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Very general monomial valuations of P2 and a

Nagata type conjecture

Marcin Dumnicki, Brian Harbourne, Alex Küronya,
Joaquim Roé, and Tomasz Szemberg

October 4, 2013

1 Introduction

Ever since Zariski’s pioneering work, valuations have been considered to be
natural generalizations of points. However, in the context of linear systems
defined by multiple base points on projective varieties, positivity, and Seshadri
constants, this point of view seems to have been explored explicitly only recently.

In [6] and [5], S. Boucksom, M. Dumnicki, A. Küronya, C. Maclean, and T.
Szemberg introduced the constant amax of a valuation (here denoted µ), analo-
gous to the s-invariant introduced by L. Ein, S. D. Cutkosky and R. Lazarsfeld
in [8] for ideals (see also [16, 5.4]). For a valuation v centered at the origin of
A2 = SpecC[x, y], one has by definition

µ̂(v) = lim
d→∞

max{v(f) | f ∈ C[x, y],deg f ≤ d}
d

.

All such invariants encode essentially the same information as the Seshadri
constant does in the case of points and, as is the case for Seshadri constants,
they turn out to be extremely hard to compute.

The last decade has also seen the blossoming of a geometric study of spaces of
real valuations [11] or spaces of seminorms, usually called Berkovich spaces [2],
which essentially coincide in dimension two (see [15, section 6] for a description
in the plane case). Being compact and arcwise connected, the topology of such
spaces has very interesting and useful properties. The work of S. Boucksom,
C. Favre and M. Jonsson [3], [4] implicitly reveals connections between such
valuation spaces, positivity, and birational geometry.

In this paper the invariant µ̂ is studied as a function on the space V of plane
valuations of real rank 1, which is continuous along arcs in V. Motivated by
what is known in the case of points and by the conjectures of Nagata and Segre–
Harbourne–Gimigliano–Hirschowitz, our focus will be on valuations along a very
general half-line in V.

We let µ̂(t) = µ̂(vt) with t ∈ [1,∞), where vt is a very general quasimonomial
valuation with characteristic exponent t (we refer the reader to Sections 2 and
3 for precise definitions). Divisorial valuations are dense in each arc of the
valuation space; we will be primarily interested in such valuations; therefore we
often work on the minimal proper birational model Xt where the center of vt is
a divisor.
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Figure 1: In red, the known behavior of µ̂(t) for t ≤ 9; in yellow, the lower
bound

√
t.

It is not hard to see that µ̂(t) ≥
√
t, and the equality is expected to hold

unless there is a good geometric reason, in the form of a (−1)-curve on Xt with
value higher than expected. When Xt supports an effective anticanonical divi-
sor, the cone of curves is generated by the (−n)-curves on the model, allowing
us to compute µ̂. In this case there exists in fact a (−1)-curve computing µ̂(t),
which turns out to be piecewise linear near t; see Theorem 6.9.

Section 6 contains a description of a (countably infinite) family of (−1)-
curves determining µ̂(t) for t ≤ 7+1/9 and other small values of t. We conjecture
that this list is complete. If that is indeed so, then in particular µ̂(t) =

√
t for

t ≥ 8 + 1/36, which implies Nagata’s conjecture.
Indeed, integer values of t can be interpreted as the number of points that

have been blown up, and we can look at µ̂(t) as a continuous function with the
geometric interpretation that it interpolates between the inverses of Seshadri
constants at t very general points. In addition, it is not hard to show (Proposi-
tion 3.10) that for integer values of t that are squares, µ̂(t) =

√
t holds.

As an unexpected connection, we want to mention that, except for 9 cases,
the (−1)-curves of Section 6 are the same unicuspidal curves which give the
asymptotically extremal ratio between degree and multiplicity, as explained in
Orevkov’s work [19] (see also the review [12]).

In what follows we work over the field of complex numbers.

2 Preliminaries

First we briefly recall a few facts from the general theory of valuations and
complete ideals we shall need from [20, Chapter VI. and Appendix 5.] and [7,
Chapter 8], applied to the field of functions F of a surface.

On every projective model of F (i.e. a smooth projective surface S with a
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fixed isomorphism K(S) ∼= F ) such a valuation v has a center p ∈ S; this means
that for every affine chart U ⊂ S containing p, v is nonnegative on the ring of
regular functions A[U ] ⊂ K(S), and the ideal of functions with positive value
is p.

For every effective divisor D ⊂ S, we will use the notation v(D) for the
value of any equation of D ∩ U , which is independent of the choices made. If p
is the generic point of a curve C, then v is (up to a constant) simply the order
of vanishing along C; thus, v(D) = max{k |D − kC ≥ 0}.

Valuations with a 0-dimensional center are much more varied, and are clas-
sified according to their cluster of centers, which we define next. To begin with,
let p1 = p be the center of the valuation v. Consider the blowup π1 : S1 → S
centered at p1 and let E1 be the correspinding exceptional divisor. The center
of v on S1 may be (the generic point of) E1 or a point p2 ∈ E1.

Iteratively blowing up the centers p1, p2, . . . of v either ends with a model
where the center of v is an exceptional divisor En, in which case

v(f) = c · ordEn
f

for some constant c, and v is called a divisorial valuation, or this process goes
on indefinitely. For each center pi of v, general curves through pi and smooth
at pi have the same value vi = v(Ei).

In this case K = (p1, p2, . . . ) is a weighted possibly infinite cluster of points
in the sense of [7, Chapter 4] with weights vi which completely determines v, as
for every effective divisor D ⊂ S,

v(D) =
∑
i

vi ·multpi D̃i, (∗)

where D̃i denotes strict transform at Si. The sum may be infinite, but for
valuations with real rank 1, which are the ones we consider here, D̃ can have
positive multiplicity only at a finite number of centers [7, 8.2].

Sometimes we shall say that a divisor goes through an infinitely near point
to mean that its strict transform on the appropriate surface goes through it.

Definition 2.1. With notation as above, given indices j < i, the center pi is
called proximate to pj (pi � pj) if pi belongs to the strict transform Ẽj of the
exceptional divisor of pj . Each pi with i > 0 is proximate to pi−1 and to at

most one other center pj , j < i− 1; in this case pi = Ẽj ∩Ei−1 and pi is called
a satellite point. A point which is not a satellite point is called free.

Remark 2.2. For every valuation v, and every center pi such that v is not the
divisorial valuation associated to pi, Equation (∗) applied to D = Ej gives rise
to the so-called proximity equality

vj =
∑
pi�pj

vi .

For effective divisors D on S, the intersection number D̃ · Ẽj ≥ 0 yields the
proximity inequality

multpj (D̃j) ≥
∑
pi�pj

multpi(D̃i) .
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Assume now that v = ordEn
is the divisorial valuation with cluster of centers

K = (p1, . . . , pn), while πK : SK → S denotes the composition of the blowups
of all points of K. Then, for every m > 0, the valuation ideal sheaf, defined for
any open affine U ⊆ S by

Im(U) := {f ∈ OS(U) | v(f) ≥ m},

can be described as
Im = (πK)∗(OSK

(−mEn)) .

Remark 2.3. As soon as n > 1, the negative intersection number −mEn ·Ẽn−1 =
−m implies that all global sections of OSK

(−mEn) vanish along Ẽn−1, and
therefore

Im = (πK)∗(OSK
(−mEn − Ẽn−1)) = (πK)∗(OSK

(−En−1 − (m− 1)En)) .

This unloads a unit of multiplicity from pn to pn−1; iteratively subtracting all
exceptional divisors that have negative intersection is a finite process [7, 4.6]
which ends with a uniquely determined system of weights m̄i such that

Dm = −
∑

m̄iEi is nef,

and
Im = (πK)∗(OSK

(Dm)) .

In this case, general sections of Im have multiplicity exactly m̄i at pi, and
no other singularity. More precisely, for any ample divisor class A on S, the
complete system |kA+Dm| for k � 0 is base-point-free, and has smooth general
element meeting E transversely.

It follows using (∗) that the valuation of an effective divisor D on S can be
computed as a local intersection multiplicity

v(D) = Ip1(D,C)

where C is a general element of |kA+Dm|.
The unloading procedure just described also yields the following.

Lemma 2.4. Let v = ordEn
be the divisorial valuation whose cluster of cen-

ters is K = (p1, . . . , pn) with weights vi, and for every m > 0 denote Dm =
−
∑
m̄iEi the unique nef divisor on SK with Im = (πK)∗(OSK

(Dm)). If
m = k

∑
v2
i for some integer k, then m̄i = kvi for all i.

Remark 2.5. In the context of Zariski’s theory of factorizations of complete
ideals (where we write m0 for

∑
v2
i ) this translates into

Ikm0
= Ikm0

,

and to the fact that Im0
is a simple complete ideal.

For other values of m one has the equality

Ikm0+δ = Ikm0
Iδ

instead.
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Non-divisorial valuations can be considered to be limits of divisorial valua-
tions, and their valuation ideals turn out to be complete as well, determined by
finitely many centers. The ideal Ikm is then never a power of Im, rather there
exists δ > 0 such that

Ikm ⊂ Ikm ⊂ Ikm−δ
for all m and k. Such bounds actually hold in greater generality, namely for
Abhyankar valuations in arbitrary dimension; see [9] by L. Ein, R. Lazarsfeld
and K. Smith.

The volume of a real valuation with zero-dimensional center on S, as defined
in [9], is

vol(v) := lim
m→∞

dimC(OS/Im)

m2/2

(note that OS/Im is an artinian C-algebra supported at the center of the valu-
ation).

Lemma 2.6. Let v = ordEn be the divisorial valuation with cluster of centers
K = (p1, . . . , pn) and weights vi. Then

vol(v) =
(∑

v2
i

)−1

.

Proof. For m = k
∑
v2
i , dimC(OX/Im) =

∑
kvi(kvi + 1)/2 by [7, 4.7].

Following [5], given a valuation v and an effective divisor D on S we denote

µD(v) = max{v(D′) |D′ ∈ |D|} ,

and
µ̂D(v) = lim

k→∞
µkD(v)/k .

Consider the group of linear equivalence classes of R-divisors N1(SK) =
Pic(SK) ⊗Z R, where SK is the blowup at the cluster of centers of v. Since
numerical and linear equivalence coincide on rational surfaces, no confusion will
arise from this abuse of notation.

A class η ∈ N1(SK) is integral (respectively rational ) if it belongs to Pic(SK)
(resp. to Pic(SK)⊗ZQ). A ray in N1(SK) is called rational if it is generated by
a rational class. One calls a rational ray in N1(SK) effective, if it is generated
by an effective class. The Mori cone NE(SK) is the closure in N1(SK) of the set
NE(SK) of all effective rays, and it is the dual of the nef cone Nef(SK) which
is the closed cone described by all nef rays.

Remark 2.7. According to [5, proposition 2.9], one has

µ̂D(v) ≥
√

vol(D)/ vol(v) ,

which for D big and nef is the same as

µ̂D(v) ≥
√
D2/ vol(v) .
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Remark 2.8. Using the language of R-divisors, it is not hard to see that

D2/µ̂D(v) = max{s ∈ R | π∗KD − s
∑

viEi is nef} ,

and therefore, since nef divisors have nonnegative self-intersection numbers,

µ̂D(v) ≥
√
D2/ vol(v) .

By [5, Proposition 2.9] one also has the slightly stronger bound

µ̂D(v) ≥
√

vol(D)/ vol(v) .

Since we are mostly interested in cases where D is ample (more precisely, D will
be a line in P2) the two bounds will be equivalent.

A (−1)-ray in N1(SK) is a ray generated by a (−1)-curve, i.e., a smooth,
irreducible, rational curve C with C2 = −1 (hence C ·Kn = −1). Mori’s Cone
Theorem says that

NE(SK) = NE(SK)< +Rn ,

where NE(SK)< denotes the subset of NE(SK) described by rays generated by
nonzero classes η such that ξ · κ ≥ 0 with κ being the canonical class, and

Rn =
∑

ρ a (−1)−ray

ρ ⊆ NE(SK)4 .

In the current work we are mostly interested in cases where the equality

µ̂D(v) =
√
D2/ vol(v)

holds; we call such valuations minimal.

Remark 2.9. In cases when NE(SK) is a polyhedral cone, Remark 2.8 yields that
µ̂D(v) is a rational number, and therefore v can only be minimal if

√
vol(v) is

rational. In fact, all examples of divisorial minimal valuations included here
correspond to rational values of

√
vol(v), even for nonpolyhedral NE(SK).

3 Quasimonomial valuations

Our objects of study will be very general quasimonomial valuations on P2.

Remark 3.1. Quasimonomial valuations are exactly the valuations whose cluster
of centers consists of a few free points followed by satellites, which may be finite
or infinite in number, but not infinitely many proximate to the same center.

The genericity condition refers to the position of the free centers; it will be
made precise below, after describing the continuity and semicontinuity proper-
ties of µ̂ on the space of quasimonomial valuations.

Regularity properties of µ̂ can be presented in various ways; for the sake of
simplicity we specialize to the case when S = P2 and the center of v is the origin
O = (0, 0) ∈ A2 = SpecC[x, y] ⊂ P2 = ProjC[X,Y, Z], with x = X/Z, y = Y/Z.

In this situation we write

µd(v) = max{v(f)|f ∈ C[x, y],deg f ≤ d} ,

and

µ̂(v) = lim
d→∞

µd(v)

d
.
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Definition 3.2. Given a series ξ(x) ∈ C[[x]] with ξ(0) = 0 and a real number
t ≥ 1, let

v(ξ, t; f) := ordx(f(x, ξ(x) + θxt)) ,

where the symbol θ is transcendental over C.
Equivalently, expand f as a Laurent series

f(x, y) =
∑

aijx
i(y − ξ(x))j ,

and put
v(ξ, t; f) := min{i+ tj|aij 6=0} .

f 7→ v(ξ, t; f) is a valuation which we denote v(ξ, t). Such valuations are called
monomial if ξ = 0, and quasimonomial in general. Slightly abusing language, t
will be called the characteristic exponent of v(ξ, t) (even if it is an integer).

For simplicity we also write

µd(ξ, t) = µd(v(ξ, t)) ,

and
µ̂(ξ, t) = µ̂(v(ξ, t)) .

Remark 3.3. The valuation v(ξ, t) only depends on the btc-th jet of ξ, so for
fixed t this series can be safely assumed to be a polynomial; however, later on
we’ll let t vary for a fixed ξ.

Remark 3.4. The cluster K of centers of v(ξ, t) can be easily described from the
continued fraction expansion

t = n1 +
1

n2 + 1
n3+ 1

...

.

The cluster K consists of n =
∑
ni centers; if t = n1 then they are all on the

strict transform of the germ
Γ: y = ξ(x) ,

otherwise the first n1 + 1 are on Γ and the rest are satellites: starting from
pn1

+ 1 there are n2 points proximate to pn1
, followed by n3 points proximate

to pn1+n2
and so on. The weights are vi = 1 for i = 1, . . . , n1, then vi =

t − n1 for i = n1 + 1, . . . , n1 + n2, and vi = vn1+···+nj−1 − njvn1+···+nj for
i = n1 + · · ·+ nj + 1, . . . , n1 + · · ·+ nj+1. See Figure 2 for an example.

If t is rational, the continued fraction is finite, and so the valuation is divi-
sorial. More precisely,

v(ξ, t; f) = vn · ordEn
(f) .

The factor vn serves normalization purposes: in this way the function t 7→ v(ξ, t)
becomes a continuous map from [1,∞) to the tree of valuations centered at O
[11].

If t is irrational, then the sequence of centers is infinite and the group of
values has rational rank 2.
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1

1

1 2/9

2/9

2/9

2/9

1/9 1/9

Figure 2: Enriques diagram of the centers of v(ξ, 3 + 1
4+1/2 ).

Corollary 3.5. With notation as above,

vol(v(ξ, t)) = t−1 , µd(ξ, t) ≥ d
√
t ,

and
µ̂(ξ, t) ≥

√
t ,

so the quasimonomial valuation v(ξ, t) is minimal whenever µ̂(ξ, t) =
√
t.

Proposition 3.6. Fix a real number t > 1 and a natural number d. Set k = dte
and denote by Jk ⊂ C[[x]] the space of (k−1)-jets of power series with ξ(0) = 0,
endowed with the Zariski topology coming from the map Jk ∼= Ak−1.

Then the function ξ 7→ µd(ξ, t) descends to an upper semicontinuous function

Jk → 〈1, t〉Q ⊂ R

which takes on only finitely many values.

It follows that for fixed t, µ̂(ξ, t) takes its smallest value for ξ with very
general jet ξn−1.

Proof. Because only the k free centers of v(ξ, t) depend on ξ (k = n1 in the
continued fraction expansion if t is an integer and k = n1 + 1 otherwise), it is
clear that the valuation only depends on the (k−1)-th jet of ξ, and the existence
of the function

Jk → 〈1, t〉Q ⊂ R

is clear. We will prove that it only takes a finite number of values and that for
fixed m, the preimage of [m,∞) is Zariski-closed.

Given fixed t and d, there exists mt,d ∈ 〈1, t〉Q such that f ∈ C[x, y],
v(ξ, t; f) ≥ mt,d implies f ∈ (x, y)d+1 independently on ξ. Thus

µd(ξ, t) < mt,d

for all ξ.
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Similarly, there exists it,d such that no f ∈ C[x, y]d has a strict transform
going through any center pi of v(ξ, t) with i > it,d. Therefore for every f ∈
C[x, y]d, the value v(ξ, t; f) belongs to the finite set

(

it,d⊕
i=1

Nvi) ∩ [1,mt,d) ,

and the µd(ξ, t) belong to this set.
Now let V be the C-subspace of C[θ, x, xt] consisting of polynomials P with

degθ(P ) ≤ d and degx(P ) < mt,d. The space V is obviously finite-dimensional,
V ∼= CN after taking the basis given by monomials.

Consider the composition of the substitution map

Jk × C[x, y]d → C[θ][[x, xt]] ,

given by (s, f) 7→ f(x, ξ(x) + θxt), with truncation C[θ][[x, xt]]→ V , seen as an
algebraic morphism of C-schemes.

For each value m, the ‘incidence’ subset

{(ξ, f) ∈ Jk × C[x, y]d | v(ξ, t; f) ≥ m}

is by definition the preimage of the Zariski-closed set

{η ∈ V | ordx(η(x)) ≥ a}

hence Zariski-closed. It is also closed under scalar multiplication on the second
component, so it determines a closed subset Im ⊂ Jk × P(C[x, y]d).

The locus in Jk where µd(ξ, t) ≥ m is the projection of Im to Jk, therefore
it is Zariski-closed.

Proposition 3.7. For every ξ(x), the function t 7→ µ̂(ξ, t) is continuous.

Proof. For every f ∈ C[x, y], the function µf : t 7→ v(ξ, t; f)/ deg(f) is contin-
uous and piecewise affine linear with nonnegative integer slopes (compare with
[4, Corollary C]). In particular, it is nondecreasing and satisfies the property
that

µf (t1)

t1
≥ µf (t2)

t2

whenever t1 < t2.
Therefore

µf (t) ≤ µf (t+ ε) ≤ µf (t) + (µf (t)/t)ε

for ε > 0, and an analogous bound works for ε < 0.
The function t 7→ µ̂(ξ, t) in the claim is supf∈C[x,y]{µf}. The family of

functions µf is equicontinuous by the remarks above and so this supremum is
continuous; for instance,

a(t) ≤ a(t+ ε) ≤ a(t) + (a(t)/t)ε

whenever ε > 0.

Remark 3.8. We proved in Proposition 3.6 that for a fixed t, very general series
ξ(x) give the same, minimal, value µ̂(ξ, t) which we denote µ̂(t).
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By the countability of the rational number field, it follows that very general
series ξ(x) give the same (minimal) function µ̂(ξ, t) of t ∈ Q. Continuity of the
functions µ̂(ξ, t) then imply that very general series give the same function over
all of R, and also the following:

Corollary 3.9. The function t 7→ µ̂(t) is continuous.

The next claim will show the first analogy to Nagata’s conjecture.

Proposition 3.10. If t is the square of an integer, then a very general quasi-
monomial valuation v(ξ, t) is minimal.

Proof. For integral values of t, the cluster of centers of v(ξ, t) consists of the
first t points infinitely near to the origin along the branch y = ξ(x), and for
each integer m = qt+ r (with 0 ≤ r < t) the corresponding valuation ideal is

Im = (πK)∗(OSK
(−q(E1 + · · ·+ Et)− (E1 + · · ·+ Er))) .

Now for every d > 0 and very general ξ, we will prove that µd(ξ, t) ≤ d/
√
t.

To this end, we need to see that for every integer m > d
√
t and very general ξ,

the valuation ideal Im has no sections of degree d, equivalently,

H0(OSK
(dL− q(E1 + · · ·+ Et)− (E1 + · · ·+ Er))) = 0 ,

where L denotes the pullback of a line to SK . By semicontinuity (Proposi-
tion 3.6) it will be enough to see this for a particular choice of ξ, e.g., an
irreducible polynomial of degree a =

√
t. But the strict transform on SK of the

projectivized curve
D : Y Za−1 = Zaξ(X/Z)

defined by ξ is then an irreducible curve of self-intersection zero, therefore nef,
and

D · (dL− q(E1 + · · ·+ Et)− (E1 + · · ·+ Er))) = d
√
t−m < 0 ,

hence we are done.

4 Anticanonical surfaces

The rational surface SK obtained by blowing up the cluster of centers of a
valuation v will be called anticanonical if there is an effective anticanonical
divisor on it. Under this hypothesis, adjunction becomes a very powerful tool
to study the geometry of SK . This section contains a complete description of
the Mori cone of SK for v = v(ξ, t) with t ≤ 7, and substantial information for
t = 7 + 1

n2
, n2 ∈ N.

Proposition 4.1. Let v(ξ, t) be a divisorial quasimonomial valuation, and SK
the blowup of its cluster of centers. Let A = [1, 7] ∪ {7 + 1

n}n∈N ∪ {9} ⊂ R.

1. If t ∈ A, then SK is anticanonical.

2. If SK is anticanonical and v(ξ, t) is very general, then t ∈ A.
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Proof. The question is whether the anticanonical class −κ = 3L−
∑
Ei on SK

(where L denotes the pullback of a line) has nonzero global sections.
If t is an integer, then K consists of t free points; if t ≤ 9, for a general

choice of these points there is a smooth cubic going through them all so −κ is
effective, whereas for t > 9 there is no such plane cubic.

If t = n1 + 1
n2

is a nonintegral rational, then K = (p1, . . . , pn1+n2
) has

n1 + 1 free centers and n2 − 1 > 0 satellites, all of them proximate to pn1
;

so Ẽn1
= En1

− En1+1 − · · · − En1+n2
. A quick unloading computation (see

Section 2) then shows that

H0(OSK
(−κ)) = H0(OSK

(3L−
∑

Ei))

= H0(OSK
(3L− 2E1 − (E2 + · · ·+ En1

)) .

Consequently, SK is anticanonical exactly when there exists a nodal cubic having
the node at O and going through the free points p2, . . . , pn1

. For a general choice
of the free points, this is the case exactly when n1 ≤ 7.

Finally, if the continued fraction of t has more than 2 coefficients, the corre-
sponding unloading computation leads toH0(OSK

(3L−2E1−(E2+· · ·+En1+1)),
so SK is anticanonical exactly when there exists a nodal cubic having the node
at O and going through the free points p2, . . . , pn1+1. This is the case exactly
when n1 ≤ 6, and covers all rationals t ∈ [1, 7].

Remark 4.2. Note that if t ≤ 7, then K has at most 7 free centers, so there is
always a divisor Γ̃ in |3L − 2E1 −

∑
i>1,pi freeEi|. For general ξ, p1, p2, p3 are

not aligned and p1, . . . , p6 do not belong to a conic, so Γ̃ can be assumed to be
the strict transform of an irreducible nodal cubic Γ, and ΓK = Γ̃ +

∑
Ẽi on

SK is a particular anticanonical divisor which contains all exceptional compo-
nents (independently of t). For nongeneral ξ, Γ̃ may be reducible, but one can
still determine an effective anticanonical divisor which contains all exceptional
components, possibly with multiplicities; the details of each case are left to the
reader.

Proposition 4.3. Let v(ξ, t) be a divisorial quasimonomial valuation with t ≤ 7,
and SK the blowup of its cluster of centers. Then NE(SK) is a polyhedral cone,
spanned by the classes of the Ẽi, Γ̃ and finitely many (−1)-curves, where Γ is a
nodal cubic as above.

Proof. Let ΓK be an effective anticanonical divisor containing all exceptional
components; for general ξ we can write ΓK = Γ̃ +

∑
Ẽi, where Γ is a nodal

cubic. Particular cases in which the cubic is irreducible are treated similarly
and we leave the details to the reader. We claim that every irreducible curve
C ⊂ SK which is not a component of ΓK lies in NE(SK)�. Indeed, C is the
strict transform of a curve πK(C) ⊂ P2; if πK(C) does not go through the origin,
then C intersects Γ̃ and so

C · κ = −(C · (ΓK)) ≤ −(C · Γ̃) < 0 ,

otherwise C intersects some Ẽi and again

C · κ = −(C · (ΓK)) ≤ −(C · Ẽi) < 0 .

11



By Mori’s cone theorem, NE(SK) is generated by the rays spanned by the
components of ΓK and the (−1)-curves, so it only remains to see that there are
finitely many (−1)-curves.

Now, a (−1)-curve C satisfies C ·κ = −1, so if it is not a component of ΓK , it
must intersect it in exactly one component. Write C = dL−

∑
miEi. If C meets

Ẽk only, it must satisfy mj =
∑
pi�pj mi for all j 6= k, mk =

∑
pi�pk mi+1 and

3d =
∑
mi. These are n + 1 linearly independent conditions which uniquely

determine the class of C; so there is at most one (−1)-curve meeting Ẽk. On the
other hand, C can not meet Γ̃ only, because it would satisfymj =

∑
pi�pj mi = 0

for all j, and 3d =
∑
mi + 1 = 1. In all, there are at most n (−1)-curves in

addition to the components of ΓK .

For 7 < t < 8, it is not clear which values of t give polyhedral Mori cones,
but C. Galindo and F. Monserrat [13, corollary 5] give some positive results in
this context. In particular, they show that for t = 7+1/n2 with n2 = 1, 2, . . . , 8,
NE(SK) is polyhedral. Proposition 4.3 can be seen as a strengthening of [13,
Corollary 5.(3)].

Computations suggest that there might be only finitely many (−1)-curves,
and NE(SK) might be polyhedral, for t = 7 + 1/n2 without restrictions on n2,
provided that ξ is general, but this requires delicate arguments beyond the scope
of this work; see however Remark 4.6. Nevertheless, irreducible curves C with
C2 < −1 can be completely determined.

Proposition 4.4. Let v(ξ, t) be a very general divisorial quasimonomial val-
uation with t = 7 + 1/n2 for n2 ≥ 1, and let SK be the blowup of its cluster
of centers. The only curves C in SK with C2 ≤ −2 are components of the
exceptional divisors.

Proof. As before, let Γ be a nodal cubic curve which has its node at the origin
and goes through six additional free centers, p2, . . . , p7 ∈ K. Then ΓK =
Γ̃ +

∑7
i=1 Ẽi on SK is the unique effective anticanonical divisor.

By adjunction we have C2 +κSK
·C = 2g−2, so C2 < −2 implies ΓK ·C < 0,

hence C is a component of ΓK . Computing the self-intersection of each of them
shows that the only possibility is C = Ẽ7 = E7−E8−· · ·−En with C2 = −1−n2.

By adjunction again, if C2 = −2, then C is rational and κSK
·C = 0, i.e., it

is a (−2)-curve. Thus the question is what (−2)-curves can occur on SK . The
exceptional components Ẽi for i 6= 7, n are (−2)-curves. Now assume that C
is not one of them. Then ΓK · C = 0 implies C · Ẽi = 0 for i = 0, . . . , 7, and
C · Ẽi ≥ 0 for i > 7.

Write C = dL−m1E1 − · · · −mnEn. The constraint C · Ẽ7 = 0 gives m7 =
m8 + · · ·+mn. The constraints C · Ẽi = 0 for i = 1, . . . , 6 give m1 = · · · = m7.
Taking m = m1, C · Γ̃ = 0 gives 3d = 7m+m8 + · · ·+mn = 8m, so d = 8m/3.
Note that d is an integer.

Consider the case that n2 = 1. Then −2 = C2 = (8m/3)2−8m2 = −8m2/9.
This has no integer solutions, so no C exists.

Next consider the case that n2 = 2, so n = 9. The possible solutions C to
C2 = −2, C ·κSK

= 0 with C ·L ≥ 0 are known (see the second half of the proof
of [17, Proposition 25.5.3]); they are: (Ei−Ej)− sκSK

with 1 ≤ i, j ≤ 9, i 6= j,
s ≥ 0; (L − Ei − Ej − Ek) − sκSK

with 1 ≤ i, j, k ≤ 9, i, j, k distinct, s ≥ 0;
(2L− Ei1 − · · · − Ei6)− sκSK

with 1 ≤ ij ≤ 9, ij distinct for 1 ≤ j ≤ 6, s ≥ 0;
and (3L− 2Ei1 − Ei2 − · · · − Ei8)− sκSK

1 ≤ ij ≤ 9, ij distinct for 1 ≤ j ≤ 8,

12



s ≥ 0. An exhaustive check shows that each of these divisors intersects some
exceptional component or Γ negatively, and thus is either itself a component of
an exceptional curve, or is not reduced or irreducible.

Now consider the case that n2 ≥ 3, so n ≥ 10, and we can write C =
dL−m(E1 + · · ·+E7)−m8E8 − · · · −mnEn = (8m/3)L−m(E1 + · · ·+E7)−
m8E8 − · · · −mnEn. Let m = 3b, so C = 8bL − 3b(E1 + · · · + E7) −m8E8 −
· · · −mnEn. Then ΓK ·C = 0 gives 3b−m8 − · · · −mn = 0 and C2 = −2 gives
b2 −m2

8 − · · · −m2
n = −2. Numerical considerations no longer suffice; there are

many solutions to 3b −m8 − · · · −mn = 0 and b2 −m2
8 − · · · −m2

n = −2. For
example, we have C = 8L − 3(E1 + · · · + E7) − E8 − E9 − E10 (i.e., n = 10,
n2 = 3, b = 1, and m8 = m9 = m10 = 1).

So consider any such C = dL−m(E1 + · · ·+ E7)−m8E8 − · · · −mnEn =
b(8L− 3(E1 + · · ·+E7))−m8E8− · · ·−mnEn. Let B = 8L− 3(E1 + · · ·+E7).
We first check that B is nef. Note that 3B = (3L−E1−· · ·−E7)+(3L−2E1−
· · ·−E7)+(3L−E1−2E2−E3−· · ·−E7)+· · ·+(3L−E1−· · ·−E6−2E7). Each
divisor in this sum is itself a sum of Γ̃ and exceptional components. But for each
such divisor D we have 3B ·D ≥ 0, hence 3B (and therefore B) is nef. By [14,
Proposition III.2], we may therefore assume that B is a reduced and irreducible
divisor on SK and since B · Γ̃ = B · Ẽi = 0 for i < 7, we see B|ΓK

is a divisor
which vanishes on each component Ẽi, i < 7 of ΓK , and consists of a divisor B′

of degree 3 on the interior of component Ẽ7. Since Ei|ΓK
= En|ΓK

for i ≥ 8 and
Ei is disjoint from Ẽj for i ≥ 8 and j < 7, we see (−m8E8 − · · · −mnEn)|ΓK

is a divisor which is trivial on each component of ΓK except Ẽ7, and on Ẽ7 it
gives the divisor (m8 + · · ·+mn)p8 = mp8 = 3bp8.

Consider the restriction exact sequence

0→ OSK
(C − ΓK)→ OSK

(C)→ OΓK
(C)→ 0

and assume that C is a prime divisor. Then we have, since C2 < 0 and so C is
fixed, we have h0(SK ,OSK

(C − ΓK)) = 0 and we have h0(OSK
(C)) = 1, which

we will use in a moment. By taking cohomology of the short exact sequence and
using what we have just seen about the cohomology of the terms, we conclude
that h0(OΓK

(bB′ − 3bp8)) > 0. But deg(bB′ − 3bp8) = 0 so h0(OΓK
(bB′ −

3bp8)) > 0 implies bB′ − 3bp8 ∼ 0 (where ∼ denotes linear equivalence). Since
B′ is fixed of positive degree but p8 is very general, this is impossible. Thus
there is no such (−2)-curve C.

Remark 4.5. When 8 ≤ n ≤ 15, it is enough for p8 to be a general, not very
general, point of Ẽ7 in order to conclude that SK has no (−2)-curves other than
those arising as components of the exceptional loci of the points blown up. To
see this, consider a prime divisor C ⊂ SK such that KSK

·C = 0 and C ·L > 0.
Write C ∼ dL−m1E1 − · · · −mnEn. Then, as above, C = dL−m(E1 + · · ·+
E7) −m8E8 − · · · −mnEn = b(8L − 3(E1 + · · · + E7)) −m8E8 − · · · −mnEn
and m = m8 + · · ·+mn, so

−2 = C2 = b2 −m2
8 − · · · −m2

n ≤ b2 −
m2

(n− 7)2
(n− 7) = b2

n− 16

n− 7
,

hence for 8 ≤ n ≤ 15 we have

d2 = 8b2 ≤ 8
2n− 14

16− n
.

13



Thus for 8 ≤ n ≤ 15 we have d2 ≤ 128, so d ≤ 11.
I.e., for 8 ≤ n ≤ 15 we see that d is bounded (i.e., C · L ≤ 11) and hence

that there are only finitely many possible (−2)-classes C. Since it is only for
these classes that we must avoid C|−KX

= 0 in order for C not to be effective,
it is enough for p8 to be general, in order to know that every (−2)-class is a
component of the exceptional locus of a blow up.

Remark 4.6. It has proved more difficult so far to say as much about (−1)-
curves. For a general divisorial quasimonomial valuation v(ξ, t), consider the
cases where either t = 7, or t = 7 + 1/n2 and 1 ≤ n2 ≤ 2. Let X = SK be the
blowup of its cluster of centers; thus X is a blow up 7 ≤ n ≤ 9 points. Then
there are only finitely many (−1)-curves and we can be fairly specific about
finding them. We will content oursleves here with merely finding finite lists of
divisor classes such that the class of every (−1)-curve is on the list. It would
take more somewhat arduous work to confirm that each class on the list is the
class of a reduced irreducible curve.

If n < 9, then X is a seven or eight point blow up of P2, so there are only
finitely many divisor class solutions to C2 = C · KX = −1, and they can be
listed explicitly (see [17, Poposition 26.1]). In addition to E7 (if n = 7) or E8 (if
n = 8), among all such solutions only those listed below meet each exceptional
component nonnegatively.

• L− E1 − E2,

• 2L− E1 − · · · − E5,

• 3L− 2E1 − E2 − · · · − E7,

• 4L− 2E1 − 2E2 − 2E3 − E4 − · · · − E8,

• 5L− 2E1 − · · · − 2E6 − E7 − E8 and

• 6L− 3E1 − 2E2 − · · · − 2E8.

An essentially similar argument works for n = 9: write down all solutions
to C2 = KX · C = −1, and cull from these those that meet each exceptional
component nonnegatively. However, there now are infinitely many solutions
to C2 = KX · C = −1. The set of all such C is the set of all C of the form
C = E1+N+N2KX/2, whereN is an arbitrary divisor withN ·E1 = N ·KX = 0.
(To see this, note on the one hand that for C = E1+N+N2KX/2 we have C2 =
KX ·C = −1, while on the other, if C is any class with C2 = KX ·C = −1, then
for N = (C−E1+(C ·E1+1)KX) we have N ·KX = 0 and N ·E1 = 0. Moreover,
N2 = −2(1 +C ·E1), so E1 +N +N2KX/2 = E1 +N − (C ·E1 + 1)KX = C.)

The subgroup of classes consisting of all N satisfying N · E1 = N ·KX = 0
is spanned over the integers by L − E2 − E3 − E4, E2 − E3, E3 − E4, . . .,
E8 − E9. This subgroup is negative definite with respect to the intersection
form. Because of the negative definiteness, for all N with N2 � 0 we have
(E1 +N + (N2/2)KX) · Ẽ7 = N · Ẽ7 +N2/2 < 0. Thus there are only finitely
many (−1)-curves C on X. More specifically, for C = E1 + N + (N2/2)KX ,
one can check that C · L ≥ 78 implies C · Ẽ7 < 0. (One can carry out this
check using elements such as 8L − 3E2 − · · · − 3E9, E2 − E3, E2 + E3 − 2E4,
E2 + E3 + E4 − 3E5, . . ., E2 + · · · + E8 − 7E9, which give an orthogonal basis
over the rationals for the space defined by N · E1 = N · KX = 0.) One can,
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using quadratic transformations, generate the set of all classes C satisfying
C2 = C · KX = −1 with C · L ≤ 78. Choosing those which meet each Ẽi
nonnegatively gives the following set:

• E9;

• L− E1 − E2;

• 2L− E1 − · · · − E5;

• 3L− 2E1 − E2 − · · · − E7;

• 4L− 2E1 − 2E2 − 2E3 − E4 − · · · − E8;

• 5L− 2E1 − · · · − 2E6 − E7 − E8;

• 6L− 3E1 − 2E2 − · · · − 2E8;

• 7L− 3E1 − · · · − 3E4 − E5 − 2E6 − 2E7 − E8 − E9;

• 8L− 3E1 − · · · − 3E7 − E8 − E9;

• 9L− 4E1 − 4E2 − 3E3 − · · · − 3E7 − 2E8 − E9; and

• 11L− 4E1 − · · · − 4E7 − 3E8 − E9.

5 A variation on Nagata’s conjecture

In this section we elaborate on the close analogy with Nagata’s conjecture.
Let K be a finite union of finite weighted clusters on P2, and assume that

the proximity inequalities

mp ≥
∑
q

mq

are satisfied, with the sum taken over all points proximate to p.
Then

HK,m = π∗(OSK
(−
∑
p∈K

mpEp))

is an ideal sheaf for which

h0(HK,m(d)) = (d+ 1)(d+ 2)/2−
∑

mp(mp + 1)/2

for d� 0, and its general member defines a degree d curve with multiplicity mp

at each p ∈ K.
It is expected that, if K is suitably general, then the dimension count is

correct as soon as it gives a nonnegative value:

Conjecture 5.1 (Greuel-Lossen-Shustin, [10, Conjecture 6.3]). Let K be a fi-
nite union of weighted clusters on the plane, satisfying the proximity inequalities,
and HK,m the corresponding ideal sheaf. Assume that K is general among all
clusters with the same proximities, and let d be an integer which is larger than
the sum of the three biggest multiplicities of m. Then

h0(HK,m(d)) = max

{
0,

(d+ 1)(d+ 2)

2
−
∑ mp(mp + 1)

2

}
.
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Proposition 5.2. If the Greuel-Lossen-Shustin conjecture holds, then ∀t ≥ 9 a
very general quasimonomial valuation v(ξ, t) is minimal.

Proof. By continuity of µ̂(t), it is enough to consider rational t > 9. Let K =
(p1, . . . , pn) be the sequence of centers, with weights (v1, . . . , vn). For each
integer k > 0, set mk = kt/vn. We shall prove that there is a sequence of
integers dk with mk > dk

√
t and limk→∞mk/dk =

√
t such that if ξ is very

general, then the valuation ideal Imk
has no sections of degree d. It will follow

that µ̂(ξ, t) ≤ limk→∞mk/d ≤
√
t and v(ξ, t) is minimal.

By lemma 2.4, the ideal Imk
= (πK)∗(OSK

(−
∑
m̄iEi) is simple and the

three largest multiplicities are m̄1 = m̄2 = m̄3 = k/vn. Hence m̄1 + m̄2 +
m̄3 = 3k/vn <

√
tk/vn and for large k (which is not restrictive), there exist

integers dk < mk/
√
t which also satisfy dk > m̄1 + m̄2 + m̄3. Thus we may

assume that this inequality holds, so the hypothesis in conjecture 5.1 is satisfied
and h0(HK,m(d)) = max {0, (d+ 1)(d+ 2)/2−

∑
m̄i(m̄i + 1)/2} . By way of

contradiction, assume Imk
has sections of degree dk. Then (dk + 1)(dk + 2)/2 ≥∑

m̄i(m̄i + 1)/2, which together with dk < mk/
√
t =

∑
m̄2
i implies 3dk + 2 >∑

m̄i ≥ 10 m̄1 > kt/vn = mk, a contradiction.

With this in mind, we propose the following:

Conjecture 5.3 (Nagata for quasimonomial valuations). ∀t ≥ 9 µ̂(t) =
√
t.

Proposition 5.4. Conjecture 5.3 implies Nagata’s conjecture.

Proof. Let t > 9 be a nonsquare integer. By a “collision de front” and semincon-
tinuity, Nagata’s conjecture for t points would follow by showing that, for a very
general ξ(x) ∈ C[[x]], and for every couple of integers d,m with 0 < d < m

√
t,

the ideal (xt, y − ξ(t))m ∩ C[x, y] has no nonzero element in degree d. But this
is an immediate consequence of µ̂(t) =

√
t.

In view of the computations in next section, we expect that in fact the range
of t for which µ̂(t) =

√
t is larger; see Conjecture 6.10.

6 Supraminimal curves

If some valuation v is not minimal, this is due to the existence of a curve C
(which may be taken irreducible and reduced) with larger valuation than what
one would expect from the degree. These curves will be called supraminimal,
and are the subject of this section. For simplicity, we fix O ∈ A2 ⊂ P2 as before.

Lemma 6.1. If there is an irreducible polynomial f ∈ C[x, y] with

v(ξ, t; f) >
1√

vol(v(ξ, t))
deg(f) ,

then v(ξ, t; f) = µ̂(ξ, t) deg(f).
Moreover, if µ̂(ξ, t) > 1√

vol(v(ξ,t))
, then there is such an irreducible polyno-

mial f .

In the case above we say that f computes µ̂(ξ, t).
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Proof. By continuity of µ̂(ξ, t) as a function of t, it is enough to consider the
case t ∈ Q. Let v = v(ξ, t).

Let f be as in the claim, and d = deg f . It will be enough to prove that, for
every polynomial g with degree e and v(g) = w > e√

vol(v)
, f divides g. Choose

an integer k such that kw ∈ N is an integer multiple of t, and consider the ideal

Ikw = {h ∈ C[x, y] | v(h) ≥ kw}.

A general h ∈ Ikw has kw/t Puiseux series roots, each of them of the form
ξ(x)+axt+ . . . ; therefore the local intersection multiplicity of h = 0 with f = 0
is

I0(h, f) ≥ kw

t
v(f) >

kwd

t
√

vol(v)
=
kwd√
t
. (†)

Since obviously gk ∈ I, the intersection multiplicity I0(gk, f) is bounded below
by (†), and therefore

I0(g, f) >
wd√
t

= dw
√

vol(v) > de,

so f is a component of g.
Now assume µ̂(v) > 1√

vol(v)
. So there is a polynomial g ∈ C[x, y] of degree

e with v(g) > e√
vol(v)

. Since v(f1 · f2) = v(f1) + v(f2), it follows that at least

one irreducible component f of g, satisfies v(f) > deg f√
vol(v)

.

Proposition 6.2. Assume that d ∈ N,m1/n1, . . . ,mr/nr ∈ Q, with gcd{mi, ni} =
1 are such that, for a very general ξ(x), there exists an irreducible f ∈ C[x, y]
with deg(f) = d which decomposes in C[[x, y]] as a product of r irreducible se-
ries f = f1 . . . fr with ordx fi(x, ξ(x)) = mi, ord0 fi(x, y) = ni. Consider the
tropical polynomial

µf (t) =

r∑
i=1

min(nit,mi).

Then µ̂(t) ≥ µf (t)/d, with equality at all values of t such that µf (t) > d
√
t.

Proof. It is immediate that v(ξ, t; f) = µf (t), so the inequality µ̂(t) ≥ µf (t)/d
is clear. Now assume that µf (t) > d

√
t. This implies that v(ξ, t) is not minimal,

and therefore by lemma 6.1, f computes µ̂(v(ξ, t)) = µ̂(t).

Example 6.3. The easiest examples of the situation described in Proposition 6.2
are given by (smooth) curves of degree 1 and 2.

Namely, for d = 1, m1/n1 = 2, it is trivial that for every ξ(x), there exists
a degree 1 polynomial f with ordx f(x, ξ(x)) = 2, ord0 fi(x, y) = 1; one simply
has to take the equation of the tangent line to y − ξ(x) = 0, or f = y − ξ1(x)
(where ξ1 denotes the 1-jet).

Along the same line, for d = 2, m1/n1 = 5, it is easy to show that for
every ξ(x), there exists a degree 2 polynomial f with ordx f(x, ξ(x)) = 5,
ord0 fi(x, y) = 1, which for general ξ is irreducible; one simply has to take the
equation of the conic through the first five points infinitely near to (0, 0) on the
curve y−s(x) = 0 (more fancily, the curvilinear ideal (y−ξ(x))+(x, y)5 ⊂ C[x, y]
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has maximal Hilbert function and colength 5, and therefore a unique element
in degree 2).

Proposition 6.2 then gives that

µ̂(t) =


t if 1 ≤ t ≤ 2, computed by a line,

2 if 2 ≤ t ≤ 4, computed by a line,

t/2 if 4 ≤ t ≤ 5, computed by a conic,

5/2 if 5 ≤ t ≤ 25/4, computed by a conic.

In order to construct the supraminimal curves in general position computing
the function µ̂ for small values of t, we need certain Cremona maps, presumably
well known, which have been used by Orevkov in [19] to show sharpness of his
bound on the degree of cuspidal rational curves.

Proposition 6.4. Let K = (p1, . . . , p7) be a general cluster with pi+1 infinitely
near to pi for i = 1, . . . , 6. There exists a degree 8 plane Cremona map Φ8 whose
cluster of fundamental points is K, with all points weighted with multiplicity 3,
and satifying the following properties:

1. The characteristic matrix of Φ8 is

8 3 3 3 3 3 3 3

−3 −1 −2 −1 −1 −1 −1 −1

−3 −2 −1 −1 −1 −1 −1 −1

−3 −1 −1 −1 −2 −1 −1 −1

−3 −1 −1 −2 −1 −1 −1 −1

−3 −1 −1 −1 −1 −1 −2 −1

−3 −1 −1 −1 −1 −2 −1 −1

−3 −1 −1 −1 −1 −1 −1 −2



.

2. The inverse Cremona map is of the same type, i.e., it has the same char-
acteristic matrix and its fundamental points are a sequence, each infinitely
near to the preceding one.

3. The only curve contracted by Φ8 is the nodal cubic which is singular at
p1 and goes through (p2, . . . , p6). The only expansive fundamental point
is p6, whose relative principal curve is the nodal cubic going through the
fundamental points of the inverse map, and singular at the first of them.

Recall that the characteristic matrix of a plane Cremona map is the matrix
of base change in the Picard group of the blow up π : S → P2 that resolves the
map, from the natural base formed by the class of a line and the exceptional
divisors, to the natural base in the image P̂2, formed by the class of a line there
(the homaloidal net in the original P2) and the divisors contracted by the map

(which are the exceptional divisors of π′ : S → P̂2), see [1]. We use it later on
to compute images of curves under Φ8.
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Proof. This proof is taken from [19, p. 667]; the only modification lies in the
remark that K can be taken general. Indeed, for K is general, there exists a
unique irreducible nodal cubic Γ with multiplicity 2 at p1 and going through
p2, . . . , p7. Φ8 is then defined as follows: let πK : SK → P2 be the blowup of
all points on K. The (strict) exceptional divisors Ẽi are (−2)-curves, E7 is a
(−1) curve. The strict transform Γ̃ ⊂ SK is another (−1)-curve that meets
the (strict) exceptional divisors Ẽ1 and E7. Blow down Γ̃, Ẽ1, . . . Ẽ6 to obtain

another map π′K : SK → P̂2. Then take Φ8 = π′K ◦π
−1
K . All the stated properties

are easy to check.

Denote F−1 = 1, F0 = 0 and Fi+1 = Fi + Fi−1 the Fibonacci numbers, and
φ = (1 +

√
5)/2 = limFi+1/Fi the “golden ratio”.

Proposition 6.5. For each odd i ≥ 1, there exist rational curves Ci of degree
Fi with a single cuspidal singularity of characteristic exponent Fi+2/Fi−2 whose
six singular free points are in general position. These curves become (−1)-
curves in their embedded resolution, and are supraminimal for t in the interval(

F 2
i

F 2
i−2

,
F 2

i+2

F 2
i

)
.

Note that for i = 1 the line is actually not singular (the “characteristic
exponent” is 2, an integer) but the statement in that case means that the line
goes through the first two of six infinitely near points in general position, i.e.,
the exponent is interpreted as mi/ni = 2 in proposition 6.2.

Proof. The existence of such curves, without the generality statement, is [19,
Theorem C, (a) and (b)]. Since the construction goes by recursively applying
the rational map Φ8, and the free singular points of Ci are exactly the seven
fundamental points of Φ8, it follows from 6.4 that these can be chosen to be
general. They are (−1)-curves after resolution because the starting point of the
construction are the two lines tangent to the two branches of the nodal cubic Γ
(which becomes an exceptional divisor after Φ8) i.e., (−1)-curves (each is a line
through a point and an infinitely near point).

Now, with notation as in Proposition 6.2,

µf (t) =

{
Fi−2
Fi

t if t ≤ Fi+2

Fi−2
,

Fi+2

Fi
if t ≥ Fi+2

Fi−2
.

supraminimality in the claimed interval follows.

Corollary 6.6.

µ̂(t) =


Fi−2
Fi

t if t ∈
[
F 2

i

F 2
i−2

, Fi+2

Fi−2

]
,

Fi+2

Fi
if t ∈

[
Fi+2

Fi−2
,
F 2

i+2

F 2
i

]
.

Remark 6.7. In addition to the preceding family of curves, nine additional (−1)-
curves compute µ̂(t) for some range of t (see table 6.1). The existence of these
curves is proved as follows. D1 and D2 are well known. The rest are obtained by
applying the Cremona map Φ8 to already constructed curves (the names chosen
indicate that curve X∗ is built from curve X).
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Name (d; vi) mi/ni t

D1 (3; 2, 1×6) 1,7
[
φ4,
(

8
3

)2]
D∗2 (48; 18×7, 3, 2×7) 7,

(
7 + 1

8

)×2
, 8

[(
24+
√

457
17

)2

,
(
24−

√
455
)2]

C∗∗1 (64; 24×7, 3×7, 1×2) 7×2, 7 + 1
7+1/2 , 7 + 1

7

[(
32−
√

177
7

)2

,
(

16+
√

179
11

)2
]

D∗1 (24; 9×7, 2, 1×6) 7, 7 + 1
7 , 8

[(
6+
√

22
4

)2

,
(
12−

√
87
)2]

C∗5 (40; 15×7, 2×6, 1×2) 7×2, 7 + 1
6+1/2

[(
20+
√

218
13

)2

,
(

107
40

)2]
C∗3 (16; 6×7, 1×5) 7, 7 + 1

5

[(
8+
√

29
5

)2

,
(

43
16

)2]
D3 (35; 13×7, 4, 3×3) 7 + 1

4 , 8

[(
35
13

)2
,
(

35−
√

877
2

)2
]

C∗1 (8; 3×7, 1×2) 7, 7 + 1
2

[
4+
√

2
2 ,

(
22
8

)2]
D2 (6; 3, 2×7) 1, 8

[(
3+
√

7
2

)2

,
(

17
6

)2]
Table 6.1: Sporadic supraminimal curves. (d; vi) denote degree and multiplici-
ties sequence, with ×k meaning k-tuple repetition. mi/ni follows the notation
of proposition 6.2, with ×2 meaning repetition again.

Example 6.8. As an example, let us show the existence of D∗1 . Let K =
(p1, . . . , p8) be a general cluster with each point infinitely near to the preceding
one; we want to show that there is an irreducible curve of degree 24 with three
branches, two smooth, one of which goes through (p1, . . . , p7) and the other
through all of K, and one singular, with characteristic exponent 50/7. Because
K is general, there exist a cubic D1 with multiplicities [2, 16, 0] on K and an-
other cubic Γ through K that has a node at some other point q1. Choose one
of the branches of Γ and let q2, . . . , q7 be the points infinitely near to q1 on that
branch. Apply the Cremona map Φ8 based on (q1, . . . , q7): then D∗1 = Φ8(D1).

All these computations together show that indeed, (−1)-curves compute µ̂
in the anticanonical range:

Theorem 6.9. For t ∈ A, µ̂(t) is computed by (−1)-curves; more precisely, the
(infinitely many) curves Ci and 7 of the curves in table 6.1.

Figure 1 shows µ̂(t) in the ranges where it is known, together with the lower
bound

√
t.

The two curves C∗∗1 and C∗5 compute µ̂ in ranges of t which do not intersect
the anticanonical locus A. We expect that there are no more curves with such
behavior, and so propose the following strengthening of conjecture 5.3:

Conjecture 6.10. Let t ∈ R be such that µ̂(t) >
√
t. Then µC(t) >

√
t for a

curve C which is either on the list of table 6.1 or one of the Ci. Equivalently,
if t > 7 + 1/9 is not contained in any one of the intervals of table 6.1, then a
very general valuation v(ξ, t) is minimal.

Remark 6.11. For t > (17/6)2, it is possible to show (using Cremona maps)
that no (−1)-curve is ever supraminimal. Thus conjecture 6.10 splits naturally
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into two conjectures: first, that all supraminimal curves are (−1)-curves, and
second, that the only supraminimal (−1)-curves in the interval [7, 8] are the
ones above. Our evidence for the latter statement is experimental, obtained by
a computer search.
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