where

K′ = ker((A′|U)⊕q
(f1tk,...,fqtk)−→ (A′|U)), A′ = OC [[t]]

for sufficiently large k (note that the definition of the sheaf K does not depend on
changes (f1, . . . , fq) 7→ (f1t

k, . . . , fqt
k) ). The locally ringed space (C,A′) is a Noetherian

formal scheme (so, A′ is a coherent sheaf, see [4, ch.I, §10.10]), therefore K′ is locally of
finite type, i.e. for each point P ∈ U there exists open V ⊂ U , P ∈ V and generators
(β1, . . . , βn) of K′(V ) over A′(V ) such that their images generate stalks K′x for each
x ∈ V . Clearly, (β1, . . . , βn) are also generators of the A(V ) -module K(V ) , and they
also generate stalks Kx over Ax for each v ∈ V , i.e. K is locally of finite type.

Let now U 3 Q , f1, . . . , fq ∈ A(U) . Our sheaf A is a subsheaf of the sheaf
Ã = OC((t)) , and the last sheaf is coherent, as we have proved above. We define the
sheaf

K̃ = ker((Ã|U)⊕q
(f1,...,fq)−→ (Ã|U)).

It is locally of finite type, and K is the subsheaf of K̃ as a sheaf of abelian groups.
For a given element a =

∑
j

ajt
j ∈ Ã(V ) , Q ∈ V we define its Q -order as follows:

ordQ(a) =

{
min {j : aj /∈ JQ}
∞, if for any j aj ∈ JQ.
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Clearly, for any a, b ∈ Ã(V ) we have

ordQ(ab) = ordQ(a) + ordQ(b).

For a given element α ∈ Ã⊕q(V ) , Q ∈ V we define its Q -order as a minimum of
Q -orders of components of α , i.e.

ordQ(α) = min{a1, . . . , aq} for α = (a1, . . . , aq).

Let α1, . . . , αk be generators of the Ã(V ) -module K̃(V ) , V 3 Q , such that their
images generate stalks K̃x for each x ∈ V . Without loss of generality we can assume
that V is an affine open set, such that the maximal ideal of the point Q in OC(V ) is
a principal ideal (y) , y ∈ OC(V ) . We can also assume that α1, . . . , αk ∈ K(V ) , since
otherwise we can replace them by α1t

l1 , . . . αkt
lk . Since the maximal ideal of the point Q

in OC(V ) is a principal ideal, we have αi = ykiα′i , where ki ≥ 0 and ordQ(α′i) < ∞ .
We assume α′i ∈ K(V ) again after multiplication them by some powers of t . Obviously,
the elements α′i ∈ K(V ) are also generators of K̃(V ) and of stalks K̃x for each x ∈ V .
So, we can assume that ordQ(αi) = 0 for any 1 ≤ i ≤ k .

Without loss of generality we can assume that the first component of α1 be of zero
Q -order. Since the ring OC(V ) has dimension 1 , we can change α1, . . . , αk by α1, α2 +
x2α1, . . . , αk+xkα1 for some x2, . . . , xk ∈ A(V ) such that the first components of elements
α2 + x2α1, . . . , αk + xkα1 has infinite Q -order. If the Q -order of an element αi + xiα1

is finite, we can again assume that it is zero, after multiplication him by an appropriate
power of t .

The elements α1, α2 + x2α1, . . . , αk + xkα1 are again generators of K̃(V ) (and of K̃x
for each x ∈ V ). They form a k × q matrix, whose entries lie in A(V ) (the i -th row is
the element αi + xiα1 ). The corresponding k × q matrix of its Q -orders looks like




0 ∗ . . . ∗
∞ ∗ . . . ∗
...

... · · · ...
∞ ∗ . . . ∗


 ,

where some rows can consist only of infinities, and the minimal possible value in each row
is zero.

If we permute some rows of our matrix, we don’t change the system of generators of
K̃(V ) and of Kx for each x ∈ V . Therefore, we can assume that our matrix has the
following property: the matrix of its Q -orders looks like




0 ∗ . . . ∗
∞ ? . . . ? 0 ∗ . . . ∗
∞ ? . . . ? 0 ∗ . . . ∗
... · · · . . . ∗
∞ ∞ . . . ∞
... · · ·
∞ ∞ . . . ∞




,
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where ? > 0 . (The rows in the bottom of matrix contain only ∞ .)
Clearly, the elementary transformations of rows like above lead to a new system of

generators of K̃(V ) (and of K̃x for each x ∈ V ).
So, repeating such elementary transformations and interchanges for the rows with zero

Q -order, we will come to a system of generators α1, . . . , αk that satisfy the following
additional property: for each 1 ≤ i ≤ k either ordQ(αi) = ∞ , or ordQ(αi) = 0 and αi
has an li -component of zero Q -order such that the corresponding li -components of all
other elements αj , j 6= i has infinite Q -order, see the matrix of Q -orders below:




0 ∗ . . . ∗ ∞ ∗ . . . ∗ ∞ ∗ . . . ∗
∞ ? . . . ? 0 ∗ . . . ∗ ∞ ∗ . . . ∗
∞ ? . . . ? ∞ ? . . . ? 0 ∗ . . . ∗
... ? · · · ? ∞ ? · · · ? ∞ ?

. . . ∗
∞ ∞ . . . ∞
... · · ·
∞ ∞ . . . ∞




.

Let α1, . . . , αl be of Q -order zero, and αl+1, . . . , αk be of Q -order ∞ . Then
αj = ykjα′′j , j ≥ l + 1 , where ordQ(α′′j ) < ∞ . After multiplication of α′′j by some
power of t we have αj = ykj tmjα′j , j ≥ l + 1 for some kj > 0 and some mj such that
ordQ(α′j) = 0 .

We claim that the elements α1, . . . , αl, α
′
l+1, . . . , α

′
k are generators of the A(V ) -

module K(V ) such that their images generate stalks Kx for any x ∈ V .
Indeed, if x ∈ V , x 6= Q , then it is clear by the choice of elements α1, . . . , αk in the

beginning, because Kx = K̃x . Now let b ∈ KQ . Then b =
∑
bjαj for some bj ∈ ÃQ . We

have bjαj ∈ KQ for all j ≥ l+1 , since ordQ(bjαj) =∞ . The first component of α1 is of
zero Q -order, and the Q -orders of the first components of all other αi , i ≥ 2 are infinite.
Since b ∈ KQ , the Q -order of the first component of b1α1 must be therefore greater or
equal to zero. Hence, ordQ(b1) ≥ 0 and b1 ∈ AQ . Analogously, bj ∈ AQ for j ≤ l . Now
for j ≥ l + 1 we have bjαj = bjy

kj tmjα′j with kj > 0 , and b′j := bjy
kj tmj ∈ AQ because

kj > 0 . So,

b =
l∑

i=1

biαi +
k∑

j=l+1

b′jα
′
j,

where bi, b
′
j ∈ AQ , and we are done.

Nevertheless, the sheaf A is not weakly Noetherian. For example, consider the follow-
ing infinite increasing system of ideals in A(U) (for any U 3 Q ):

Jk := {c =
∞∑

i=l

cit
i, where ci ∈ JQ(U) and ci ∈ J 2

Q(U) for i < −k }.

Clearly, J1 ⊂ J2 ⊂ . . . does not stabilize.

Remark 3. The situation described in example 3 is similar to the situation of rank 2
valuation ring O′ = k[[t]]+uk((t))[[u]] in 2 -dimensional local field k((t))((u)) . The ring
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O′ is also non Noetherian (see [13]), but one can prove that the ring O′ is coherent by
the same methods as above.

Example 4. Now let’s consider one more example. Let C be a reduced algebraic curve
over a field k . Consider a ringed space (C,A) , where

A = {
∞∑
j=N

OC · tj, t0 = 1, titj = 0 for all i, j 6= 0 }

Clearly, A is a sheaf that satisfies all conditions of definition 1. So, (C,A) is a ribbon.
Obviously, the sheaf A is also not coherent and not weakly Noetherian. Moreover,

A0 is not coherent. To see this, it is enough to consider the kernel of multiplication by
t1 . Clearly, this kernel can not be locally of finite type.

Under certain conditions on the sheaf A of a ribbon we can prove in the following
lemma that it will be coherent, as well as any torsion free sheaf of finite rank on this
ribbon will be coherent. (We will define torsion free sheaves later, see definition 11 and
remark 10).

Definition 5. We will say that the sheaf A of a ribbon (C,A) satisfies (*), if the
following condition holds:

there is an affine open cover {Uα}α∈I of C such that for any α ∈ I
there is k > 0 and an invertible section a ∈ Ak(Uα) ⊂ A(Uα). (*)

Definition 6. For an open set U we define the function of order ordU on A(U) in the
following way: if an element b ∈ Al(U)\Al+1(U) , then ordU(b) = l . Sometimes, if it is
clear from the context, we will omit the index U .

Now we prove the following lemma.

Lemma 2. Let the sheaf A of a ribbon (C,A) satisfies (*). Then it is weakly Noetherian
and coherent. Moreover, for any affine open subset U of C the ring A(U) is a Noetherian
ring.

Proof. Let {Uα} be the cover from (*). For an open Uα ⊂ C let a ∈ A∗(Uα) ,
a ∈ Ak(Uα) , k > 0 . From the definition of ribbon (definition 1) it follows that
a−1 ∈ Al(Uα)\Al+1(Uα) , where l ≤ −k . Clearly, A(Uα) = A0(Uα)a . By propositions 1
and 3, the ring A0(Uα)/A−l(Uα) is Noetherian.

Let Ĩ ⊂ A(Uα) be an ideal. Let I = Ĩ ∩ A0(Uα) . Set I−l = I/I ∩ A−l(Uα) . Let
ḡ1, . . . , ḡs be generators of I−l in A0(Uα)/A−l(Uα) , and g1, . . . , gs be any their repre-
sentatives in I . Let x ∈ I be any element, x ∈ Aj(Uα)\Aj+1(Uα) . If j < −l , then there
are b1, . . . , bs ∈ A0(Uα) such that x −∑

m bmgm ∈ Ai(Uα)\Ai+1(Uα) with i ≥ −l . If
j ≥ −l , then a−1x ∈ I , and for some m ≥ 1 we have a−mx ∈ Ai(Uα)\Ai+1(Uα) with
0 ≤ i < −l . We iterate this procedure. Since ord(a) > 0 , and A0(Uα) is a complete
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and Hausdorff space, we can deduce that g1, . . . , gs generate I , hence Ĩ . So, A(Uα) is
a Noetherian ring.

Analogously we can show that A0(Uα) is also a Noetherian ring. Namely, for an ideal
J ⊂ A0(Uα) let J̃ be an ideal generated by J in A(Uα) . If J̃ = (1) , then ar ∈ J for
some r > 0 . For any i ≥ −lr we have (ar) ⊇ Ai(Uα) . Therefore, elements g1, . . . , gs ,
whose images in A0(Uα)/A−lr(Uα) generate the ideal J/J ∩ A−lr(Uα) , and the element
ar will generate the ideal J .

If J̃ 6= (1) , then J̃ = (g1, . . . , gs) as above, where g1, . . . , gs ∈ A0(Uα) . As it was
shown above, for any sufficiently large i an element x ∈ J ∩ Ai(Uα) can be written as
x = ah

∑
m bmgm with b1, . . . , bs ∈ A0(Uα) , h > 0 . On the other hand, for a sufficiently

large h we have ahg1, . . . , a
hgs ∈ J . Therefore, there exists a natural N such that for

any x ∈ J ∩ Ai(Uα) with i > N we have x ∈ (ahg1, . . . , a
hgs) ⊂ A0(Uα) . Now, if

g′1, . . . , g
′
t ∈ J are representatives of generators of the ideal J/J ∩ AN(Uα) , then the

system g′1, . . . , g
′
t, a

hg1, . . . , a
hgs is a system of generators of the ideal J .

To show that A is coherent, it is enough to prove that the sheaf K from the definition
of a coherent sheaf (see remark 2) is locally of finite type for each Uα .

For any open V ⊂ Uα we have K(V ) = (K′(V ))a and A(V ) = (A0(V ))a , where

K′ = ker((A0|Uα)⊕q
(f1ak,...,fqak)−→ (A0|Uα))

for sufficiently large k (as in example 3). We also have

lim←−
n≥0

A0(V )/anA0(V ) = A0(V ),

because for ideal (a) = aA0(V ) we always have An ⊇ (a)n ⊇ Ai(V ) for i ≥ −ln and
for any n , and (a)n ⊇ Ai(V ) ⊇ (a)i for n ≤ [i/(−l)] .

Combining all together, we obtain that the following locally ringed spaces are isomor-
phic:

(Uα,A0|Uα) ' ̂(SpecA0(Uα))Y ,

where Y is a closed subscheme of SpecA0(Uα) given by the ideal (a) , and the formal

Noetherian scheme ̂(SpecA0(Uα))Y is a completion of the scheme SpecA0(Uα) along Y .
So, by [4, ch.I, §10.10], the sheaf A0|Uα is coherent, and the sheaf K′ of A0|Uα -modules
is locally of finite type. Therefore the sheaf K of A|Uα -modules is locally of finite type.

We show the last property of the lemma. At first, we note that for any open V ⊂ Uα
the ring A(V ) satisfies (*) and therefore is Noetherian, as it was shown above. Since for
an open affine U = SpecB there is a base of topology consisting of open sets D(f) '
SpecBf and any affine set is quasicompact, we can cover the set U by finite number of
affine open sets Ui ' SpecBfi

such that the rings A(Ui) satisfy (*) and are Noetherian.
By definition of a ribbon and by proposition 3, we can take B = A0(U)/A1(U) , and
fi ∈ A0(U)/A1(U) , fi generate the ideal (1) of the ring B .

Now we prove the following statement. Let I ⊂ A(U) be an ideal and φi : A(U) →
A(Ui) are the restriction homomorphisms, i = 1, . . . , r . Then

I =
⋂
i

φ−1
i (φi(I) · A(Ui)).
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Obviously, we have I ⊂ ⋂
i φ

−1
i (φi(I) · A(Ui)) . Now let

b ∈
⋂
i

φ−1
i (φi(I) · A(Ui)) , b ∈ Ak(U)\Ak+1(U).

Let

φi(b) =

ri∑
j=1

φi(aj)gj,

where gj ∈ A(Ui) , aj ∈ I . We have φi(b) ∈ Ak(Ui) and therefore

φi(b) mod Ak+1(Ui) =

ri∑
j=1

(φi(aj) mod Ak+1−ord(gj)(Ui))(gj mod Ak+1−ord(aj)(Ui)).

We consider the homomorphisms

φ̄ji : Aord(gj)(U)/Ak+1−ord(aj)(U) −→ Aord(gj)(Ui)/Ak+1−ord(aj)(Ui),

which are induced by φi . By proposition 1, the sheaf Aord(gj)/Ak+1−ord(aj) is a coherent
sheaf on the scheme Xl = (C,A0/Al+1) , where l = k − ord(aj) − ord(gj) (we assume
that l ≥ 0 , since otherwise our sheaf is trivial and there is nothing to prove). There-
fore, φ̄ji is a localization map, and for any element x ∈ Aord(gj)(Ui)/Ak+1−ord(aj)(Ui)

there exists a natural n such that fnijx = φ̄ji (x̃) , where x̃ ∈ Aord(gj)(U)/Ak+1−ord(aj)(U) ,
fij ∈ A0(U)/Al+1(U) and fij mod A1(U) = fi (see [6, lemma 5.3]). Note that we can
choose fij = f̃i mod Al+1(U) , where f̃i is a fixed representative of fi in A0(U) , for all
j . Hence there exists a natural N such that

φi(f̃
N
i )φi(b) mod Ak+1(Ui) =

ri∑
j=1

(φi(ajg
′
j) mod Ak+1(Ui)),

where g′j ∈ A(U) and

φi(g
′
j) mod Ak+1−ord(aj)(Ui) = φi(f̃

N
i )gj mod Ak+1−ord(aj)(Ui).

Let k′ be an integer such that ajg
′
j ∈ Ak′(U) for any j (note that k′ ≤ k ). Then,

repeating the arguments above to the coherent sheaf Ak′/Ak+1 we obtain that there
exists a natural M such that

f̃Mi b mod Ak+1(U) ∈ I mod Ak+1(U).

Note that we can choose M unique for all i and that the elements f̃Mi generate the
ideal (1) in A0(U) , i.e.

∑
i cif̃

M
i = 1 for some ci ∈ A0(U) . Therefore,

b mod Ak+1(U) =
∑

cif̃
M
i b mod Ak+1(U) ∈ I mod Ak+1(U).

So, there exists b1 ∈ I , b1 ∈ Ak(U) such that (b − b1) ∈
⋂
i φ

−1
i (φi(I) · A(Ui)) and

ord(b − b1) > ord(b) . We repeat the arguments above for the element b − b1 and so on.
Since the ring A(U) has complete and Hausdorff topology, we obtain that b ∈ I .
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Now it is easy to show that the ring A(U) is Noetherian. Let I1 ⊂ I2 ⊂ . . . be an
increasing chain of ideals in A(U) . Then for each i the chain

φi(I1) · A(Ui) ⊂ φi(I2) · A(Ui) ⊂ . . .

is stable, since A(Ui) is a Noetherian ring. Since there are only finite number of i , the
first chain is also stable, where from A(U) is a Noetherian ring.

¤
Definition 7. A ribbon (C,A) is called algebraizable if it is locally isomorphic on C to
a ribbon from example 1.

Example 5. The sheaf A = OX̂C
(∗C) with the filtration Ai = OX̂C

(−iC) on a surface
X with an effective reduced Cartier divisor C from example 1 satisfies the conditions of
lemma 2. Indeed, the local equation of C in X is an invertible element that belong to
A1(U) , and its inverse belongs to A−1(U) .

In particular, it follows that the ribbons from example 2, example 3 and example 4
are not algebraizable, because they are not weakly Noetheriean.

Remark 4. Structure sheaves of algebraizable ribbons satisfy more pretty property, which
is useful in studying of the Picard group of a ribbon, see proposition 9 below.

Example 6. We consider an example of a ribbon with weakly Noetherian and coherent
structure sheaf A , but which is not algebraizable. It can be constructed in the same way
as in example 4.

Let C be a reduced algebraic curve over a field k . Consider a ringed space (C,A) ,
where

A = {
∞∑
j=N

OC · tj, t0 = 1, t2i = ti2, t2i+1 = t1t
i
2, t21 = 0}.

Clearly, A is a sheaf that satisfies all conditions of definition 1. So, (C,A) is a ribbon.
By lemma 2 A is a weakly Noetherian and coherent sheaf (since t2 is an invertible
section of A(U) for any open U ⊂ C ). But (C,A) is not algebraizable, because if it
were algebraizable, there should be an open affine cover of C such that for any open U
from this cover there exists an invertible element a that belong to A1(U)\A2(U) and
a−1 ∈ A−1(U)\A0(U) . Obviously, there are no such sections in A(U) for any U .

3.3 Analytic ribbons

When a ground field is C , we can also work in the analytic category to define ribbons over
C , replacing ”algebraic coherent” by ”analytic coherent sheaf” (for Ai/Ai+1 , i ∈ Z ) in
definition 1. Then we obtain the notion of an analytic ribbon (C,A) .

We define an analytic ind-pro-coherent sheaf F on analytic ribbon X̊∞ = (C,A)
as a filtered sheaf of A -modules (with a descending filtration by subsheaves) satisfying
properties 1, 3, 4 and the property

2 ′ . Fj/Fj+1 is an analytic coherent sheaf on C for any j ∈ Z
instead of property 2 of definition 3.
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Remark 5. Since the underlying topological space is non-Noetherian in this case, we
have to take the sheaf F associated with the presheaf F ′ : V 7→ lim−→

i

Fi(V ) .

We have the following proposition (compare with proposition 3).

Proposition 4. We have the following properties for an analytic ind-pro-coherent sheaf
F on an analytic ribbon X̊∞ = (C,A) , where C is an irreducible complex algebraic
curve.

1. Fi/Fi+j+1 is an analytic coherent sheaf on Xj for any j ≥ 0 , i ∈ Z .

2. Fi(U)/Fj(U) → (Fi/Fj)(U) is an isomorphism for i < j and for Stein open sets
U ⊂ C .

3. Hq(U,Fi) = 0 for any Stein open subset U ⊂ C and q > 0 , i ∈ Z .

Remark 6. We note that every complex analytic space of dimension 1 , which has no
compact irreducible components, is a Stein space (see, for example, [11]).

Proof. The proof of statement 1 and statement 2 of this proposition is the same as in
proposition 3. (We use that for any analytic coherent sheaf G on a Stein space U we
have Hq(U,G) = 0 for q > 0 .)

Now we prove statement 3 of the proposition. By remark 6 we have that any open
subset V of a Stein subset U ⊂ C is a Stein space again. Therefore, if {Uα} is an
open covering of U , then every open Uα is a Stein space. Let Č•({Uα},Fi) be the Čech-
complex of this covering for the sheaf Fi . We obtain that

Č•({Uα},Fi) = lim←−
j>i

Č•({Uα},Fi/Fj).

We consider the following natural complex D•
i for any i ∈ Z :

0 −→ Fi(U) −→ Č0({Uα},Fi) −→ Č1({Uα},Fi) −→ . . . ,

i.e. Dn
i = 0 for n < −1 , D−1

i = Fi(U) , and Dn
i = Čn({Uα},Fi) for n ≥ 0 .

We have that for any i ∈ Z
D•
i = lim←−

j>i

D•
i,j,

where the complex D•
i,j is defined in the following natural way for any j ≥ i ∈ Z :

Dn
i,j = 0 for n < −1 , D−1

i,j = (Fi/Fj)(U) , and Dn
i,j = Čn({Uα},Fi/Fj) for n ≥ 0 .

From statement 2 of this proposition we have that for any fixed i ∈ Z , for any n ∈ Z
the projective system (Dn

i,j, j ≥ i) satisfies the ML-condition, because the maps in this
projective system are surjective maps.

For any j ≥ i ∈ Z the complex D•
i,j is an acyclic complex, because the Čech coho-

mology
Ȟ0({Uα},Fi/Fj) = (Fi/Fj)(U),

Ȟn({Uα},Fi/Fj) = Hn(U,Fi/Fj) = 0 for any n > 0.

Therefore for any i ∈ Z the complex D•
i is an acyclic complex, as it follows from the

following lemma.
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Lemma 3. Let (K•
l , l ≥ 0) be a projective system of acyclic complexes K•

l of abelian
groups. We suppose that for any n ∈ Z the projective system (Kn

l , l ≥ 0) satisfies the
ML-condition. Then the complex

K• = lim←−
l≥0

K•
l

is an acyclic complex.

Proof of the lemma. Let maps dnl : Kn
l → Kn+1

l , n ∈ Z be the differentials in complex
K•
l , l ≥ 0 . We have the following exact sequences:

0 −→ Ker dnl −→ Kn
l −→ Im dnl −→ 0. (5)

Since the complex K•
l is an acyclic complex, we have that Im dnl = Ker dn+1

l for any n .
Since for any n the projective system (Kn

l , l ≥ 0) satisfies ML-condition, we ob-
tain from exact sequence (5) that for any n the projective system (Im dn−1

l , l ≥ 0) =
(Ker dn+1, l ≥ 0) satisfies ML-condition. Let maps dn : Kn → Kn+1 be the differentials
in complex K• . Now, using lemma 1 and that always Ker dn = lim←−

n≥0

Ker dln for any n ∈ Z ,

we obtain that the projective limit with respect to l ≥ 0 of sequences (5) will give the
following exact sequence for any n ∈ Z :

0 −→ Ker dn −→ Kn −→ Im dn −→ 0.

Therefore, for any n ∈ Z we have

Im dn = lim←−
l≥0

Im dnl = lim←−
l≥0

Ker dn+1
l = Ker dn+1.

Therefore the complex K• is an acyclic complex. The lemma is proved.

¤

Now we finish the proof of proposition 4. We have proved that Ȟq({Uα},Fi) = 0 for any
i ∈ Z and any q > 0 . Therefore Ȟq(U,Fi) = 0 for any i ∈ Z and any q > 0 . Hence, for
any i ∈ Z

H1(U,Fi) = Ȟ1(U,Fi) = 0.

Furthermore, we have a spectral sequence with initial term

Epq
2 = Ȟp(U,Hq(Fi)) =⇒ Hp+q(U,Fi), (6)

where Hq(Fi) is the presheaf V ⊂ U 7→ Hq(Fi)(V ) = Hq(V,Fi) (see [3]). So, since any
open subset V ⊂ U is a Stein subspace again, we have in our situation

H2(U,Fi) = Ȟ0(U,H2(Fi)).
To obtain that H2(U,Fi) = 0 it is sufficient to show that for any point x ∈ C

lim−→
x∈V⊂C

H2(V,Fi) = 0.
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It follows from the following fact ([3, lemma 3.8.2]: for any point x ∈ C , for any p > 0

lim−→
x∈V⊂C

Hp(V,Fi) = 0 (7)

Now by induction on q , by the same methods as for q = 2 , using spectral sequence (6)
and equality (7), we obtain that Hq(U,Fi) = 0 for all q > 0 . The proposition is proved.

¤

Corollary 2. Let X̊∞ = (C,A) be an analytic ribbon. Let F be an analytic ind-pro-
coherent sheaf on X̊∞ , and C be an irreducible compact space.

1. If C = U1 ∪ U2 , where U1 and U2 are Stein open subsets, then we have an exact
sequence for any i ∈ Z
0→ H0(C,Fi)→ H0(U1,Fi)⊕H0(U2,Fi)→ H0(U1 ∩ U2,Fi)→ H1(C,Fi)→ 0.

2. H∗(C,Fi) = lim←−
j>i

H∗(C,Fi/Fj) , i ∈ Z .

3. Hq(C,Fi) = 0 for q > 1 , i ∈ Z .

Proof is similar to the proof of corollary 1 of proposition 3. We have to use the following
Mayer-Vietoris exact sequence for a sheaf G on C :

. . . −→ Hk−1(U1 ∩ U2,G) −→ Hk(C,G) −→ Hk(U1,G)⊕Hk(U2,G) −→ . . .

¤

4 The Picard group of a ribbon

We recall that for a ringed space X̊∞ = (C,A) the Picard group Pic(X̊∞) = H1(C,A∗) ,
and for the ringed space X∞ = (C,A0) also the Picard group Pic(X∞) = H1(C,A∗0) .

Proposition 5. Let X̊∞ = (C,A) be a ribbon over an Artinian ring A . We suppose that
C is either projective, or affine curve over SpecA . Then

Pic(X∞) = lim←−
i≥0

Pic(Xi).

Proof. We denote for any j ≥ i ≥ 0 the following sheaves Gi,j = 1+Ai+1

1+Aj+1
on C . Then we

have the following exact sequences:

1 −→ Gi,j −→ O∗Xj
−→ O∗Xi

−→ 1. (8)

We denote for any i ≥ 0 the following sheaf Gi = 1 + Ai+1 ⊂ A∗0 on C . Then we
have

Gi = lim←−
j≥i
Gi,j.
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For any j ≥ i ≥ 0 we have the following exact sequences:

1 −→ Gj,j+1 −→ Gi,j+1 −→ Gi,j −→ 1. (9)

For any j ≥ 0 we have Gj,j+1 ' Aj+1/Aj+2 . Therefore from sequence (9) we obtain that
for any affine open subset U ⊂ C the maps H0(U,Gi,j+1) → H0(U,Gi,j) are surjective
for any j ≥ i ≥ 0 , by induction on j we obtain that H1(U,Gi,j) = 0 for any j ≥
i ≥ 0 . Therefore, arguing as in the proof of assertion 3 of proposition 3, we obtain that
H1(U,Gi) = 0 for any i ≥ 1 .

Since C is a curve over an Artinian ring, there are some affine open subsets U1 and
U2 of C such that C = U1 ∪ U2 . Therefore the following Mayer-Vietoris sequence is
exact:

0→ H0(C,Gi)→ H0(U1,Gi)⊕H0(U2,Gi)→ H0(U1 ∩ U2,Gi)→ H1(C,Gi)→ 0. (10)

Also for any j ≥ i ≥ 0 we have the following exact sequences:

0→ H0(C,Gi,j)→ H0(U1,Gi,j)⊕H0(U2,Gi,j)→ H0(U1 ∩ U2,Gi,j)→ H1(C,Gi,j)→ 0.
(11)

We note that for any fixed i ≥ 0 the projective system (H0(U1,Gi,j)⊕H0(U2,Gi,j), j ≥
i) satisfies the ML-condition, because the maps in this system are surjective. By the
same reason, if the curve C is affine, then for any fixed i ≥ 0 the projective system
(H0(C,Gi,j), j ≥ i) satisfies the ML-condition. If the curve C is projective, then we
consider the following exact sequences which follow from sequences (8):

0 −→ H0(C,Gi,j) −→ H0(C,O∗Xj
) −→ H0(C,O∗Xi

). (12)

We have that A -modules (H0(C,OXj
), j ≥ 0) satisfy the ML-condition, because they are

Artinian A -modules. Therefore the groups H0(C,O∗Xj
) = H0(C,OXj

)∗ satisfy the ML-
condition as invertible elements of the corresponding algebras for which: 1) we have ML-
condition and 2) maps in projective system have nilpotent kernels. Whence, for the fixed
i ≥ 0 from exact sequence (12) we obtain that the projective system (H0(C,Gi,j), j ≥ i)
satisfies the ML-condition as the kernels of the maps to the constant group H0(C,O∗Xi

) .
Now we apply lemma 1 to obtain that for the fixed i ≥ 0 exact sequence (10) is the

projective limit of exact sequences (11) with respect to j ≥ i . Therefore we have

H1(C,Gi) = lim←−
j≥i

H1(C,Gi,j).

Let i = 0 , then from exact sequence (8) we obtain the following exact sequence for
j ≥ 0 :

0 −→ H0(C,G0,j) −→ H0(C,O∗Xj
) −→ H0(C,O∗C) −→

−→ H1(C,G0,j) −→ H1(C,O∗Xj
) −→ H1(C,O∗C) −→ 0.

Every term of this sequence satisfies the ML-condition with respect to j . (For the zero
cohomology it is proved above in this proof, for the first cohomology it follows from the
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absence of the second cohomology on the curve. ) Therefore, using lemma 3, we obtain
that the following sequence is exact:

0→ lim←−
j≥0

H0(C,G0,j)→ lim←−
j≥0

H0(C,O∗Xj
)→ H0(C,O∗C)→

→ lim←−
j≥0

H1(C,G0,j)→ lim←−
j≥0

H1(C,O∗Xj
)→ H1(C,O∗C)→ 0.

(13)
From exact sequence

1 −→ G0 −→ A∗0 −→ O∗C −→ 1

we obtain the following exact sequence:

0 −→ H0(C,G0) −→ H0(C,A∗0) −→ H0(C,O∗C) −→
−→ H1(C,G0) −→ H1(C,A∗0) −→ H1(C,O∗C) −→ 0. (14)

We have the natural map of exact sequence (14) to exact sequence (13), and we know
that the maps at each term except for one term of the sequence are isomorphisms. But
then it follows that the residuary map

H1(C,A∗0) −→ lim←−
j≥0

H1(C,O∗Xj
)

is also an isomorphism.

¤

Corollary 3. Under conditions of proposition 5 we suppose that C is an affine curve.
Then Pic(X∞) = Pic(C) .

Proof follows from the proposition and from H1(C,Gj,j+1) = 1 for any j ≥ 0 .

¤

Let X̊∞ = (C,A) be a ribbon over the field k . For a point x ∈ C we denote by A0,x

the local ring which is a stalk of the sheaf A0 at the point x . Let Mx be the maximal
ideal of A0,x . Further we will need to compare the following two rings.

Definition 8. We denote by Â0,x the Mx -adic completion of the ring A0,x . We denote
by Ã0,x the ring

Ã0,x = lim←−
i

ÔXi,x.

Proposition 6. 1. We have the following commutative diagram of morphisms of local
rings

A0,x → Â0,x

‖ ↓ α
A0,x → Ã0,x

where the horizontal arrows are injective.
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2. If dimk(Mx/M2
x) < ∞ , then the ring Â0,x is Noetherian and α is surjective,

and the Krull dimension of Ã0,x : dimÃ0,x ≥ 2 . Furthermore, Ĩj = IjÃ0,x , where

Ĩj = Ker(Ã0,x → ÔXi,x) , Ij = Aj,x .

Proof. We prove assertion 1 of the proposition. We define a linear topology on
A := A0,x by taking as open ideals all ideals Q of finite colength which contain some
ideal Ii := Ai,x . Thus the set {Q} of ideals contains the ideals Ii +Mn

x for all i, n ,
since A/Ii is Noetherian, and so it is coarser or equivalent to the Mx -adic topology, and
it is separated (since for any a 6= 0 in A there is Ii with a 6= 0 mod Ii , and n with
a mod Ii /∈Mn

x(A/Ii) , hence a /∈Mn
x + Ii = Q ).

Hence assertion 1 follows, since Ã is the completion of A with respect to the {Q} -
topology.

We prove assertion 2 of the proposition. We recall that k(x) = A/Mx . If
dimk(x)(Mx/M2

x) = n < ∞ , then grMx(A) is Noetherian (as an image of a surjec-

tion SymA/Mx(Mx/M2
x) → grMx(A) ) and dimk(x)(A/Mk+1

x ) ≤ Cn
n+k . Therefore Â is

Noetherian by [2, ch. III, §2.9, corol.2] (since gr{dMi
x}(Â) = grM(A) ), and Â , Ã both

carry a linear topology, which is linearly compact. (The topology of Â is linearly compact,

since dimk Â/M̂i
x <∞ , see [2, ch.III, §2]). Since α is a continuous homomorphism and

A is dence in Ã and in Â , it follows that α is surjective with kernel ∩QQ̂ = ∩j Îj ( Î is
the Mx -adic completion of an ideal). The topology of Ã is the M̃x -adic topology.

Now we prove Ĩj = IjÃ . We have Ĩj/Ĩj+k = IjÂ/Ij+k = IjÃ/Ĩj+k , hence Ĩj =
IjÃ + Ĩj+k for any k > 0 . But since Ã is Noetherian, the ideal IjÃ (as any ideal in
Ã ) is closed in the Mx -adic topology and the {Ĩj} -topology is finer (since Ã is linearly
compact). Therefore Ĩj = IjÃ .

To prove that dimÃ ≥ 2 , we choose u ∈Mx which lifts a nonzero divisor of MC,x =
Mx/I1 . We’ll prove l(A/(Ij+1 + uA)) ≥ j + 1 . It follows by induction on j from the
following exact sequence

0→ Ij/Ij+1 → A/Ij+1 → A/Ij → 0
↓ u ↓ u ↓ u

0→ Ij/Ij+1 → A/Ij+1 → A/Ij → 0

since we have statement (3c) of definition 1, so l((Ij/Ij+1)/u(Ij/Ij+1)) ≥ 1 ,
l((A/I1)/u(A/I1)) = l(A/(I1 + uA)) ≥ 1 , l((A/Ij+1)/u(A/Ij+1)) = l((A/Ij)/u(A/Ij)) +
l((Ij/Ij+1)/u(Ij/Ij+1)) .

Thus l(Ã/(Ĩj + uÃ)) ≥ j , and l(Ã/uÃ) = ∞ . Since u is not a zero-divisor in

Ã = lim←− Â/Ij , it follows that dimÃ > 1 .

¤

Corollary 4. We suppose that dimk(x)(Mx/M2
x) = 2 . Then we have the following prop-

erties under notations of proposition 6.

1. α is an isomorphism.
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2. Ã0,x is a 2-dimensional regular ring.

Proof. We always have dimÂ0,x ≥ dimÃ0,x . By [2, ch.III, §3, prop.3], the filtra-

tion {M̂i
x} is M̂x -stable in the ring Â0,x . Then by [1, prop.11.4, th. 11.14], we have

dimÂ0,x = degχMx(n) = deg g(n) , where χMx(n) , g(n) are characteristic polynomials

for the filtrations {M̂x

i} , {M̂i
x} , and 2 = dimSymA/Mx(Mx/M2

x) ≥ deg g(n) (since
g(n) ≤ χν(n) for all n À 0 , where χν is the characteristic polynomial of the ring
(SymA/Mx(Mx/M2

x))ν , where the prime ideal ν =
⊕∞

n=1 S
n(Mx/M2

x) ).

Therefore, using assertion 2 of proposition 6, we have dimÃ0,x = dimÂ0,x = 2 and
Ã0,x is a 2-dimensional regular ring with a prime ideal (0) . Therefore, ker(α) must be

a prime ideal, hence ker(α) = 0 , since otherwise dimÂ0,x > 2 .

¤

Proposition 7. The group A∗x/A∗0,x is non-trivial if and only if there exists an integer
i > 0 such that Ai,xA−i,x = A0,x . In this case the following properties are satisfied.

1. All Aj,x ( j ∈ Z ) are finitely generated A0,x -modules.

2. The invertible sets Aj,x ’s, i.e. those for which Aj,xA−j,x = A0,x form a cyclic group
{Aid,x|i ∈ Z} with some d > 0 .

Proof. If Ai,xA−i,x = A0,x , there are finitely many elements ai ∈ Ai,x , bi ∈ A−i,x ,
i = 1, . . . , r such that

∑
aibi = 1 .

Since A0,x is a local ring there is one pair (ai, bi) with aibi ∈ A∗0,x , and so there is a
pair (a, b) , a ∈ Ai,x , b ∈ A−i,x with ab = 1 .

Now from ab = 1 , a ∈ Ai,x , b ∈ A−i,x , we obtain Ai,x = A0,xa , A−i,x = A0,xb . For,
if a′ ∈ Aj,x and a′b = f ∈ A0,x , then 0 = ((a′ − fa)b)a = a′ − fa , hence a′ = fa .
Similarly, Aki,x = A0,xa

k , A−ki,x = A0,xb
k , since akbk = 1 .

If Ai,xA−i,x = A0,x , Aj,xA−j,x = A0,x and d = gcd(i, j) , then Ad,xA−d,x = A0,x . For,
if Ai,x = A0,xa , Aj,x = A0,xa

′ and d = mi + nj , then ama′n ∈ Ad,x , and if b = a−1 ,
b′ = a′−1 bmb′n ∈ A−d,x and (ama′n)(bmb′n) = 1 .

Thus, assertion 2 of this proposition is proved. To prove assertion 1 of the proposition,
we observe that for any Aj,x there is a multiple k = dj of d such that Ak,x ⊂ Aj,x , and
Aj,x/Ak,x is a finitely generated A0,x -module.

¤

Now we want to discuss the group H1(C,A∗) .

Proposition 8. Let X̊∞ be a ribbon with an irreducible underlying curve C . We assume
that the function of order ord is a homomorphism from A∗(V ) to Z for any open V ⊂ C
(see, for example, proposition 9 below). Then we have A∗/A∗0 ⊆ ZC .

Let the sheaf A∗/A∗0|U be a constant sheaf for an open set U , which is equal to dZ .
(We suppose that this U is maximal.) We have the following.
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1. If H0(C,A∗/A∗0) = mdZ for some m 6= 0 , then H1(C,A∗/A∗0) is a finite abelian
group of order less or equal to ms−1 if s > 1 , and is equal to 0 otherwise.

2. If H0(C,A∗/A∗0) = 0 , then rk(H1(C,A∗/A∗0)) ≤ s− 1 if s > 1 , and H1(C,A∗/A∗0) =
0 otherwise.

In both cases, s is the number of critical points of A∗/A∗0 , i.e. s = ](C \ U) .

Proof. If a ∈ A∗x ∩ (Aj,x\Aj+1,x) , where x ∈ C is a point, and b ∈ A∗x is the inverse
of a , then b ∈ A∗x ∩ (A−j,x\A−j+1,x) . Then Aj,x = A0,xa . The relations Aj,x = A0,xa ,
A−j,x = A0,xb and ab = 1 extend to a neighbourhood U of x .

Since Aj/Aj+1 is a torsion free sheaf, we obtain that if a ∈ A∗(U) , then there exists a
unique j ∈ Z such that ax ∈ Aj,x\Aj+1,x , and the inverse b satisfies bx ∈ A−j,x\A−j+1,x ,
and Aj|U = A0|Ua , A−j|U = A0|Ub . So we get in this case an injection

A∗/A∗0 → ZC , a 7→ j = ord(a)

(ZC is a constant sheaf on C ). This is an isomorphism iff A1,A−1 are mutually dual
invertible A0 -modules.

By our assumptions we have that either A∗ = A∗0 , or there is a smallest positive
integer d such that there exists a point x and a ∈ A∗x of order d . Then there is a largest
open set U where Ad,A−d are invertible mutually dual.

Then A∗/A∗0 ⊂ dZ and the cokernel is a sheaf with support in C\U . If H0(C,A∗/A∗0) =
0 , then at least one stalk of the sheaf dZ/(A∗/A∗0) in these points is dZ . If H0(C,A∗/A∗0) =
mdZ , the stalks of the sheaf dZ/(A∗/A∗0) in these points are finite groups, whose order
is less or equal to m . Now, using the long cohomology sequence of the short sequence

0→ A∗/A∗0
µ→ dZ→ coker(µ)→ 0

we obtain the proof. (We use that the first cohomology of a constant sheaf on an irreducible
space is equal to zero in Zariski topology.)

¤

Proposition 9. Let X̊∞ be a ribbon with an irreducible underlying curve C over a field
k . Assume that there exists a point x ∈ C such that A1,xA−1,x = A0,x . Then the function
of order ord is compatible with the restriction homomorphisms A∗(U)→ A∗(V ) for open
V ⊂ U , and the function of order ordU is a homomorphism from A∗(U) to Z for any
open U .

Proof. As it was shown in the proof of proposition 7, there is an invertible element a ∈
A1,x\A2,x such that a−1 ∈ A−1,x . So, there exists an open U 3 x such that a ∈ A1(U) ,
a−1 ∈ A−1(U) .

Now we need the following lemma.

Lemma 4. We consider a ribbon (C,A) , where C is an irreducible curve over a field
k . Let the sheaf A satisfies the condition (*) (see definition 5) with the following extra
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property: for any open Uα from (*) there exists an invertible section a ∈ A1(Uα)\A2(Uα)
such that a−1 ∈ A−1(Uα) .

Then the function of order ord is compatible with the restriction homomorphisms
A∗(U) → A∗(V ) for open V ⊂ U , and the function of order ordU is a homomorphism
from A∗(U) to Z for any open U .

Proof. The first assertion of the lemma follows from the second one. Indeed, if V ⊂ U are
two open subsets and b ∈ A∗(U) , ordU(b) = k , then ordU(b−1) = −k . We always have
ordV (b|V ) ≥ ordU(b) . If we suppose that ordV (b|V ) > ordU(b) , then ordV ((b|V )−1) <
−k = ordU(b−1) . But (b|V )−1 = b−1|V and ordV (b−1|V ) ≥ ordU(b−1) = −k , we have a
contradiction.

Now we prove the second assertion of the lemma. At first, we prove it for each Uα . We
note that for any b ∈ A∗(Uα) and any k ∈ Z we have ordUα(bak) = ordUα(b) + k , where
a is an invertible element from A1(Uα)\A2(Uα) such that a−1 ∈ A−1(Uα) . Indeed, by
definition of a ribbon, we always have ordUα(bc) ≥ ordUα(b) + ordUα(c) for any b, c ∈
A∗(Uα) . Let ordUα(ba) > ordUα(b) + 1 . Then

ordUα(b) = ordUα(baa−1) ≥ ordUα(ba)− 1 > ordUα(b),

we have a contradiction.
We note that ordUα(bc) = ordUα(b)+ordUα(c) if ordUα(c) = 0 . Indeed, if ordUα(bc) >

ordUα(b) , then this would mean that b̄c̄ = 0 , where b̄ ∈ Aord(b)(Uα)/Aord(b)+1(Uα) , c̄ ∈
OC(Uα)A0(Uα)/A1(Uα) . But c̄, b̄ 6= 0 , and Aord(b)/Aord(b)+1 is a torsion free sheaf by
definition, therefore we obtain a contradiction.

For any b, c ∈ A∗(Uα) we have

ordUα(bc) = ordUα(ba− ord(b)aord(b)c) = ordUα(ba− ord(b))+ordUα(aord(b)c) =

ordUα(b) + ordUα(c).

The arguments from the beginning of the proof show that for any open V ⊂ Uα
ordV (a|V ) = 1 , and ordV ((a|V )−1) = −1 . Therefore, ordV is also a homomorphism on
A∗(V ) .

Now let U be an arbitrary open nonempty subset of C . Then U = ∪α(U ∩Uα) , and
ordU∩Uα is a homomorphism for each α . Let b ∈ A∗(U) , ordU(b) = k . Assume that there
exists β such that ordU∩Uβ

(b|U∩Uβ
) = l > k . Then for any α we have U∩Uβ∩Uα 6= ∅ and

ordU∩Uβ∩Uα(b|U∩Uβ∩Uα) = l and therefore ordU∩Uα(b|U∩Uα) = l . Since Al is a subsheaf of
A , this would mean that b ∈ Al(U) , we have a contradiction.

So, we have for any b, c ∈ A∗(U)

ordU(bc) = ordU∩Uα((bc)|U∩Uα) ordU∩Uα(b|U∩Uα) + ordU∩Uα(c|U∩Uα) = ordU(b) + ordU(c).

The lemma is proved.

¤
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By lemma the function of order is a homomorphism on U and on all open subsets of
U . Let V ⊂ C , V 6= C , V * U be an open set. Since C is a reduced irreducible curve,
V must be affine and V ∩U is also affine. Without loss of generality we can assume that
V ∩U = D(f ′) , where V = Spec(B) , f ′ ∈ B , B = OC(V ) . Let f be a representative of
f ′ in A0(V ) . Clearly, it is invertible in A0(V ∩ U) . Let b = a|V ∩U . We know that b is
invertible, ord(b) = 1 , ord(b−1) = −1 . Since the sheaves A1/A2 , A−1/A0 are coherent
and V ∩ U is affine, there exists natural n such that

fnb mod A2(V ∩ U) = φV D(f ′)(b̄), fnb−1 mod A0(V ∩ U)φV D(f ′)(b−1),

where φV D(f ′) : A(V )→ A(D(f ′)) is the restriction homomorphism and b̄ ∈ A1/A2(V ) ,

b−1 ∈ A−1/A0(V ) , by [6, lemma 5.3] and by proposition 3. Let b̃, b̃−1 be representatives

of b̄, b−1 in A1(V ) , A−1(V ) correspondingly. Then we have ordV (b̃b̃−1) ≥ 0 and

ordV (b̃b̃−1) ≤ ordV ∩U(φV D(f ′)(b̃b̃−1))

by the properties of A . But φV D(f ′)(b̃b̃−1) = f 2n mod A1(V ∩U) , wherefrom ordV (b̃b̃−1)0 .
Note that for any d ∈ A(V ) we have ordV (dc) = ordV (d) + ordV (c) if ordV (c) = 0 .

Indeed, if ordV (dc) > ordV (d) , then this would mean that d̄c̄ = 0 , where d̄ ∈
Aord(d)(V )/Aord(d)+1(V ) , c̄ ∈ OC(V ) . But the curve C is reduced and irreducible and
Aord(d)/Aord(d)+1 is a torsion free sheaf by definition, wherefrom we obtain a contradiction.

Now, repeating the arguments from the proof of lemma 4, we obtain ordV (db̃k) =
ordV (d) + k for any integer k and for any d, c ∈ A∗(V )

ordV (dc) = ordV (db̃−1
ord(d)

b̃ord(d)c) ordV (db̃−1
ord(d)

) + ordV (b̃ord(d)c) = ordV (d) + ordV (c).

At last, if V = C , then we can apply the arguments at the end of the proof of lemma 4.
The proposition is proved.

¤

Corollary 5. If there exists a point P on an irreducible curve C such that A1,PA−1,P =
A0,P , then the following properties are satisfied.

1. The embedding of sheaves A∗/A∗0 ord→ ZC is an isomorphism on an open subset
U ⊂ C . Besides, in the remaining points of C\U , the stalks (A∗/A∗0)x are cyclic
subgroups dxZ of Z . If H0(C,A∗/A∗0) = dZ with d > 0 , then all dx are divisors
of d .

2. If P is a smooth point on the curve C , then dimk(P )(MP/M2
P ) = 2 .

Proof. The proof of assertion 1 of this corollorary is clear.
Now we prove assertion 2. From proposition 7 we know that in our case Ai,P =

A0,Pa
i for all i ≥ 1 . Since P is a smooth point, we have MC,P = OC,P ū for some

ū ∈MC,P . Let u ∈ A0,P be a representative of ū . Then, clearly, u, a generate the ideal
MP in the ring A0,P and are linearly independent in MP/M2

P . So, we conclude that
dimk(P )(MP/M2

P ) = 2 .
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¤
Example 7. If a curve C is not irreducible, then it is possible that the function of order
is not a homomorphism from A(U)∗ to Z for open U ⊂ C .

For example, if we take an algebraizable ribbon from example 1, where X is an affine
plane and C is a curve given by the equation xy = 0 , then the elements x and y
will be invertible of order zero elements for any open U ⊂ C such that U contains
the point (x = 0, y = 0) . For, (xy) is an invertible element from A(U) , and therefore
x−1 = y(xy)−1 , y−1 = x(xy)−1 . But ordU(xy) = 1 , so, ordU is not a homomorphism.

Example 8. Let X̊∞ be a ribbon from example 1, where X is assumed to be a smooth
projective surface. Assume also that (C ·C) 6= 0 , and C is an irreducible curve. We have
that the condition A1,PA−1,P = A0,P of corollary 5 is satisfied at each point P ∈ C .
Therefore, by proposition 8 and corollary 5 we have the following exact sequence of sheaves
on C :

1 −→ A∗0 −→ A∗ −→ Z −→ 0,

and H0(C,A∗/A∗0) = Z , H1(C,A∗/A∗0) = 0 . It gives the following exact sequence:

0→ Z α→ Pic(X∞)→ Pic(X̊∞)→ 0,

where α(1) = A1 . (The map α is an injective map, because α(1) is not a torsion
element in the group Pic(X∞) . Indeed, the image of α(1) in Pic(C) has degree equal
to −(C · C) 6= 0 .) So, we obtain that Pic(X̊∞) ' Pic(X∞)/〈A1〉 ' Pic(X∞)/Z .

For each i we have the exact sequence

0→ H1(C,
1 +A1

1 +Ai+1

)→ Pic(Xi)→ Pic(C)→ 0

and therefore we have the map

Pic(Xi)
deg→ Z→ 0, L 7→ deg(L|C).

By our assumptions we have deg(A1/Ai+1) = d = −(C · C) 6= 0 . Therefore, we have
the following exact diagrams for each i :

0→ Pic0(Xi) → Pic(Xi) → Z → 0
↑ ⋃ ⋃
0 → 〈A1/Ai+1〉 ' dZ

↑ ↑
0 0

whence
0→ Pic0(Xi)→ Pic(Xi)/〈A1/Ai+1〉 → Z/dZ→ 0.

Projective system (Pic(Xi), i ≥ 0) satisfies the ML-condition (as the first cohomology
on the curve), therefore (Pic0(Xi), i ≥ 0) satisfies the ML-condition (as the kernels of
the maps to Z ). Passing to the projective limit we obtain the exact sequence

0→ Pic0(X∞) → Pic(X∞)/〈A1〉 → Z/dZ → 0
‖

Pic(X̊∞)
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In particular, when X = P2 , C = P1 ⊂ X , we have d = −1 and therefore
Pic0(X∞) ' Pic(X̊∞) . On Pic0(X∞) there exists a structure of a scheme (see, for ex-
ample, [9]), so in this case there is a structure of a scheme also on Pic(X̊∞) .

5 A generalized Krichever-Parshin map

Let X̊∞ = (C,A) be a ribbon over a field k .

Definition 9. We say that a point P ∈ C is a smooth point of the ribbon X̊∞ if the
following conditions are satisfied.

1. P is a smooth point of C .

2. ̂(Ai/Ai+1)P ⊗ ̂(Aj/Aj+1)P → ̂(Ai+j/Ai+j+1)P is an isomorphism of ÔC,P -modules,
and this map is induced by the map from the definition of ribbon: Ai · Aj ⊂ Ai+j .

Example 9. Let X̊∞ be a ribbon from example 1, where P ∈ C is a smooth point on
the curve C and the surface X . Then it is clear that P is a smooth point of the ribbon
X̊∞ .

Remark 7. Immediately from definition follows that a ribbon with a smooth point,
whose topological space is irreducible, satisfies the conditions of proposition 9. On the
other hand, all the ribbons from examples 2 and 3 have open neighborhoods, where they
have smooth points and are algebraizable.

Proposition 10. Let P be a smooth k -point of the ribbon (C,A) . Then

Ã0,P ' Â0,P ' k[[u, t]],

where tÃ0,P = Ã1,P and ÔC,P ' k[[τ(u)]] , where τ : Ã0,P → ÔC,P is a canonical map.

Proof. The isomorphism Ã0,P ' Â0,P follows from corollaries 5 and 4. Now we will prove

that ÔXi,P ' k[[u]][t]/ti for some u, t . The proof is by induction on i .

If i = 1 , then ÔX1,P = ÔC,P ' k[[u]] for some u . Suppose we have proved the
assertion for (i− 1) . We have the exact triple:

0→ ̂(Ai−1/Ai)P → ÔXi,P
γ→ ÔXi−1,P → 0.

Let ũ, t̃ ∈ ÔXi,P be elements with γ(ũ) = u , γ(t̃) = t . From the definition of a smooth

point it follows that t̃i−1 is a generator of the ÔC,P -module ̂(Ai−1/Ai)P . Therefore,

ÔXi,P ' k[[u]][t]/ti .
Passing to the projective limit with respect to i we are done.

¤

Definition 10. Any elements u, t from proposition 10 are called formal local parameters
of the ribbon (C,A) at the smooth point P .
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Lemma 5. Let (C,A, P, u, t) be a ribbon over a field k with a smooth k -point P and
formal local parameters u, t . Then u ∈ Ã0,P defines an effective Cartier divisor pu,i on
the scheme Xi for any i such that θ∗i pu,i = pu,i−1 and pu,1 = P , where

θi : Xi−1 → Xi

is a canonical map.

Proof. We know by proposition 10 that ÔXi,P ' k[[u]][t]/ti , because P is a smooth

point of the ribbon (C,A) . By p̃u,i = u · k[[u]][t]/ti we denote the ideal in ÔXi,P . Let
p′u,i := p̃u,i ∩ OXi,P be the ideal in OXi,P .

We have for some j > 0 that Mj
P ·k[[u]][t]/ti ⊂ p̃u,i , where MP is the maximal ideal

of OXi,P . Therefore, Mj
POXi,P ⊂ p′u,i . Let ũ ∈ OXi,P be an element such that β(ũ)

coincides with β̂(u) , where β, β̂ are the following natural maps

β : OXi,P −→ OXi,P/Mj
P

‖
β̂ : ÔXi,P −→ ÔXi,P/M̂j

P

Then ũ ∈ p′u,i and ũ · ÔXi,P = p̃u,i . Therefore, p′u,i · ÔXi,P = p̃u,i , and p′u,i = ũOXi,P

defines the effective Cartier divisor pu,i in some affine open neigbourhood of the point
P ∈ Xi (and on Xi ). By construction, θ∗i pu,i = pu,i−1 .

¤

Remark 8. By construction of the ideal p′u,i (or divisor pu,i ) we obtain that it is uniquely

defined by the properties p′u,i ·ÔXi,P = u ·ÔXi,P , θ∗i pu,i = pu,i−1 , and p′u,1 =MP ⊂ OC,P .

Definition 11. Let X̊∞ = (C,A) be a ribbon over a scheme S . We say that N is a
torsion free sheaf of rank r on X̊∞ if N is a sheaf of A -modules on C with a descending
filtration (Ni)i∈Z of N by A0 -submodules which satisfies the following axioms.

1. NiAj ⊆ Ni+j for any i, j .

2. For each i the sheaf Ni/Ni+1 is a coherent sheaf on C , flat over S , and for any
s ∈ S the sheaf Ni/Ni+1|CS

has no coherent subsheaf with finite support, and is
isomorphic to O⊕rCS

on a dense open set.

3. N = lim−→
i

Ni and Ni = lim←−
j>0

Ni/Ni+j for each i .

Remark 9. It follows from assertion 2 of definition 11 that if Cs (for s ∈ S ) is an
irreducible curve, then the sheaf Ni/Ni+1 |Cs is a rank r torsion free sheaf on Cs for
any i ∈ Z .

Remark 10. If the sheaf A of a ribbon X̊∞ satisfies the condition (*) from definition 5,
then any torsion free sheaf N of rank r on X̊∞ is coherent. The proof of this fact is the
same as in lemma 2.
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On the other hand, if A is only coherent, then there exists a torsion free sheaf that
is not coherent, as it follows from the example below.

Example 10. Consider the ribbon (C,A = OC((t))Q) from example 3. The sheaf A is
coherent, but not weakly Noetherian. The sheaf N := OC((t)) with obvious filtration is
a torsion free sheaf of rank 1 on X̊∞ . But the stalk NQ can not be finitely generated:
for any finite number of sections g1, . . . , gk ∈ N (V ) , Q ∈ V there are infinite number
of elements tl , l ¿ 0 that can not be generated by gi . So, N is not of finite type and
therefore is not coherent.

Definition 12. Let X̊∞ = (C,A) be a ribbon over a field k . We say that a point P ∈ C
is a smooth point of a torsion free sheaf N on X̊∞ if the following conditions are satisfied.

1. P is a smooth point of X̊∞ .

2. ̂(Ni/Ni+1)P ⊗ÔC,P

̂(Aj/Aj+1)P → ̂(Ni+j/Ni+j+1)P is an isomorphism of ÔC,P -
modules, and this map is induced by the map from the definition of N : Ni · Aj ⊂
Ni+j .

Similarly to the proposition 10 we have the following proposition.

Proposition 11. Let P be a smooth point of a torsion free sheaf N of rank r on a
ribbon X̊∞ over a field k . Then

Ñ0,P ' Ã⊕r0,P ,

where Ñ0,P = lim←−
j≥0

̂(N0/Nj)P .

Proof. By induction on j and using the exact sequence

0→ ̂(Nj−1/Nj)P → ̂(N0/Nj)P → ̂(N0/Nj−1)P → 0

we prove that ̂(N0/Nj)P ' ̂(A0/Aj)
⊕r
P . Then we pass to the projective limit.

¤

Example 11. Let X̊∞ = (C,A) be a ribbon such that C is irreducible. We suppose that
the function of order is a homomorphism (see, for example, proposition 9 above.) Then
every element N ∈ Pic(X̊∞) gives a torsion free sheaf of rank 1 on X̊∞ after the fixing
of a filtration on N . (All the possible filtrations form a Z -torsor.) Indeed, the function
of order ord gives a homomorphism:

γ : H1(C,A∗) −→ H1(C,Z).

And the obstruction to find a filtration on N is γ(N ) 6= 0 . But any local Z -system
on irreducible space C is trivial in Zariski topology, i.e. H1(C,Z) = 0 . Thus, we have a
filtration on N .
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Example 12. Let X̊∞ be a ribbon from example 1. Let E be a locally free sheaf of rank
r on the surface X . Then

E̊C := lim−→
i

lim←−
j

E(iC)/E(jC)

is a torsion free sheaf of rank r on X̊∞ . Any point P ∈ C ⊂ X that is smooth on C
and on X will be a smooth point on E̊C .

Remark 11. Similarly to definition 8 we have two A0,P -modules: Ñ0,P and N̂0,P , where
the latter is the MP -adic completion of the module N0,P . Using similar arguments as
in the the proof of proposition 6, we obtain that if dimkN0,P/MPN0,P < ∞ , then the
natural homomorphism of A0,P -modules

N̂0,P
α→ Ñ0,P

is surjective.
If P is a smooth point of the torsion free sheaf N of rank r , then Â0,P ' Ã0,P ,

dimk(P )N0,P/MPN0,P = r and therefore α is an isomorphism of Ã0,P -modules.

Further we will work with geometric data consisting of a ribbon, a torsion free sheaf
on it, formal local parameters at a point P on the ribbon and a formal trivialization of
the sheaf at P .

Definition 13. Let (X̊∞,N ) , (X̊
′
∞,N ′) be two ribbons over a field k with two torsion

free sheaves of rank r on them. We say that (X̊∞,N ) is isomorphic to (X̊
′
∞,N ′) if there

is an isomorphism

ϕ : X̊∞ −→ X̊
′
∞

of ribbons (see definition 2) and an isomorphism

ψ : N ′ → ϕ∗(N )

of graded A′ -modules, i.e. ψ(N ′
i ) = ϕ∗(Ni) and ψ(ln) = ϕ](l)ψ(n) for any sections

n ∈ N ′(U) , l ∈ A′(U) over open U ⊂ C ′ .

Definition 14. We will consider the following geometric data (C,A,N , P, u, t, eP ) , where

• (C,A) is a ribbon over a field k ,

• N is a torsion free sheaf of rank r on (C,A) ,

• P ∈ C is a smooth k -point of the sheaf N ,

• u, t are formal local parameters of the ribbon at P ,

• eP : Ñ0,P → Ã⊕r0,P ' k[[u, t]]⊕r is an isomorphism of Ã0,P -modules.
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We say that (C,A,N , P, u, t, eP ) is isomorphic to (C ′,A′,N ′, P ′, u′, t′, e′P ) if there is
an isomorphism (see definition 13)

(ϕ, ψ) : (C,A,N ) −→ (C ′,A′,N ′)

such that ϕ(P ) = P ′ , ϕ]P (t′) = t , ϕ]P (u′) = u , where ϕ]P : Ã′0,P → Ã0,P is an isomor-
phism of local rings induced by ϕ] , and the diagram

Ñ ′
0,P

ψP→ Ñ0,P

↓ e′P ↓ eP
Ã′0,P

ϕ]
P→ Ã0,P

is commutative, where the isomorphism ψP is induced by ψ .

Definition 15. We say that a k -subspace V0 of a k -space V is a Fredholm subspace
with respect to a k -subspace V1 ⊂ V , if the cohomology groups of the following complex
are finite-dimensional over the field k :

V0 ⊕ V1 −→ V
(a0 ⊕ a1) 7→ a1 − a0

.

Definition 16. Let K = k((u))((t)) be a two-dimensional local field. We define the
following k -subspaces of K :

O(n) = tnk((u))[[t]]

for any n . For any k -subspace W ⊂ K⊕r and any j > i ∈ Z we define

W (i, j) =
W ∩ O(i)⊕r

W ∩ O(j)⊕r
.

We have the natural isomorphism O(i)/O(j) = k((u))⊕(j−i) , therefore W (i, j) is a
k -subspace of the space k((u))⊕r(j−i) .

Definition 17. Let W be a k -subspace of K⊕r = k((u))((t))⊕r , let A be a k -
subalgebra of K = k((u))((t)) . (We can consider K⊕r as a K -module, so the product
A ·W ⊂ K⊕r is defined.)

We suppose that A ·W ⊂ W , and A(i, i + 1) ⊂ k((u)) is a Fredholm subspace with
respect to k[[u]] , W (i, i+ 1) ⊂ k((u))⊕r is a Fredholm subspace with respect to k[[u]]⊕r

for any i ∈ Z . Then we call the pair of k -subsapces (A,W ) ⊂ K⊕K⊕r as a Schur pair.

Remark 12. By induction on j−i > 0 we have that if W (i, i+1) is a Fredholm subspace
in k((u))⊕r with respect to k[[u]]⊕r for any i ∈ Z , then W (i, j) is a Fredholm subspace
in k((u))⊕r(j−i) with respect to k[[u]]⊕r(j−i) for any j > i . Similarly, if A(i, i + 1) is
a Fredholm subspace in k((u)) with respect to k[[u]] for any i ∈ Z , then A(i, j) is a
Fredholm subspace in k((u))⊕(j−i) with respect to k[[u]]⊕(j−i) for any j > i .

Theorem 1. The Schur pairs (A,W ) from definition 17 are in one-to-one correspon-
dence with data (C,A,N , P, u, t, eP ) from definition 14 up to an isomorphism, where we
additionally assume that C is a projective irreducible curve.
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Corollary 6. k -subalgebras A from definition 17 are in one-to-one correspondence with
data (C,A, P, u, t) up to an isomorphism, where C has to be a projective irreducible
curve.

Proof. The corollary follows from the theorem, if we take N = A , W = A , and eP = 1 .
Now we’ll prove the theorem. We have the following diagram of maps for any coherent

sheaf M on the scheme Xi and for any i ≥ 0 .

Γ(Xi\P,M)
αM→ Γ(SpecOXi,P\P,M)

βM→ Γ(Spec ÔXi,P\P,M)
‖ ‖

M ⊗OXi
OXi,ηi

M ⊗OXi
OXi,ηi

⊗OXi
ÔXi,P

where ηi is the generic point of the scheme Xi .
Now let M = Nk/Nk+i+1 for some k . Then, by statement 1 of proposition 3 and

statement 2 of proposition 1, M is coherent sheaf on the scheme Xi . By induction on i ,
we show that the map αM is an embedding. It is true for i = 0 , because Nk/Nk+1 is a
torsion free sheaf on C . We have the following commutative diagram for arbitrary i ≥ 1

0→ Γ(Xi\P,Ni+k/Ni+k+1) → Γ(Xi\P,Nk/Ni+k+1) → Γ(Xi\P,Nk/Nk+i) → 0

↓ αNi+k/Ni+k+1
↓ αNk/Ni+k+1

↓ αNk/Ni+k

0→ (Ni+k/Ni+k+1)ηi
→ (Nk/Ni+k+1)ηi

→ (Nk/Nk+i)ηi
→ 0,

‖
(Nk/Nk+i)ηi−1

since Ni+k/Ni+k+1 is a coherent OXi
-module and the OXi

-module structure on Nk/Nk+i
is the same as the OXi−1

-module structure. Therefore, by induction hypothesis, the left
and right vertical arrows are embeddings. Hence, the middle arrow is also an embedding.

The map βNk/Ni+k+1
is an embedding for the sheaf Nk/Ni+k+1 . Therefore, the map

βNk/Ni+k+1
◦ αNk/Ni+k+1

is an embedding for the sheaf Nk/Ni+k+1 .
Now we have for k = 0

A0/Ai+1 ⊗OXi
OXi,ηi

⊗OXi
ÔXi,P ' k((u))[t]/ti+1,

because we have fixed the formal local parameters u, t of our ribbon at P .
We have for k > 0

Ak/Ak+i+1 ⊗OXi
OXi,ηi

⊗OXi
ÔXi,P ' tk · k((u))[t]/ti+1

as an ideal in A0/Ai+1+k ⊗OXi
OXi,ηi

⊗OXi
ÔXi,P ' k((u))[t]/ti+k+1 .

By definition of a smooth point on a ribbon, we have the natural pairing for k < 0

̂(Ak/Ak+i+1)P ⊗ ̂(A−k/A−k+i+1)P → ̂(A0/Ai+1)P ,

and the element t−k mod Ã−k+i,P ∈ ̂(A−k/A−k+i+1)P . Then, by induction on i ≥ 0 , we
obtain that

̂(Ak/Ak+i+1)P
×t−k−→ ̂(A0/Ai+1)P ' k((u))[t]/ti+1
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is an isomorphism. Therefore, we have

lim−→
k

lim←−
i≥0

̂(Ak/Ak+i+1)P ' k((u))((t)).

Besides, A = lim−→
k

lim←−
i≥0

Ak/Ak+i+1 . Therefore, the ring

A := lim−→
k

lim←−
i≥0

Γ(Xi\P,Ak/Ak+i+1) ⊂ k((u))((t))

is a k -subalgebra that satisfies the conditions of the theorem.
Analogously, using the trivialization eP and formal local parameters u, t , we obtain

the isomorphism

lim−→
k

lim←−
i≥0

̂(Nk/Nk+i+1)P ' k((u))((t))⊕r

and the subspace

W := lim−→
k

lim←−
i≥0

Γ(Xi\P,Nk/Nk+i+1) ⊂ k((u))((t))⊕r

is a k -subspace that satisfies the conditions of the theorem.
Thus, starting from the geometric data (C,A,N , P, u, t, eP ) from definition 14, we

have constructed a Schur pair (A,W ) from definition 17.
Now we are going to construct a geometric data starting from a Schur pair. At first,

we note that

Γ(SpecOXi,P\P,Ak/Ak+i+1) lim−→
n≥0

Γ(Xi,Ak/Ak+i+1(npu,i)),

where pu,i is the effective Cartier divisor on Xi which was constructed in lemma 5 above.
We consider the k -subspaces for j > i ∈ Z

A(i, j) ⊂ k((u))⊕(j−i) and

Un(i, j) = u−n · k[[u]]⊕(j−i) ⊂ k((u))⊕(j−i).

If i = 0 , the space
⊕

n≥0(Un(0, j) ∩ A(0, j)) is a graded ring. We put

Xj−1 = Proj(
⊕
n≥0

(Un(0, j) ∩ A(0, j))).

The image of the embedding of
⊕

n≥0(Un−1(0, 1) ∩ A(0, 1)) in
⊕

n≥0(Un(0, 1) ∩ A(0, 1))
is a homogeneous ideal that determines a point P ∈ X0 .

If j > i ∈ Z , then
⊕

n≥0(Un(i, j) ∩ A(i, j)) is a graded module over the graded ring⊕
n≥0(Un(0, j − i) ∩ A(0, j − i)) . Then we define

A(i, j) =
˜⊕

n≥0

(Un(i, j) ∩ A(i, j)),
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i.e. it is a coherent sheaf on X(j−i) which is associated with the corresponding graded
module. Since there is no zero divisors in the field k((u)) , the sheaf A(i, i+1) is a torsion
free sheaf on C for any i .

For all j > i ∈ Z we have surjective morphisms A(i, j + 1) → A(i, j) and injective
morphisms A(i, j) → A(i − 1, j) . Also, from definitions, we have maps for all i < j ,
k < l

A(i, j)⊗k A(k, l) −→ A(i+ k,min(j + k, i+ l)), (15)

which are also well-defined maps, if we pass to projective limits with respect to j and l .
So, we define sheaves A , Ai , i ∈ Z by

A := lim−→
i

lim←−
j≥i
A(i, j), Ai = lim←−

j≥i
A(i, j).

The map given by formula (15) defines the multiplication Ai · Aj ⊂ Ai+j . Besides,

Ã0,P = k[[u, t]] , and therefore u, t are the formal local parameters of the ribbon (X0,A)
at the point P .

Analogously, we define sheaves of modules N , Ni , i ∈ Z by

N := lim−→
i

lim←−
j≥i
N (i, j), Ni = lim←−

j≥i
N (i, j),

where N (i, j) = Ñ , N =
⊕

n≥0((u
−n · k[[u]]⊕r(j−i)) ∩W (i, j)) , i.e. N (i, j) is a coherent

sheaf of OX(j−i−1)
-modules, which is associated with the corresponding graded module,

for all j > i . By construction, we have a natural isomorphism

eP : Ñ0,P → k[[u, t]]⊕r.

The map (A,W ) 7→ (X0,A,N , P, u, t, eP ) just constructed is the inverse to the map
which was constructed in the first part of proof of this theorem, because the sheaf Ni/Nj '

˜Γ∗(Ni/Nj+1) for all j > i ∈ Z , where the graded module

Γ∗(Ni/Nj) =
⊕
n≥0

Γ(Xj−i−1,Ni/Nj(npu,j−i−1)),

defines a coherent sheaf on the scheme

Xj−i−1 = Proj(
⊕
n≥0

Γ(Xj−i−1,OXj−i−1
(npu,j−i−1))),

since OXj−i−1
(pu,j−i−1) is an ample sheaf on Xj−i−1 . The latter follows from the lemma

below.

Lemma 6. For any i > 0 the sheaf OXi
(pu,i) is an ample sheaf on Xi .

Proof. Xi is a proper scheme (as X0 is a projective curve). So, by [6, ch.III, prop.5.3]
it is enough to prove that for any l > 0 , for any coherent sheaf F on Xi there exists
n0 > 0 such that for any n > n0 H l(Xi,F ⊗OXi

(npu,i)) = 0 .
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We use induction on i . If i = 1 , then pu,1 is the point P on the projective curve
C = X0 , i.e. it is an ample divisor. If i > 1 , we consider the exact sequence of OXi

-
modules

0→ F ⊗OXi
Ai−1/Ai ⊗OXi

OXi
(npu,i)→ F ⊗OXi

OXi
(npu,i)→

F ⊗OXi
(A0/Ai−1)⊗OXi

OXi
(npu,i)→ 0.

The OXi
-module structure of modules F ⊗OXi

Ai−1/Ai and F ⊗OXi
(A0/Ai−1) co-

incides with the OXi−1
-module structure. Therefore, their cohomology on Xi coincide

with cohomology on Xi−1 . So, from the long exact cohomology sequence and induction
hypothesis we get for all n > n0 and all l > 0 H l(Xi,F ⊗OXi

(npu,i)) = 0 .

¤

The theorem is proved.

¤

Remark 13. The constructions of subspaces and geometric data given in the theorem
are generalizations of the Krichever map constructed in the works [15], [12]. If a geometric
data is taken on a ribbon that comes from a surface and a reduced effective Cartier divisor
on it, as in example 1, then these constructions coincide.
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333.

[12] Osipov D.V., The Krichever correspondence for algebraic varieties (Russian), Izv.
Ross. Akad. Nauk Ser. Mat. 65, 5 (2001), 91-128; English translation in Izv. Math.
65, 5 (2001), 941-975.

[13] Parshin A.N., Vector Bundles and Arithmetical Groups I., Proc. Steklov Math. In-
stitute, 208 (1995), 212-233; e-print alg-geom/9605001

[14] Parshin A. N., On a ring of formal pseudo-differential operators, Proc. Steklov Math.
Institute, 224 (1999), 266-280.

[15] Parshin A. N., Integrable systems and local fields, Commun. Algebra, 29 (2001), no.
9, 4157-4181.

[16] Serre J.-P., Faisceaux algebriques coherents, The Annals of Mathematics, 2nd Ser.,
Vol. 61, No.2, (1955), 197-278.

[17] Zheglov A.B., Osipov D.V., On some questions related to the Krichever correspon-
dence, Matematicheskie Zametki, n. 4 (81), 2007, pp. 528-539 (in Russian); english
translation in Mathematical Notes, 2007, Vol. 81, No. 4, pp. 467-476; see also e-print
arXiv:math/0610364 .

[18] Zheglov A.B., Two dimensional KP systems and their solvability, e-print arXiv:math-
ph/0503067

H. Kurke, Humboldt University of Berlin, department of mathematics, faculty of mathe-
matics and natural sciences II, Unter den Linden 6, D-10099, Berlin, Germany
e-mail: kurke@mathematik.hu− berlin.de

D. Osipov, Steklov Mathematical Institute, algebra department, Gubkina str. 8, Moscow,
119991, Russia
e-mail: d−osipov@mi.ras.ru

A. Zheglov, Lomonosov Moscow State University, faculty of mechanics and mathemat-
ics, department of differential geometry and applications, Leninskie gory, GSP, Moscow,
119899, Russia
e-mail azheglov@mech.math.msu.su

37


