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HOLOMORPHIC AUTOMORPHIC FORMS AND COHOMOLOGY

ROELOF BRUGGEMAN, YOUNGJU CHOIE, AND NIKOLAOS DIAMANTIS

ABsTRACT. We investigate the correspondence between holomorphic automor-
phic forms on the upper half-plane with complex weight and parabolic cocycles.
For integral weights at least 2 this correspondence is given by the Eichler inte-
gral. We use Knopp’s generalization of this integral to real weights, and apply
it to complex weights that are not an integer at least 2. We show that for these
weights the generalized Eichler integral gives an injection into the first cohomol-
ogy group with values in a module of holomorphic functions, and characterize
the image. We impose no condition on the growth of the automorphic forms at
the cusps. So our result covers exponentially growing automorphic forms, like
those studied by Borcherds, and like those in the theory of mock automorphic
forms.

For real weights that are not an integer at least 2 we similarly characterize
the space of cusp forms and the space of entire automorphic forms. We give a
relation between the cohomology classes attached to holomorphic automorphic
forms of real weight and the existence of harmonic lifts.

A tool in establishing these results is the relation to cohomology groups with
values in modules of “analytic boundary germs”, which are represented by har-
monic functions on subsets of the upper half-plane. It turns out that for integral
weights at least 2 the map from general holomorphic automorphic forms to coho-
mology with values in analytic boundary germs is injective. So cohomology with
these coeflicients can distinguish all holomorphic automorphic forms, unlike the
classical Eichler theory.
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INTRODUCTION

Classically, the interpretation of holomorphic modular forms of integral weight
on the complex upper half-plane $ in terms of group cohomology has provided a
tool that has had many important applications to the geometry of modular forms,
the study of their periods, the arithmetic of special values of their L-functions, for
instance in [107, 64, 84, 71].

A similar interpretation for Maass forms had to wait until the introduction of
periods of Maass forms given by Lewis and Zagier [80, 82]. The analogue of Eich-
ler cohomology and the Eichler-Shimura isomorphism for Maass forms of weight
zero was established in [15].

We recall that Eichler [41] attached a cocycle ¢ to meromorphic automorphic
forms F' of weight k € 2Z>; by

(1) Vi) = f Fo) -0\ dr.
Y

,IZO
This cocycle has values in the space of polynomial functions of degree at most
k — 2, with the action of weight 2 — k. The action of a Fuchsian group I is induced
by the action |,_; on functions f : $ — C, and is given by

(Fla—k¥)(@) = (cz + 2 f(y2).

The class of the cocycle does not depend on the base point zg in $. To get indepen-
dence of the integrals on the path of integration F is supposed to have zero residue
at all its singularities. This is the case for cusp forms F. In that case we can put the
base point zg at a cusp, and arrive at so-called parabolic cocycles.
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For cusp forms for the modular group I'(1) = SL,(Z) one takes zy at co. Then
the cocycle is determined by its value on § = ((1) _(1)). One calls yrs a period
polynomial of F, whose coeflicients are values of the L-function of F at integral
points in the critical strip.

Knopp [64] generalized this approach to automorphic forms with arbitrary real
weight. Then a multiplier system is needed in the transformation behavior of holo-
morphic automorphic forms. The factor (z — £)f=2 becomes ambiguous if one re-
places the positive even weight k by a real weight r. Knopp solves this problem by
replacing ¢ by 7 for points ¢ € $, and restoring holomorphy by complex conjugation
of the whole integral. The values of the resulting cocycle are holomorphic func-
tions on the upper half-plane. Knopp [64] shows that for cusp forms F they have
at most polynomial growth as t approaches the boundary. In this way he obtains
an antilinear map between the space of cusp forms and the first cohomology group
with values in a module of holomorphic functions with polynomial growth. He
showed, [64], that for many real weights, this map is a bijection, and conjectured
this for all » € R. Together with Mawi [69] he proved it for the remaining real
weights.

For positive even weights this seems to contradict the classical results of Eichler
[41] and Shimura [107], which imply that the parabolic cohomology with values in
the polynomials of degree at most k—2 is isomorphic to the direct sum of the space
of cusp forms of weight k and its complex conjugate. The apparent contradiction
is explained by the fact that Knopp uses a larger module for the cohomology. Half
of the cohomology classes for the classical situation do not survive the extension
of the module.

In the modular case the period function of a modular cusp form of positive even
weight satisfies functional equations (Shimura-Eichler relations). Zagier noticed
that a functional equation with a similar structure occurs in Lewis’s discussion in
[80] of holomorphic functions attached to even Maass cusp forms. Together [82]
they showed that there is a cohomological interpretation. In [15] this relation is
extended to arbitrary cofinite discrete groups of motions in the upper half-plane
and Maass forms of weight zero with spectral parameters in the vertical strip 0 <
Re s < 1. It gives an isomorphism between spaces of Maass cusp forms of weight
0 and a number of parabolic cohomology groups, and for the spaces of all invariant
eigenfunctions to larger cohomology groups.

In this paper we study relations between the space of automorphic forms without
growth condition at the cusps and various parabolic cohomology groups. We use
the approach of [15] in the context of holomorphic automorphic forms for cofinite
discrete groups of motions in the upper half-plane that have cusps. Like in [15] we
do not need to impose growth conditions at the cusps, and speak of unrestricted
holomorphic automorphic forms. We take the module of holomorphic functions in
which the cocycles take their values as small as possible. That means the classical
space of polynomials of degree at most k — 2 for weights k € Z>,. Also for other
weights we use a smaller module than Knopp [64]. To avoid the complex conjuga-
tion we use modules of holomorphic functions on the lower half-plane $~. It turns



4 ROELOF BRUGGEMAN, YOUNGJU CHOIE, AND NIKOLAOS DIAMANTIS

out that, for the main results, working with arbitrary weights in C \ Z5, takes no
more effort than working with real weights; so that is the generality that we choose
where possible. We shall show that the definition in (1), suitably interpreted, gives
a bijection between the spaces of unrestricted holomorphic automorphic forms and
several isomorphic parabolic cohomology groups.

There are several motivations and potential applications for this. Knopp’s ap-
proach could “see” only cusp forms, we work with smaller modules of analytic
vectors in a highest weight subspace of a principal series representation, and obtain
a cohomological description of all automorphic forms. In particular, this covers the
case of automorphic forms with exponential growth at the cusps. This case is im-
portant especially because of its prominent role in Borcherds’s theory [7] and in
the theory of mock modular forms.

In the same way that representation theory has provided an important unified set-
ting for holomorphic and Maass forms, our construction reflects a common frame-
work for the cohomology of holomorphic and Maass forms.

There are a lot of important relations between the theory of cohomology of
modular forms and various problems in number theory. For instance, Zagier [115]
gives a new elementary proof of the Eichler-Selberg trace formula using the explicit
description of the action of Hecke operators on the space of cohomology groups.
In the same paper Zagier connects cocycles with double zeta values, in which many
interesting further results are developed recently ([57], [120]). Another application
is the possibility of an interpretation of the higher Kronecker limit formula in terms
of cohomology group [112].

Finally, we note that one of striking applications of Eichler cohomology con-
cerns algebraicity results for critical values of L-functions of classical (integral
weight) cusp forms, eg, Manin’s periods theorem [84], or [83]. The results ob-
tained were later extended, at least conjecturally, to other values and to values of
derivatives in a manner eventually formalized in the conjectures of Deligne, Beilin-
son, Bloch-Kato and others. See [72].

In the case of values of derivatives, the main pathway to such results did not
involve directly Eichler cohomology. However, for f of weight 2, in [49], (resp.
[37D), L}(l) (resp. L;”)(l)) is expressed in terms of a “period” integral similar to an
Eichler cocycle, when L¢(1) = 0. Despite the similarity, this “period” integral does
not seem at first to have a direct cohomological interpretation. Nevertheless, in §9.4
we are able to show that, L}(l) can be expressed as a derivative with respect to a the
parameter of a family of parabolic cocycles r — lﬂ;f’. associated to a family r — f;
of automorphic forms. With [37], similar expressions can be proved for higher
derivatives. We hope that better insight into the cohomology whose foundations we
establish here should yield information about the algebraic structure of derivatives
of L-functions along the lines of the algebraicity results for critical values derived
with the help of classical Eichler cohomology.

We now proceed with a discussion of the results of this paper. We avoid many
technicalities, and state the main theorems giving only rough descriptions of the
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cohomology groups and coefficient modules involved. In the next sections we
define precisely all objects occurring in the statements.

Let I' be a cofinite discrete subgroup of SL,(R) with cusps. We take a complex
weight r € C and an associated multiplier system v : I’ — C*. We denote by
AT, v) the space of all holomorphic functions F : $ — C such that

k 3k

Cd)el",ze@.

For a fixed zg € $ and an F € A.(T,v) consider the map 3 : y zp?y onT,
where l//;?y is the function of r € $~ given by ¢

F(yz) = v(y)(cz+d)" F(2) forally = (

@ G0 = [ -0 Rod:.
Y 20

We take the branch of (z — £)" 2 with -7 <arg(z—1) < 37”
Our first main theorem is:

Theorem A. Let I" be a cofinite discrete subgroup of SLy(R) with cusps. Let r €
C \ Zs), and let v be an associated multiplier system.
i) The assignment (//? Ty o ‘/’;O,y is a cocycle, and F +— lﬁ? induces an
injective linear map

3) A - H (D).

Here Z)U‘:’z_r denotes a space of holomorphic functions on the lower half-
plane 9~ that are holomorphically continuable to a neighborhood of $H~ U
R, together with an action depending on v.

il) The image r*A,(I',v) is equal to the mixed parabolic cohomology group

0
H(T; D, DY), which consists of elements of H LT, Dy,_,) repre-
sented by cocycles whose values on parabolic elements of T satisfy certain

additional conditions at the cusps.

This result is comparable to Theorem C in Bruggeman, Lewis, Zagier [15] where
a linear injection of Maass forms of weight O into a cohomology group is estab-
lished.

The proof of Theorem A will require many steps, and will be summarized in
Subsection 10.5.

We characterize the images under r of the spaces S,.(I', v) of cusps forms and
M, (T, v) of entire automorphic forms:

Theorem B. Let I' be a cofinite discrete subgroup of SLo(R) with cusps. Let r € R
and let v be a unitary multiplier system on I for the weight r.

1) Ifre R\ Zx
Y S,(Cv) = HL\(T D, D),

v,2—r

0 0
w",00,eXC - w" ,eXC
where DU’Z_r is a subspace of Z)U’2

=" defined by a smoothness condi-
tion.
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i) Ifr e R\ Zs
r(;) MV(F, U) — Hr}b(l—*’ Dw Dwo,smp,exc) ,

0,2—r> ~v,2—r
with the T'-module Z);f’;’_s:np’exc ) Z)U“”;;‘):’exc also contained in Z):’;frxc.

Here we give only a result for real weights. It seems that for non-real weights
the cusp forms do not form a very special subspace of the space of all automorphic
forms. There is, as far as we know, no nice bound for the Fourier coefficients and
it seems hard to define L-functions in a sensible way.

In Theorems A and B automorphic forms of weight r are related to cohomology
with values in a module with the “dual weight” 2 — r.

The characterization in Theorems A and B of the images of spaces of automor-
phic forms is one of several possibilities given in Theorem E, which we state in
Subsection 1.7, after some I'-modules containing Dvo,’z_r have been defined. There
we see that the map r¢ in Theorem A is far from surjective. In Section 14 we
discuss a space of quantum automorphic forms, for which there is, if r ¢ Z5, a
surjection to the space H'(T; Z)ljf’z_r).

In §2.3 we will compare Part 1) of Theorem B to the main theorem of Knopp
and Mawi [69], which gives an isomorphism S.(I',v) — H T Z)U‘i’f ,) for some
larger I'-module D )° > Z)sz)z—r' The combination of the theorem of Knopp and
Mawi with Theorem A shows that there are many automorphic forms F € A,(I', v)
for which r“F is sent to zero by the natural map H'(T; DY) = H LT D5,
This means that the cocycle y +— zp;"’y becomes a coboundary when viewed over
the module 9, 7° , ie, that there is @ € 77 such that zﬁ}o’y = ®@|,,—,(y — 1) for all
yel.

The following result relates the vanishing of the cohomology class of y — :,l/;()’y
over a still larger module Z)U‘;"_ . D Z)U‘;i . to the existence of harmonic lifts, a
concept that we will discuss in Subsections 1.8 and 5.2.

Theorem C. Let I be a cofinite discrete subgroup of SLy(R) with cusps. Let r € C
and let v be a multiplier system for the weight r. The following statements are
equivalent for F € A,(I',v):
a) The image of Y*’F under the natural map H\(T; Dlj‘jz_r) — H\T; Z)U}"_r
vanishes.
b) The automorphic form F has a harmonic lift in Harmy_(I', ), ie, F is in
the image of the antilinear map Harmy_z(I', ) — A,(I',v) given by H +—
2iy*> " 0:H.

We prove this theorem in Subsection 5.2. Combining the theorem of Knopp
and Mawi [69] with Theorem C we obtain the existence of harmonic lifts in many
cases. See Theorem 5.3 and Corollary 5.2.

Boundary germs. An essential aspect of the approach in [15] is the use of “analytic
boundary germs”. These germs form I'-modules isomorphic to the modules in [15]

. O .
corresponding to O, and Z)U‘"zfrxc in our case. In [15] the boundary germs are
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indispensable for the proof of the surjectivity of the map from Maass forms of
weight zero to cohomology. The same holds for this paper.
In Sections 6—8 we study the spaces of boundary germs that are relevant for our

. O .
present purpose. In particular we define spaces &}, and &y, that are for weights

0
in C \ Z isomorphic to D¢, and D, respectively. In Theorem 10.18 we
obtain, for all complex weights r, an injective map

) q’ : AT, v) > H'(T;87)

and study the image.

For weights r € C \ Zs, we use Theorem 10.18 in the proof of Theorem A.
Theorem 10.18 is also valid for weights in Z5,. For these weights it leads to the
following result:

Theorem D. Let r € Zsy, let T be a cofinite discrete subgroup of SLy(R) with
cusps, and let v be a multiplier system on I with weight r.

i) Putc, = ﬁ let p, denote the natural morphism 7. — D, | and let

v,r v,2—r’
Z)lf)gl_r denote the submodule of D, . consisting of polynomial functions

of degree at most r — 2. The following diagram commutes:

Pr Hl (Dpol

v,2—r

H'(DY) H'(&Y) )—0

W
ré

HL(O ) |

U,27

A% A

“ 0 154 0
O HL(D. D) — Hy (80,85,

v,r?

~ W |~
2-r | = q- | =

Ap_y(v) 3

(To save space the group I is suppressed in the notation.)
ii) The top row and the middle row are exact.
iii) The maps H'(T; D) — H T, &y,) in the top row and the map and

HL(T; D2, DA — HL(T; D2, DE-C) in the middle row are injec-

v,1?
tive, unless r = 2 and v is the trivial multiplier system. In that exceptional

case both maps have a kernel isomorphic to the trivial I'-module C.

cr

-

Remarks. (a) For r € Z the I''module O, can be considered as a submodule of
&, The space AY(T, v) is the space of unrestricted holomorphic automorphic form
for which the Fourier terms of order zero at all cusps vanish.

(b) We note that automorphic forms both of weight r and of the dual weight 2 — r
occur in the diagram. The theorem shows that boundary germ cohomology in some
sense interpolates between the cohomology classes attached to automorphic forms
of weight 2 — r and of weight r, with r € Zs,.

(c) The second line in diagram (5) has no closing — 0. In §11.5 we will discuss

how this surjectivity can be derived by classical methods, provided that we assume
that the multiplier system v is unitary.
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Comparison with [15]. This paper has much in common with the notes [15]. Both
give isomorphisms between spaces of functions with automorphic transformation
behavior and mixed parabolic cohomology groups. The main difference is in the
modules in which the cohomology groups have their values. The I'-modules in [15]
are spherical principal series representations. The linear map in [15] analogous to
our map r sends Maass forms of weight zero to cohomology classes in H'(T'; V%),
where V¢ is the space of analytic vectors in the principal series representation of
PSL,(R) with spectral parameter s. The assumption 0 < Re s < 1 ensures that the
representation V{” is irreducible. Holomorphic automorphic forms of weight r € C
correspond to a spectral parameter 5, for which the corresponding space of analytic
vectors is reducible. Hence here we work with the highest weight subspace. It is
irreducible precisely if r ¢ Zs,, which explains that in this paper weights in Z»
require a special treatment.

Another complication arises as soon as the weight is not an integer. This means
that we deal with highest weight subspace of principal series representations of
the universal covering group of SL;(R). In the main text of these notes we have
avoided use of the covering group. We discuss it in the Appendix.

Although the main approach of this paper relies heavily on methods from [15],
and also on ideas in [82], it was far from trivial to handle the complications not
present in [15].

Overview of the paper. In Sections 1-4 we discuss results that can be formulated
with the modules O, _ . Here the proof of Theorem B is reduced to that of Theo-
rem A. Sections 5—7 give results for harmonic functions and boundary germs. In
section 5 one finds the proof of Theorem C. We use the boundary germs in Sec-
tions 8—11 to determine the image of automorphic forms in cohomology, and prove
Theorems A and D. Sections 12 and 13 give the proof of Theorem E (which itself
is stated on page 17). The map r% in Theorem A is not surjective. In Section 14
we discuss how quantum automorphic forms are mapped, under some conditions,
onto H'(T’; D).

At the end of most sections we mention directly related literature. In Section 15
we give a broader discussion of literature related to the relation between automor-
phic forms and cohomology. In the Appendix we give a short discussion of the
universal covering group and its principal series representations.
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Part I. Cohomology with values in holomorphic functions
1. DEFINITIONS AND NOTATIONS

We work with the upper half-plane = {z € C : Imz > 0} and the lower
half-plane $~ defined by Imz < 0. For z € H U $H~ we will often use without
further explanation y = Imz, x = Rez. Both half-planes are disjoint open sets in
the complex projective line Péj = CU{oo}, with the real projective line IP}‘R = RU{oo}
as their common boundary.

1.1. Operators on functions on the upper and lower half-plane. Let r € C. For
functions f on the upper or lower half-plane

az+b
cz+d

b
D flg@ = (cx+d)” f( ) forg:(zd)ESLz(R),

where we compute (cz + d)™" according to the argument convention to take
(1.2) arg(cz+d) e (—m,n]ifze $H, arg(cz+d) e [-n,n)ifze€ H.

These operators |.g do not define a representation of SL,(R). (One may relate it
to a representation of the universal covering group of SL,(R). See the Appendix,
§A.1.1.) There are however two useful identities. Set

b
(1.3) Gy = {(ad) € SLH(R) : —m<arg(ci+d) < n}.
C
Then, for all g € Gy and p = (gy’fl) with x € Rand y > 0:
(1.4) -9 g = Feglg™ = f.
(1.5) flrapg™ = (Flglp)lg™" .

To interchange functions on the upper and the lower half-plane we use the anti-
linear involution ¢ given by

(1.6) (N = f@).
It maps holomorphic functions to holomorphic functions, and satisfies
(1.7) t(flrg) = @Plrg (g9 €SLa(R)).

1.2. Discrete group. Everywhere in this paper we denote by I" a cofinite discrete

subgroup of SL,(R) with cusps, containing (_(1) _?). Cofinite means that the quo-
dxdy
2

tient I'\ 9 has finite volume with respect to the hyperbolic measure . The pres-

ence of cusps implies that the quotient is not compact. The standard example is the
modular group T'(1) = SLy(Z).

Multiplier system. A multiplier system on I for the weight r e Cisamapv: ' —
C* such that the function on I X $ given by

b b
(1.8) ju,,((id),z) = v(‘c’d) (cz+dy
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satisfies the following conditions:
Jor(¥6,2) = jur(y,062) ju,r(6,2) fory,6€l’,

T ) (e

We call a multiplier system unitary if |v(y)| =1forallyeTl.

Action of the discrete group. Let v be a multiplier system on I for the weight r. For
functions on $ and p = r mod 2 we put for y = (Z’ Z) el

(1.10) flopy @ = v 2+ )P fr2) = oy, f(2),
and for functions on $~ and p = —r mod 2
(1.11) flopy @ = o) (cz+d) P f(y2).

The operator |, , defines a holomorphy-preserving action of I" on the spaces of
functions on $ and on 97, ie., (flopY)o,p0 = flopyo for all y,6 € I'. Furthermore,

Slop (_(1) _(1)) = f, hence we have an action of I" := I'/{1, —1} ¢ PSL,(R). Finally,
(1.12) (flory) = @WhHlsry foryerl.

1.3. Automorphic forms. We consider automorphic forms without any growth
condition.

Definition 1.1. A unrestricted holomorphic automorphic form on I' with weight
r € C and multiplier system v on I" for the weight r is a holomorphic function
F : 9 — C such that

(1.13) Flpyy = F forally el.

We use A,(I', v) to denote the space of all such unrestricted holomorphic automor-
phic forms. We often abbreviate unrestricted holomorphic automorphic form to
holomorphic automorphic form or to automorphic form.

Cusps. A cusp of I' is a point a € P]g = R U {oo} such that the stabilizer I'y :=
{y eI : ya = a}is infinite and has no other fixed points in Pé. This group is of

the form [y = {x#} : n € Z} for an element 7, € I that is conjugate to T = ((1) i)
in SLy(R). The elements n”f have trace 2, and are, for n # 0, called parabolic. The
elements 7, and 7r; ! are primitive parabolic since they are not of the form " with
yelandn > 2.
For each cusp a there are (non-unique) o, € Gy such that r, = (raTaa‘l. We
arrange the choice such that for all y € I we have oy, = £y, T" for some n € Z.
The set of cusps of a given discrete group I is a finite union of I'-orbits. Each of

these orbits is an infinite subset of P]}Q.

Fourier expansion. Each F € A,(I',v) has at each cusp a of I' a Fourier expansion

(1.14) Floa@ = >, aa,F)e™,

n=a, mod 1
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with @, such that v(r,) = e*@ . The Fourier coefficients a,(a, F) depend (by a
non-zero factor) on the choice of o, in SL,(R). In general, o, ¢ I, so we have to
use the operator |07, and not the action |, of I.

If the multiplier system is not unitary, it may happen that 'v(na)| # 1 for some
cusps a. Then @, € C \ R, and the Fourier term orders n in (1.14) are not real.

Definition 1.2. We define the following subspaces of A,(T', v):
i) The space of cusp forms is

SHT,v) = {F € A(T;0) : Yocusp Va1 Ren <0 = ay(a, F) = 0).
ii) The space of entire automorphic forms is
MA(T,0) = {F € AuT,0) : Yacusp Ynzao(t) Ren < 0= ay(a, F) = 0}

If v(mry) # 1 the name “entire” is not very appropriate, since then the Fourier
expansion at a in (1.14) needs non-integral powers of g = e>™~,
This implies that F' € S,(I', v) has exponential decay at all cusps:

Va cusp of I' YX >0 EI‘9>O vxe[—X,X]
(1.15)

F(oo(x+iy)) = O(e¥)asy — 0.
If v is not unitary we need to restrict x to compact sets. Similarly, functions F' €
M,(I', v) have at most polynomial growth at the cusps:

va cusp of I" V¥X >0 EIa>0 Vxe[—X,X]
(1.16)

F(oo(x+iy)) = Oy asy — 0.

1.4. Cohomology and mixed parabolic cohomology. We recall the basic defini-
tions of group cohomology. Let V be a right C[I']-module. Then the first cohomol-
ogy group H'(I'; V) is

(1.17) H'T;V) = Z'(T; V) mod B'(T; V),

where Z(T"; V) is the space of 1-cocycles and BY(T; V) c Z\(T'; V) the space of 1-
coboundaries. A 1-cocycleisamap ¢ : I' = V : vy = ¢, such that ¥r,,5 = i, |0 + s
for all ¥,6 € I' and a 1-coboundary is amap ¢ : I' — V of the form ¢, = aly — a
for some a € V not depending on .

Definition 1.3. Let V C W be right I'-modules. The mixed parabolic cohomology
group H, (T'; V,W) c H'(T'; V) is the quotient Z (I'; V, W)/ B'(I'; V), where

(1.18) ZL@T;V,W) = {y e Z\T3V) : ¢y € Wl(x — 1) for all parabolic 7 € T}.

The space leb(F; V)= leb(F; V, V) is the usual parabolic cohomology group.

We call cocycles in Zplb(l"; V, W) mixed parabolic cocycles, and parabolic cocy-
clesit V=W.

In (1.18) it suffices to check the condition ¥, € W|(mr — 1) for 7 = 1, with ain a
(finite) set of representatives of the I'-orbits of cusps.
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1.5. Modules. The coefficient modules that we will use for cohomology are based
on the following spaces:

Definition 1.4. Let r € C. For functions ¢ define the function prj,_,¢ by

(1.19) (Prip— @) = (i = * " ¢(1),

where (i — 1)>~" denotes the branch with arg(i — 1) € (—g, 37" .

) DY = {go :H - C : gpis holomorphic}.
i) D50 = {p € D7+ Fpso @() = O(IIm#|~%) + O(I{) on $7}, the space
of functions with at most polynomial growth.
i) D, = {p e Dy : priy € CV(H” UPY)|
v) Z);’_ , = prjg_lrli_n)l O(U) where U runs over the open neighborhoods of
$~ UPy in P(, and O denotes the sheaf of holomorphic functions on P..
v) For r € Zs, we put Dgflr = {go € D . ¢is given by a polynomial

function on C of degree at most r — 2}.

Discussion.  (a) The largest of these space, £, consists of all holomorphic
functions on the lower half-plane. The subspace 2, is determined by behavior of

¢(1) as t approaches the boundary PIE of . The real-analytic function Q(¢) = %
on Pé: \ {i} satisfies 0 < Q(#) < 1 on the lower half-plane and zero on its boundary.
A more uniform definition of polynomial growth requires that functions f satisfy
f(t) < Q)78 for some B > 0. In Part ii) we use Knopp’s formulation in [64],
transformed to the lower half-plane. Both are equivalent. To see this, we use in

one direction that (forr € $7)
Imf= B +18 1 +?B
Tm 2]~ + J¢] < I.I <141,
omn? It —il*#
In the other direction we carry out separate estimates for the following three cases
(D) 1) < 1, with Q)™ < Im#|78; (2) |f| > 1, Im1| > § with Q)8 < 1?8 + 1;

. _ 2B
B3) = 1, lIm1 < 4, with 0) 8 < J4g

(b) With ¢t € $~, the factor (i — 1) in (1.19) is O(1) if Re r > 2 and O(|¢|>"Re") if
Rer < 2, and its inverse (i — )2 satisfies similar estimates. So the function ¢ on
9~ has at most polynomial growth if and only prj,_,.¢ has polynomial growth. So
we could formulate the definition of 25> with prj,_,.¢ instead of ¢.

+ImA~8 < [f|*F + [Im#/728 + [Im #75.

(c) The polynomial growth in Part ii) concerns the behavior of ¢(¢) as ¢ approaches
the boundary P%R of H~ at any point. The polynomial growth at the cusps in (1.16)
concerns the approach of F(z) as z approaches cusps in the boundary P]g of .

(d) For some holomorphic ¢ on $~ it may happen that prj,_,¢ extends from $~
to yield a function that is smooth on $~ U P]%{. Then prj,_,¢ satisfies near € € R a
Taylor approximation of any order N

N-1

Pria (1) = ) an(t =& +O((t = &)Y)

n=0
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as t approaches ¢ through $~ UR. Near co we have a Taylor approximation in —1/¢.
This defines the space in Part iii) as a subspace of ;.

These Taylor expansions imply that prj,_.¢ has at most polynomial growth at
the boundary. So £§° is in fact a subspace of 0.

(e) Instead of Taylor expansions of any order, we may require that prj,_,¢ is near
each & € PIE given by a convergent power series expansion. Then it extends as a
holomorphic function to a neighborhood of $~ U PIIR in P&],:. That defines the space
D5’ in Part iv).

The formulation with an inductive limit implies that we consider two extensions
to be equal if they have the same restriction to .

(f) If r € Zsy, and ¢ is a polynomial function of degree at most r — 2 the function
pri,_,¢(#) extends holomorphically to Pé i)

(g) We have defined a decreasing sequence of spaces of holomorphic functions on
the lower half-plane: D, > D% > D° > DY D Z);flr (the last one only if
r € Zsy).

One can show that the spaces D] arise as highest weight subspaces occurring
in principal series representations of the universal covering group of SL,(R). Then
D5’ corresponds to a space of analytic vectors, D5° . to a space of C*-vectors,
D, % to a space of distribution vectors, and D, to a space of hyperfunction vec-
tors. This motivates the choice of the superscripts w, o, —co and —w. See §A.2 in
the Appendix.

(h) The vector spaces £;” and 2);°  depend on r, the spaces £, and D, do
not.

Projective model. 'We have characterized the spaces 9, in iii) and iv) in Defi-
nition 1.4 by properties of prj,_,.¢, not of ¢ itself, and could also equally well use
prj,_,¢ in i) and ii).

We call prj,_, D the projective model of Dj_ . Advantages of the projective
model are the simpler definitions and the fact that none of the spaces prj,_, 05
depends on r. Moreover, the projective model focuses our attention to the behavior
of the functions near the boundary PIE of the lower half-plane.

A big advantage of the spaces O themselves is the simple form of the oper-
ators |p—,g with g € SL(R). We will mostly work with these spaces, and use the
projective model only where it makes concepts or proofs easier.

The formula in (1.1) for the operators |.g is the usual formula when one works
with holomorphic automorphic forms. Of course these operators can be formulated
in the projective model, as is done in Proposition 1.5 below. At first sight that de-
scription looks rather complicated. However, even this formula has its advantage,
as will become clear in the proof of Proposition 1.6.

Proposition 1.5. Let r € C. Under the linear map ptj,_, the operators |—_.g with
g = (fz) € SLy(R) correspond to operators |;rj_rg given on h in the projective
model by

(1.20) W () = <a—ic)’—z(tf;_’ll.)z"h<gt>,
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fort € H~ and the choice arg(a — ic) € [-n, 7).

Proof. We want to determine the operator |,_,g for g = (‘C’ Z) € SL,(R) such that
the following diagram commutes:

P g
; —w 2-r ; —w
prip_, D5 = priy_, D5

Tper—r prJZ—VT

_ l2-rg _

w w

D) — " 9D
2—-r 2—-r

For ¢ € D% put h = prj,_.¢. So ¢(t) = (i — £)""2 h(r). Then hl';j_ .9 (1) should be
given by

(Pro(@h—rg))(t) = (= D> (ct +d)™* (i — gt) > h(gt)

So we need to check that
(=07 (ct+d) 7 (i-gt) > = (a—ic)*( - ’1_)2_’.
1 — g_ 1
For g near to the identity in SL,(R) and ¢ near —i this can be done by a direct
computation. The equality extends by analyticity of both sides to (¢,g) € $~ X Gy.
(See (1.3) for Gy.)

All factors are real-analytic in (f,g) on $~ X SLy(R), except (ct + d)? and
(a —ic)~2. So we have to check that the arguments of these two factors tend to the
same limit as g = (ZZ) - (_g _p_’f) € SLy(R) \ Gy, with p > 0 and g € R. We
have indeed arg(ct + d) — —n, and arg(a — ic) — —m. O

oge ol 00
Proposition 1.6. Each of the spaces Z)f_r, DD,

under the operators |y—rg with g € SLy(R).

D7 and D5 “ is invariant

t—i )2—"
t—-g~li

are holomorphic on Pé: \ p, were p is a path in $ from i to g~'i in $. Multiplication
by this factor preserves the projective models of each of the last four spaces. The

invariance of Dgflr is easily checked without use of the projective model. O

and its inverse

Proof. We work with the projective model. The factor (

Definition 1.7. Let I" be a cofinite subgroup of SL>(R) and let v be a multiplier
system for the weight r € C. For each choice of * € {—w, —c0, 00, w, pol}, we define
Dy,_, as the space D, with the action |, 2, of I, defined in (1.11).

Remark. The finite-dimensional module Z)lfgl_r is the coefficient module used by
Eichler [41]. Knopp [64] used an infinite-dimensional module isomorphic (under
tin (1.6)) to Z)U‘;i . for the cocycles attached to cusp forms of real weight. In our
approach Z)U“”z_r will be the basic I'-module.

1.6. Semi-analytic vectors. For a precise description of the image of the map
r,’ from automorphic forms to cohomology with values in O, , we need more

complicated modules, in spaces where we relax the conditions in Part iv) of Defi-
nition 1.4 in a finite number of points of P%R.
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Definition 1.8. Semi-analytic vectors.
i) Leté&y,...,& €PL.

(1.21) DY L1, 6] = pripl, imO(U).
where U runs over the open sets in Péj that contain £~ and IP’]}Q AN TS Ty
ii) Z)é”_*r = li_r)n Dé"_r[fl , ..., &nl, where {£1, ..., &,} runs over the finite subsets
of Pj.
iii) Z);’_Or =1mDY [ai,...,a,], where {ai, ..., a,} runs over the finite sets of
cusps of?

iv) For ¢ € Z);’_* . we define the set of boundary singularities BASing ¢ as the
minimal set {£1,...,&,} such that p € DY [£1, ..., &l

Conditions on the singularities.  The elements of the spaces in Definition 1.8
can be viewed as real-analytic functions on R \ E for some finite set E, without
conditions on the nature of the singularities at the exceptional points in E. We will
define subspaces by putting restrictions on the singularities that we allow.

If o € DY then h = prj,_,¢ is holomorphic at each point ¢ € P!, hence its
power series at &£ represents / on a neighborhood of ¢ in Pé:

(122)  h() = D a, (=" EeR).  h() = Y a" (=),

n>0 n>0
If ¢ is in the larger space 25° , then there need not be a power series that converges
to the function /& = prj,_,¢, but only an asymptotic series

(123)  h() ~ D a(t=9" EeR).  h() ~ Y a" (=),
n>0 n>0

valid as r approaches ¢ through $~ U ]P%R. By this formula we mean that for any
order N > 1 we have
N-1
W) = ) ant= &'+ 0t - &")
n=0
as t — & through $~ U P!, and analogously for £ = co.

Smooth semi-analytic vectors. The first condition on the singularities that we define
is rather strict:

Definition 1.9. O"°[£1,...,&,] := D5 [£1,....&]1 N D5° . We call it a space of
smooth semi-analytic vectors.

Semi-analytic vectors with simple singularities. We may also allow the asymptotic
expansions in (1.23) to run over n > —1. This gives the following space of semi-
analytic vectors with simple singularities:
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Definition 1.10. We define spaces of semi-analytic vectors with simple singulari-
ties by

DI, 8] = e DY ld,. LG
(1.24) t (1= &) (Prip—,9)(®) isin C*(H” UR)if ¢; € R,
t e 7 (prip_,0)(®) is in C¥(H™ UPL \ {0} if &; = oo} .

)7*"P[- -] turn up naturally. Often we will be interested in

Example. Elements of D, "
equations like the following one:

h(t +1) = h(1) = ¢(1),

where ¢ is given. In the case ¢ € D;fi with 7 € Zs», we cannot find a solution
hin D¢ if ¢ is a (nonzero) polynomial with degree equal to r — 2. If there is
a solution h of the equation given by a polynomial, then degh = r — 1, and &
cannot be in Z)pri. Further note that such a solution A is even not in D4’ , since
(Prio—, (@) = (@ - £)>~" h(t) is not holomorphic at co. However, ¢ - 7! (Prio—, 1))
is holomorphic at oo, hence h € D;”""P[co].

Semi-analytic vectors supported on an excised neighborhood. Much more free-
dom leaves the last condition that we define. It does not work with asymptotic
expansions, but with the nature of the domain to which the function can be holo-
morphically extended.

Definition 1.11. Aset Q C Péj is an excised neighborhood of $~ UPL | if it contains

a set of the form
U Jwe,
EeE

where U is a standard neighborhood of $~ U P]%@ in Pé, where E is a finite subset of
Pﬁ, called the excised set, and where W; has the form

We = heze® : Rezl <aandImz > g},

with hg € SLy(R) such that hgzoo = £, and a,& > 0.
Instead of “excised neighborhood of $~ U PfR with excised set £ we shall often
write E-excised neighborhood.

A typical excised neighborhood Q of $H~ U P%& with excised set E = {00, &1, &2}
looks as indicated in Figure 1.

Definition 1.12. For &1,...,&, € ]P’IE we define spaces of excised semi-analytic
vector
(1.25) DY Gl = pripl, imO(Q)

where Q runs over the {£1,. .., &, }-excised neighborhoods.
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T

We

not in Q

FiGure 1. An {00, &1, & }-excised neighborhood.

Definition 1.13. For cond € {co, smp, exc} we define

* cond - cond
DY N = Iim DY, L &l
(1.26) .
Z);'_r’cond = linﬂfjiond[a1,...,an],

where {£],...&,} runs over the finite subsets of IP]IR, and {ay,...a,} over the finite
sets of cusps of I'.

Notation. The conditions oo, and ‘smp’ can be combined with ‘exc’. For instance,
(W*,00,eXC w*,00 w*,.exc
by D, we mean 5" " N D" .

Proposition 1.14. ) DL [&1,....é)l—rg = DY lg'é1,....g7 & for each
g € SLr(R). Hence
a) The space Z)ﬁ”j . is invariant under the operators |-rg with g € SLo(R).

b) The space 1)2‘“_0 . Is invariant under the operators |-,y fory € I.
ii) The same holds for the corresponding spaces with condition co, smp or exc
at the singularities.
iii) BdSing (¢l»_,g) = g~ BdSing ¢ for ¢ € Z)é”_*r and g € SLo(R).

Proof. Most is clear. For Part ii) we check that the conditions are stable under the
operators |>_,g. O

* * (0]
Notation. We denote for each of these spaces D | Z);’_O D ;Cond, DY r’CO"d, by
P, that space provided with the action |, o, of I".

v,2—r
1.7. Isomorphic cohomology groups. Theorems A and B give one characteriza-
tion of the images of A,(I', v), S,(I', v) and M,(I', v) under the map r® in Theorem A
to the analytic cohomology group H'(T’; D',_,). At this point we have available all
I'-modules to give several more characterizations of these images, thus extending
Theorems A and B.

Theorem E. Let I be a cofinite discrete subgroup of SLy(R) with cusps, and let v
be a multiplier system for the weight r € C.
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1) Suppose that r ¢ Zx».
0
a) The image r*A,(T,v) = HI}b(F; DY, D) is equal to

v,2—r

H\(T;D% . D95,

v,2—r
and canonically isomorphic to
1. gy’
Hpb(r’ DY exc) )

v,2—r

b) The codimension of H,(T'; D Z)wo’exc) in H(T'; D®,_ ) is infinite.

0,2—-r’ "v,2-r v,2—r

0 5
¢) The natural map leb(l"; DY) > H I}b(l"; D) is injective, and its

. . . . . . 1 . w*,exc
) image has infinite codimension in H, (I'; Do)
1) Suppose that r € R \ Zx».
0
The image ¥S,(T',v) = Hy(I; D%, , D) is equal to

v,2—r
1. qyw w000 1 /1. yw w*,00
Hpb(r’ DD,Z—r’ Dv,Z—r ) Hpb(r’ Dv,Z—r’ 'Z)U,Z—r )s
and canonically isomorphic to
1. qyw’,00 1 . yWw*,00
HAT DS, HLTD5),

iil) Suppose that r € R \ Zs.
0
a) The image rS.(I',v) = H,(I; D, , D, "") is equal to

v,2—r
0 *
1 . yw W ,Smp 1. yw @ ,Smp
Hpb(r’ v,2-r’ Z)1),2—r )s HPb(F’ z)U,Z—r’ Z)v,Z—r )
0
. . . 1 /. @ -Smp
and canonically isomorphic to H,, (T Dv,Z—r .

1 w w0, smp.excy . . . .
b) The space H, (I'; DY, D " ) is canonically isomorphic to the

space leb(l“; Z)::;’_S;np) if v(y) £ e D'2 for all primitive hyperbolic

elements v € I, where {(y) is the hyperbolic length of the closed
geodesic associated to y

Remarks. (a) In the statement of the theorem we speak of equality of mixed par-
abolic cohomology groups, all contained in H T, Z)U“é_r), and of canonical iso-
morphisms, given by natural maps in cohomology corresponding to inclusions of
I-modules.

(b) Some of the isomorphisms underlying this theorem are valid for a wider class
of weights. See the results in Sections 12 and 13.

(c) Proposition 13.5 gives some additional information concerning leb(l"; D;‘)z’_s;np

if v(y) = e7"@)72 for some primitive hyperbolic y € T.
(d) We will obtain Theorem E in many steps. We recapitulate the proof in Subsec-
tion 13.3
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1.8. Harmonic lifts of holomorphic automorphic forms. The spaces of holo-
morphic automorphic forms are contained in larger spaces of harmonic automor-
phic forms.

Definition 1.15. Letr € C.

i) If U c $ is open and the function F on U is twice continuously differ-
entiable, then we call F' an r-harmonic function on U if A,F = 0 for the
differential operator

1.27 A, = —4y* > 2iry 2
(1.27) r——yﬂjLzrya—z.
i1) An r-harmonic automorphic form with the multiplier system v is a function
F : 9 — C that satisfies
a) F|,y=Fforallyel.
b) F is r-harmonic.
We denote the linear space of such forms by Harm,(I', v).

Definition 1.16. Let » € C. We call the following map &, the shadow operator:

(1.28) &F)2) =2iy %F(z).

A useful property of the shadow operator, which allows us to detect r-harmonic-
ity, is the following equivalence:
(1.29) F e CZ(U) is r-harmonic & &, F is holomorphic.
This is based on the relation % (& F) = —#Ar_F

The shadow operator induces an antilinear map

& Harm,(I', v) — Ay #(T', )

because &, sends elements in the kernel of A, to holomorphic functions, and
(1.30) & (Flrg) = (&F)h-rg foreachg € SLy(R).

We have an exact sequence of R-linear maps
(1.31) 0—- A,[I,v) » Harm,(T",v) i Ay (I, D).
Definition 1.17. Let F € Ay_;(I', 0). We call H a harmonic lift of F if
H e Harm,(I',v) and & H = F.

In §A.1.4 in the Appendix we discuss r-harmonic automorphic forms on the
universal covering group.

Remark 1.18. The action |, - of I in the functions on $ gives rise to various spaces
of invariants, for instance:
Co(T\H) = {f €C(9) : floyy = fforallyel};
ker(A, = 1: C(T\$) — C(T\H))  with A€ C,

real-analytic automorphic forms ;



20 ROELOF BRUGGEMAN, YOUNGJU CHOIE, AND NIKOLAOS DIAMANTIS

Harm,(I',v) = ker(A, : C3(T\$) — C(T\9)),
harmonic automorphic forms ;
AT, v) = Harm,(T, ) N O(9),
holomorphic automorphic forms .
For each of these spaces growth conditions at the cusp give rise to subspaces.

Real-analytic. A function on an open set U C R is real-analytic if on an open
neighborhood of each x¢ € U it is given by a convergent power series of the form
Dm0 Cn (X — xp)*. This gives a holomorphic extension of the function to a neigh-
borhood of U in C.

A function on an open set U C C) is real-analytic if an open neighborhood of
each point zg = xp + iyp € U it is given by an absolutely convergent power se-
ries 3, 0 Cam(X — X0)" (¥ — yo)™, or equivalently by a convergent power series
Yonms0 dnm(z —20)" (Z—20)". The latter representations give a holomorphic exten-
sion of the function to some neighborhood in C? of the image of the domain of the
function under the map z — (z,2).

On IP}C one proceeds similarly, using power series in 1/z and 1/Z on a neighbor-
hood of co.

2. MODULES AND COCYCLES

In Section 1 we fixed the notations and defined most of the modules occurring in
the main theorems in the Introduction. Now we turn to the map from automorphic
forms to cohomology induced by (2). We also discuss the relation with the theorem
of Knopp and Mawi [69].

2.1. The map from automorphic forms to cohomology.
Definition 2.1. Let F be any holomorphic function on $.
2.1 wr(F;1,2) = (z—1) > F(2)dz
forze Handt e H; we take —% < arg(z — 1) < 3F.

This defines w,(F’;t,7z) as a holomorphic 1-form in the variable z. The presence
of the second variable enables us to view it as a differential form with values in the
functions on 9.

Lemma 2.2. 1) The differential form w,(F’;-,z) has values in D’ .
ii) If r € Zs, it has values in the subspace Z)gflr.

Proof. In the projective model the differential form looks as follows:

i . Z—1\r-2
2.2) WP (F31,2) = (Pllp-wp(Fi2) (1) = (=) FQdz,

-2
where for + € $~ and z € $ we have arg =t € (-, 7). The factor (%)r is
holomorphic for ¢ € P(lj \ p, where p is a path in $ from i to z, which implies
Part 1). Part ii) is clear from (2.1). O
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Lemma 2.3. Let F be holomorphic on $.
i) w/(F;",92)h-rg = ,(Fl,g;-,2) for each g € SLy(R).
i) w(F;-yD)o-ry = W (Flyyy; -, z) for eachy € T.
i) [7 W (Fs o Dbary = [ 0lFlorys2) fory € Tand 21,22 € $. The
integral is independent of the choice of the path.

Proof. i) The relation amounts for g = (‘; h) € SLy(®) to

Z—1 r=2
(ct+d)(cz + d)) Foa 5 d)2
With the argument conventions in (1.2) for arg(cz + d) with z € $ and
z € $ this equality turns out to hold for ¢+ = —i and z = i. It extends
holomorphically fort € $~ and z € $.
ii) With g = y € T’ we multiply the relation in Part i) by v(y)~.
ii1) We note that

Y22 72 22
f Wr(F5 -, Dlpo—ry () = f W (F; 5 yDloo—ry (1) = f wr(Flyry3t,2).

Y21 21 21

(ct+dy % = @-0(cz+ ) F2)dz.

The differential form is holomorphic, hence closed, and the integral does
not depend on the path of integration, only on the end-points.
O

Proposition 2.4. Let F € A, (T, v).
i) The map t//ZO Y (//27 defined in (2) in the introduction is an element of
Zl (F v2 r)
it) The linear map v : A,(I',v) — H\(T;D
mology class of »,l/fé) is well defined.
iii) If r € Zsp then v AT, v) € H' (T OPL).

U2 ,) associating to F the coho-

Proof. i) Since we integrate over a compact set in $ the values 1//?7 are in

D5’ . For the cocycle relation we compute for y,6 € I':

120
1y 1z 6 lzo “ly 1z
Part iii) in Lemma 2.3
= f w(F|U,r 5 7Z)|v,2—r w;o’ylvl—ré-
Y20

ii) To see that the cohomology class of ¢ does not depend on the choice of
the base point zy we check that with two base points zg and z; the difference
isa coboundary:

5 Z
20 21 — 0 ! F
l/’F,y - IJ/F,»Y = - wr(F;-,2)
vz Y1z
Y Zl 21 T
Part iii) in Lemma 2.3
= ( f f Jor(Fi-2) L Bloo—ry = b,
20

with b = fZO w/(F;+52)in DY, . Hence ry is well defined.
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iii) See Part ii) of Lemma 2.2. O

2.2. Cusp forms. A cusp form F € S,(I',v) decays exponentially at each cusp a

of I', and we can define for the cusp a
a

23) sy = [ e,

y~la
We use o, such that a = o-y00 and 7, = o'aTO'g1 as in §1.3. If |u(my)| # 1, then
F(oq(x + iy)) may be unbounded as a function of x € R. Then it is important to
approach the cusps a and y~!a along a geodesic half-line.

Remarks. (a) If |v(mry)| # 1 some care is needed in the choice of the path of
integration in its approach of a. Now F(o,z) may have exponential growth in
x = Rez, although for a given x it has exponential decay as Im(z) = y T co. The
integral converges uniformly if we restrict x to a suitable compact set, for instance
by requiring that the path approaches a along a geodesic half-line.

(b) Proposition 2.4 extends easily to the situation with a as the base point, and
we see that ¢/}, is a cocycle, and that a change in the choice of the cusp a adds

0 o
a coboundary. The following lemma prepares the identification of DY,""* as a
I'-module in which /. takes its values.

Lemma 2.5. Let a = goo with g € SLo(R). Suppose that F is a holomorphic
function on  and that there is a > 0 such that F(gz) = O(e ) asIm(z) = y -
Jor each value of x = Rez. Forzg € H and t € H~ we define h by

2.4) h(t) = fa wr(F;t,2),

20

Then h extends holomorphically across PHIQ \{a} and defines an element of the space
Dw,oo,exc [Cl]
2—r :

Proof. By Parti) of Lemma 2.3 it suffices to consider the case a = O and g = ((1) _(1)).
Inspection of (2.2) shows that

0
(Prix_ h)(0) = f (=) Fd

20
extends holomorphically to C \ p, where p is path from zy to 0. Since we can take
this path as a geodesic half-line, we have a holomorphic extension to a {O}-excised
neighborhood. Hence h € D5”**[0].
To show that 4 € D;° we need to show that 4(7) has Taylor expansions of any
order at 0 valid on aregion {r € C : Im¢ <0, || < &} for some & > 0.
We can assume that the path of integration approaches 0 vertically, and hence

&
h(t) = —if (iy — "2 F(iy)dy + a contribution in DY
0 ,

The contribution in D, is automatically in O _ , so we consider only the inte-
gral. Fory € (0, ¢], |f| < € and Im ¢t < 0 we have

(ly _ t)r—2 — eﬂir/Z yr—2 (1 + it/y)r_z ,
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with Reit/y > 0. Taylor expansion of the factor (1 + it/y)"~? is not completely
standard, since it/y is unbounded for the values of ¢ and y under consideration. We
use the version of Taylor’s formula in Lang [77, §6, Chap. XIII]. It shows that the
error term in the Taylor expansion of order N — 1 of (1 + ¢)“ is

1
o fo (1 =" 1+ xg ™ ¢ ) = Ong™),

if N > Rea. (The subscript N indicates that the implicit constant may depend
on N.) For sufficiently large N this leads to

N-1
- -2
(1+it/y) > = Z(’” )i"z"y—"+oN(tNy‘N)
n=0 n
and hence
& . N-1 r_2 &
f (iy ~ 02 Fliy)dy = e’”’/zZ( . )i"t” f Y Fliy)dy
0 0

n=0
E
+ oN( f y 2NN Fiy) dy).
0

The exponential decay of F implies that all integrals converge, and we obtain a
Taylor expansion of the integral of any order that is valid for t € $~ URnear 0. O

Parabolic cohomology and mixed parabolic cohomology. For zg € 9 the cocycle
2 for a cusp form F takes values in D¢, . The next result shows that ¢} is a
parabolic cocycle in a larger module, and relates both cocycles.

Proposition 2.6. Let r € C.

i) For each cusp a of I and each F € S,(I',v) the cocycle Y/}, defined in (2.3)
is a parabolic cocycle in Hy (T; Dlj”;’_o;”exc).
ii) Associating to F € S,(I',v) the cohomology class [Y/};] defines a linear map

(2.5) Y S.(IT,v) — H (T Peoexey

r v,2—r

iii) l";) S,T,v) C leb(]—‘; D:)Z—r’ Dwo,w,exc)‘

v,2—r
iv) The following diagram is commutative:

ry 00
ST, v) —= HL (T DY, D) H'(T3 D% )

o e

1 . w9, 00,exc
HPb(r’ Z)1),2—r )
The vertical arrow denotes the natural map associated to the inclusion

0
w W' ,00,eXC
Du,Z—r c 'Z)U,Z—r :

Remark. For r € Zs,, the linear maps r® and r;° take values in the much smaller
I-module Z)lf’ gl_r
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-1

Proof. We split the integral in (2.3) as — JZ ‘¥ fz T for any z; € 9, and find
with Lemma 2.5 that ¢ € D% 0 D% [a,y"'a] € DY So gt €
ZN(T; D),

Like in the proof of Proposition 2.4, replacing the cusp a by another cusp means
adding a coboundary in B! (T'; Dlj”;’_":’exc). We have /3, = 0, and hence for a cusp

. 0 (e9)
1 there is p € D, such that

0
w;«jnn = w,}]:’m] + plv,Z—r(ﬂ'r] - 1) €0+ -Z):)z’_o:’exc|u,2—r(7rl1 - 1) .

So i is a parabolic cocycle, and F +— [i)}.] defines a linear map r;” as in Part ii).
For F € §,(I',v) and zp € $ we have for each cusp a of I'

U = Ui+ hloar(ma = 1),

with h = fzz w,(F;-,z). With Lemma 2.5 we have w;?ﬂa € Z)‘”O’m’exclvyz_r(ﬂa - 1.

{ v,2—r
This gives Parts iii) and iv). O
2.3. The theorem of Knopp and Mawi. Suppose that oo is a cusp of I', and that
I's is generated by T = ( é }) (This can be arranged by conjugation in SL,(R).)
The involution ¢ in (1.6) gives a parabolic cocycle wyyy of the form

00 00

(2.7) Wr,)w) = f (z-w)y2F(z)dz = f ] z-w) ?FQR)dz.

yleo Y

This describes Knopp’s cocycle [64, (3.8)]. In that paper the weight r is real and
the multiplier system v unitary, so o = v™!. (Actually, in [64] the multiplier system
for F is called 7, and the weight is called r + 2.)

. O . . . .
The values of uyy are in the space 2’ *™ which is contained in the space

28) P =10 = {p€0®) : Iner 9) = O(y™) + O}
(polynomial growth), which is invariant under the action [ of I'. (The notation £
is taken from [64].)

Knopp [64] conjectured that the map F +— [w/7] gives a bijection S,(T',v) —
leb(l“, %), and proved this for » € R \ (0, 2). He also gives a proof, by B.A. Taylor,
that leb(l"; P) = H'(T'; P). In [69] Knopp and Mawi prove the isomorphism for all
weights » € R and unitary multiplier systems v. Transforming their result to the
lower half-plane we obtain the following theorem:

Theorem 2.7. (Knopp, Mawi) Let v be a unitary multiplier system on T for the
weight r € R. Then

(2.9) SAT,0) = H' T30,

14

1. -
Hpb(r’ Dv,Z—r) '

In combination with the, not yet proven, Theorems A and B we obtain the fol-
lowing commuting diagram, valid for weights r € R \ Zs, and unitary multiplier
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systems:
AT, o)~ H\(T; DY)
(2.10) l
$/(T0) —=H':D3°,

This implies that there is a complementary subspace X giving a direct sum de-
composition A,(I",v) = §,(I', v) ® X, such that for F € X the cocycle wfé’ becomes a
coboundary in Z!(T’; D;5°,)- Then there is H € D3 such that Hl,»-,y—H = Qp;‘)’y
for all y € I, in other words

f -0 F@dz = (Hlary)0) - HQ).
y—l

20

Remark 2.8. The operator ¢ can also be applied to the linear map r¥. Thus we
have two R-linear maps from automorphic forms to cohomology:

. L.
ry : Ar(r’ U) - H (F’ '@:)Z—r) ’

2.11) " |
AT v) > H (T LZ)U‘E_F).

'’
The second map is antilinear.
These two maps become interesting in the case r € Zs, with a real-valued multi-

: ) W . . pol
plier system v. Then D, | and Dy, have a nonzero intersection, namely Do\

2.4. Modular group and powers of the Dedekind eta-function. The modular
group I'(1) = SL,(Z) is generated by T = ( (1) i) and § = ((1) _(1)). In the quotient
['(1) = SLy(Z) the relations are S2 = 1 and (§T)* = 1. There is a one-parameter
family of multiplier systems parametrized by r € C mod 12Z, determined by
(2.12) v (T) = &6, v(S) = e™r?

It can be used for weights p = r mod 2. The complex power 77°" of the Dedekind
eta-function can be chosen in the following way:

21 2r - 2r logn(z) 1 — ﬂ_i_ 2 27rinz‘
(2.13) Q) = e L logn@ = 55 - ) oine

nz1
It defines 7°" € A,(T'(1),v,). The Fourier expansion at the cusp oo has the form
(2.14) @) = Z pr(r) X120/ 12.
k=0
where the py(r) are polynomials in r of degree k with rational coefficients. These

polynomials have integral values at each r € %Z. For Rer > 0 we have *" ¢
SH(T'(1),v,), and the parabolic cocycle 1//;‘;, given by

ler’y

(2.15) WS, () = f (z-0"n"(2)dz.
yleo
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Convergence is ensured by the exponential decay of n?(z) as y T oo, and by the
corresponding decay at other cusps by the invariance of 77" under lo,.rY-
Since T'oo = co we have wj}g, 7 = 0. The cocycle l//;‘;, is determined by its value

on the other generator
@.16) 030 = [ -0 ed.
’ 0

We have ¢ . € D[0, 0] C DY This function is called the period func-
n2’,S v, 2—rt? v, 2-r "

tion of n*". The relations between S and T imply

(217) lp;;,r,s |v,,2—rS = _lp;;,r,s ’ lp;zr’s |v,,2—r(1 + ST + S TS T) = 0 )
which is equivalent to
(218) ‘;b:z’r’s |vr,2—rS = _w:z’r’s , Ql’,c;;;-’s = $;§r’S|Ur,2—r(T +TS T) .
Let us put
0 d
(2.19) I(r, ) := f y* P Giy) L.
0 y

The decay properties of >" imply that this function is holomorphic in (r, s) for
Rer>0ands e C.

The reasoning in the proof of Lemma 2.5 gives that for a givene > OQand f €
with |f| < &€ we have

e N-1 &
. )
lf (iy — t)r—2n2r(l-y) dy = o2 z : (7‘ )inlnf yr—Z—nn2r(iy) dy + On(lN)
0 o\ 0

for all sufficiently large N. The integral over (g, o) can be computed by direct
insertion of the Taylor series for (iy — £)"2. Since ¥ = O(&"), this leads to the
following equality for the period function:

) _ mir/2 Y 2 1
(220) lﬁTIZr’S(t) = € Z l ( n )I(r’ r 1 n)tn )
n=0
forRer >0,se Candt € $ near0.
For a real weight » > 0 one has the estimate py(r) = O(k"'?) from the fact that
1*" is a cusp form. For Re s > 1 + /12 the integral I(r, s) can be expressed in the

L-series

L. s) = pk—(r)
(2.21) G, 5) S (r/12+ k)
I(r,s) = Qr)*T(s)L(n*", s).

Usually one defines the analytic continuation of L-functions by the expressing it in
the period integral (2.20).

If Rer <0, w;g, is defined only with a base point zg € $. For instance, the case

r = 0 gives the constant function 1 = n° € Ay(I'(1), 1), with the trivial multiplier
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system vg = 1, for which
1

2.22 01 = - .
(2.22) Wno’y( ) Tt w1
It can be checked by a direct computation that Lﬁ?y - 1#?‘” = bl12(y — 1), with
b(t) = L _ 1
20—t 21—t

We use this to find a substitute for the cocycle lﬁ;f). The rational function b (¢) =

ﬁ is an element of D";"“[co]. Subtracting the coboundary y - bwl(y 1) from

z,l/f]% gives the parabolic cocycle ¢ € Z'(I'(1); Z){‘,’g’exc) givenon y = ( a Z) eI'(1) by
—c
ct+d’
—1

This cocycle ¢ is parabolic, since 7 = 0. It gives the period function g = =

(2.23) Jy(t) =

. 0 . . . . . .
in O, Tt is in the subspace of rational functions, hence one calls it a rational
period function. In §5.2 we will return to this example.

2.5. Related work. Much of the work on the relation between automorphic forms
and cohomology is done for integral weights at least 2. The association of cocycles
to automorphic forms is stated clearly in 1957 by Eichler, [41, §2]. Eichler gives
the integral in (2), and notes [41, (17),§2] that for cusp forms the cocycles have the
property that we now call parabolic.

The idea can be found earlier in the literature. As pointed out in [39], Poincaré
mentions already in 1905 [97, §3] the repeated antiderivative of automorphic forms
and polynomials measuring the non-invariance. Also Cohn [30] mentions this re-
lation in the main theorem, for modular forms of weight 4.

Shimura [107] studies the relation between cusp forms and cohomology groups
with the aim of obtaining a lattice in the space of cusp form such that the quotient
is an abelian variety. He discusses real and integral structures in the cohomology
groups.

Since then the relation between automorphic forms and cohomology has been
studied in numerous papers, of which we here mention Manin [84].

The use of the space of rational functions for cocycles associated to modular
forms originates in Knopp [65]. Kohnen and Zagier [71] used it for period func-
tions on the modular group. In [71] the concept of mixed parabolic cohomology
seems to be arising. See also [114].

3. THE IMAGE OF AUTOMORPHIC FORMS IN COHOMOLOGY
The main goal of this section is to show that

(3.1) rYAT50) © HYT3 DY, DY),

This will contribute to the proof of Theorem A (which will be completed in Sub-
section 10.5). In Subsection 3.6 we will describe, under assumptions on r and v,
and based on the truth of Theorem A, the images re’S,(I', v) and r’ M,(I', v). This

gives Theorem B.
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We start in Subsection 3.1 with a simple lemma, with which we immediately
can prove some of the isomorphism in Theorem E on page 17.

3.1. Mixed parabolic cohomology groups. To show that € Z!(I; D% )isa

v,2—r
parabolic cocycle in Zp]b(F; D, _ ., W) for some I'-module W C Z);"z*_r we have to
find for each cusp a of I' an element /2, € W such that
(3'2) Wm, = halu,Z—r(ﬂ'a -1).

The following result gives the position of the singularities of the solutions.

Lemma 3.1. Ifh € Z)é"_*r satisfies A"V hlp_,m — h € D5’ for a parabolic element
e SLy(R) and A € C*, then BASing h C {a}, where a is the unique fixed point of m.

Proof. Each parabolic element 7 € SL,(R) is conjugate in SLy(R) to T’ = ((1) }) or
to T~'. With (1.5) we can transform the hypothesis in both cases to A~! hl,_, T —h €

D5’ . If h has singularities in R put them in increasing order: §; < & < ---. Then
& -1 =T7'¢ € BdSing (hl>_,T), and cannot be canceled by a singularity of A.
So a singularity can occur only at co, and only at a in the original situation. O

Proposition 3.2. Let r € C. Then
1. X
Hpb(r’ 'Dljj)z—r’ DUL,UZ—F)

1 /7. *
H\T:D% D% ),
0 &
leb(r; ) Dw ,exc) — leb(r; ) Dw ,exc)’

0,2=1> p,2—r 0,2-1> p,2—r

O Gl
leb([‘; 170 T 5 it leb(r; DU DUy

0,2—r ~0,2—r 0,21’ ~v,2—r

) wo,oo . ) w*,00
H (D% _,,D%) = Hy (D%, D).

0,2-r° ~0,2—r 0,2—r’ ~v,2—r

Proof. If y € Z\(I'D%_. D

v,2—r
Z)U‘";_r such that A, (my — 1) = . This is the situation considered in Lemma 3.1,

) then we have for each cusp a an element & €

soh e szzfr[a]' Hence ¢ € Zplb(F; @;,szr’ Z)ljf‘;ir). The same argument is valid for
the other cases. O

3.2. The parabolic equation for an Eichler integral.

Definition 3.3. We call a function F on a subset of C that is invariant under hor-
izontal translations, A-periodic if it satisfies F(t + 1) = AF(¢) for all ¢ in its
domain.

Example. For an automorphic form F € A,(I', v) and a cusp a, the relation F/|, 7, =
v(mr,) F implies that the translated function F|.o, is v(r,)-periodic.

Parabolic difference equation. We take an arbitrary holomorphic A-periodic func-
tion E on $. It has an absolutely convergent Fourier expansion

(3.3) EG) = Z a,, e

n=a mod 1
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on $ with 1 = ¢¥™@ @ € C. In the next subsections we aim to find functions 4 such
that

(3.4) AV b+ 1) = h(r) = f Y G- EQ)dz
701

at least for r € $~ U R, and to get information concerning its behavior near co.

3.3. Asymptotic behavior at infinity. It will be useful to understand the behavior
of prj,_,h at oo for solutions £ of (3.4). For functions f on R we understand in these
notes f(f) ~ X, sk cnt” " to mean f(t) = nN:_kl c,t™ + O N)ast — +oo for all
N > k. So f(t) ~ O means f(f) = O(t™™) for all N € Zo.

For elements f € £;° we know that there are coefficients b, such that
Pl O ~ D bat™
n>0

as t approaches co through $~ UR. So we have surely this behavior as ¢ approaches
oo through R.

Lemma 3.4. Let r € Cand A € C*, and suppose that f € D5’ [oo] is A-periodic.
We consider asymptotic expansions of (prj,_, f)(t) = (i — £)*" f(£) of the type

3.5 Prip—, @ ~ Z b, ™" for some k € Z.
n>k
1) If f satisfies (3.5) fort T oo as well as fort | —oo (with the same coefficients
b,), then

a) f is a constant function if A = 1 and r € Z. In this case r > k + 2.
b) f = 0in all other cases.
ii) Let € € {1,—1}. Suppose that f satisfies (3.5) as et T co. Then
a) if A =1andr € Zsyyo, then f is a constant function;
b) else if |A| = 1, then f = 0;
c) else f(t) ~0as et T co.

Proof. Consider f € D)’ [co] that is A-periodic and has an expansion (3.5) as
t T oo,ort | —oo, or both. If the expansion is non-zero it has the form b, ™" +
bye1 "1 + -+ where b, # 0. Insertion in

, 1-@G-D/t\2-—r
t+1) = A|l————— t
Pl N+ 1) = A(—— T ) e @)
gives
Ab, = b,, /l(bn+1_(r_2)bn) = byy1 —nb,.
This is impossible with b, # 0if A # 1. If 4 = 1 itis possible if n = r — 2 > k, and
has solutions corresponding to a constant function f(¢) = ¢, and
Pra- N0 = (=1 c.

This shows that non-zero expansions occur only in the Case a) in Part i).

In this case we set fo(f) = f(1) —c. We set fo = f otherwise. Then fy € D5’ [o0]

is A-periodic with expansion (prj,_,fo)(#) ~ 0. In other words, (prj,_,fo)(#) =
O(™N) for any order N € Zs, and then the same holds for fy(¢). To show that
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f = 0in Case b) of i), we notice that, as a A-periodic function, fy has a Fourier
expansion and the estimate f(f) = O(t~") holds for each Fourier term, which is of
the form c, e with ™ = A. For expansion in both directions, |{| — oo, this
implies that all Fourier terms vanish, and hence f = 0. This finishes the proof of
Part 1).

For a one-sided expansion, say t — oo, there might be Fourier terms that satisfy
e?M ~ (0 as t T oo, namely if Imn < 0. This possibility and the same possibility
as t | —oo are excluded by the assumption |4] = 1 in Part ii)b). Without this
assumption, f(r) ~ 0. O

3.4. Construction of solutions. We break up the Fourier expansion (3.3) in three
parts, according to Ren > 0, Ren < 0 and Ren = 0.

Cuspidal case.

Lemma 3.5. Suppose that the Fourier expansion (3.3) has the form

E(7) = > e,
n=a mod 1, Ren>0
with a € C, 1 = 2™,

i) If r € C\ Zso, then there is a unique h € Dy 7**[c0] satisfying (3.4).
ii) If r € Zso then (3.4) has solutions in Dgf‘r.

a) If A = 2™ £ 1, then there is a unique solution.

b) If A = 1, then the solutions of (3.4) in Z);flr are unique up to addition

of a constant.

Proof. Lemma 2.5 states that
(3.6) ho(t) = f (z-0"?E(z)dz
20

defines hy € Dy *“[co]. If we take a vertical path of integration, then hy is a
holomorphic function on C \ (zg + i[0, 0)).

Let us consider + € C with Im¢ < 20— 1+ia 20 +ia
Im zg. The integral over the closed path
sketched in Figure 2 on the right equals
zero for all a > 0, and due to the expo-
nential decay of E the limit as a — oo
of the integrals over the sides depend-
ing on a > 0 exist. Hence we get

f (z—- " EQ2)dz
z0—1

- f ' (z—10)"2EQ)dz+ hy(t).
Z0—1

FIGURE 2
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Like in Part iii) of Lemma 2.3 this gives

A hotr+1) = 7! foo(z—t—l)"zE(z)dz = foo (z-10'""?E(2)dz
20 z0—1

() + f * =2 E@dz.

0—1
This relation extends holomorphically to all t € C outside the region determined
by Rezg — 1 < Ret < Rezp and Im# > Imzg. So Ay is a solution of (3.4) in
Z)a),OO,CXC[OO]'

2-r

Let & be another solution in £”%**“[co]. Then p = h — hy is a A-periodic
function in £;° , and hence prj,_,.p has an expansion as in Lemma 3.4, with k > 0.
If r € C \ Zy; then Part i) a) and Part ii) of Lemma 3.4 implies that p = 0 so that
we have proved Part i) of this lemma.

To prove Part ii) let » € Zs,. It is clear from the integral that sy € Z)zpfi if
r € Zsy. If A = 1 it reduces to the case b) in Part i) of Lemma 3.4. So p is a non-
zero constant. This handles Part ii)b) of the present lemma. If A # 1, it reduces to
the case a) in Part ii) of Lemma 3.4 so that p = 0. This gives Part a) in Part ii) of
the present lemma. O

Exponentially increasing part.
Lemma 3.6. Suppose that the Fourier expansion (3.3) has the form

(3.7) EG) = Z a, ¥

n=a mod 1, Re n<0

with a € C, 1 = ¢¥ie,

i) Equation (3.4) has solutions h € Z);’_’fr’xc[oo], among which occurs a solu-
tion for which prj,_.h(t) has an asymptotic expansion as t T oo of the form
ano Cnt_n-

ii) Let|A| = 1 and E # 0. For none of these solutions h we have an asymptotic
expansion of the form pri,_h(t) ~ Y,sxqxt™" valid for t T oo and for
t | —oo with the same coefficients.

Proof. We cannot use the integral in (3.6), since E has exponential growth on $.

Z
0 The convergence of E(z) in  implies

R good growth for its Fourier coefficients.
This growth then implies that E(z) can
be defined on C with exponential decay
asImz | —co. So we use a path of inte-
Y gration as in Figure 3.

FiGURE 3
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In this way we obtain a holomorphic function /;; on the region Ret > Rezp
given by

(3:8) o = [ GooE@d,
20—1[0,00)
and satisfying (3.4) for these values of ¢.
Deforming the integral as in Figure 4
q we get the holomorphic continuation of
hyi to a larger region. In this way we get
20 ) } .

the continuation to the region C \ (zo +
R i[0, 0)). By analytic continuation, the

extension satisfies (3.4) on the region

Cx\(zo+[—1,0]+i[0, 00)). We normalize
r—=2 s

the factor (z—#)""* by requiring that 7 <

arg(z—1¢) < 37” if Ret > Rezp and z is

on the path of integration.

Y

FiGure 4
We have

(3.9) Ol h)(D) = f

=" B,
0 L1

over a path of integration starting at zop going down to oo, adapted to ¢, and normal-
ized by arg( %‘l’) — Oast T co. We consider the asymptotic behavior of (prj,_,./:i)(¢)
as t T oo through R. The exponential decay of £ as Imz | —co implies that for a
fixed large ¢ in R the contribution of the integral over Im z < —%t can be estimated
by O(e™#") as t — oo, with £ > 0 depending on E, « in (3.7), and z,. We insert the
Taylor expansion of order N of (% "2 in % into the remaining part of the integral,
and find an expansion starting at k = 0, but only as ¢ T co. In this way we obtain
the second statement in Part 1).

Actually, if we apply the same reasoning to the integral in (3.9) for t | —oo
we get the same expansion, with the same coefficients. However, that is not an
expansion of /;, but of another solution /., which we can define in the following
way.

An equally sensible choice is the
path of integration sketched in Fig- p
ure 5. Now the path has to be chosen
such that ¢ is to the left of it, and be-
low it if Re# > Re zp. This defines an- R
other solution /. € D5"*[e0] of (3.4).

The normalization of the correspond-
ing integrand for prj,_.h. is also by
arg(3=) —» 0ast 1 oo.

As indicated above, hi.(¢) has an as-
ymptotic expansion as t | —oco, with the \
same coeflicients as in the expansion of
hi(t)ast T oco.

<0

FIGURE 5
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Both A, and Ay are solutions of (3.4)
% for E as in (3.7). We have fort € R
(per—r(hri(t) - hle))(l)
t - [ EDEwa
fD (=) E@d:.

over a path of integration indicated in
Figure 6.
This integral is holomorphic in r € C.
For Rer > 1 it can be computed by
Y deforming the path of integration to
the vertical half-line downward from ¢.
FIGURE 6 This leads to the following result:

(3.10) , "
—r ,mir
(Ot (hs — hie))(0) = Q’li)(z—_er) D N St
n=a mod 1,Re (n)<0
This difference gives a A-periodic function H = h;; — hie. Moreover, the difference
is holomorphic in r € C. So the equality is valid for all r € C.

Now let || = 1. Suppose that 1 € D5 is a solution of (3.4) with a two-
sided asymptotic expansion. We have h = hy + p, = he + p; with A-periodic
Pprspe € D[],

Suppose that the difference p, = h — hy; has an asymptotic expansion as ¢ T co.
Part ii) of Lemma 3.4 shows that p, is constant (and zero in most cases). Similarly
pe = h— hye is constant. So Ay — hye is constant. However, in (3.10) we see that this
implies hy;; — e = 0 by the assumption Ren < 0 in (3.7). Then all a, vanish and
E=0. O

Remaining Fourier term. We are left with the multiples of ¢>™"% with Ren = 0. So
n=ilma=amod 1.

Lemma 3.7. Suppose that E(z) = e withRen = 0, n # 0. Then Equation (3.4)
has solutions in D5"*[eo].

Proof. We can still find a direction in which E(z) decays exponentially.

In the case Imn < 0 we choose a path

as indicated in Figure 7. We can pro- 20
ceed as in the proof of Lemma 3.6. R

FiGure 7
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For Imn > 0 we use the path in Fig-

<0 ure 8. Again,we can proceed as in the
R proof of Lemma 3.6. O

FiGURE 8
Lemma 3.8. Letre C, A=1and E(z) = 1.
i) Equation (3.4) has the following solution in 05" [co]:

— ! _ -1 .
(3.11) h(t) = {(1 r~ (zo =1 ifr#l,

—log(zg — 1) ifr=1,
where we choose in both cases —5 < arg(zo — 1) < 37”
ii) Forr # 1 this is the unique solution in D,"*°[eo] for which ptj,_,h has an
asymptotic expansion valid for t T oo and fort | —co.
iii) If r = 1 there are no solutions in 05”°*°[co] that have a two-sided asymp-
totic expansion at oo in the projective model.

Proof. Part 1) can be checked by a computation of the integral in (3.4). For r #
1 it is seen that (prj,_.h)(¢) has a two-sided asymptotic expansion of the form
(Prjo— M) ~ Yp=—1 cnt™". For r = 1 this solution clearly has no such expansion.
Any other solution is of the form 4 + p with a 1-periodic function p. If it has
a two-sided asymptotic expansion it is zero, by Part i) of Lemma 3.4. This gives
Part ii) of the present lemma. For Part iii) one can check that no 1-periodic function
can produce logarithmic behavior at co. O

Example. Only for a constant function E we have given an explicit formula for a
solution A. It is possible to express solutions for the other cases in terms of sums
of incomplete gamma-functions.

For the powers of the Dedekind eta-function we get for Rer > 0 a solution of
the form

ht) = =ie™? Qo' Y pur) (12 + 0
(3.12) =0
MU (1 1, 27i(r/ 12 + k(2 = 20)).

with the incomplete gamma-function

(3.13) I'la,u) = f Wledy = e_“f (u+ 0 edx.

=0
The incomplete gamma-function is well defined on C \ (—oc0,0]. That suffices
for (3.12)if Rer >0andt € $ .

If Re r < 0, the same formulas can be used for the terms in the Fourier expansion
with Re 5 + k > 0. For the remaining terms with k + {5 # 0 the choices in this
subsection lead also to the same expression with incomplete gamma-functions, but
now interpreted with a choice of a suitable branch of the multivalued extension.
For k + 13 = 0 we can use the formula for » # 1 in Lemma 3.8.
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3.5. Image of automorphic forms in the analytic cohomology. Now we can
take a step towards the proof of Theorem A:

Theorem 3.9. For all r € C and all multiplier systems for the weight r:
(3.14) Y A,(T,v) C HLT; DY, D5,

v,2-r
Proof. As explained in §3.2 we have to solve, for each cusp a of I', Equation (3.2)

with an element of D,

BdSing & C {a}, hence if we have a solution in Z)lj”2 ¥ itis in Z):’;;efc.

By conjugation, the task is equivalent to solving (3.4) with E replaced by F|,o.
The Fourier series of E, which is the Fourier expansion of F at the cusp q, is split
up as a sum of two or three terms. The existence of solutions is obtained in the

Lemmas 3.5-3.8. O

. Lemma 3.1 shows that such solutions always satisfy

3.6. Proof of Theorem B. Assuming that Theorem A has been proved, we now
prove Theorem B. We use the results concerning asymptotic expansions in §3.4.
There we have seen that we need |1] = 1 to get satisfactory results. Hence we
impose the assumptions of real weight and unitary multiplier system, which are
the same assumptions as in the Theorem of Knopp and Mawi. See Theorem 2.7.

Proof of Theorem B on the basis of Theorem A. In Proposition 2.6 we saw that the
0
space r¥ S,(I', v) is contained in leb(F; DY, DY) forall r € C. Part i) of the

v,2—r )
Lemmas 3.5 and 3.8 show that r’ M,(I', v) is contained in H;b(F; sz—r’ Z):’zfrmp XY
for r € C \ {1}, since for 4 as in (3.11) the function prj,_,.4(¢) has an asymptotic
expansion at co starting at ! (“k = —17).
Let r € R\ Zs;. Under Theorem A any class in Hj, (T; DY, Z):’;’_erxc) is of the
form r’F for some F € A.(I', v). We want to show that F satisfies the following:

Part 1) Part ii)
ré¢Zs ré&Zs
wish: | F e S,I,v) | F e M.(I,v)

We consider a cusp a of I, and put E = F|,0,. The assumptions on F imply that
there is /1, in D57"*“[o0], respectively Z);’_’imp’exc[oo] such that

(1 = o)™ T) () = f - EQd:.
z0—1

we write E = E. + Ey + E, by taking the Fourier terms withn > 0,n = 0and n < 0,
respectively. Note that |v(7r,)| = 1, hence the Fourier term orders are real.

We take h. provided by Lemma 3.5, iy by Lemma 3.8, and /4, by Lemma 3.6.
Then Aola—r07q = he + ho + he + p, with a v(rr,)-periodic element p in D)"**[co].
Table 1 gives information on the asymptotic behavior, where we use the definitions
of DY and Dy, and Lemmas 3.5, 3.6, and 3.8. (The c, in the table depend
on the function.)
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Part 1) Part ii)
ré Zs ré¢ s
holoy € D57 [e0] holora € Dy [00]
2sided: | (Pryo halor)(®) ~ Tz eat™ | (Pllayialo)()) ~ ooy a7
2-sided: Pria— b)) ~ Xysocnt™
ast T oo : (Prip—rhe)(®) ~ Xpso cnt™
v(my) # 1 ho=0
v(ma) = 1 (Prip—ho)(®) ~ Lps—y cat™ ifr £ 1
no asymptotic expansion if r = 1

TasBLE 1

Let r € R \ Z5;. Note that the v(mr,)-periodic function p has an asymptotic
expansion as ¢ T oo, and is O(¢). Part ii) of Lemma 3.4 implies that either p = 0 or
p is a non-zero constant and r € Zs. Since the latter case is impossible, we deduce
that p = 0.

We conclude that h, = hq|>—,0q — he — ho has a two-sided expansion. Part ii) of
Lemma 3.6 shows that 4, = 0, and hence E, = 0. So F|,_,0 = E., and hence F
behaves like an element of S,(I', v) at the cusp a. Since a was chosen arbitrarily,
this finishes the proof of both parts under the assumption r # 1.

For Part i) we have still to consider » = 1. If we work modulo functions with
an asymptotic expansion in powers of ™! as ¢ 7 o, the v(rr,)-periodic function p
has to compensate for the possible logarithmic behavior of 4y given in Lemma 3.8.
The logarithmic term is growing as ¢t T oo and the periodic function is bounded
(since |v(my)| = 1), so this is impossible, and iy = 0.

Now we proceed as above, with asymptotic expansions starting at #°. For h, this
rules out the constant function, and we arrive again at h,=0, and hence F|,_,0, =
E.. |

Remark 3.10. Since we have used the unitarity of the multiplier system v only
for |v(my)| = 1, Theorem B is still true under the assumption that |v(sr)| = 1 for all
parabolic r € ', without such an assumption concerning hyperbolic elements.

3.7. Related work. Pribitkin [98, Theorem 1] uses integrals along paths like those
in §3.4.

Proposition 3.2 is analogous to [15, Proposition 10.3]. Here we use the explicit
integrals in §3.4, since we want to handle complex weights.

4. ONE-SIDED AVERAGES

In §3.2 we considered the parabolic equation with an Eichler integral as the
given function. We now take the right hand side to be more general, and use the
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one-sided averages given by

(A ,9)0) = > A" gt +n),
n>0
@.1) >
(Avp9)®) = = > A" gl+m),
n<-1

where A € C*, and where the subscript T refersto T : t +— ¢t + 1.

4.1. One-sided averages with absolute convergence. If one of the series in (4.1)
converges absolutely then s = Avi 19 provides a solution of the equation
4.2) h(t)y— A ht+ 1) = g(1).

Proposition 4.1. Let A € C*, and suppose that g represents an element of D’ .

a) the one-sided average AV;?” 19 converges absolutely if one of the following
the conditions is satisfied:

A |4 > 1 [Al=1andRer <1 1 <1
4.3) AVl @ | convergent convergent undecided
Avp ¢ | undecided convergent convergent

b) The average defines a holomorphic function Av;: ,g on a region

4.4) D: := {zeC:y<80r ix>8_1},
for some € € (0, 1).
) Avf g satisfy (4.2).

d) Avy g represent an element of DY [eo].

Remark 4.2. We can interpret the phrase g represents an element of D’ _in two
ways, and we will have reasons to use both interpretations.

a) g is a holomorphic function on an {co}-excised neighborhood, and prj,_,g
is holomorphic on a neighborhood of oo in P.;

b) g € C%(C) has a holomorphic restriction to an {oo}-excised neighborhood,
and prj,_,g is holomorphic on a neighborhood of co in Pé:.

+

=, where ¢

Under the first interpretation, AV}_': 19 1is a holomorphic function on D
depends on the domain of g. In the second interpretation, we have g € C%(C) such
that prj,_,g is holomorphic on a neighborhood of $~ U ]Pﬂla in Pé:, and AV;—{ 19 1isin

C?(C) and holomorphic on DZ.

Proof of proposition 4.1. Representatives of the projective model prj,_, D5’ = are
holomorphic on Pé \ K for some compact set K C $, which is contained in a
set of the form [-&7!, &71] X [ig, ie™!] for some small € € (0, 1). To get a represen-
tative in the space 9’ itself, we have to multiply by (i — )" =2, So we work with
functions g that are holomorphic on

C~ ([—8_1,8_1] X i[e, 00)).
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For ¢ in a compact region V anywhere in C, there is a tail of the series with z + n
in the region where ¢ is holomorphic. Moreover, g(f) = O(|f|R*"~2) as |t| — 0. So
the tail converges absolutely on V, and represents a holomorphic function on the
interior of V. If g € C?($), then the remaining terms give a C> contribution, and
g € C*(C). If we take V C D?¥ the whole series may be taken as the tail, and we get
the holomorphy of the one-sided average on Dy.

Note that the form of the set DI implies that Avi ,9 represents an element of
Dy’ [e0], but not necessarily of 25”**[co]. O

Remark. The relation (4.2) between AV;?” 19 and g implies this relation for the ele-
ments in O’ [oco] and D’ that they represent.

Proposition 4.3. Let r € Z<y and 1 = ¥ with @ € R. Suppose that g is a
representative of an element of D5’ of the type b) in Remark 4.2.

a) Then
4.5) Avrag = Avp,g—Avp g

defines a A-periodic element of C*(C).
b) There is € € (0,1) such that the function Avr,g is holomorphic on two
regions, with Fourier expansions of the following form:

46)  Avgag () = |Emmamomodn € onl€ S sy > e,
| ’ Snza(l), meo Ay €M onf{z e C : y <&},

Proof. The function (prj,_,g)(z) = (i — 2% g(z) represents an element of the pro-
jective model of ¥’ . Since r € Z< the function g itself is holomorphic on a
neighborhood of o in PL, and has a zero of order at least 2 — r at co. Since || = 1,
both series AV}: 19 and Avy g converge absolutely on C, by Proposition 4.1.

These functions are now holomorphic on a set of the form

C~ ((—00,8_1] X ile, 8_1]) , respectively C \ ((—8_],00] X ile, 8_]]) .

So (Avra9)(2) = Xu=e) A "g(z + n) defines a A-periodic function on C that is
holomorphic on the two regions in the proposition. On both regions the Fourier
coefficients are given by integral

f 6727rimz g(z) dZ,
Imz=v

representing the coefficients a,, if v > 7!, and the coefficients ad°*" if v < &. The
coeflicients can differ on both regions. The integral is invariant under changes in v
in the corresponding interval. Since g(z) = O(|z[R¢"~2) as |z| — oo through C, the
integral satisfies a,, = o(e*™™) for fixed v. So a,} = 0 for m < 0, and a?®*" = 0 for
m > 0. |

In §11 we will use the following result:
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Lemma 4.4. Let r € Z<o. Suppose that g is a representative of an element of D5’
of the type b) in Remark 4.2. Suppose that there exists h € C*(C) representing an
element of D;"*[co] satisfying h(z) — h(z + 1) = g(z) for z € U N 9, where U is a
neighborhood of R in C. Then

a) There are 1-periodic p., p— € O(C) such that

4.7 hz) = (Avy19)(@) + p+(2) = (Avp19)() + p-(2)

for all z € H with Imz < & for some € > 0.
b) Avy g and Av; g represent elements of D" [eo].

Proof. Proposition 4.1 shows that we are in the domain of absolute convergence of
Av}-i ,9- and that these averages are holomorphic on a set D with some & € (0, 1).
Now the weight is an integer, and the factor (i — z)"~2 is non-zero and holomorphic
on P}C \{i, oo}. The function z — g(z+ n) is holomorphic outside the smaller region

[—8_1 -n, gl - n] X ile, 8_1].

Hence the averages Avy g are holomorphic on

C~ ((—oo,g‘l] X i[e, s‘l]) , respectively C \ ([—s‘l, 00) X i[ &, s‘l]) .

The function /4 is holomorphic on an {co}-excised neighborhood. So after adap-
tation of € > 0 on a region

CN[-e e xi[e ).
On 0 < Im(z) = y < & the functions A, AV{ 19 and Avz g satisfy the same
relation, hence there are 1-periodic p; and p_ on this region that satisfy (4.7). The
relations between & and the averages extend by holomorphy to the half-plane y < &

in C, and the 1-periodic functions p., and p_ extend holomorphically to y < &.
The relation p,. = h — Avy g extends p. to a region

[zeC : Im(z)<e} U{zeC : Re(x)>&'}.
Then by 1-periodicity p. has a 1-periodic holomorphic extension to C. But then
the relation AV;: 19 = h — p, provides a holomorphic extension of AV;’ ,g to an

{oo}-excised neighborhood, hence Av}i ,g represents an element of Z);“_’ixc[oo].
The case of p_ and Av; g goes similarly. O

4.2. Analytic continuation of one-sided averages. To obtain the one-sided aver-
ages with || = 1 on representatives of 9’ for more values of r, we use that the
space of the projective model prj,_,9%” ~does not depend on r. The representa-
tives in the projective model are holomorphic functions 4 on a neighborhood € of
%~ UPL in PL. For a fixed / the function g, := prj;! i represents an element of
D5’ foreach r € C, ie.

(4.8) gr(1) = (=0 h()  (t€Q).
In this subsection we work with the interpretation a) in Remark 4.2.

Lemma 4.5. Let |A] = 1, and let g, be as defined in (4.8). Let € € (0, 1) be such
that AV;T: 19r is holomorphic on the set D in (4.4) for Rer < 1.
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a) The function (r,z) +— (Av;—{ 19-)(z) extends as a holomorphic function on
(C\Zs) x DE.

b) If h(co) = 0 then (r,2) = (AV} , 9,)(2) can be extended holomorphically to
the slightly larger region (C \’Zzz) x Dg.

Proof. We use the Hurwitz-Lerch zeta-function

(4.9) H(s,a,2) = Y & (z+n)™,
n>0
which converges absolutely and is holomorphic in (s, z) for Ima < 0,z € C\ Z
and Re s > 1. Kanemitsu, Katsurada and Yoshimoto [59, Theorem 1*] give the
holomorphy of (s,z) = H(s,a,z) on (C\{1}) x{z € C : Rez > 0} with a first
order singularity at s = 1 if @ € Z, and no singularity in s at all otherwise. With
m—1
H(s,a,z) = Z ¥ (7 4 )~ + H(s,a,z + m)
n=0
for each m € Z>, we obtain holomorphy in z € C \ (—o0, 0]. (Lagarias and Li [75]
study the continuation in three variables. Here we need only the continuation in
(5,2).)
The function /4 in (4.8) is holomorphic on a neighborhood of IP’IIR in Pé:, and hence
has a convergent power series expansion on a neighborhood of oco:

(4.10) @) =) az™*.
k=0
This implies that we have for z € D7
N-1
@.11) 9:@) = ) alr) =" +gn),
k=0

with g,n(z) = O(z"">V) as z — oo through D%, uniformly for r in compact sets
in C. The a(r) are polynomials in r. We take arg(z — i) € (—37”, 5). The one-sided
averages of g,y converge absolutely, and provide holomorphic functions in (7, z)
onRer < N+ 1and z € DE. For the remaining finitely many terms we have a sum
of

a(N A" (z+n- i)r_Z_k

(z—i+n forn>0andRez > & !,

e =2k (j — 7 4 |n|y 2%k forn<-landRez < —&7!,

)r—2—k

— ak(r) e—2m’na{
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where @ € C has been chosen such that A = ¢2™@_ In this way we obtain:

N-1

(A 191)@) = > anr) Hk +2 = 1=,z = i) + (A ,10:0)(@)

k=0

N-1
12 (Av; 19:)(2) Z ax(N A Hk+2 - ra, 1 +i—2)

k=0

+ (A7 19rN)(2) -

The function (r,z) — H(k + 2 — r,—a, z — i) is meromorphic on the region r € C,
7 € i+C\(—00, 0], with a singularity at r = k+1. The function (r, z) — (AV;f’Agr,N)(z)
is holomorphic on the region Rer < 1+ N, z € Df. So (r,z) — (Av}r’ 19r)(2) extends
meromorphically to the region Re r < 1+ N, z € D}, and its singularities can occur
only at r = a witha € {1,..., N}. The case of Avy ,g, goes similarly. O

Proposition 4.6. Letr € C, 1 € C*, and let g represent an element of D5’ .
1) There are well-defined one-sided averages AV; 19 holomorphic on D, as

in (4.4), for some € € (0, 1) depending on g, under the following conditions

A > 1 [Al=1, 2% 1or A=1 A <1
4.13) A=1, (prip_,g)(0) = 0 | (prjp_,g)() # 0
: Av;f’/lg reC re C\Zs reC\ Zs
Avr 9 reCy re C\2Zs reC

ii) These one-sided averages satisfy AV;’ 19— (1 = ATy =g
iii) If g = g, = prj;rh as in (4.8), and |AF' > 1, then r — AVTi’/lg, is a
meromorphic function on C.

Proof. Each representative g of an element of ¥’ is of the form g, = prj,_,h
for some holomorphic function on a neighborhood of $~ U Pﬂg in Pé. If |4 # 1,
Proposition 4.1 gives the convergence of one of the averages and the relation in
Part ii). The convergence is sufficiently quick to have holomorphy in r.

Let |[4] = 1. Proposition 4.1 gives convergence of both averages for Rer < 1,
and Lemma 4.5 provides the meromorphic continuation to C, with singularities
only in the points indicated in Part i). The relation in Part ii) stays valid by analytic
continuation. O

Remark 4.7. If |1] = 1, 2 # 1, the proof of Lemma 4.5 can be adapted to give
holomorphy of Avi 19-inr € C. We can strengthen the statements in Cases 1)
and iii) of Proposition 4.6 as well.

Asymptotic behavior. To get the asymptotic behavior of AV?T: 19-(1) as £Ret — oo,
we use the following result:

Proposition 4.8. (Katsurada, [61]) Let s,a € C, Ima < 0. There are bi(4,s) € C
such that for each K € Zsy we have as |z| — oo on any region 6 —n < argz <m—96
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withé > 0
1 (1) o
(4.14) H(s,a,5 +7) = 2 Z bi(A, 5) 2755 + O(|zRes7K)
2 1-s —
with 1 = e¥ g(Q) = 1 if A =1 and (1) = 0 otherwise. The coefficients by satisfy
(4.15) A b7l s) = (D b, s).

The first three coefficients are as follows:

A=1 A#1
bo(1,5) | O -+
(416) O( ) s 51_1/:—/1
bi(d,5) | —35 I
s(s+1)(1+61+1°)
bz(/l, S) 0 W

Proof. This is a direct consequence of [61, Theorem 1], applied with @ =

=

Dk(/l, S) — ( _) Bk+ (2’/1) (S)k

where the By are generalized Bernoulli polynomials, given by

k Xz
Z ze
E Bi(x,y) -

>0 ye—1°
Relation (4.15) follows from
ze? Z o -z 5
yei -1 yelt—ei2 = Y g _gn

Proposition 4.9. Let |A| = 1, and let g be a representative of an element of D5’ ,
with r € C such that AV;, 19 and Avp , g exist.
a) There are coefficients ci depending on A, r and on the coefficients of the
expansion of prj,_,g at oo, such that for each M € Zso we have:
M-1
(4.17) (A, )0 = (02 Y e+ 0 27M)
k=—1
as |t| —» co with xRet > 0, Im¢ < 0.
i) If g(t) = (it) 2 (ag + a1 t™' + - - -) near oo, then

A=1 A#1
C_1 rﬂ__ol 0
(4.18) @ Aao
€o r=) =
a (r-2)a Ada (r=2) A (A+1) a
a iSRSt I
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Remark. It is remarkable that if both one-sided averages exist, then the coefficients
in both expansions are the same, although Av; g and Avy , g have in general no
reason to be equal.

Proof. It suffices to consider large values of M. We take M > Rer + 1. If g(¢) =
O(|#]—3~M) we have (AV;" 1@ = 0(|t" ~2-M)_ which only influences the error term.
So the explicit terms in the asymptotic expansion are determined by the part

M

(ir) 2 Z ajt’

j=0
of the expansion of f at co. We consider for 0 < j < M functions g; representing
elements of D¢ for which g;(r) = (i)™ 7/ + O(jf M) as t - oo.

In (4.11) we took t — i as the variable. Now ¢ — % is more convenient. We put

A = ¥ and have, modulo terms that can be absorbed into the error term:

(AVfg)(1/2+10) = ="PHQ + j—r,—a,1/2+1),
(Av;,g)1/2+1) = ™ (=1 AHQ + j—ra,1/2-1).
With Proposition 4.8 this gives

@) S
e e e L
- ; A .
(A, g)(1/2+1) = e A=1)a (% (=t~
M-j
+ D b2+ j = ) (- F2)
k=0
= (@ (ﬂ s Mi(—l)"ﬂbku 2+ j-nik).
r—1-—j yor ’

(In the last step we have used that 1 = 1 if &(1) # 0.)
For g with expansion (i)~ ] j>04; =/ near oo this leads to an expansion as
in (4.17), with coeflicients c}' of the form

. &)
e
and for € > 0
¢
&) _1 .
c; = ma“l + ;bg_j(/l 2+ j-naj,
&) d
_ — .
¢ = o - ;(—1) JAbe 4,2+ j=r)a;.
Relation (4.15) shows that ¢} = ¢;. O

Lemma 4.10. Let |A] = 1.
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i) Let r € R\ Z5). The following statements concerning ¢ € 05’ are equiv-
alent:
a) There is a representative g of ¢ for which Av;’ 19 and Avr ,g represent
the same element of Z);’_ [oo].
b) There is a function h representing an element of Z)zw_’imp[OO] such that
hlo— (1 =271 T) represents .
If these statements hold, then AV;’ 19 Ay g and h represent the same ele-
ment on)f_’imp[oo].
ii) Let r € R\ Zx). The following statements concerning ¢ € 05’ _are equiv-
alent:
a) There is a representative g of ¢ such that prj,_.g(c0) = 0, and for
which AV; 19 and Avy \g represent the same element of D5” [oo].
b) There is a function h representing an element of 1)2“’_";0[00] such that
hlo— (1 =271 T) represents .
If these statements hold, then AV£ 19> Avp 19 and h represent the same ele-
ment of Dy [eo].

Proof. Let g be arepresentative of ¢ as in one of the statements a). Then AV{ 19@) =
Av{ 19(2) for y < & for some € € (0, 1). Let us call this function f. It is holomorphic
on a neighborhood of $~ U R in C, and Proposition 4.9 shows (prj,_,f)(z) has an
asymptotic expansion as z — oo through $~ U R required in Definition 1.10 for
representatives of elements of Z);)_’imp[oo]. This gives b) in Part 1). If we have the
additional condition (prj,_,g)(c0) = 0, the asymptotic expansion starts at k = 0
instead of k = —1, and we conclude that f represents an element of Z)z“’_’f[oo]. This
concludes the proof of a)=b) in both parts.

Let & as b) be given. With any representative g of ¢, we have also AV;-: 19 and
Avy 19 in D5? [oo] satisfying the same relation. So h—AV}—" 19 1s a A-periodic function
on a neighborhood of R, with a one-sided asymptotic expansion of the type (4.17)
as +Re z — oo. Hence this A-periodic function is zero by Lemma 3.4, and the three
functions A, AV; 19 and Avp g are the same on a neighborhood of $~ UR in C, and
represent the same element of )5’ [oo]. That gives a) in Part i). For Part ii) we note
that the fact that /4 represents an element of 1);’_":’[00] implies (prj,_,g)(c0) = 0. O

4.3. Parabolic cohomology groups. With the one-sided averages we can prove
some of the isomorphisms in Theorem E on page 17.

Proposition 4.11. Let r € R, and let v be a unitary multiplier system.
1) If r ¢ Zso then

leb(r; z)w Dwo,oo,exc) — leb(r’ z)w Dwo,oo) )

0,21’ ~v,2—r 0,2-r ~v2—r

0 0
ii) The codimension of Hy(I'; D%, D), "™ ) in H),(T; D, D5 ™"™) is finite

u,r?

ifr =1, and zero if r ¢ Z3;.

0
Proof. Lety € Z\(T; Z)l)‘f’z_r, Z)lji’z’j’). For cusps a in a (finite) set of representatives

0
of the I'-orbits of cusps we consider 2, € D, such that /|y (1 = 710) = Y, €
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D', .. After conjugation, we are in the situation of Part ii)b) of Lemma 4.10 with

A = v(my). Since the conditions on r and A in that lemma are satisfied, we have
h = AV} W, = Avp W, near §~ UR. Since Avy Yz, is holomorphic on D} U D
for some & > 0, with D7 as in (4.4), the function % is holomorphic on a {oo}-excised
neighborhood, hence € D5"*[e0], and h, € D5 7[a] C Z)é"_o e

The other case goes similarly, except if » = 1 and v(m,) = 1. If prj; (r, )(c0) = 0
then Proposition 4.9 implies that the starting term of the asymptotic expansion
(4.17) satisfies k > 0, and A, is in Z)‘” “[a], and the same reasoning applies. Since
the number of cuspidal orbits is ﬁnlte this imposes conditions on the cocycles
determining a subspace of finite codimension. O

Proposition 4.12. Ifr € C \ Zs1, then
(419) Pb(r 02 r’DI?)Z r) H (F 1)2 r)

If r = 1, then the space Hgb(l“ Dlj"l,l)‘“ ) has finite codimension in the space
H'(T; D).

Remark. So for all r ¢ Z5, the space H b(F
in H(T; D -
We prepare the proof of Proposition 4.12 by a lemma.
Lemma 4.13. Let r € Cand A € C*. Then
DY, C DY ool (1-27'T) ifréZs,

, D ) has finite codimension
UZ r v2 r

(20 dim(Z)l‘“/(Z){“n(D{"[OO]Il(l—ﬂ_lT)))) <1 gr=1.

In the case r = 1 an element ¢ € Dy is in DP’[eo]|;(1 — ATy if A £ 1orif
prjje(eo) =0

Proof. Proposition 4.6 shows that if » ¢ Z or if 1 # 1, we can use at least one
of the one-sided averages to show that 9¢’ is contained in D5’ [co]|>—(1 — A7),
If r = 1 and 2 = 1 we have to restrict ourselves to a subspace of Dj’[co] of
codimension 1. O

Proof of Proposition 4.12. The inclusion C follows from the definition of parabolic
cohomology. To prove the other inclusion we consider a cocycle ¢ € Z!(I'; D - )
and need to show that for a representative a of each I'-orbit of cusps there is h €
@:);—r such that Al,2_(1 — m,) = Yr,. By conjugation this can be brought to oo,
into the situation considered in Lemma 4.13. Since there are only finitely many
cuspidal orbits, we get for r = 1 a subspace of finite codimension. O

4.4. Related work. Knopp uses one-sided averages in [64, Part IV], attributing
the method to B.A. Taylor (non-published). In [15] the one-sided averages are an
important tool, defined in Section 4, and used in Sections 9 and 12.
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Part II. Harmonic functions
5. HARMONIC FUNCTIONS AND COHOMOLOGY

5.1. The sheaf of harmonic functions. By associating to open sets U C $ the
vector space H,(U) of r-harmonic functions on U (as defined in Definition 1.15)
we form the sheaf H, of r-harmonic functions on 9.

The shadow operator &, in (1.28) determines a morphism of sheaves H, — Oy,
where Og denotes the sheaf of holomorphic functions on $, and leads to an exact
sequence

5.1) 0505 = H, 505 0.

The maps &, : H,.(U) — O(U) are antilinear for the structure of vector spaces
over C. The surjectivity of &, follows from classical properties of the operator ;.
(It suffices to solve locally 9z = ¢ for given holomorphic ¢. See, eg., Hormander
[55, Theorem 1.2.2].)

Actions. Let r € C. For each g € SLy(R) the operator |,g gives bijective linear
maps H,(U) — H,(g~'U) and Og(U) — Og(g~'U). For sections F of H,

(5.2) Ar(Flrg) = (AF)lg, ‘fr(Flrg) = (‘frF)|2—?g-

If v is a multiplier system for I for the weight r, then we have also the actions |, ,
of I on H, and |52 on O. With these actions H, and O are ['-equivariant sheaves.

5.2. Harmonic lifts of automorphic forms. In this subsection we will prove The-

orem C.
Example. The image in H'(I'(1); D}’ ;’exc) of r¢1 € H'(I'(1); D¥,) can be repre-
sented by the cocycle ¢ in (2.23), given by ¢, (1) = 5. The cocycle uj in the func-
tions on $, obtained with the involutio_n ¢in (1.6) can be written as y = hl; 2(1-7y),
with the 2-harmonic function A(z) =

L
2y

The holomorphic Eisenstein series of weight 2
(5.3) Ex(z) = 1-24) oy(n)e¥™
n>1

is not a modular form. Adding a multiple of & we get £ = % h + E», which is a
harmonic modular form in Harmy(I'(1), 1). The function E is a 2-harmonic lift of
the constant function 7% See Definition 1.17. Furthermore, we have

b1y

J, = —E -1).
wry & 22ty = 1)
Since E» has polynomial growth near the boundary Pﬂli of 9, we conclude that with

b = %i tEy € D we obtain bl x(y — 1) = J/y. So the class r'1 becomes trivial
under the natural map to H'(I'(1); D;5).
Alternative description of cocycles. Generalizing this example, we first use the

differential form w,(F;-,-) in (2.1) to describe the cocycle tp? in (2) in an alterna-
tive way. We recall the involution ¢ in (1.6).
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Lemma 5.1. Letr € Cand F € A,(I',v). We put fort € $:

(5.4) 0r (1) = f wn(Fit,2).

20
1) The function QF on 9~ satisfies

(5.5) OFlua-y—1) = ¥ foreachyeT.

ii) The corresponding function tQr on 9 is (2 — F)-harmonic, and
(5.6) b7t QF(2) = 27 TR E().
Proof. For Part i) we use Part iii) of Lemma 2.3. Fory = (‘C’ Z) el

oY) (et + d) 2 Qr(y1)
yi r
f (-Ur(F; * Z)lv,2—r7 (t) = f wr(F; t, Z) .

20 120

QFlv,Z—ry ®

For Part ii) we note that the function tQFp on $ satisfies

050 = f (-2 F(dr,

=20

O ———
2iy*" a_ZLQF(Z) =2y (z-2) P F(2)
— 2r—1 em'(r—l)/2 F(Z) )

Since the image of tQF under the shadow operator is holomorphic, the function
tQr is in Hp_#(9). O
Proof of Theorem C. The theorem states the equivalence of two statements con-
cerning an automorphic form F € A,(I', v). Statement a) means that the cocycle ;bi?
is a coboundary in B'(T’; Z)U‘é*‘_ ,)- This is equivalent to

2) A0 eOO)Vy el @ Plp(y-1) = Yz .
Statement b) amounts to the existence of a (2 — 7)-harmonic lift of F, and is equiv-
alent to

b’) AH € Harm,_;(I',0) : &-H = F.
We relate these two statements by a chain of intermediate equivalent statements
s1)-s6).

s) A e OO Vy el @ Olpp(y = 1) = Qrla-r(y - D).
Relation (5.5) implies the equivalence of a’) and s1).

We rewrite s1) as follows:

$2) AP €O ) Vy el : (® = QF)loo-ry =@ - OF.
Functions on $~ and £ are related by the involution ¢ in (1.6), which preserves
holomorphy. So s2) is equivalent to the following statement:
$3) M € O(H)Vy €T : (M —1Qp)lsp-7y = M = 1QF.
The holomorphy of M is equivalent to the vanishing of &_M. Hence s3) is
equivalent to the following statement:

& 710r(2)
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s4) There is a function M on HsuchthatVy e I' : (M —tQF)lp2-7y = M—1QF
and &M = 0.
Now we relate functions H and M on $ by H = M —(Qp. With (5.6) this shows
that s4) is equivalent to the following statement:
s5) There is a function H on $ such that Vy € I' : Hlp—7y = H and &,;H =
_2r—1 eni(r—l)/ZF.
The statement that &,H is holomorphic is equivalent to the statement that H is
(2 — ¥)-harmonic. Hence we get the equivalent statement:

s6) AH € Harmy_#(',0) : &_;H = =27~ 1em=DI2F,
Up to replacing H by a non-zero multiple, statement s6) is equivalent to state-
ment b’). O

Remark. The r-harmonic function Qf in (5.4) describes the cocycle :,l/? by the
relation (5.5). Theorem C relates the existence of a holomorphic function also
describing 1//‘;? to the existence of a r-harmonic lift. One may call such holomorphic
functions automorphic integrals. In the work of Knopp [64] and others there is the

additional requirement that automorphic integrals are invariant under 7.

Consequences. Kra’s result [73, Theorem 5] is equivalent to the statement that
H I(F;Dl‘ 5 ) = {0} for even weights r. So we have the following direct conse-
quence of Theorem C.

Corollary 5.2. Let r € 2Z and let v be the trivial multiplier system. Then each
automorphic form in A,(I, 1) has a harmonic lift in Harm,_,(T, 1).

A bit more work is needed for the following consequence of Theorem C.

Theorem 5.3. Let v be a unitary multiplier system for the weight r € R. If each
cusp form in S,(I', v) has a (2—r)-harmonic lift, then each unrestricted holomorphic
automorphic form in A,(I',v) has a (2 — r)-harmonic lift.

Proof. Comparing our results with the Theorem of Knopp and Mawi [69], refor-
mulated as Theorem 2.7 above, we noted that the diagram (2.10) shows that for real
r and unitary v we can decompose A,(I',v) = S,(I', v) ® X, where X is the kernel of
the composition
A0 5 HT DY ) - HTOE).

So all elements of this space X have (2 — r)-harmonic lifts, which are (2 — r)-
harmonic lifts, since here the weight is real. So if one can lift cusps forms, one can
lift all elements of A,(I', v). O

5.3. Related work. Knopp [64, §V.2] discussed the question how far the module
has to be extended before a cocycle attached to an automorphic forms becomes a
coboundary.

The relation between harmonic automorphic forms, automorphic integrals and
cocycles for the shadow is mentioned by Fay on p. 145 of [44].
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Bruinier and Funke [17] explicitly considered the shadow operator and the ques-
tion whether harmonic lifts exist. Existence of harmonic lifts is often shown with
help of real-analytic Poincaré series with exponential growth, introduced by Niebur
[90]. For instance, Bringmann and Ono [3] (cusp forms for I'o(V) weight %), Bru-
inier, Ono and Rhoades [18] (integral weights at least 2), Jeon, Kang and Kim
[58] (weight % exponential growth), Duke, Imamoglu, and Té6th [40] (weight 2).
The approach in [16] (modular forms of complex weight with at most exponential
growth) is similar; it uses no Poincaré series but similar meromorphic families.
Bruinier and Funke [17, Corollary 3.8] use Hodge theory for the the existence of
r-harmonic lifts, and Bringmann, Kane and Zwegers [5, §3, §5] explain how to
employ holomorphic projection for this purpose.

The harmonic lifts are related to “mock automorphic forms”. For a given unre-
stricted holomorphic automorphic form F € A,(I',v) it is relatively easy to write
down a harmonic function C such that &,_7 C = F. The function tQr in (5.4) is an
example. Any holomorphic function M such that M +C is a harmonic automorphic
form may be called a mock automorphic form. The function E; in (5.3) is a well
known example. In the last ten years a vast literature on mock automorphic forms
has arisen. For an overview we mention [45, 118].

It should be stressed that our Theorem C concerns the existence of harmonic
lifts and of automorphic integrals. An enjoyable aspect of the theory is the large
number of mock modular forms with a explicit, number-theoretically nice descrip-
tion, often with weights % and 3, related to functions on the Jacobi group. See, for
instance, [27, 28, 29]). This leads to explicit harmonic lifts, and via Theorem C to
the explicit description of cocycles as coboundaries.

6. BOUNDARY GERMS

To complete the proof of Theorem A we have to show that each cohomology

. 0 . .
class in H}(I; D%, D) is of the form r¥F for some unrestricted holomor-

phic automorphic form. To do this, we use the spaces of ‘“analytic boundary
germs”, in Definition 6.3. This allows us to define, for r € C \ Zs;, I'-modules

. . 0 . . .
isomorphic to DY, and D, °*, consisting of germs of functions. These germs

are sections of a sheaf on the common boundary PIE of H~ and H. Using these
isomorphic modules we will be able, in Section 10, to complete the proof of The-
orem A.

6.1. Three sheaves on the real projective line.

6.1.1. The sheaf of real-analytic functions on IP’IE. Recall that O denotes the sheaf
of holomorphic functions on Péj.

Definition 6.1. For each open set I C P]}Q we define the sheaf V)’ by
(6.1) Vy () = limO(U),

where U runs over the open neighborhoods of 7 in Pé. The operator |;rj_ g in (1.20)
gives a linear bijection V}? (I) — V;” r(g‘1 I) for each g € SL,(R).



50 ROELOF BRUGGEMAN, YOUNGJU CHOIE, AND NIKOLAOS DIAMANTIS

The sections in V3” (1) for I open in PI{& are holomorphic on some neighborhood
of I in Pé:, and hence have a real-analytic restriction to /. Conversely, any real-
analytic function on [ is locally given by a convergent power series, and hence
extends as a holomorphic function to some neighborhood of /. So we can view
V,?, for each r as the sheaf of real-analytic functions on P%&, provided with the
operators [5” g with g € SLo(R).

The space of global sections V3" r(PI{&) contains a copy of £ . Indeed, the map
(Pris—,0)(®) = (i — HEr ¢(t) induces the injection

P 08, = VE (B
that intertwines the operators |,_,g and |g”; g for g € SLy(R). It further induces a

morphism of I'-modules prj,_, : Z)ljj’z_r - (szz—r(Pﬂ%) and an injective map from

DY &1, &linto Ve (PLN 1. ... &)).
6.1.2. The sheaf of harmonic boundary germs. We recall that H, denotes the sheaf
of r-harmonic functions on 9.
Definition 6.2. For open / C P
(6.2) B(D) = IimHUNY),
where U runs over the open neighborhoods of / in Péc“ The induced sheaf B, on Pﬂ%
is called the sheaf of r-harmonic boundary germs.

The operator |,g with g € SL,(R) induces linear bijections B,(I) — B,(g~'I) for
open ] C P}.

We identify H,.($) with its image in B,(PllR).

6.1.3. The sheaf of analytic boundary germs. We now turn to the boundary germs
that are most useful for the purpose of this paper.

Definition 6.3. Let r € C.
i) Consider the real-analytic function f, on $ \ {i} given by
2 7=yl
(6.3) H@) = —(—) .
2—i‘Z—z2

ii) For open U C Péj we define
(6.4) 7—(}’(U) ={F e H(UN$H) : F/f, has areal-analytic continuation to U} .

iii) For open sets / C P}, we define
(6.5) W) = limHP(U),

where U runs over the open neighborhoods of / in Péj. This defines a
subsheaf W of B,, called the sheaf of analytic boundary germs.
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4y
Iz+€|2)v (or to
w (1- |w|2)s in the disk model) in [13], Definition 5.2 and the examples after
Equation (5.9). _
The function £, can be written as cq(z)' ™" ;—fﬁ (z + i)>", where ¢(z) =

Remark 6.4. The function f, is analogous to the function z +— (

Y
|zl

real-valued real-analytic function on ]P(lc \{—i} with ]P’I%{ as its zero set, and c¢ is some
factor in C*.

The motivation for our choice of f; is that it is the right choice to make Proposi-
tion 6.6 below work.

is a

Lemma 6.5. Let r € C. For each g € SLy(R) the operator |.g induces a linear
bijection We(I) — W« (g™ '1).

Proof Letg = (“}) € SLy(R). We have

—rJr(g2) S I R

(6.6) (4 d)" s = (a=io)” — (z—g—li) :
To see this up to a factor depending on the choice of the arguments is just a com-
putation. Both sides of the equality are real-analytic in z € $ \ {i,g"'i} and in g
in the dense open set Gg C SL,(R), defined in (1.3). The equality holds for g = 1,
hence for g € Gg. Elements in SL,(R) \ Gy are approached with ¢ | 0, and @ and
d tending to negative values. The argument conventions §1.1 and Proposition 1.5
are such that both (cz + d)™" and (a — ic)’"~? are continuous under this approach.

Suppose that F € ‘H}’(U ) represents a section in W (I), with I = U N IP’]%R and

A = F/f, real-analytic on U C ]P’%&. Then we have

Flig@) = £ (ez+ " 292 4(g0),
£
which is of the form £, times a real-analytic function near g~ '1I. O

Examples. (a) Consider the r-harmonic function
6.7) F@) =y~

on 9. Since

A =18 Ay
fr(@) 2i =20

extends as a real-analytic function to U = C \ {i}, the function F is in 7’(}’ (C\AiD.

It is not in H?® (Pé N i}), since A is not given by a convergent power series in 1/z

and 1/Z on a neighborhood of o in Péj. So the function F represents an element of

WER).

(b) Forr e C\Zx and u € Zxg

'_ 7 — [\u+l ) 4y
(6.8) M u(2) = £(2) (;) Fi(l+pl-r2-r o i|2).
At this moment we only state that M,., is r-harmonic on $ \ {i}, and postpone
12
giving arguments for this statement till §7. The function z — |zi_€|2 =1- |5l is
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real-analytic on Pé: \{=i}, with value 0 on Pﬂlg. Since the hypergeometric function is
-1

holomorphic on the unit disk in C, this implies that (%) . M, ,(z) is real-analytic

on ]P(lc \ {i, =i}, and hence M, , is in 7{}’ (Péj \ i, —i}), and represents an element of

WEPL).

(c) LetRer > 0. Then (z)*" = ¢*"1°¢79 5 a cusp form of weight  for the modular

group I'(1). The function

(6.9) () = fo T (=5 ar,

Z2—T'\Z7—2

defines an r-harmonic function on $ \ i(0, c0), if we take the path of integration
along the geodesic from 0 to co. (To check the harmonicity one may apply &;; this
gives a holomorphic function.) Deforming the path of integration leads to other
domains. Such a change in the function does not change the r-harmonic boundary
germ in ‘WY (R) it represents.

6.2. Relation between the sheaves of harmonic boundary and analytic bound-
ary germs. The sheaf ‘W is related to the simpler sheaf V}” by the important
restriction morphism that we will define now.

Proposition 6.6. Let r € C. There is a unique morphism of sheaves p* : W® —
V;2 . with the following property: If f € W(I) for an open set I C IP’I%g is repre-
sented by F € HP(U), and p" f € Vs (1) is represented by ¢ € O(Uy) for some
open neighborhood Uy of I in PL, then the real-analytic function F/f. on U is
related to ¢ by
(FIf)@) = @)  fortel.

This is called the restriction morphism and is compatible with the actions of

SLy(R):

(6.10) P9 = O Pl,g  for fe WD) and g € SLo(R).

Proof. Let F € (H}’(U) for some neighborhood U of I in P(lj. Then A := F/f,
on U N $ extends as a real-analytic function to U. If we replace F' by another
representative F; € 7-{P(U 1) of the same element of W (1), then F| and F have
the same restriction to Uy N $ for a connected neighborhood U, ¢ U N Uj of 1
in P&],:. Since U, is connected, the functions A and A; extend uniquely to U,, and
hence to I C U,. We thus obtain a well-defined function on / which has further a
holomorphic extension to some neighborhood U of [ in Pé: since it is real-analytic
on /. Hence it represents an element of V3’ (I) that is uniquely determined by the
element f € ‘W(J) represented by F.

This defines o2 : W<(I) — Vs (I). We have compatibility with the restriction
maps associated to /; C I, and hence obtain a morphism of sheaves.
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Letg = (f Z) € SL>(R). From relation (6.6) we see that the map W*(I) —
W (g~'I) determined by F + F|,g sends F/f, to the real-analytic function

Flrg (cz+d)™" F(gz) —r fr(gZ)
= =7 Ty d F/f,
( 5 )@ 7@ (cz+d)™ = 5 (FLS)G2)
= (a-io? == (=) T E .
z—gli‘z—gli
For z = t € I, this equals ((F/ f) ;’j_rg)(t) by (1.20). Thus, we obtain (6.10). O

Illustration. Let I be an interval in Pﬂ{, and let U be an open neighborhood of
I in Péj. For representatives F of f € W®(I) a representative ¢ of the image
Pl fe Vv, is obtained by a sequence of extensions and restrictions. See Figure 9.

ext res ext

F - F/f - (F/fli=eli — ¢
N LN Lo f
r-harmonic real-analytic real-analytic holomorphic on
onUNYH on U on/ some neighborhood

FIGURE 9. p" as a sequence of extensions and restrictions.

Examples. (a) The restriction of F(z) = y'™" in (6.7) is

ernn =50 =-(5)

=20
(b) For M,., in (6.8) we use that ;_zv =0on PI{& and that »F| (-, -;-;0) = 1 to obtain
, t—i\utl
6.11 M, () = (—— .
(6.11) EPM)® = (—)

6.3. Kernel function for the map from automorphic forms to boundary germ
cohomology.

Proposition 6.7. For r € C let K, be the function on ($H X 9) \ (diagonal) given
by:

2i (Z - T)r—l
-z
For each z € 9 the function K,(z; -) is holomorphic on $\{z}, and for each T € 9
the function K,.(-; T) is r-harmonic on 9 \ {1} and represent an element OfW,‘"(IP’IlR)
with restriction

(6.12) K/ (z;7) =
-7

(6.13) OPK o) = (7).

i—t
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For each g € SL,(R) it satisfies

(6.14) K(:)0g®h-rg = K.

Remark. In (6.14) we use K,(-; )9 ® lr—rg(z, 7) = (cz + d)™" (¢t + d)" "% K, (gz; g7)
forg = (‘Cl Z)

Proof. The shadow operator, defined in (1.28), gives

_ 7 —T\F-2
(6.15) EKAD)@) = F=D(—~)
i
The result is holomorphic in z, hence z — K,(z; 7) is r-harmonic.
The quotient

(6.16) K(z;0)/ fr(2) =

i—7 T—2Z\r-1
( i-7 ) ’
extends real-analytically in z across PL, to U, = Pé \ ({T} U p), where p is a path
in 9 from —ito 7. So K,(-;7) € H }’ (U;) represents an analytic boundary germ on
P]}Q. On Pﬁ& the values of z and Z coincide, and we find the restriction in (6.13).
For the equivariance in (6.14) we check by a computation similar to the compu-
tation in the proof of Lemma 6.5 that

(cz+d)" (et +d) 2K (gz:97) = Ki(z37). O

T—=z

Remark. The restriction p’K,(-; 7) in (6.13) gives a function in pri,_, D5’ . Since
it is convenient to work with 9 itself, we introduce the following operator:

Definition 6.8. We set

(6.17) pr = priyL, Pl
So (o)1) = (i =12 (p}" f)(?), and we find
(6.18) (0K (D)) = (t—1)"2.

This shows that the kernel K,(-;-) is analogous to the kernel function (z,f) +—
(z — 1)"2 in the Eichler integral. For fixed 7 € $ the representative

2 Kz 1)
of an element of ‘W (PIIR) is sent by the restriction map to the representative

te (z—1)">
of an element of DY’ .

Definition 6.9. Let F € A, (I',v). Weputforzp € Handy eI

(6.19) @ = [ KEoF@dr.
Y

iz
Proposition 6.10. Letr € C, z9 € 9, and F € A, ([, v).
i) The map y — c%o’y defines a cocycle ¢ € Z'(T; WO (Py)).
ii) The cohomology class qF = [c] in H'(I'; We.(Py,)) does not depend
on the base point 7y € 9.
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iii) With the natural map H'(T'; D% ) — H\(T; vy r(PI{&)) corresponding to

v,2—r
Prisr_, : Dzjf)z—r - q/sz)z-r’ the following diagram commutes:

) P2 g e, (el

v,2—r

AT, 0) —7> H\(T; D

v,2—r
(6.20) \ Tpgrj
HY(T; Wy (By)

Proof. Proposition 6.7 shows that the differential form K,(z; ) F(7) dt has prop-
erties analogous to those of w,(F;t,7) in §2.1. The proof of Parts i) and ii) goes
along the same lines as the proof of Proposition 2.4. For Part iii) use (6.13). O

Thus, we see that the map r’ to cohomology in Theorem A is connected to
the map q% to boundary germ cohomology by the restriction map p™r. However,
in Theorem A the basic module is %, and not the larger module V;” r(P%R). We

need to study the boundary germs more closely, in order to identify inside (Wv‘j’,(P]%%)
a smaller module that can play the role of D, _ .

6.4. Local study of the sheaf of analytic boundary germs.

6.4.1. Positive integral weights. At many places in this section positive integral
weights require separate treatment. A reader wishing to avoid these complications
may want to concentrate on the general case of weights in C \ Z5.

The next definition will turn out to be relevant for weights in Z> only.

Definition 6.11. For U open in ch let
HNU) = [FeOWn $)NnHU) :

(6.21) . .
F has a holomorphic extension to U} .

Lemma 6.12. Let r € Zs,. For open sets U C P]%% such that U OPIE #0and -i¢ U
the restriction to UN$ of F € O(U) is in HMU) if one of the following conditions
is satisfied:

a) UcC,

b) oo € U and F has at o a zero of order at least r.

Proof. F is holomorphic on U N H, hence r-harmonic on U N . Forz € U N $H:

1
(6.22) FQIf2) = 3 FQ)GE-)E- NrE-o!

(6.23) = zli(sz(Z))(l —i/2)(1 =i/ (12 -1/ .

Equality (6.22) shows that F/ f; is real-analytic on U \{co, —i} = U\ {oco}. If co € U
then (6.23) shows that it is also real-analytic on some neighborhood of co. O
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6.4.2. Local structure. We return to the sheaves V;” and ‘W, in Definitions 6.1
and 6.5.

The sections of V', are holomorphic on neighborhoods of open sets I C PL,
and are locally at x € R given by a power series expansion in z — x converging
on some open disk with center x. At co we have a power series in z~!. The real-
analytic functions A = F/f, corresponding to representatives of sections of ‘W
are also given by a power series near x € I, now in two variables, z — x and Z — x,
which also converges on a disk around x. At co we have a power series expansion
in 1/zand 1/z.

With the operators |,g for g € SL,(R) we can construct isomorphisms between
the stalks of ‘W. So for a local study it suffices to work with a disk around 0. A
problem is that the points i and —i play a special role in the function f,.. Hence it is
better not to use arbitrary elements of SL,(R) to transport points of P]}Q to 0, but to

use k(ﬂ) — ( cos sinﬁ) c SO(Z)

—sin® cos ¢

We denote disks around O by
(6.24) D, = {zeC : |z < p},

where we take p € (0,1) to have +i ¢ D,. All points of IP’]%{ are uniquely of the
form k() 0 = tan with ¢ € R mod nZ. All kD, C ]1-‘”(}.j with k € SO(2) do not
contain +i; in general they are Euclidean disks in C. The sets k D), are invariant
under complex conjugation.

Proposition 6.13. Suppose that the set U C Pé is of the form U = kD, with
keSOQ2),0<p<1.
i) Restriction. Let r € C. If F € H (U) then the restriction p?'F extends as
a holomorphic function on U.
ii) a) Ifr € C\ Zy then H™(U) = {0}.
b) If r = 1, then HY(U) = H(U).
¢) If r € Zsy, then HNU) c HO(U).
iii) a) If r € C N\ Zsy, then the restriction map p? : HX(U) — O(U) is
bijective.
b) If r € Zy; then the following sequence is exact:

P1j
0 — HMU) —» HXWU)' D prip D — 0,
where the last space has to be interpreted as the space of functions on
U that extend to Pé: \ {i} as elements of the projective model of Z);fl.
iv) Shadow operator. If F € H’(U), then the holomorphic function &,F €
O(U N H), defined in (1.28), extends holomorphically to U and satisfies

_ Z+ 0\F-2 ot e
(625) &P = (-D(7) AFQD  @eUN9).
Remarks. (a) Part i) shows that for small disks U the restriction of an element of
HP(U) is represented by a function defined on the whole disk U, not just on some

unspecified neighborhood of U N P]%Q.
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(b) The shadow operator and the restriction morphism were defined in different
ways. Part iv) shows that they are related.

Proof. We start with proving the statements for U = D, and will at the end derive
the general case.

Parti), r € C\Z,. First we consider the case when r € C\Z5;. We’ll show that
for any F € HP (D,) € H.(D, N H) (a representative of) P F is holomorphically
continuable to D,
We note that we have F(z) = y'~" B(z) where
2i (Z - i)r—l F(z).
z—ir=2i7 fi(2)
Since F € 7—(£’(Dp), B is real-analytic on D, and there are coefficients b, , such
that

(6.26) B(z) = Z bym?'?"

n,m>0

B(z) =

converges absolutely on a disk D), where 0 < p; < p. We define
b(z) = 2iy’d:(y' "B() = 2iyB:(x)+(r—1)B(z) onD,.

The condition of r-harmonicity on F is equivalent to the antiholomorphicity of b.
On D, we have, by (6.26), the expansion

b) = > .(r—1=m)by,Z"

m>0

+ 0 (n+ Dbyt s + = T =m) by ) 27"

m>0,n>1

(6.27)

The antiholomorphy implies that for each n > 1 the coefficient of z"Z" has to
vanish. If r ¢ Z this gives the relation

(=1

(6.28) bym =
m!

bn+m,0

(with the Pochhammer symbol (a),, = ]_[;-"z_ol (a+ j)), and

1-r
(6.29) b) = - ) % bnoZ"  (z€Dp).
m!
m>0
This is the power series of an antiholomorphic function on D, hence it converges
absolutely on D,,.
Now, if ¢ is a representative of p?" F, then, for ¢ € (—p, p),
t—i\2-r A -=r)y,
_( N ) Z 1 - bn+m,0 tn+m

—2i m
n,m>0

_(’_;2;')2" D @ - gy ot
>0 ’

o0 = () Bw

(6.30)
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Here we use the well-known formula Zﬁ1=0 (1;1—’,)’” = (2;—,”[ A comparison of the
absolutely convergent series (6.29) and (6.30) shows that (6.30) also converges

absolutely on D,,. This implies that the restriction gives a map HP (Dy) — O(Dp).

Part i), r € Z»;. Secondly we show that in the case r € Z>; the same conclusion
holds. In this case (6.28) is valid for m < r — 1. For m > r we get successively
bn.m = 0. Since the corresponding Pochhammer symbols vanish, expansion (6.29)
stays valid. We get the same estimate for b, 0 and arrive at

22;(2)(1 - 1) (f!)_l beo £oifr>2 ,
Yo o bno () 1" ifr=1,
on D,. This completes the proof of Part i) for U = D,,.

631) @) = —<t_—_2l.’)2"{

Part ii) a) and c). Let F € O(U), and suppose that its restriction to U N $ is in
H,(U), then S
FIf@ = =2 (S )F@y ™!
' 2i \-2i ‘

If r € C \ Zs1, then the presence of the factor y'~" shows that this can be real-
analytic near O only if F' = 0. This implies Part a). If r € Z,, all factors are
real-analytic. This implies Part c).

Partii) b). If r =1, all b,,, with m > 1 vanish. Hence B(z) and F(z) = ¥y B(z)
are holomorphic. This gives Part ii)b).

Fart iii) a), surjectivity. 1In the case when r € C \ Zy», take ¢ € O(D),), which is
represented by an absolutely convergent power series

(6.32) o) = > act.
€20
Hence a; = O(c™%) for all ¢ € (0, p). We put

6.33) b _ (1 =7y, (n+m)!

An+m
m! (2 - r)n+m ’

and define B by (6.26) with these coefficients b, ,. The factor % has
polynomial growth in m and n. We arrive at absolute convergence of the power
series (6.26) on |z| < ¢ for all ¢ < p. Hence B is real-analytic on D,,. The structure

of the b, ,, shows that b(z) = 2i yBz+(r—1) B is antiholomorphic, hence F := y'"B
. =2

onD,N $Hisin 7-{,b(Dp) and pi"F(t) = —(%’i)r @(). This shows the surjectivity
if r ¢ ZZZ-

Part iii) b), surjectivity. In the case of r € Zs,, Equation (6.31) shows that the
restriction map has the projective model of Z)prlr as its image, since we can freely
choose the by with € < r — 2. This gives the surjectivity in the exact sequence in
Part iii)b).

Part iii) a),b) injectivity. We suppose that pf’F = 0 for F € H?(D,). Then ¢ = 0,
which by (6.30) implies F = 0 if r € C \ Z»>. Thus we have the injectivity in
Part iii)a), which completes the proof of iii)a).
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For r € Zs we have by = 0 for £ <r—2. So

r—1
B@ = Y beor 3 S = 3 byp iyt
m=0 ’

>r—1 m >r—1

So the kernel consists of the functions F on D, N $ with expansion
@iy~ Y brar10
€0

which are just the restrictions to U N $ of the holomorphic functions on D). This
completes also the proof of Part iii)b).

Part iv). We find by a direct computation forz € U N 9

4 ztivt (1 —FZ+i——
ERE = —(57) (5 = AD +yAQ)-

This shows that &, F extends as a real-analytic function to U. We know that it is
holomorphic on U N $, hence on U. It is determined by its values for x € U N R:

yx+iNi2 (1l —F ——
&R = 22 (A + )
_ 24 I\F-2 ——
= (r—l)(z—i) AQ).
On U NR we have A = p?’F, hence
X+i

F2
G = (-1(7-)  EFRHW,
which extends to an equality of holomorphic functions on U, which is (6.25).

Shifted disks.  To prove the proposition for kD, with general k = k(}) (9 €
—3.5]) we note that the bijective operator |p2rj_ K ODy) — ()(k‘le) preserves
holomorphy. This together with the bijective operator |,k : ‘HE’(D,,) - 7—(f’(k‘1Dp),
and Relation (6.10) imply Parts i), ii) and iii).
To prove (iv) for general kD), we first apply (iv) to F|.k € 7—(}’(Dp) to get, for
z€D,NC:

(6.34) EFlLh)E) = F-1) (ZZ—T)F_Zp‘;“J(Fuk)(a.
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Upon an application of (1.30) and (6.10), this becomes, with k = (“ _”):

c a

(&F)ks) = (cz+a)*” (F- 1)(12—7)7_2p';fj<Flrk>(z>
=+ - D ()T WPELE G

(6.35) (cz+a)* " (F-1) (%i)i_2 (a+icy 2

R L
(c) WP
_ kz +i\i-2 ———

F-D(=Z-) " PP,

We used that k=i = i, and that (a+ic) (z+i) = (cz+a)(kz+i). Since the conjugate of
a holomorphic function on $~ is holomorphic on $, this proves the statement. O

Proposition 6.13 gives a rather precise description of the local relation between
the sheaves V3’ ~and “W;”. The next theorem ties this together to a global state-
ment, which will turn out to be crucial in Sections 8 and 10.

Theorem 6.14. i) If r € C \ Zs, the morphism of sheaves pf” : W® — vy,
is an isomorphism.
ii) For r € Zs| we define the subsheaf "W of W by

(6.36) ey = imHYU),

where U runs over the open neighborhoods in P}C of open sets I in PIE.
a) Ifr=1"We=we.
b) If r € Zsy, the following sequence is exact:

(6.37) 0-"we - we S o 0,
The space Dgflr is interpreted as a constant sheaf on PIIR.

Proof. Proposition 6.13 gives the corresponding statements on sets U near all
points of P]}Q, giving all statements in the theorem on the level of stalks. O

6.5. Related work. In [15] the analytic boundary germs form the essential tool
to prove the surjectivity of the map from Maass forms of weight zero to coho-
mology considered there. This gave the motivation to study these boundary germs
for themselves, in the paper [13]. In the introduction of [13] (“Further remarks”,
p. 111) it is indicated that the boundary germs have been studied in the much wider
context of general symmetric spaces.

One finds the isomorphism analogous to the isomorphism in Part i) of Theo-
rem 6.14 in [13, §5.2]. There the isomorphism is approached in two ways: by
power series expansions and by integrals. In the proof of Proposition 6.13 we have
used only power series.
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7. POLAR HARMONIC FUNCTIONS

The subject of this section may seem slightly outside the line of thought of the
previous sections. It has its interest on itself, and it provides more examples of r-
harmonic function that do or do not represent analytic boundary germs. The main
reason to discuss it is in the case r € Zy;. Though Theorem 6.14 leads directly to
spaces of analytic boundary germs isomorphic to the spaces 2’ for r € C\ Zss,
the situation is less clear for r € Z>,. With polar harmonic functions we will arrive
in §8.1 at a satisfactory definition for all » € C.

7.1. Polar expansion. The map z — w(z) := '— L with inverse w — z(w) := z}*i

gives a bijection between the upper half-plane $ and the unit disk in C. We write a
continuous function F on $ in the form F(z) = (Z +,) P(w(z)). This has the advan-

cos® sind

tage that the transformation F +— F |,( ) with =3 < < 7 corresponds to

i —'sinﬂ cos ¥
sending P to the function w - ¢ P(e*w).
We put
2i \r1 (72 2 py 200
F(u;z) = (—) —f e P w)dd
e ol SOV SN ¥/}
(7.1) . 9 sin g
- —iQu+r)® F COS Sin 49 c7
ﬂIﬂ/ze ( |r(—sim9cos19 )(Z) (wez.

In the first expression we see a coefficient of the Fourier expansion of the function
9 +— P(e’™w). Thus we have a convergent representation

(7.2) F@) = Y Fu2),

UEZ
the polar expansion. If we do not work on the whole of $, but on an annulus

c1 < ’E‘ < ¢, we can proceed similarly.

We use this in particular for r-harmonic functions F. From the second expres-
sion in (7.1) we see that F(u;-) is r-harmonic, since the operators |.g with g €
SL,>(R) preserve r-harmonicity and we can exchange the order of differentiation

and integration. The terms F'(u; -) can be written in the form F(u,z) = (21’ [(z+ i))r
(w/Y* pu(|wl?), for some function p, on [0, o). With some computations one can
obtain an ordinary differential equation the p,,, which turns out to be related to the
hypergeometric differential equation, with a two-dimensional solution space. This
leads to the following r-harmonic functions, all depending holomorphically on r in
a large subset of C.

13 Bu = (o) v = (o) () wez

fr(2) (Z—"i)ﬂ+1 2F1(1 L =r2—r; |Z+,|2) ifu>0,
@ S (&) A -p-rn2- ,W) ifu<0,
(1.5 Hu@ = /@ () A1 -a-r 11 g

—1

(7.4) Mpu(2)

I
NllNI

Il

112
? ), u< -1

Il
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The function P, is holomorphic, hence r-harmonic. Checking the r-harmonicity
of M, , and H,, requires work, for which there are several approaches:

a) Carry out the computation for the differential equation for p,, transform it

to a hypergeometric differential equation, and check that the hypergeomet-
ric functions in (7.4) and (7.5) are solutions.

b) Check by a direct computation (for instance with formula manipulation

software like Mathematica) that the shadow operator sends the functions
to the holomorphic functions indicated in Table 2, thus establishing r-
harmonicity.

¢) Transform the problem to the universal covering group of SL,(R), and use

the remarks in §A.1.5 in the Appendix.

f= Py M, . H,,
fe H(H) (u=0) HA(HN i
H(HNAiD) (u<0) H(H) (u<-1)
Z o e @ e
f reprs. elt. ifreZsy ifre C\Zy orif
of"W,“’(PH@ reZspandl —r<u<-1
o 0 (reZu) (=)

TaBLE 2. Properties of polar r-harmonic functions.

Most of these facts follow directly from the formulas, and the properties of the
hypergeometric function. We note the following:

(7.6)

4y

e The factor — is real-analytic on P@lj \ {—i} with zero set IP%&. It has values

+i?
between 0 2|1ch|1 1 on 9, reaching the value 1 only at z = i. Since the hyper-
geometric functions are holomorphic on C \ [1, c0), the definition shows
that M., € ‘H}”(R}j \ {i, —i}). To investigate the behavior of M, at i we
note that its shadow has a singularity at z = i if u > 1, so M,., cannot be
real-analytic at i for u > 0.

e The functions P, and M, are linearly independent for r € C \ Zy.
e The Kummer relation [43, §2.9, (33)] implies

M Jpal!
1—r ™ (=1 Fru (<=1
From the singularity of P, at i and the fact that H,, € H,.($) we see that
M, ., has a singularity at i for u < —1 as well.
If ro € Zs, the meromorphic function r +— M, has in general a first
order singularity at » = ro with a non-zero multiple of P, , as the residue.
However, if 1 — r9p < p < —1 it turns out to be holomorphic at r = ry. So
under these conditions M, , is well defined.

Hr,p =
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Proposition 7.1. H,.($) N WO (PL) = {0} forr € C\ Zs,.
Proof. Let F € H.(H) N ‘W‘“(IP ). With (6.6) we see that

/2
F(u;z) = f AP, z) d?,

/2
with a function 2 that is real-analytic in (¢, z) with 9 in a neighborhood of [—g, g]
in C, and z in a neighborhood of Pﬁ in ]P’gc. So all terms F(u; z) in the polar expan-
sion of F also represent elements of ‘W (PIE). Table 2 shows that F'(u; -) should be
a multiple of P, for 4 > 0 and a multiple of H,., if u < —1.

On the other hand, with the second line in (7.1) we see that F'(u; -) should repre-
sent an element of (W‘“(P ). Again consulting Table 2 we conclude for r € C\Z3
that F'(u; -) is a multiple of M, .. Hence all terms in the polar expansion of F' vanish,
and F = 0. O

7.2. Polar expansion of the kernel function. The kernel function K,(z;7) = Z%—’T

S \"2
(g) in §6.3 gives for a fixed T € 9, rise to two polar expansions in z, on the

disk ;ﬁ Z-11 and on the annulus 1 > ;i > |=i|.
Proposition 7.2. i) Consider z, 7 satisfying |;—r |T+l
a) If r € C\ Zsy, then
(2=7)—p-1
(7.7 K.(z;T) = Z —“Pz—r,_#_l(r) M,,(z) .

(== D!

us-1
b) If r € Zsy, then
-1

-2
(7.8) K.(z;1) = Z( D™ 1( - 1)Pz -1 My (2) + pr(z;7),

pu=1-r
with

2i T —1I\r-1

(7.9) Pzt = (=) -
Z=T \Z—1
ii) Consider z, T satisfying |Z+l| < ’T+l| Forallr e C:
(I-7r) (=7

(7.10) K1) = = ) —* Cor P it O Hep(@) = D Po (D) Pry(@).

us—1 u=0
iil) Forr € Zsy:

1 .
Y = Z o )+ (- Ly

-1

Z I")—il)'l r#(Z) + (%)r—l .

=1-

(7.11)
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T—i

. _ z-i —
Proof. We use the coordinates w = ¥; and & = 7,

z+i

X, = {@ne < <1}.X. = (e : wl<<1}.

and put

General expansion. Most of the proof of Parts i) and ii) can be given by the same
reasoning. The function K,(:; -) has polar expansions on both regions, that have the
following form on X, :

K1) = ) AX(nT) Fi(r2),
UEZ

where the fact that K,(-;7) on X, represents an element of "W,‘"(PIE) implies that
we can take F; = M, and where the fact that K,(-; 7) has no singularity on X_
implies that we can take F, = H,, forpy < -1 and F; = P, foru > 0. The
integrals in (7.1) with F(z) = K,(z;7) for the terms in the polar expansion show
that each function r — A% (r, 7)F;(r, 7) is holomorphic in r € C.

The invariance relation

(7.12) K. (5 )rg®l-rg = K, foreachg e SLy(R)
in (6.14), applied with g = k(¢}) for small J implies that A;;'(r, 7) transforms under
|-k() by e~""+%? ‘hence it has the form A%(r,7) = d(r) Pr_r._u2(7), for some
quantity dz (r).

For a given z € $ the function K,(z;-) has only a singularity in the upper half-
plane at 7 = z. Since P>, _,_1(7) has a singularity at 7 = i if —u — 1 < 0, we have
d;(r) = 0 for u > 0. Thus, we have the following:

on Xy KT = Y di(r)Pooryu (M Mpu(2),
ps—1

(7.13) onX_: Ki(z;7) = Z d,(r)Prr—y—1(7) Hop(2)
ps—1
A (P 1 (D P().
©=0

To both sides of both equations we apply the shadow operator &,. With Table 2 and
the fact that P, is holomorphic, we get

GER|

Z—T\72
2i ) -
- Zm(i)z‘f(i")‘”*.{dﬂw(f—n on X,

e 2+l N\z+i d;(r(-1)  onX-_.
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We consider this for (z,7) € X, with &€ near 0, and for (z,7) € X_ with w near 0.
Then we can rewrite the left hand side of the equation such that the main factor is

F-1(1-uwd) 2 = —1)2(2 Da 0 g
a>0
r)—;z] T+ i\-—u-1,7—10\—p-1
(r—l)#Zl ——" T_l) (ﬁ) :
So for u < —1 we have
+ _ (2 =7r)—p - _ _(1_r)—;4
(7.14) d,(r) = —(—u—l)! , d,(r) = —(—ﬂ)!

Part i)a) is now clear.

Part i)b). Let r € Z,. The terms in the expansion should be holomorphic in r. For
I —rp <u < -1 with rg € Z>», the function M,, has a holomorphic extension to
r = ro (remarks to Table 2). This gives the sum in (7.8). With (7.6) the terms with
1 < —rp can be written as

(I=rd=r-u
p(=p—=1)!
The first of these terms has limit 0 as r — ry. The second term leads to a series
with p,(z; 7) as its sum.

Pz_r,—ﬂ—l () Hr,y(Z) + P2—r,—,u—1 () Pr,,u(z) .

Part ii). On X_ we have
(1-r)-
K@) = = ) = s Pyt O Bu@ 4 ) () Poeyyt (D Pry(2),
1<0 —H ©=0
with still unknown d, (r) for ¢ > 0. In the coordinates w and ¢ this becomes:
I-w -1 -ad)""
(=& (1 - [wPy!

1-7r)-
(7.15) =-> %(1 —OFEF T HL(2)
pus—1 K
+ ) A1 =97 -y

p>0

We divide by (1 — £)>™". The remaining quantity on the left has the following

expansion:
(1 —w) —a-1 b_b
|2),IZ(1)w€“ Nnpare.
a,b>0
Let n > 1. The coefficient of £ in this expansion is

_ Z b+n—1 ( )( w)b — _wrl—l (1 _ |w|2)r—1 .
b>0
Hence d;l(r) = —1 for u > 0. This gives Part ii).
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Part iii). Letr € Zs;. The equality (7.15) divided by (1 — &> becomes

_ r —_ eyl 1
SRS L S —Z (( r)”f‘“IHW) A-wye' A -w/e)™.

@=-6 APy ~ " L (!

Now we let & tend to 1. We obtain:

_1 _
) N O I ) U € B 17 o L 4= H,(2)—(1-w".
(—)!

pu=1-r
In terms of the coordinate z this is

)— 20 \r-1
=3 A (2

u=1-r

which gives the first expression for yl" in Part 1ii). We use (7.6) to obtain the
second expression. O

7.3. Related work. The polar expansion generalizes the power series expansion
inw = ;—: for holomorphic functions on the upper half-plane. When dealing with
r-harmonic functions a straightforward generalization leads to the functions in Ta-
ble 2. Proposition 7.2 is analogous to [13, Proposition 3.3].

Part III. Cohomology with values in analytic boundary germs

We turn to the proof of the surjectivity in Theorem A and the proof of Theo-

rem D, by relating cohomology with values in D, to cohomology in modules

&y c Wy (P ). Section 8 gives the definition of these modules.

‘We use a description of cohomology that turned out to be useful in the analogous
result for Maass forms, in [15]. This description of cohomology is based on a
tesselation of the upper half-plane. See Section 9.

Theorem 10.18 describes the relation between holomorphic automorphic form
and boundary germ cohomology. This theorem immediately implies the surjectiv-
ity in Theorem A. For the weights in Z>, work has to be done, in Section 11, to
prove Theorem D.

8. HIGHEST WEIGHT SPACES OF ANALYTIC BOUNDARY GERMS

This section serves to define the modules &, to take the place of the modules
Z)a)

v,2—r"

8.1. Definition of highest weight space. The cases r € Zs, and r € C \ Z, are
dealt with separately.
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8.1.1. Weight in C \ Z5;. Parti) of Theorem 6.14 points the way how to treat this
case. It states that pf’ : W*(PL) — V“(PL) is bijective. For ¢ € D&

(8.1) prle = ) oty € WERY),

where we use that (o, /)() = (i—1)"2 (0} /)(1). See (6.17). For g € DY [£),...,&]
we can proceed similarly to get o' € WE[£q, ..., &,]

Definition 8.1. For r € C \ Zs, we define

82) & = p'DY, EXE... &) = p DYLE L6

for each finite set {&1,...,&,} C ]P]IR.

Weight 1. The case r = 1 is special. The restriction morphism is given by
O F)(®) = 2% (t — 1) F(#), and hence (o1 F)(t) = 5 F(t). This gives the following
equalities:

8.3) &Y = DF,  EVUE,. . b = DUCLE, LG

Characterization with series. The projective model prj,_, 05  consists of the holo-
morphic functions on some neighborhood of $~ U Pﬂg in C. So it consists of the

functions P
— i
t RS
"~ Z u (t + i)
n<0

with coeflicients that satisfy ¢, = O(e~ ) as |u| — oo, for some a > 0 depending
on the domain of the function. Table 2 in §7.1 gives (‘2Y' = p"M,,_;. Hence we
have for r € C\ Zx,
(8.4) & = { > My ¢ ¢y =0(e ™) for some a > 0}.

,
HEZ<

Highest weight spaces. We call )’ and & highest weight spaces. The use of this
terminology is explained in §A.2.1 in the Appendix.

8.1.2. Case r € Zsp. We note that representatives of elements of D are holo-
morphic functions on a neighborhood of $~ U Pﬁ in IP’}C that have at oo a zero
of order at least r, since (1.19) shows that the elements of O are of the form

t— (i—1)7" - (holo. at o). These functions represent also elements of W (PJIR).

Definition 8.2. For r € Z., we define:

-1
& = DY+ ) CMy,

p=1-r
(8.5) -1

DElEr, .l + ) C My,

u=1-r

EUEUE L&

for finite sets {¢1,...,&)} C PL.
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Remark. This defines E as a subspace of (W,‘”(P]%{), and E7°[€,...,&] as a
subspace of ‘W (]1-‘311R N, - ,f,,}).

Comparison with weight 1. If we apply the formulas in (8.5) with r = 1, the sum
over yu is empty, and we get back (8.3).

Characterization with series. The elements of the projective model prj,_, D are
the functions of the form h(#) = ¥,<0 dy ( : +l) with d, = O(e~"!) for some a > 0.
In view of (1.19) and (7.3) f = prj;lh has an expansion of the form

(i) Zd () = > P,

HS—r
with the ¢, satisfying the same estimate. This leads to
-1
8.6) &’ = {Z cu P u(@) + Z M,y ey = O(e~ ) for some a > 0},
Hs-r p=l-r
which is similar to (8.4).
In the following result we use the subsheaf "W, defined in (6.36). Its sections

are represented by holomorphic functions, contained in the kernel of the restriction
morphism p,.

Proposition 8.3. Let r € Z».

1) D is a subspace of h(W,‘“(IP)HIR) invariant under the operators |,g with g €
SLy(R), and D *[é1,....&llrg = O lg™é1....g7 &) for all g €
SLy(R).

il) &Y is a subspace of ’W“’(]P ) invariant under the operators |,g with g €
SLay(R), and EP[1,.... &g = &g é1.....g7 ] for all g €
SLy(R).

iii) The following sequences are exact:

0-D° -85 o o0,
(8.7) P
0 - DL, ..., 6] = EFCUE, .., &1 > D, - 0

Proof. For Part i) we use the definitions in §1.6, applied with r instead of 2 — . In
particular, elements of D are represented by holomorphic functions with at co a
zero of order at least r. In that way we see that all elements of 9 are sections in
bW and similarly for D°[£1, ..., &].

For Part ii) there remains to show that M, ,|,g € &?. Relation (7.8) in Proposi-
tion 7.2 expresses K,(-; 7) as a linear combination of the M, in & and an explicit

kernel p,(-;7). Since P_,_,_1(7) is essentially equal to (T +t) - 1, we can invert
the relation, and express each M, , with 1 —r < y < —1 as a linear combination
of K,(-;7;) — ps(-;1;) for r — 1 elements 17; € $. The invariance relation (7.12)
implies that K,(-; 7;)|,¢g is a multiple of K,(-;g~';), which is in & by an applica-
tion of (7.8). The contribution of p,(:;7;) is in D, which is invariant under the
operators |.g.
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The exactness of the sequences in Part iii) follows directly from the fact that
7RSI
pr vanishes on D and the relations (o,M,,)(t) = (i — )2 (E)NJr , with (6.11)

t+i

and (8.1). O

8.2. General properties of highest weight spaces of analytic boundary germs.
In the previous subsection we have chosen spaces & *°[&],...,&,] of boundary
germs for all finite subsets {£1,...,&,} of PllR, and the space &, which we call
also &”°°[]. The following proposition lists properties that these system have in
common for all € C. In Section 10 we shall work on the basis of these properties.

Proposition 8.4. The systems of spaces in Definitions 8.1 and 8.2 have the follow-
ing properties:
) &L, &) C WEPLNLEL ..., &) consists of boundary germs rep-
resented by functions in H°(U) where U is open in Péj such that U U 9~ is
af{éy,...,&}-excised neighborhood.

i) a) If{&r,.... &) C{ni, ... m), then
EFCLér, . L E] CE T I, .. ]
b) If{gr,....&d Nimi, ..o} = 0, then
ELOCLE), L EINES 1, ] = &Y.
With the inclusion relation ii)a) we define

(8.8) EZC = Im EP[£y, ..., ],

where {£1, ..., &,} runs over the finite subsets of IP’IIR.

iii) &6, &llrg = &g ¢, g7 &l for each g € SLy(R).
iv) The function z + J; Tz K, (z;7) f(r) dt represents an element of EY for all
21,22 € 9 and each holomorphic function f on $.
v) If F € H.(9) represents an element of EY, then F = 0.
vi) If F € HP(U) represents an element of E[£, ..., &,] then its shadow
& F € O(U N 9) extends holomorphically to 9.
vii) Let A € C*. Suppose that f € &[] has a representative F that satis-
fies:
a) F e H.(U N 9) for some neighborhood U ofPllR in Péj,
b) the function z+— A"V F(z+ 1) = F(2) on $ N\ U N T~'U represents an
element of &2,

then f = p + g with an element g € E” and a A-periodic element p €
Sw,CXC[OO]'

Remarks. (a) In Property a) it is not always possible to choose the representa-
tive such that the set U such that it contains $~. Moreover, the property does
not state that all functions in H®(U) with U as indicated represent elements of
EVUEN, . L.

(b) Condition a) in Part vii) is strong. In general representatives of an element of
&*¢[o0] are r-harmonic only on an {oo}-excised neighborhood.
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Proof. We consider the various parts of the theorem, often separately for the gen-
eral case r € C \ Z3; and the special case r € Z,.
a. Parti). Letr € C\ Zs;. Anelement F € E°[£1,...,&,] is determined by
h = p}"F in the projective model of D"[£,...,&,]. So h is holomorphic on a
{é1, ..., & -excised neighborhood Uy. Each point & € Pﬁ N {é1, ..., &n) is of the
form k- 0 with k € SO(2). We choose p(¢) € (0, 1) such that kg D) C Up. Then
Proposition 6.13 implies that F is in W?(kf D)) for all £ € PJ{R NA{ér, ..., E0) So
F € H2(U) with

U = U kg Dp(‘f) .

EEPLNEL, &)

We still have to show that the p(£) can be chosen such that 9~ U U is a {&1, ..., &)
excised neighborhood.

We recall that near each of the points U m U
& alé,. .., & )-excised neighborhood 0 | 0 0
looks like a full neighborhood of &; mi- & Uy &7
nus the sector between two geodesic
half-lines with end-point ¢;.

Ficure 10
For £; € R those geodesic half-lines

are parts of euclidean circles with their
W center on R, or vertical euclidean lines.
(We can arrange {£1,...,&,} C R by
%j & conjugation.) This implies that there is

a small € > 0O such that for all £ € R
with 0 < [£ - ¢&/| < & the open euclidean
FiGURe 11 disk around & with radius |£ — &/ is con-
tained in U).
In this way we see that U is near ¢; a full neighborhood of &; minus the sectors
between two geodesics half-lines at £; in the upper and the lower half-plane. Then
97 U U has near ¢; the structure of an excised neighborhood.

b. Part i) for r € Zs;. Elements of D°[&],...,&,] are already represented by
functions of the desired form. The functions M, are in 'HP (]P)éj AL, —1}).

¢. Part ii). Immediate from the corresponding property of D) X with p € {r,2—r}.

d. Part iii). Immediate from Part i) of Proposition 1.14 and (6.10) if ¢ Z5,, and
from Proposition 8.3, Part ii), if r € Zs,.

e. Part iv) for r ¢ Zs,. Integration over T in a compact set in $ preserves the
property that K,(-; 7) represents an element of ‘W (P%&), and commutes with taking
the restriction. Applying p, gives the integral fz Tz (z — 7)""2 F(1)dt, which has a
value in D .

f. Part iv) for r € Zs,. Equation (7.8) in Proposition 7.2 expresses K,(-;T) as a
linear combination of the M, , in & and an explicit kernel p,(-;7). Integration
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of the terms with M, gives a multiple of M, ,. The kernel p,(-;7) is in D by
the description in Part i) of Proposition 7.2, and its elements stays there under
integration with respect to 7.

g. Partv) for r ¢ Z>;. See Proposition 7.1.

h. Partv) for r = 1. Let F € H,(9) represent an element of S‘f’(P]}Q). Sop1F(z) =
22—7 F(z) is holomorphic on a neighborhood U of $~ N IP’HIQ in Pé:. Then F itself
is holomorphic on $ N U \ {i}, hence F is holomorphic on $ since it is already
real-analytic. Thus, F € O(P ) with a zero at oo, hence F = 0.

i. Partv) for r € Zsy. For r € Zs,, we consider F = F + Z# 1=y CuM, € H(DH)
with F representing an element of O and ¢, € C. Since the MW are r-harmonic
on $ \ {i} the function Fy is holomorphic on Péj \ {i} with at oo a zero of order at
least 7.
To investigate the singularity of Fy at i we use Kummer relation (7.6), which
relates M,.,, H,;, and P, ,. Since H,, is r-harmonic on $, the singularity at i of
;il_r cuM,.,, is the same as that of

-1
—M — 1)!
Z — r) Pr”u
u= 4, HE
Z —,u—l)‘ ( 2i ) (Z—i)ﬂ
—r)_#l z+i/ \z+i/
This leads to a holomorphlc function F + F{ on P@lc \ {—i}, with at z = —i a pole of
order at most r — 1. At oo the function Fy has a zero of order at least r. The same
holds for F; by the factor (z + i)™ in (8.9). So the number of zeros is larger than
the number of poles, and we conclude that Fy + F; = 0. However, F| = —F has

to be in O, in particular, it has to be holomorphic at z = —i. Inspection of (8.9)
shows that successively c¢|_,, c2—, . .. have to vanish. So F = 0.

F1(2)

8.9

J- Part vi). The representative F is defined on U N £, where the open set U C Pll&
contains IPI}g N{é1,...,&,}. Partiv) of Proposition 6.13 implies that there is an open
set Uy C U, still containing P]%Q N\ {é1,...,&,) (obtained as the union of sets k D))
such that on U the shadow &,F(z) is a holomorphic multiple of a(z) = (02" F)().
So the domain of a is some neighborhood U, of Pﬂl% N {é1,...,&) in P(lc. Since
prF € Z);j’ the functions Re ,F and p!"F are holomorphic on $~. Hence the

domain of the holomorphic function a contains § =9.
k. Part vii). See §8.5. O

8.3. Splitting of harmonic boundary germs, Green’s form. We discuss now a
splitting of the space of global sections of r-harmonic boundary germs. We shall
use this to prove Part vii) in Proposition 8.4 in the case that r € C \ Z5;. To obtain
the splitting we use the Green’s form for harmonic functions and the resolvent
kernel.
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Theorem 8.5. Ifr € C \ Z5| then
(8.10) B,(Py) = HAH) & W (®y).
Since we have already Proposition 7.1, we need only to show that B,(PI}%) =
H,(H) + WO(PL).
Resolvent kernel. We put

8.11) 0r(a1,22) = Mio( ==

with the r-harmonic function M,y € H,($ \ {i}) in (7.4). So Q,(z1,z2) is defined
on $H X H \ (diagonal). It is called the free space resolvent kernel . It is a special
case of the resolvent kernel that inverts the differential operator A, — A on suitable
functions. See, eg., [76, §3, Chap. XIV].

The following properties can be checked by a computation, but are more easily
seen on the universal covering group, as we explain in §A.1.6.

zz—Rem)

(8.12) AQ(z1,7) = 0,
(8.13) 4y*0,0;0,(, 22) + 2iry 8:0,(22) + 1 O, (-, 22) = 0,
(8.14) for (j Z) €SLLy(R): (cz1+d) (czo+d)" Q0 (g9z1,922) = 0/(z21,22).

The r-harmonic function z; — Q,(z1, z2) represents an element of (W,‘“(Pﬂl{).
Green’s form. For fi, f» € C*(U), with U C %, we define the Green’s form

.
(8.15) /i, £l = (0cfi + —fi)rdz+ fi@afo) dz.

This is a 1-form on U, which satisfies

(8.16) [fil-g, folrgl, = [fi,folrog ong'U  forgeSLy(R).

If fi is r-harmonic on U and if f; satisfies the differential equation in (8.13) on U,
then [f1, f>], is a closed differential form on U. (These results can be checked by
some computations.)

Cauchy-like integral formula.

Proposition 8.6. Let r € C \ Zsy. Let U be an open set in 9, and let C be a
positively oriented simple closed curve in U such that the region V enclosed by C
is contained in U. Then for each F € H,(U):

o |2ri(1=nF(E)  if7 eV,
fc[F’ &2, = {0 if7 €9\ (CUV).

Proof. In this result the kernel Q, and the Green’s form are combined to give for
r-harmonic functions F € H,.(9) the closed differential form
[F, 0,(-,2)],(2)
on $ x § \ (diagonal). It satisfies for g = (¢/) € SL,(R)
(8.17) (cz' +d)'[F, 0:(,92)],(92) = [Flrg, 0:(,2)],(2).
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Hence it suffices to establish the relation for z” = i. The proof proceeds along the
same lines as the proof of [13, Theorem 3.1].

We have
, iy 7+ iy L Ay
0i(z,i) = :(2—1) 2F1(1,1—r,2—r,m)
(8.18) = 2r— 1) loglz—i|+0O(1)  asz— i,
0:0,c.)) = "L+ Ologle—i)  asz—i.
Z+1

The integral of the term with dz in [F, Q,(-, )] over a circle around i with radius &
is O(e loge) = o(1) as € | 0. The other term gives
21

| (FO+0@)(

r__.l +0(log#)) (~ize ) dp = 2mi(1 =) F(i) + o(1). D
ce ¥

¢
We first illustrate a possible use of Proposition 8.6 in an example, and will after
that complete the proof of Theorem 8.5.
Let » € C \ Zsi.In the situation
sketched in Figure 12, the integral

1 C
- F, 7 U
S 126 ¢Q
represents a function of 7' on the re-

gions inside and outside the simple
positively oriented closed path C. Ac-
cording to Proposition 8.6 the resulting
function inside C is equal to ', and out- FiGure 12
side C we get the zero function.

The situation is different if we let C
run around a hole in U. Now the inte-
gral defines an r-harmonic function F;

U on the region inside C (including the
hole), and a function F, outside C.
C Since the differential form is closed,

we can deform the path of integration
inside U, thus obtaining extensions of
F; and F, to overlapping regions inside
Ficure 13 U. On the intersection of the domains
Proposition 8.6 implies F; — F, = F.

Completion of the proof of Theorem 8.5. Let F represent an element of B,(PI{&). So
F € H,(U) for any open U C $ that contains a region of the form 1 — ¢ < ‘E| <1.

Z+i
The disk

< 1 — & will play the role of the hole in Figure 13.

z=i
z+i
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For a positively oriented simple closed curve C in U we have two r-harmonic
functions:

AN 1 . ’ ’ . .
Fi(Z) = d=n fC[F, 0,(-,7)], forz € $inside C,
(8.19) 1
F(@)= 5 f[F, 0,(-.7)], forz € $ outside C.

2ri(1 —r) Je

By moving the path closer and closer to the boundary P}R of $ we obtain that F; €
H,(9). Further F, is r-harmonic on a region U’ C U that contains the intersection
with $ of a neighborhood of Pﬁ& in Péj. The function Q,(z, -) represents an element
of W (Pﬁ) for each z € 9. This property is preserved under integration. Hence F,
represents an element of W (IPI{&).

If 7’ is in the intersection of the domains of F; and F,, then we apply the integral
representation with different paths, and get F(z") = Fi(z') — F,(z") by Proposi-
tion 8.6. This gives the desired decomposition.

Together with Proposition 7.1, this implies the theorem. O

8.4. Periodic harmonic functions and boundary germs. In Definition 3.3 we
introduced the concept of A-periodic functions, for 4 € C*. We use this termi-
nology also for boundary germs satisfying f[,7 = Af, with T = ((1) }) (The
transformation does not depend on the weight p.

Lemma 8.7. Put
(8.20) Fu(z) := ¥z 1=r B (1 = 132 — 1y dntny) (reC\2Zs, neC).
(For r = 1 we have Fi ,(z) = ¢*™"%.)

1) For r € Zsy the A-periodic elements ¢ € Z);flr form the one-dimensional
subspace of constant functions if A = 1, and are zero otherwise.

ii) If F € H°(U) represents a A-periodic element of &[] then it has an
r-harmonic extension as an element of H,(9), and is given by a Fourier
expansion

F(z) = {ana(l) Cn Fr,n(z) ifre C\2Zs,,

(8.21) " o
Y=oy Cn €™ taoy " ifr €y,

where the coefficients c, satisfy c, = O(e"*R¢") as |Re n| — oo, and where
ag € Cis equal to zero unless A = 1.

iii) Let r € C\ Zs1. If F € H,(D) represents a A-periodic element of W*(R),
then F € &”%[c0]. (Hence the statements in Part ii) apply to F.)

Proof. Since Dﬁ’flr consists of polynomials of degree at most r — 2, Part i) is imme-
diately clear.

For Parts ii) and iii) we consider first a neighborhood U of R in C and F €
HP(U) that represents an element of W*(R). Since F is A-periodic the set U
contains a strip —& < Im z < & for some & > 0.
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The A-periodic, r-harmonic function F on U N $ is given by a Fourier expansion

F@) = ). ™ £,y
n=a(l)
that is absolutely convergent on $. Since the operator A, defining r-harmonicity
commutes with translation z — z + u with u € R, all Fourier terms have the form
e?"* £ () and are also r-harmonic. Hence they are in a two-dimensional solution
space.

We use that the condition F € 7—(}’ (U) is inherited by the Fourier terms. The
multiples of F;, are in ?(E’(U) for some neighborhood U of RinC. If r € C\ Z51,
a linearly independent element of the solution space is the holomorphic function
z — ¥ which does not represent an analytic boundary germ. Thus we get for
r ¢ Zs1 a Fourier expansion of the form indicated in (8.21).

For r € Z>1 we consider the functions F(z) = ¢*"™ g(y) for which &, F is holo-
morphic. In all cases we can take g(y) constant, and obtain the multiples of 22,

If g is not constant, the condition that F € 7—(P(U ) leads to g(y) = yl‘r a(y) with
a real-analytic function a on a neighborhood of y = 0 in R. We find that we should
have

r—1 ,

o A +ydly) = ce
with some ¢ € C. If r = 1 this is possible only with ¢ = 0, and then a’(y) = 0. So
we do not get more than indicated in (8.21).

For r € Z5, we take the restriction:

pirj(eZNinZyl—r a(y))(t) — _(_21')1‘—2 (t _ l-)2—r e27rinl a(o) .

4nny

This should be a A-periodic element of Z);flr, which can be non-zero only if 1 = 1,

and then is a constant function. This leads to the term ag yl" in (8.21).

For Part ii) we suppose that F represents an element of &;”**“[c0]. This is an

assumption in Part ii). Part i) in Proposition 8.4 implies that U N $ contains a
region of the form

[ze9 : Rezl>eJUufze$ : Imz<e&)

for some € > 0. The relation F(z + 1) = A F(z) allows us to find a real-analytic
continuation of F' to all of $. So under the assumptions of Part ii) we have U = C.
In Part iii) it is given that U contains $. So now we know only that U contains all
z € C with Im z > —¢ for some & > 0.

In both parts we have the expansion (8.21) for all z € . This leads to informa-
tion concerning the coefficients.

For r € C \ Z51, we quote from [110, §4.1.1] the asymptotic behavior of the
confluent hypergeometric series:

1-rrle Ret ,
Fi(l=ri2—rif) ~ 1-nrr'e . asRet — o
Ire—-r)(-n" asRet — —o0.

The absolute convergence of the Fourier expansion of F implies the estimate of the
coefficients c;,.
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This gives, for r € C \ Z5; the growth of the coefficients, and finishes the
proof of Part ii) for r € C \ Zs; Moreover, dividing by y'~" we get a Fourier
expansion converging on all of C, and representing a real-analytic function on C.
That implies that F(z)/f,(z) is real-analytic on C, hence F € H®(C), which shows
that F represents an element of &**°[c0], by Part i) of Proposition 8.4. This gives
Part iii).

We are left with Part ii) for r € Zs. For r = 1 we have (0}"F)(z) = & F(z) in
Z)l‘" ***“[o0]. Hence F has a holomorphic extension to C. This extension is still given
by a convergent Fourier expansion, which should be the expansion 3., ¢, F1,(2) =
>, cn €72 This convergence on C implies the estimate of the coefficients.

Finally, if r € Zs,, then the term Y, ¢, e is holomorphic, and hence is in
DP*[o0]. Again, we get convergence on all of C. This ends the proof of Part ii).

O

8.5. Completion of the proof of Proposition 8.4.

Proof of Part vii) for r € C\ Zs1. The function F € H,.(U N ) represents an r-
harmonic boundary germ f € B,(P%&). According to Theorem 8.5 we have a unique
decomposition f = P + g, with P € H,(9) identified with the boundary germ it
represents, and g € ‘W;”(P%R) with representative G = F — P in H,(U N 9). Since G
represent an element of ‘W (IP’%K) itis an element of ?{rb (Uy) for some neighborhood
Uy C U of Py in P.

Now

AT =1) = PLQ'T =D +gl,(A7'T - 1).

The left hand side is in & ¢ W® (Pﬁ) by condition b) in the assumption. So the
direct sum in (8.10) shows that 2! P|,T = P.

Since P = F — G represents an element of &°[oo] + W*(Py) € WX (R) we
can apply Part iii) of Lemma 8.7 to P and conclude that P € & [c0]. Then

G = F — P represents an element
g € EX o]l NWE(BY) = (o) (DS [o0] N priy! Vs (BY))

= p,'lDy = &Y. o

The proof for r € Z>) requires some preparation.

Lemma 8.8. Let r € Zs). Suppose that F representing an element of D *[0]
satisfies the conditions in Part vii) in Proposition 8.4. Then there is a A-periodic
function P € O(C) such that G = F — P is holomorphic on a neighborhood of
H U P]}% in Pé:, and satisfies G(c0) = 0.

Proof. Condition a) in Part vii) of Proposition 8.4 tells us that F is r-harmonic on
$ \ K for some compact set K C . Since we have the additional information
that F represents an element of 9f***“[co] it is holomorphic on a neighborhood of
$ URin C. Hence F € O(C \ K).

We define a holomorphic function P on C by

(8.22) PR = —— f Fay -
|r|=c

2mi T—2
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where ¢ is chosen larger than |z|, and in such a way that K is enclosed by the
path of integration. The function z +— A VFGz+ 1) - F(z) is holomorphic on
Péj N (K U T‘IK). It represents an element of &” by Assumption b), hence it
represents an element of 9, and has at oo a zero of order at least r. Since r > 1,
Cauchy’s theorem implies that

i d
— | ('Fa+D-F@)== =0,
27t Jipj=c T-2

for all sufficiently large c¢. This implies that 7~'P(z + 1) = P(z) for all z € C.
Take G = F — P. With (8.22) we find for all sufficiently large c and |z] < ¢ < ¢

1 dr 1 1 dr
- G(T) e = P(Z)— %‘L”:Cl %lecmF(TﬂdTl
= P(z)-Pkx) = 0.

2ri Itl=c T

Insertion of the Laurent expansion G(7) = Yz by ™ of G at oo into the integral
shows that b; = 0 for k > 0. So the function G is holomorphic on a neighborhood
of co with a zero at co. O

Proof of Part vii) for r = 1. We have &/ = D and & [co] = D|"“[c0]; see
(8.3). We apply Lemma 8.8, and use that a first order zero at co suffices to conclude
that G represents an element of Df”. O

Proof of Part vii) for r € Zs>. We have H € H,($ \ K) with a compact set K C $,
for which we can arrange that i € K.

We write F = Fo + m, with F( representing an element of 9f**“[co] and m =

;il_r cuM,, € &, with the ¢, in R. Then Fy is r-harmonic on $ \ K, and
is holomorphic on a neighborhood of $~ U P]%{ in P(é, with a zero at co of order at
least r. So Fy is holomorphic on Pé: \ K. The function F also satisfies Condition b)
in Part vii) of Proposition 8.4, so we can apply Lemma 8.8. This gives Fy =
G + P, with a A-periodic holomorphic function P on C, and G holomorphic on a
neighborhood of $~ U Pﬁ in Pé: with a zero at co. For G to represent an element of
D we would need a zero at oo of order at least r.

The function G shares with Fy the property that z — 17! G(z + 1) — G(z) repre-
sents an element of &”, even an element of H* by holomorphy. Insertion of this
property in the power series of G at co shows that the zero of G at oo has order at
least r — 1. If A = 1, we cannot reach order r.

We write G = Gg + ¢o R,, where

20 \r-1
R = (=)
and where c( is chosen such that Gy has a zero at co of order at least ». So Gy
represents an element of D®.

Part iii) of Proposition 7.2 shows that R.(z) = y'~" +my, with m; € . Working

modulo elements of & we have

F =Fy+m=G+P = Gy+coR,+P = coy' " +com +P = coy' "+ P.
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The function ¢y y'~" + P represents a A-periodic element of & *[co]. i

8.6. Related work. In [15] the analytic cohomology groups have values in the
space (st"(IP’]lR) which is isomorphic to the space ‘W;"(Pﬁ) by the results in [13,
§5.2]. In the present context we work with the subspace Dljf’z_r of prj;. fr(Vljf’Z_r(P]%{),
and we have to do more work to determine a submodule of analytic boundary germs
related to D{)‘i’z_r.

For weights r € C \ Z5; we have the isomorphism in Part i) of Theorem 6.14,
which points the way to the definition of &,. The power series approach in that
theorem is more complicated than that in [13, Proposition 5.6]. For weights r € Z5
we defined &, such that it satisfies the properties in Proposition 8.4.

Property vii) in Proposition 8.4 is similar to [15, Lemma 9.23]. It will be es-
sential for the proof of Theorem 10.4 in §10. The proof of this property in the
case r € C \ Zy; follows the proof in [15]. It uses the boundary germ splitting in
Theorem 8.5 which is similar to [13, Proposition 5.3]. The resolvent kernel Q, in
(8.11), the Green’s form in (8.15) and the Cauchy-like result Proposition 8.6 have
their examples in (3.8), (3.13), Theorem 3.1 in [13], respectively.

To prove property vii) in Proposition 8.4 for positive integral weights we had
to find other methods, which were inspired by the use of hyperfunctions and the
Poisson transformation (§2.2 and §3.3 in [13]). In these notes we avoid the explicit
use of hyperfunctions and the Poisson transformation.

9. TESSELATION AND COHOMOLOGY

Up till now we worked with the standard description of group cohomology, re-
called in §1.4. For the boundary germ cohomology we turn to the description of
cohomology that turned out to be useful in [15]. We use the concepts and notations
of those notes, and do not repeat a complete discussion. We invite the reader to
have a quick look at [15, §6.1-3], where the approach is explained for cocompact
discrete groups, and then to consult [15, §11] for the case of groups with cusps.

9.1. Tesselations of the upper half-plane. The tesselations that we use are called
“of type Fd” in [15]. They are based on the choice of a suitable fundamental
domain for I'\ $.

Tesselation for the modular group. With the standard choice of the fundamental
domain & for I'(1)\9, a part of the tesselation looks as in Figure 14. The tes-
selation 7 is obtained by taking all I'(1)-translates of the fundamental domain
& divided in a cuspidal triangle V., and a compact part Fy. The set of faces is

XZT = [y "We, vy 'S : ¥ € T'(1)). In the boundary 9,§ of the fundamental
domain there are oriented edges e, from a point Py, = % +iY (with some Y > 1) to
the cusp oo, and compact edges e; from e™/3 to Po, and e, from i to ¢™/3. There is
also the horizontal edge f, from P, to T~! P.,. These four edges generate a set X;r
of oriented edges freely over I'(1) = {+1]\I'(1). If e € X(lr then the same edge with

the opposite orientation is written as —e. We follow the convention used in [15] to
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Ficure 14. Sketch of a tesselation for the modular group, based
on the standard fundamental domain.

include in X(lr only one of the two oriented edges corresponding to a given unori-
ented edge. The points i, €"/3, P, of $ together with the cusp co generate over
I'(1) the set Xg of vertices, but not freely over m, since i and ¢™/3 are fixed by
subgroups of I'(1) of orders 2 and 3 respectively. The subgroup of I'(1) fixing P
consists only of 1, and the group I'(1),, fixing oo is infinite.

We define the subsets X;r,y consisting of all elements that are compact in $. So
XOT’Y is generated by i, "3 and Po: X(IT’Y by ey, e; and f.; and XZ’Y by Fy.
General groups. In general, the fundamental domain & is chosen in such a way that
its closure in $ U PIE contains only one cusp of I' from each I'-orbit of cusps. The
fundamental domain is the union of a compact part §Fy and a number of cuspidal
triangles V,, for the cusps a in the closure of §. Each V, has vertices a, P, and
ﬂa‘lPa, and a boundary consisting of edges e, € X;r from P, to q, ﬂglea, and
fa € X;r’Y from P, to 7! P,. So each of these cuspidal triangles looks the same as
the triangle V., for the modular group.

9.2. Resolutions based on a tesselation. The tesselation 7 gives rise to I'-mod-
ules F' ZT = C[XiT] O F 7—’Y = C[X;r’y], which are considered as right modules, by
@y = (y‘lx). There are the obvious boundary operators 0; : C[X;T] — C[XL]
that satisfy 9,C[X] "] ¢ C[x” 1.

For the modular group:

h(Veo) = (e)l(1 =T) = (fo),  02(&y) = (eDl(1 =T) + (e2)(1 = 8) + (foo) -
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This leads to complexes (F” ) > (F”>Y) of I'-modules. It turns out ([15, §11.2])
that for right I'-modules V that are vector spaces over C the cohomology of the
resulting complex homeyry(F”Y, V) is canonically isomorphic to the group coho-
mology H'(I'; V). In working with this description of cohomology it is often useful
to identify a C[I']-homomorphism F ZT = C[XiT] — V with the corresponding map
¢ : X — V, which satisfies c(y'x) = c(x)ly forally € T, x € X7 .

We use the complex (F”') to describe the mixed parabolic cohomology. The
mixed parabolic cochains are defined by

o1 Ci(F?_;\/,W) = {C:X?—)WZC(X)EVifXGX;r’Y,
©-b c(y_lx) = c(x)ly forally € F}.

A derivation can be defined by d'c(x) = (=D)*! (841 x) for x € X;r. We often
write d instead of d'.

The space Z/(F” ; V, W) of mixed parabolic cocycles is defined as the kernel of
d : C(F”;V,W) — C*Y(F”"; V, W) and the subspace of mixed parabolic cobound-
aries Bi(Fir; V,W) as di‘lCi‘l(FT; V,W)ifi > 1 and as the zero subspace if i = 0.
Then the cohomology groups of the complex,

9.2) Zi(FT;V,W) [ B(FT;V, W),

are for i = 1 isomorphic to the mixed parabolic cohomology groups leb(F; V,W)in
Definition 1.3. In [15, §11.3] the mixed parabolic cohomology groups Hl’;b(l“; V,W)
are defined as the spaces in (9.2) for all i.

In particular for i = 1 we have the following commutative diagram for C[I']-
modules V ¢ W:

Z\[T;V)/BYT: V) Z\(FTY )/ BHFTY V)

Z'TV,W)/B\(T; V) < Z\(FT V. W)/BY(FT ; V, W)

The isomorphic spaces in the top row give two isomorphic descriptions of H'(I'; V),
and the two spaces in the bottom row of leb(l“; V,W).

The conditions on the tesselations are such that the action of I' = {£1}\I" on
XT and X;r is free on finitely many elements. So for i > 1 the cochains ¢ €
Ci(F .7—; V, W) are determined by their values on a C[I']-basis of C[X;.T]. For the
modular group, ¢ € C\(F T V, W) is completely determined by c(e;), c(ep) and
c(fw) in V, and c(ew) € W, and b € C*(F”; V,W) is determined by c(Fy) € V
and ¢(V) € W. For i = 0 there are in general no bases over C[I']. The fact that
each cusp is fixed by an infinite subgroup of I'(1) makes the difference between
parabolic cohomology and standard group cohomology. Points of XOT ¥ may be
fixed by non-trivial finite subgroups of I'. As long as we work with I'-modules that
are vector spaces over C this is not important. For (1) it suffices if we can divide
by 2 and 3 in the modules that we use.
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For a cocycle ¢ € Z\(F ‘T; V, W) the value c(p) on a cycle p € Z[X(lr] corre-
sponding to a path from P; to P, (both in X(()r ) does not depend on the choice of
the path along edges in X7, only on the end-points P; and P,. So we can write

c(p) = c¢(Pq, P3), and view c as a function on XOT X X(()r . In general c(p) € W. It
satisfies

¢(P1,P3) = c(P1,P2) +c(Py,P3) forPjeX] ,

©.3) -1 -1 T
c(y "P1,y 'Py) = c(P1,P)ly foryel', P;jeX; .

If both P; and P, are in X(()r ’y, then the path can be chosen in Z[X(()T ’y], and hence
c(p)eV.

Now choose a base point Py € XOT Y Then Uy = c(y‘lPo, Py) is in V for each
y € T. It turns out to define a group cocycle ¥ € Z!(I'; V). It is even a mixed
parabolic group cocycle in Zplb(l“; V,W). Let us check this in the situation of the
modular group, with the tesselation discussed above. Then

Ur = (T 'Py,Py) = (T Py, T7'Po) + c(T™' Peo, T 0)
+0(00, Poo) + ¢(Poo, Py) = (—C(eco) + c(Peo, Pp)) | (1 = T) € W|(1=T).

This computation shows that the presence of co as a vertex of the tesselation forces
parabolicity of the cocycle. (We use | to denote the action of I" on the F ?— = C[XI.T],
as well as in the modules V and W.)

On can check that this association ¢ — i sends coboundaries to coboundaries
and that taking a different base point Py does not change the cohomology class.
The map ¢ — ¢ is an easy way to describe the canonical isomorphism between the
description of cohomology with a tesselation and the standard description of group
cohomology.

9.3. Cocycles attached to automorphic forms. To describe the linear maps ré :
A.T,v) - H\T; OF,_) and q’ : A0 — H\T; &) in Theorem A and
Proposition 6.10 in the approach to cohomology based on a tesselation 7 we
use for an unrestricted holomorphic automorphic form F € A,(I',v) the cocycles

yp e Z'(FTY; 09 ) and cp € ZN(F7Y; EY,) given on edges x € XT’Y by

v,2—r
9.4)  yp(xn) = f w(F;1,7) = f (-0 F(r)dr,
9.5)  cp(xiz) = f K (1) F(t)dr = f 2 (%_T)r_lF(T)dT.
TEX 1ex X~ T 2—2Z2

The orientation of the edge x determines the direction of the integration. We use
the boundary germ cohomology in the next section, and hence will work with the
cocycle cr. Property iv) in Proposition 8.4 implies that c¢ has values in .

. 0 .
Notations. Let & = lim&>*[ay, ..., a,], where {ay, ..., a,} runs over the
—

finite subsets of cusps of I'.
The space & *°*°, defined in Proposition 8.4, is invariant under the operators
0
lrg with g € SL,(R), but these operators act in & **° only if g maps cusps to
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0 s .
cusps. By &2, &%, and &, we denote the I'-modules for the action |, on

the corresponding spaces.
Image of q*. For edges in X(lr \ X?’Y the integration does not make sense, unless
F happens to be a cusp form. To extend cy to X(lr we need to define cg(e,) for each
cusp a of I such that cg(d,V,) = 0, in the notation of §9.1.

For weights r € C \ Zx; and the highest weight spaces in Definition 8.1, Theo-

rem 3.9 implies q“A,(T,v) C H;b(l"; &Y, 8&2’exc). For r € Z>, we will see in §11.1
that not all automorphic forms give rise to mixed parabolic cocycles with values in

the analytic boundary germs.

9.4. Derivatives of L-functions. In the introduction we mentioned that deriva-
tives of L-functions can be related to cocycles. We illustrate this here by an exam-
ple.

Let f be a newform of weight 2 for I' = I'y(V) such that Ly(1) = O (under the
assumption that f is even for the Fricke involution). Set

u(z) = log(n(z)n(Nz)), Z€D.
Then, as shown in [49],

1 (0o
9.6) Li(1) = - fo Jyu(iy)dy.

This integral, though reminiscent of a period integral, has an integrand that is far
from I'-invariant and thus does not give a cocycle. To address this problem, we
first note that, by the defining formula of u(z), the RHS of (9.6) equals the value at
r = 0 of the derivative

d (1 (=
d—(— f f(iy)(n(iy)n(iNy))’dy)
r\m 0

This integral is still not I'-invariant but now it can be formulated in terms of cocy-
cles considered in these notes.
Set

r=0

fr(@) = f@ME@NN)" .
This is a cusp form of weight 2 + r for I' depending holomorphically on r on a
neighborhood of 0 in C. The corresponding multiplier system w, is also holomor-
phic in r.
We refine the tesselation in Figure 14 such that the geodesic from O to oo is a
sum of edges, forming a path p € Z[X{IT]. (Then the faces V., and &y are each
divided into two faces.) We have for any automorphic form F' the value

Yr(pit) = f w(F;1,7).
T€p
Applying this to f, defined above, we obtain i1, (p;-) € D,[0, co], since f; is a
cusp form. In particular

©.7) Wi (p;0) = i fo Flig) & o dy
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With the change of variables y — 1/Ny, using the invariance of f, under the Fricke
involution, this can be seen to be equal to

_l-Nfr/Z en’ir jo‘ f(iy) eru(iy) dy.

With Goldfeld’s result we obtain the following relation between the cocycle /.
and the L-function:

Y (p;0)
©-8) +0(?) (r—0)
—mir (1) + o) (r—0).

—iLs(1) + r(g log N Ly(1) = * Ly(1) — mi L/i(1))

9.5. Related work. The general approach to group cohomology via an arbitrary
projective resolution is well known. See for instance, in Brown [8], Chap. III, §1,
for the definition, and Chap. I, §5, for the standard complex. Also more topolog-
ically oriented complexes are well known; see for instance [8, §4, Chap. 1]. In
[15] the tesselations of the upper half-plane based on a fundamental domain of the
discrete group in question turned out to be useful.

10. BOUNDARY GERM COHOMOLOGY AND AUTOMORPHIC FORMS

10.1. Spaces of global representatives for highest weight spaces. Property i) in
Proposition 8.4 shows that elements of E are represented by elements of H°(U),
hence by r-harmonic functions on U N $. Property v) shows that if F € H2(U) is
non-zero, then U D 9 is impossible. For the cohomological manipulations in this
section it is desirable to have spaces of representatives that are defined on $. If
non-zero, these functions cannot be r-harmonic everywhere on $).

Definition 10.1. We define the spaces G“, G and g;“(’ of functions on $:
(10.1) G’ {F € CZ(Sj) : there exists an open neighborhood U
of P}, in P such that Flyng is in Hy (U)

and represents an element of 8‘;’} ,

(10.2) Qr‘“*’exc : {F € C%(9) : there exists an excised neighborhood U

such that Flyng is in HE’(U) and represents
an element of & ’exc} ,

(10.3) g;“"’“c = {F € C*(9) : there exists an excised neighborhood U
with excised set consisting of cusps, such that Flyng

is in H®(U) and represents an element of 8;"0’6“} .
The operators |.g with g € SLy(R) act in G and G, and in Qr“’o’exc ifg eT. By

e Gor L Gy we denote the corresponding I'-modules with the action |, .
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Remarks. (a) This definition formalizes for & what we did informally for 2’ in
Remark 4.2, b).

(b) While, by Part v) of Proposition 8.4,
(10.4) H(H) NG~ = {0},

the space H,(9) N G~ "X contains non-zero elements, for instance the functions
F., in (8.20).

Definition 10.2. We define N, N, or Nr“’o’exc as the kernels of the natural

" 5 0 0 . .
maps G — &%, G© 7 — &, or G¥ T — & which assign to F the
boundary germ represented by it.
Proposition 10.3. i) N®, and Ni* *°*° are invariant under the operators |.g

with g € SLy(R), and the action |, , makes Nr“’o’exc into a T-module /\(,‘f;o’exc.
ii) The space N is the space Cf(.@) of the twice differentiable compactly
supported functions on $, and N, respectively N,wo’exc, is the space
of the twice differentiable functions on $ with support contained in a set
$ \ U where U is an excised neighborhood of PL, which in the case of

0
N2 has an excised set consisting of cusps.
iii) The diagram of T'-equivariant maps

w w )
0 M),r v,r Su,r 0

o

w*,exc w*,exc w*,exc
O*>}VUJ’ — G Hav,r’ —(

commutes. The rows are exact sequences.

Proof. Part i) follows directly from Definition 10.2.
For Part ii), suppose that F is in the kernel of G* — &%, G* exe _, gwhexe op
wfexc |, golexe thon B = 0 onaset UN$ with U a neighborhood of P§, in P(,, or
Un$ = Uyn$ for an excised neighborhood Uy of Pﬁ. In the former case H\ U is
relatively compact in $, hence F has compact support. In the latter case F is zero
on an excised neighborhood intersected with $.

For the exactness in Part iii) we need to prove the surjectivity of the linear maps
G¥ — &2 and G¥° — . The commutativity of the diagram is clear.

We start with a representative F € H’(U) of an element of &, respectively
EY where U is a neighborhood of P; in Pf, respectively contained in an ex-
cised neighborhood Uy of P]{R such that U N 9 = Uy N H. We take smaller sets
U, c U, c U such that U, is a neighborhood of the closure of U; and U is
a neighborhood of the closure of U,, and consider a cut-off function ¢ € C%(%)
equal to 1 on U; and equal to O on $ \ U,. Then z — ¥(z) F(z), extended by 0,
is an element of G“, respectively r“’*’exc, representing the same boundary germ
as F. O

Lemma 10.4. Let A € C*. Ifh € E°° and 11|, T — h € E2, then h € E*[o].
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Proof. In the same way as for Lemma 3.1. O

Definition 10.5. i) For f € &2 we denote by BdSing f the minimal set
{é1,...,&,) such that f € E>[&,...,&,], and call it the set of bound-
ary singularities of f. For F € H®(U) we denote by BdSing F the set
BdSing f for the boundary germ f represented by F.

ii) For any twice differentiable function F' on $ we denote by Sing, F' the
complement of the maximal open set in $ on which A.F = 0, and call it
the set of singularities of F.

iii) Analogously we define G*%°[£1, .. .,&,] as the set of F € G repre-
senting an element of E*°[£,, ..., &,], and BASing . F for F € G as
the set of boundary singularities of the element of & *° that F represents.

Remarks. (a) BdSing F c P}, and Sing, F C § for each F € G e,

(b) For elements of Z);’_* . we dealt only with boundary singularities, and often
called them singularities. For &2 and G“"*° it is important to distinguish both
types of singularities.

(c) The properties in Proposition 8.4 imply properties of sets of boundary singu-
larities. For instance

(10.5) BdSing (fl,g) = ¢ 'BdSingf  forg e SLy(R).

(d) If F € G” then Sing, F is a compact subset of $, and if F € G~ X then
Sing, F is contained in an excised neighborhood.

A-periodic elements.
Definition 10.6. For A € C*, put 7,(1) := {f € &% : f,T = A f).

Lemma 10.7. Let A € C*.
i) Each element of 1,.(A) is represented by a unique A-periodic function in

H(H) N G
i) If F € N* ¢ is A-periodic, then F = 0.

Proof. LetF € G* "exe represent an element of 7,.(1). Then it represents an element
of &”%“[c0] by Lemma 10.4.

From Part i) in Proposition 8.4 we
see that F € H.(U N ) for an ex-
cised neighborhood U with excised set ) o
{co}, and that "' F(z + 1) = F(z) for all u singularities
zeHSNUNT'U.

This implies that F can be analyti-
cally extended to give a A-periodic ele-
ment of H,($). Since this analytic ex-
tension is determined by its values on a U
strip 0 < Imz < g it is unique.

Ficure 15
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If the A-periodic function F represents an element of Nr“’*’eXC then F is zero
on U, hence the extension is zero. O

Lemma 10.8. Let a be a cusp of I'. Denote by I, the subgroup of T fixing a. Then
the following sequence is exact:

w*,exc\[| w*,exc\[| w* exc\['
0_>(Nl),r u_>( u,r u%(SU,r QHO'

Proof. The group I, is generated by 7, = g,Tg,'. By conjugation we can reduce
the statement of the lemma to the exactness of the sequence one obtains if one takes
in the sequence

0— }er*,exc N g;u*,exc N 8(;)*,exc =0
the kernel of the operator |.(1~'T — 1) with A1 = v(rr,). This does not necessarily
produce an exact sequence, but here we get by Lemma 10.7 the sequence

0-0- 1) — 1) -0,

which is exact. (We identify 7,(1) with the space of the harmonic representatives
in Part i) of Lemma 10.7.) O

Lemma 10.9. Let A € C*. Suppose that the function F on $ satisfies:
a) F e G,
b) Sing, F is a compact subset of 9,
¢) 2> AV F(z + 1) — F(z) is an element of G.

Then F =P+ Gwith P e I,(1) and G € G*.

Proof. The open set H\Sing,. F is of the form UN$ with U a neighborhood of P]%% in

PL. The restriction f of F to U N $ represents an element of £ Assumption a)
implies that f represents an element of &*“[co], by Lemma 10.4. Part vii) in
Proposition 8.4 implies the existence of p € 7,(1) such thatg = f—p € &”. Taking
P as the global representative of p in Part i) of Lemma 10.7 we get a representative
G:=F-PofginG". O

10.2. From parabolic cocycles to automorphic forms. Now we start with a
mixed parabolic cocycle and construct a corresponding holomorphic automorphic
form.

Proposition 10.10. i) Ifc e Z\(FT ;agr,a‘;jf’e’“) there is u([c],-) € AT, v)

that depends only on the cohomology class of ¢, and [c] — u([c], -) defines
a linear map

(10.6) @, HY(T38%,,8279¢) = AT, 0).

u,r?

ii) Let F € A,(I,v) such that q°F € Hr}b(l“; &, 83?2’“0), then u([cF],) = F,
with cg as in (9.5).

Proof. The proof is almost identical to that of [15, Proposition 12.2]. Table 3
compares the analogous quantities. Instead of repeating the proof, we give below
a discussion of the main ideas in the context of the modular group. There is one
complication, which is not present in [15]. We handle it in Lemma 10.11. O
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holomorphic forms Maass forms
[-module &Y, I'-module ‘W
0 *
I-module &, I-module W, *¢
cocycle ¢ cocycle ¥
cochain & cochain ¢/
w w0 exc w w* ,exc
v,r? v,r s 0 K}
0 *
w W’ ,exc w w*,exc
Ny Nor N, N
u([C], ) Uy

TaBLE 3. Correspondence between the quantities in the proof here,
for holomorphic automorphic forms, and the quantities in the
proof of [15, Proposition 12.2], for Maass forms of weight O and
more general invariant eigenfunctions. Here we work with bound-
ary singularities restricted to the cusps, whereas in [15] the singu-
larities were general at first, and had to be reduced to singularities
in cusps by an additional step.

Lift of the cocycle. let ¢ € Z'(F";&% 832’6“) be given. Its values c(x) on

v,r>

w9 exc
v,e

X € X;r are boundary germs in &, See the right column in the diagram

W’ exc

in Proposition 10.3. We want to lift ¢ to a cochain ¢ € CI(F_T; lfj’r, o),
which involves the central column in the diagram. For each x in the C[I'(1)]-
basis {ey, €2, foo} Of F T’Y we can, according to Proposition 10.3 choose a repre-
sentative ¢(x) € G, of c(x) € &],. For c(ew) we can choose a representative

t(ew) € Q,jf’;’exc. Since &(ewo)ly, (1 = T) represents c(eco)lo. (1 = T) = c(feo) € EL,,
we have BdSing é(ew) C {oo} by Lemma 10.4. So ¢ is determined by

Z(er), ¢en), ¢(f) € G-, representatives of c(e1), c(e2), c¢(fwo),

(10.7)

t(ew) € G,7[o0], representative of c(ew) .

For each x € {ej, ez, fwo} the set Sing, ¢(x) is compact. So we can find R >
0 such that for each of these three edges the set Sing, ¢(x) is contained in the
R-neighborhood (for the hyperbolic distance) of x. Furthermore Sing, ¢(es) is
contained in the complement of an excised neighborhood with excised set {oo},
hence

Sing, #(ex) C{z€H : [Rezl <& !, Imz > g},

for some & > 0.

Since ¢ is given on a basis of F7', we can extend it C[I'(1)]-linearly, and obtain

a cochain ¢ € C'(F7; G2, U‘",O ). There is no reason for the lift ¢ to be a cocycle.
For any y € X(lr and any y € T'(1) we have Sing, &(y~'y) = y~! Sing, &(y). So
fory € X(IT’Y the set Sing,. ¢(y) is contained in the R-neighborhood of x. Similarly,
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Sing, é(y'es) is contained in

(10.8) {y'z : Rezl <& ', Imz > &}.

This means that the singularities of any &(y) cannot be “too far” from the edge
ES X(lr.

Construction. We start the construction of an automorphic form. First we work
on a connected set Z C $ that is contained in finitely many I'(1)-translates of the
standard fundamental domain §. We choose a closed path C € Z[XIT] encircling

Z once in positive direction. Since Z may contain a translate of § this path may
have to go through cusps, as illustrated in Figure 16. We can take the cycle C

A

\_/
Nl Y

FiGure 16

far away from Z, such that Sing, &¢(x) N Z = 0 for all x occurring in the path C.
Moreover, since the R-neighborhoods of edges in X;T’Y, and the sets in (10.8) are
simply connected, we even know that Z is contained in component of H\Sing, ¢(x)
that has a part of the boundary ]P]}% of 9 in its closure. So Z is in the region on which
¢(x) is a representative of c(x).

We define for z € Z:!

1
(10.9) u(C;z) = EE(C)(z).

So u(C; z) is the sum of contributions j—;é(x)(z) with x € X(lr occurring in C. Since
C is far away from Z the function u(C; ) is r-harmonic on (the interior of) Z.

Independence of choices. The next step is to get rid of the choice of the lift ¢ and of
the choice of ¢ in its cohomology class. This can be done in exactly the same way as
in[15, §7.1 and §12.2]. The main reasoning is given in [15, §7.1] for the cocompact
case. There it is explained that the definition does not depend on the choice of the
cycle C, provided it is far enough from Z. This implies that u(C;-)|,,y = u(C;-)
on the intersection Z N y~'Z for y € T'. The function is r-harmonic on the interior

IThe factor 4%( differs from the factor 7% in [15]. This is caused by a difference in the normalization
of K,(-;+) in (6.12), and ¢,(-,-) in [15, (1.4)].
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of z, by the same argument as in [15, §7.1]. The independence on C allows us to
enlarge the set Z, thus ending up with an element of Harm,(I', v), which we now
can call u(c; -).

By the reasoning in [15, §7.1] the r-harmonic automorphic form that we ob-
tained is independent of the choice of the lift ¢ of ¢, and of the choice of ¢ in its
cohomology class. So we may now denote it by u([c]; -).

Remaining questions. There are two questions left: (1) Is u([c];-) a holomorphic

automorphic form? (2) If q”F happens to be in H(I'; EY,, SZ‘fs’eXC), what is then
the relation between F and u(q¥F;-)?

Question (1) does not arise in [15]. The following lemma treats it, for general
cofinite I with cusps.
Lemma 10.11. Let & € C\(FT;G%, G ) be a lift of ¢ € Z'(FT; &, E%°).
Suppose that C = )’ ;e x; € Z[XT] (finite sum, with g; = +1, x; € X(lr) is a cycle
encircling an open set Z € $ once in positive direction, such that for each x; the
set Z is contained in the set where ¢(x ) represents c(x;). Then &(C) is holomorphic
onZ.

. » 0
Proof. For each x; the function ¢(x;) represents an element of &, on some set

U; as in Property 1) in Proposition 8.4, and Z C U;. By Property vi) we know that
&-6(x;) has a holomorphic extension /; € O(9). Since C is a closed cycle, we have

Sl @ S2

S3 S4
Vi V2

Figure 17. Illustration for the proof of Lemma 10.11. We take
C = Zjﬂ g;jxj. The singularities of ¢(x;) are contained in S,
and we can take U; = $ \ §;. The union V; U V; is an excised
neighborhood, on which ¢(C) represents c(C).

c¢(C) = 0in 832’6“. So &C) = 0 on an excised neighborhood V on which &(Z)
represents c(Z). This neighborhood is contained in the intersection of the U, but
will in general not contain Z. See Figure 17.
We now know the following:
v c(x;) = c(xj) onU;D>Z,
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Vji E‘(x]') Zhj OntDZ,
¢C) =cC) =0 onV,
£8(C) = Zgjg,a(x,) =0 onV
J
Zsj hj = Zsjfré(xj) =0 on $ (continuation)
J J
£6C) = Y 8i&8(x) = Y &ihj=0 onZ
J J
u([cl;-) = &(C) is holomorphic on Z . O

This lemma implies directly that u([c];-) € A,(T,v), thus completing the proof
of Part i) of Proposition 10.10.

The other remaining question concerns Part ii), to which we apply Cauchy’s
formula:

Lemma 10.12. Suppose that [c] = q“F € H)(T;E2,, 832’6XC) for some automor-
phic form F € A.(',v). Then u([c];) = F.

Proof. By analytic continuation it suffices to show the equality on some non-empty
open set. Let us take Z open and relatively compact in the interior of the compact
face &y of the tesselation contained in the fundamental domain.

For z in the interior of &y we have

(10.10) DT = f

HhEy LT

2i (z_ T)r 1 Fo)dr.
-z

as follows from (9.5). The factor (Z;T;)r 1 is holomorphic as a function of 7. So the
value of the integral is 47 F'(z) for z in the interior of Jy, in particular for z € Z.
The hyperbolic distance of Z to 9,y is larger than some £ > 0. We can choose the
lift ¢ of ¢ such that for each x € XIF’Y the singularities of ¢(x) are contained in the
g-neighborhood of x. Then ¢(d>Fy) is equal to c(d,Fy) on the path of integration
in (10.10). O

Averages. An alternative to (10.9) is the description of u([c];-) as an infinite sum,
which is a kind of Poincaré series.

Definition 10.13. Let f be a continuous function on $ with support contained
in finitely many I'-translates of a fundamental domain of I'\$. We define the I'-
average of f by

(10.11) Ao HNED = D (N @.

ye{=I\I'

Remarks. (a) We have |, .(—y) = |,»¥, so it makes sense to sum over {+1}\I'.

(b) Under the support condition in the definition the sum is locally finite and
defines a continuous function that is invariant for the action |, of T.
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(c) The name average is convenient but slightly incorrect, since we do not divide
by the (infinite) number of terms.

(d) To use the average to describe u([c], -), we start with the exact sequence

0 (1] 0
(10.12) — Hy(T3G. G2 ) > Hoy (T3 8¢, 82,5°) — Ho (T N, Ny ) —

V1
The exactness follows from [15, Proposition 11.9]. To see that the conditions of
that theorem are satisfied, we use the diagram in Part iii) of Proposition 10.3 and
Lemma 10.8.

0 0
Let ¢ € CY(F7;G%. G ) be alift of ¢ € Z'(F7;8%,,E,°). The exact

sequence (10.12) shows that d¢ € Hfb(l“; N2, }\{,‘f;o’exc). We apply dé to the funda-
mental domain & of I'\$ underlying the tesselation 7. So dé(&) = de(Fy)+dé(Veo)
in the case of I' = I'(1), and in general d¢(¥) = dc(Fy) + X, de(V,), where a

runs over the cusps in the closure of the fundamental domain §. This implies that
0
de(F) € N5, hence we can apply Avr,, to it.

Proposition 10.14. With the notations of Proposition 10.10:
1 . 1 -
(1013)  ulel.2) = J(Arudd®)E) = o > (@ @®)],, 7 Q.

n ye{=1\['

Proof. The proof follows the approach to Propositions 7.1 and (12.5) in [15]. O

Remark. On first sight it may seem amazing that the sum of translates of the non-
analytic function dé(%) is a holomorphic function. See the discussion after [15,
Proposition 7.1].

10.3. Injectivity. Proposition 10.10 gives us a linear map «a, from mixed para-
bolic cohomology that is left inverse to q%’. It might have a non-zero kernel.

Proposition 10.15. The linear map «, in (10.6) is injective.

Proof. The proof is based on the exact sequence (10.12) and the average in (10.13):

(10.14)  HLT G G ) — HAT: 60, 80°) = HAT NG NE)

V.1 V1 v, 1>

lar [b]HAVl"u)h(g)i
AT, o) XS,

The vertical map on the right is given by associating to the cohomology class [b]
the average Avr,,b(%¥). By Cz(sﬁ)v,r we mean the space C4(%) provided with the
action |, of I'. The map «, is the composition of the connecting homomorphism &
and the vertical map. Failure of injectivity might be caused by ¢ and by the average.

Lemma 10.16 below implies that the vertical map cannot contribute to the kernel
of @,. That leaves us with the connection homomorphism 6. Lemma 10.17 below

gives the vanishing of H),(I'; G, g,f"f *©%¢), and hence the injectivity of d. o

Lemma 10.16. Let c € Z/(F7 ;& 8;‘,’2’6“) and let  be a lift of ¢ as in (10.7). If

u,r?

0
AVE 3, dE(F) = Tyereipr Aoy = 0 then dé € BXH(F7 5 N2, N5 ).
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Proof. The proof is analogous to that of [15, Lemma 12.6]. Here we discuss it in
the modular case I' = I'(1).

A cocycle b € Z2(FT; NY, NU‘,‘;O’“C) is determined by its values on the faces
(Vo) and (Fy). The freedom that we have within a cohomology class is to add
to (b(V), b(Fy)) elements of three forms: (1) (u, —u), with u € N (related to
the edge fw), (2) (tl,,(1 — T),0) with 7 € /\/U‘f;*’exc (related to the edge ew), (3)
(0, wl,, (1 —y)) withw € N, y € I (related to the edges e; and e>). So b(F) =
b(Ve)+b(Fy) is determined by b up to addition of an element of /\/U(j;*’exclv,,(l -T)+
ZyeF Mf;lv,r(l - 7)

The first consequence of this description is that Avr, b(¥) does not depend on
the choice of b in its cohomology class.

Now we consider b = d¢ as in the lemma. The element b(Fy) is in N C Cf(b).

So there is ¢ > Y such that the support of H(Fy) does not intersect the region

U{yz :Imz> q}.

yell
Further, since (V) = €(ex)lv(1 = T) — &(f-) and &(e) represents an element of
Enif¥¢eo], we know that b(Vs) has support in a set of the form {z €  : Imz >
g, Rezl < 8_1} for some & > 0. We deal with C?-functions, and hence we can
split off from b(V.,) an element u € Cg(b) = N and move it to b(Fy), by the
freedom indicated above. In this way we arrange that b(V,) has support in the set
{ze$ : Imz>qg—-1, [Rezl <& ').

We take a partition of unity @ on R: @ € C>(R) such that ¥,z a(x + n) = 1 for
all x € R. We take 8 € C%(0, o) such that B(y) = 1 fory > ¢ + 6 with § > 0 and
B(y) = 0 for y < g, and put ¥(z) = a(Rez) B(Imz). So 3, x(z+n) = 1 for all z with
Imz>gq+6.

The element b; € C*(F7; N, NU"‘}*’GXC) determined by b(Fy) = 0 and

bi(Ve)@) = D (b(Ve)xC+m) |, (1=T™()

nez
is a coboundary. (Note that the terms in the sum vanish for all but finitely many #.)
We define b = b — by, which is in the same cohomology class as b. Furthermore,

b(Ve)(2) = b(Ve)@) = D (B(Ve)@) - x(z + m) = b(Ves)(z = 1) - X(2))

(10.15)

aRe)BImz) > b(Veollory (@)
Ye{FIN(De

Now we use the assumption that Avr, .b(F) = 0. From our knowledge of the
supports of b(Fy) and b(V) we conclude that (Avr,, b(F))(2) = (Avry,b(Ve))(2)
if Imz > g + 6. Furthermore, for Imz > g + 6 the expression in (10.15) is equal
to a(x) (Avr,,b(Vs))(z), since for the terms with y ¢ I'(1),, the intersection of
the supports of the factors in (10.15) is empty. So h(V.,) vanishes on this domain,
hence it has compact support. So we can move (V) to b(Fy).
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We are left with a cocycle b given by b(V.) = 0 and 13(&) with support not
intersecting the region
U{yz : ImzZq+6}.
yell
We take a I'(1)-partition of unity ¥ € C*($) with support of ¢ contained in the
union of finitely many I'(1)-translates of . So Xy csipnr¥(yz) = 1 forall z € 9,
and the sum is a finite sum for all z. We write f = @(?g) = ZAJ(&/), and know by the
assumption that Avr, ,f = 0. For z € $:

@) = fQ-v@QAL N = Y (FQUG ) =@ fluy @)

ye{=INT

Doy Ml =),

ye{=IND

For almost all y the intersection of the supports of f and ¢ o y~!' have empty
intersections. So the sum is finite, and b is a coboundary. O

wo,exc
Lemma 10.17. H,(T; G2, G, ) = {0}.

v,r?

Proof. Similar to the proof of [15, Proposition 12.5], to which we refer for the full
proof. Table 4 gives a list of corresponding notations and concepts.

holomorphic forms | Maass forms wt. 0
[-module G, I'-module G
I'-module g,f”,o e I'-module G ¢
cocycle ¢ cocycle ¥

(&, &) Yeg

TaBLE 4. Correspondence with [15, Proposition 12.5].

Letc € ZV(FT; G2, gg"f *%) be given. This cocycle induces a map X x X —
8&2’6’(0 which we also indicate by c. It has the properties in (9.3). The aim is to

show that it is a coboundary. To do that is suffices to show that the group cocycle
VY c(y‘1 Py, Pyp) is a coboundary for one base-point Py € X(r)r.

(a) There exists R > 0 such that Sing, c(x) € Ng(x) for all edges x € XIT. The set

Ng(x) is an R-neighborhood of x for the hyperbolic metric if x is an edge in XIT’Y,
and a more general neighborhood defined in [15, (12.2)] if x is an edge going to a
cusp.

(b) We prove that c(a, b) € H,.(9) for any two cusps a, b.

Suppose that z € Sing,. ¢(a, b). The value of c(a, b) is the value c(p) for any path
in Z[Xrlr ] from a to b. We can move the path p away from z in such a way that z is
not in Ng(x), in (a), for any of the edges x occurring in p. So Sing, c(a, b) = 0.

(c) By breaking up a path from ato b at a point P € X(()r’Y = Xg— N$ it can be shown
that Sing,. c(P, a) is a compact subset of $ for any path Z[XIT] from Ptoa e C.
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(d) Now Lemma 10.9 can be applied to the conjugated element F = c(P, a)l,(r;l.
We note that F € G **°, for Condition a), that its singularities are contained in a
compact set, for Condition b), and that

Flo,(1 = 70) = e(Pa)l,,(1 —7) = c(Pm;'P) e G

implies Condition ¢). The conclusion is that F = Q. + G, with Q, € G, ,0 exe
satisfying Qql,,m. = P, and G € G, representing an element of &”. Then use
Lemma 10.7 to see that Q, € H,(H). ’

(e) Such an element Q, exists for all cusps a, and for b = y~'a we have Qp =
Qalv,r?’-

(f) The transformation properties of the Q, allow us to define another cocycle ¢ in
the same class as ¢ by taking for x,y € Xg :

0, ifxeXx] \x)" }+{ -0, ifyeXx] ~x)", }
0 ifxex)” 0 ifyexy’.

It has the property that ¢(a,b) € H,(9H) N G* for all cusps a,b. Property (b) in
Part vii) of Proposition 8.4 implies that c(a,b) = O for all cusps. Taking a cusp as

the base point Py, we see that the cohomology class of the cocycle ¢, and hence of
the original cocycle c, is zero. O

c(x,y) = cx, y)+{

10.4. From analytic boundary germ cohomology to automorphic forms. We
have obtained two linear maps, q% (Proposition 6.10) and «, (Proposition 10.10):

AnT,0) ——> H'([ %)

(10.16) \

0
leb(r; & S(Zfr,exc)

v, 1

We recall that leb(l"; &Y Sffz’exc) C H'(I'; 8,). The following theorem shows the

V1
relation between these maps.

Theorem 10.18. Let I be a cofinite discrete group of SLo(R) with cusps. Letr € C
and let v be a corresponding multiplier system.

1) Both linear maps q¥ and «, in (10.16) are injective.

ii) Define

wy\—1 . ow w0 ex
(10.17) AS(T,0) = (q¥) HLT;E¢,,89,°5).

v,r?
Then the restriction of q° to AS(T',v) and the restriction of a, to the
0
image q*AS(T,v) C H;b(r; &Y., &) are inverse to each other.

v,r?

q’
A8(T,v) == q@AS(T, v)
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Proof. Proposition 10.15 gives the injectivity of a,. Suppose that F € kerq®.
(Then F € A?(I“, v) by the definition in (10.17).) Proposition 10.10 ii) shows that
aqYF = F,hence F = a,0 = 0. This shows that q* is injective. This gives Part ).
Part ii) of Proposition 10.10 shows that @, o q¢ is the identity on AZ(T, v). Since

q” : A8, v) — q@AS(T,v) is surjective Part ii) follows. O

10.5. Completion of the proof of Theorem A for general weights. We con-
sider r € C \ Zy. Proposition 2.4 shows that r¢ : A,I,v) — H\(T; D)
is a well-defined linear map. Theorem 3.9 shows that the image is contained in

H-(T: D, D) We have the following relations:
w3 D0, . g relations:

v,2—r

w
r,

AT:0) —"> HY(T DY, |, D) H' (D)

AB(T,v) —— HL([; 82, 845

p v,r?

Definition 8.1 of the highest weight spaces of boundary germs &; as isomorphic
to the corresponding highest weight spaces O, induces an isomorphism in coho-

mology. Theorem 3.9 implies that r*A,(I,v) C leh(l"; DY Z);";’_erxc), and hence
Q@A v) C HL(T 8%, E%5) by q¥. So A&, v) = AT, v). Theorem 10.18

v,2—r’ Tv,2-r
then gives the inverse @, of q:

AT 0) —> HY(T D, D) H' [0

v,2-r v,2—r)
T = = Tpr

q’
AHT,v) === H,(T; &Y, 84,

[ v,r?

10.6. Related work. As indicated at several places in this section, we followed
closely the approach of [15], §7 and §12.2-3.

11. AUTOMORPHIC FORMS OF INTEGRAL WEIGHTS AT LEAST 2 AND ANALYTIC BOUNDARY
GERM COHOMOLOGY

In this section we will prove Theorem D, which concerns automorphic forms
with weight r € Zs, and analytic boundary germ cohomology.
Throughout this section we only treat the case of weight r € Z5.

11.1. Image of automorphic forms in mixed parabolic cohomology. The linear
map ¢ : A,(T',v) —» H'(I'; We(P})) in Proposition 6.10 has image in H'(I'; E2),
by Property iv) in Proposition 8.4.

Definition 11.1. For all » € C we define

(11.1) A?(F, v) := {FeA[,v) : ap(a, F) =0 for all cusps a with v(rr,) = 1}.
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See (1.14) for the Fourier coefficients a,(a, F') at the cusp a.
The idea is to allow automorphic forms with large growth at the cusps, but not
to allow constant terms in the Fourier expansion.

Proposition 11.2. Let r € Z5y. For each F € A,(I',v) the following statements are
equivalent:

a) qUF € H)\(T[; 8%, 84,

b) F € AT, v).

We will base the proof on the following lemma:

Lemma 11.3. Let r € Zsy, 70 € $, and A = e*™ with a € C. Suppose that the
holomorphic function E on $ is given by the Fourier expansion

E(T) — Z a, eZﬂ'in‘r )
n=a(l)

Then there exists h € E[oo] such that
)

(11.2) A h e ) - h(z) = f K,z E()dr,

T=70—1

ifand only if A # 1 or ag = 0.

Remark. If A # 1, then n in the Fourier expansion does not run over the integers,
and ag is not defined.

Proof. This is a situation similar to that in §3.4. We can split up the Fourier expan-
sion of E. For the cuspidal part

E (1) = Z a, eZmnT
n=a(1),Ren>0
Wwe can use

(11.3) he(z) = foo K. (z;)E(7)dt

for z € D\ (zo + i[0, 0)). (In this way we avoid the singularity at T = z. See (6.12).)

Expression (7.8) gives, for those 7 that have smaller hyperbolic distance to i
than z, an expression for K,(z;7) in terms of a linear combination of M, , with
I —r < pu < -1 and an explicit expression p,(z;7). The factors of the M, are
holomorphic on Péj \ {—i}, and p,(z; 7) is meromorphic on Pé: X Pé:, with singularity
in $ X 9 given by z—% So (7.8) is valid for all (z, 7) of interest in (11.3).

On insertion of (7.8) the integrals of the term with M, ,(z) yield, by the expo-
nential decay of E.(7), a multiple of M, ,, hence in &’. The term with p,(z;7)

gives
© 9 _ -1
f : & E.(t)dr.
=202~ T (z— l)r_l

It yields a holomorphic function on C \ (zg + i[0, 0)), hence the result is an ele-
ment of DF”**“[co]. Together with the multiples of M,., we obtain an element of
&E%°[oo] with the desired property.
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We proceed similarly with the contribution E.(7) of the part of the Fourier series
with Ren < 0. The path of integration is replaced by the path used in the proof of
Lemma 3.6. If |[4] # 1 we can take @ € iR, a # 0, and use the paths as in the proof
of Lemma 3.7. This gives a function /., satisfying

20

AU heo(z+ 1) — heol2) = f Ki(z;7) Ex(T) dT.
=701
There remains the case of a constant Fourier term, present only if 1 = 1. We
look for h € E%°[oo] such that
20

h()(Z + 1) - ho(Z) = f Kr(Z; T) dr,

=701
. oL . _ ol
which maps under the restriction map to a relation for ¢ = p,h € Z)f_r.

20 a1 vl
disn-gw = [ @oiyrar = @0 S DT

T=70—1 r— 1

(We have used (6.13) and (1.19).) The right hand side is a polynomial in ¢ with
(=1)""?% as the term of highest degree in . Any polynomial solution ¢ is a polyno-
mial with degree r — 1 in ¢, and hence is not in D;flr. O

Remarks. (a) The function i = h + heo + ho € E°[o0] constructed in the proof
has Sing, i C zo + i[0, ).
(b) If A = 1 the constant term can be handled by fz(z)o_l K. (z;1)dt = ho(z+1)—ho(2),
with
- (z - z0)
114 ho(z) = —2ilog(z —z0) + 2ilogy — 2i —_— .
(11.4) 0(2) 8(z - 20) + 2ilogy ;( l )Z(Z_Z),

We note that although g is an r-harmonic function, it does not represent an analytic
boundary germ: hg ¢ W= (R).

Proof of Proposition 11.2. Let zg € $, and consider the cocycle ¢ in (6.19), which
represents the cohomology class q*F of F € A,(I',v). The following statements
are equivalent:

0
o q“F € H,(T;E2,, &, ).
e For each cusp a there exists 1 € &°[o0] that satisfies the relation (11.2)
with A = v(rm,), E = F|,0, and zg replaced by Ua_]Zo.

This gives the proposition. O

Relation (10.17) in Theorem 10.18 defines a subspace A‘rg(l“, v) C AT, v). We
state a direct consequence of Proposition 11.2:

Corollary 11.4. Let r € Zs,. Then AS(T,v) = A%T, v).

Next we would like to know that qA%(T", v) is equal to H), (I'; &2 Sfjf:’exc). This

v,r?
requires quite some work, carried out in the following subsection.
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11.2. Image of mixed parabolic cohomology classes in automorphic forms.

Proposition 11.5. Let r € Zs,. The linear map «, : leh(l"; &, 8$ff’exc) — AT, v)
in Proposition 10.10 has image in A%(T, v).

Proof. Let a cohomology class [c] € H) (I';E 8;‘,’2’6“) be given. In the proof

u,r?

of Proposition 10.10 the image u = a,([c]) is constructed in (10.9) as u(z) :=
u(C;z) = %E(C)(z), where the cochain ¢ € CY(F” ;G ,jf’,o’exc) is a lift of ¢ €

s
Zl(F.T;Sv“f,,S';f:’exc), and where C € Z[Xl’w] is a path around z adapted to ¢. We
use a tesselation 7~ and the corresponding resolution (F7 ) = (Z[X ]) as discussed
in §9.

We want to show that the automorphic form has vanishing Fourier coefficients
at all cusps of I'. It suffices to do this for one representative a of each I'-orbit of
cusps for which v(z,) = 1. (If v(mry) # 1 there is no Fourier term of order zero at
the cusp a.) This can be handled for each such cusp separately. By conjugation we
can assume thata =ocoand m, =T = ((1) i .

After the conjugation, the cuspidal sector V., looks exactly like that for the
modular group, in Figure 14, §9.1. The sector V, is bounded by edges e, from
P = % + iY (for some Y > 0) to oo, T 'ew from T oo to oo, and foo from Pg,
to 7~' P.,. By holomorphy it suffices to consider the Fourier term of order 0 high
up in the cuspidal sector.

The cocycle c satisfies c(fo) € EY, c(ec) € EY ¢ and ceco)lr(1 = T) = c(fao).
By Lemma 10.4 this implies c(ew) € & *“[e0]. We change the cocycle within
its cohomology class. Definition 8.2 shows that & *“[c0] = D*[o0] + EX. So
there is k € & such that c(ew) —k € D**[c0]. We define f € COU(F”; &%, 8‘,"0’6“)
by taking f(y'Ps) = kl-y forall y € T, and f = 0 on all other I'-orbits in X .
Then ¢; = ¢ — df is in the same cohomology class as ¢, and satisfies cj(ex) €
DP*[o0]. Replacing ¢ by c1, we can assume that the cocycle ¢ now satisfies
c(ew) € D*“[o0] and then automatically c(fw) € DY by the cocycle relation.

In the construction of u(C;z) in (10.9) we started with z in a given set Z and
showed that there are suitable cycles around it. Here we will take a special cycle C
and choose a region Z encircled by it, high up in $.
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Let & € CY(FT;G%,G4"°) be a lift
of c. Since c(f) € D, the set
Sing, ¢(f«) is compact in . The lift
¢(ew) can be chosen such that $ \
Sing, ¢(e«) is an {co}-excised neigh-
C borhood. The regions where ¢&(es)

Sing, #(ee)

€0

and ¢(f) are not holomorphic may be
Sing, &(fu) large, and cover the sector V.. We have

U drawn the edges x = e, fo inside the
singular set Sing,. ¢(x). This can always
be arranged, by the freedom we have
in the choice of the representative &(x)
of c(x).

FiGure 18

We would like to enclose the set Z
on which to study the function u by the T~V Voo | TVeo
boundary 0;Ve = €c — T e — foo-

However, the corresponding sets of sin-

gularities may very well overlap, leav- o

ing no space for a region Z. Instead of
this, we take the union of a number of
translates 77" V..

FiGure 19

We take k € Z5; large, such that there is a region of width at least 2 between
Sing, &(T*es) = T7*Sing, é(ew) and Sing, &(T*e.,) = T*Sing, ¢(ew). We put
gr = Zf:_ « T " foo. This leads to the situation in Figure 20. There is a region Q

Sing, &(T *ew) 0 Sing, &(T*e)

Sing, ¢(gx) R
‘ \__/ \__/

Ficure 20. Illustration of regions of non-holomorphy.

high up in the upper half-plane of width at least 2 on which &(T**e,,) and &(gy) are
holomorphic. The region § is disjoint from the region R in the complement of the
three singular sets that has R in its boundary.

We consider the cycle C = (T¥eo) — (T %ews) — (fgf)) € Z[XIT], with £ as fixed
above. It encircles Q once, so 41 u(z) = ¢(C) (z) for z € §. Furthermore, ¢(C) (z) =
0 for z € R by the cocycle relation.



100 ROELOF BRUGGEMAN, YOUNGJU CHOIE, AND NIKOLAOS DIAMANTIS

We had arranged that c(f) € D*. Hence g = ¢(f») € G~ is a global repre-
sentative of an element of D and h € C*(C) represents an element of Df**[co].
So we can apply Lemma 4.4, with r replaced by 2 — r. So there are holomorphic
1-periodic functions p. and p_ on C such that

tlew) = AVP T(foo) + P on 9.

This implies on $:
HO)R) = (A e T @) + p-(2) = (A E LI TE + pi(2)
k-1
- D EfIT"
n=—k
—1-k 00 k—1
= = DL ARG m + p-() = ) A ) = pa@) = Y &)
n=—o0 n=k n=—k
= P = ps@) = D Efu)z+n).

nez
Next we apply Proposition 4.3 to &(fw). The 1-periodic function Avr 1&(fe)(2) =
Ynez ¢(foo)(z + n) on $ is holomorphic on a region of the form 0 < Imz < £ and
on a region y > &~! for some & € (0,1). We denote the holomorphic function on
the upper region by AV;J&( f), and the holomorphic function on the lower region

by AV} 1€(fe0). Proposition 4.3 states that AV} 1¢(fe) has a Fourier expansion with

terms of positive order only, and Av% ,¢(f) a Fourier expansion with only terms of
negative order.
The domain of Avr; | &é(fw) is contained in the region R. There we find

0 = &0 = p-(2) = p+(2) — (A}, E(fo))().

So all Fourier terms of p_ — p, of order n > 0 vanish. This holds on $, since
p- — p+ 1s holomorphic and 1-periodic on $.
If z € Q then z is in the domain of Av] | &(fx), and

Aru(Ci2) = HO)@) = p-(2) - p+() — AV [ E(fw).

The function (AV; ,&(fe))(2) is given by a Fourier expansions with terms of positive
order. The term p_ — p, has a Fourier expansion with terms of negative order.
Hence the Fourier coeflicient of u at co of order O vanishes. O

1 ) w exc w A0
Corollary 11.6. Let r € Zsy. Then H, (I'; &}, &,,7) = q;” Ay (T, v).

v,r?
. 0
Proof. By Proposition 11.5 we have o, H plb(l“; &8 ) C AYT, v).
A given class [c] € H]}b(F; &Y, 8‘&2’6"0) has image a,[c] € A%T,v), and hence
q“a,[c] € q?AS(T,v) = q“A%T,v) (Corollary 11.4). Part ii) of Theorem 10.18
implies that @,q%a,[c] = a,[c], and then q¥@,[c] = [c], by the injectivity of e, in

Part i) of that theorem. This proves that H), (I'; 2 agff’e“) c q@ AYT, v).

v,r>
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The other inclusion follows from (q% )‘allb(F; & 8;’2’6"‘3) = A%T, v) (Proposi-

v,r?

tion 11.2). O
11.3. Exact sequences for mixed parabolic cohomology groups.

Proposition 11.7. Let r € Zyp. We put K1, := DE %1 = C (trivial representation),
and K, := {0} ifr € Zsz orv # 1.

The rows in the following commuting diagram are exact. (We have suppressed
I" from the notation.)

Ko, HY(DE) H'(&,) —> H'(OP ) — 0
(11.5) j j j
K, — H;b(DJf)r’ z);f’:’e"c) — Hl}b(a;f,, Sfjﬁ’exc)p;\ leb(@lf (2)1_,)

Proof. We use a commuting diagram of I'-modules:

0 Z)w 8(;’),» Pr DPOI 0

v,r v,2—1

116 [ | H

0 0 Pr 1
5 w",eXC R w" ,exc 5 PO s
0 Z)v,r 8u,r DU,Z—r 0

Both rows in this diagram are exact. Most of the exactness is clear from the def-
initions. The surjectivity of p, : &), — Z)é’fi and of the corresponding map

_ 7S
in the second row follows from the fact that (0}’ M, ,)(1) = (%)’H , such that

(orM (1) = (i - 1) ~2 (%ﬁ)’m form for 1 — r < u < —1 a basis of the space
of polynomials of degree at most r — 2. See Table 2 in §7.1, (1.19) and (6.17). The
upper row in (11.5) is part of the long exact sequence in group cohomology. Since
I" has cusps, all groups HZ(F; V) are zero. (See, e.g., [15, §11.2].) The I'-invariants
of Z)fgl_r are zero, unless r = 2 and v = 1, when Dﬁ;l_z
This gives the exactness of the upper row.

To use [15, Proposition 11.9] for the lower row, we need also exactness of

is the trivial representation.

0 0 P 1
0— (Dzjl,)r ,exc)l"cl — (Szzjr,e)w)l"a _f> (leg_r

)t =0

for each cusp a of I'. Most of the exactness follows from Part iii) in Proposition 8.3.
For the surjectivity of p, we conjugate a to oo, and use the Fourier expansion in
Part ii) of Lemma 8.7. The restriction p, sends the holomorphic contributions

to zero. Only if v(mr,) = 1 there may be a multiple of y'~"; and we note that

pry' ™" = —(2i)~? spans the T-invariants in Dgflr. If v(mr,) # 1 there is no multiple of

_ . 1 . T
y'~", and there are no non-zero elements in DQPSr on which T acts as multiplication

by v(m,).

Proposition 11.9 in [15] gives a long exact sequence of the corresponding mixed
parabolic cohomology groups, of which the lower row is a part. We use [15,
(11.11)], which tells us that Hl?b(l"; V) is the space of invariants VI. Hence we
get K, on the left. O
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Remark. In the second line of diagram (11.5) we have not written a terminating
— 0. We did not succeed in proving this directly, for instance by showing that

2. ’, 2 - ’,
Hpb(l—" Z)w Dua’)r €XC N Hpb(l—" Sa) 8;«; €XC

v,r? v,r’

is injective. For unitary multiplier system the surjectivity of

0 1
pr Hy(T3 87, 8,7 > Hy (D))

v,r>

is known to hold, by classical results, as we will discuss in §11.5.

11.4. Automorphic forms and analytic boundary germ cohomology. We pro-
ceed under the assumption r € Z>;. In the diagram

HL(T D, D) — HA(T3 82,65,

v,r?

(11.7) r;’T . ” T la,. .

Ap_(T, v) AXT, v)

we use Theorem A in the weight 2 — r € Z g to get the isomorphism r¢ on the left.
The isomorphisms «;, and % on the right follow from Theorem 10.18, Corollaries
11.4 and 11.6. The horizontal arrow denotes the natural map associated to the
inclusions O, C &, and Z)U‘",O pale 832’“9 The following results makes this into
a commutative diagram:

Lemma 11.8. Let r € Zy). Let ¢, =
tion 11.7.
The following diagram commutes and has exact rows:

% (r_l—l), Let K, be as defined in Proposi-

id
Kuy — H!\(T; DY, DY) —— HL(T; €, 84°)

(N v, 1>

(11.8) x(—i/z)T gTr‘;_r q“ N @ =
o

Ky, Ay (T, v) — AXT,v)

By id we indicate the homomorphism induced by the inclusions Dy, — & ..

Proof. Bol’s equality E)g‘] (Flo—rg) = F =D g for g € SL,(R), which appears in [6,
§8], implies that ¢, 8;‘1 determines a map A,_,(I',v) — A,(I', v). Since the constant
functions are the sole polynomials that can be automorphic forms, the kernel is K, ;..
So the lower row is exact. Proposition 11.7 gives the exactness of the upper row.
For the commutativity of the left rectangle we assume » = 2 and v = 1. The
map 5 sends the constant function 1 to the class represented by the cocycle

Y a//ioy(t) = ﬁ - t—y;*lm’ for an arbitrary base point zg € $. The constant
function -4 € Kjp = (D] ((’)l)r has a lift 1 > —4K(t;20) in EY,, with the kernel

function K, defined in (6.12). So the connecting homomorphism sends wi(’ to the
cocycle y determined by x, = —%Kz(-;zo)lu( 1 — y). The kernel function K, has
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the invariance property K,(-; )|,g ® |2-rg = K;(;-), in (6.14). For y = (f Z) el

Xy(0) = —%Kz(t; 20) + %(a - cz0)" Kalt;7" 20) = - _1ZO - yl_lzo = U, 0.

For the commutativity of the second rectangle we start with F € A,_»(I', v) and
compute its image under the composition @, o id o r{” ,. We use the description of
cohomology with a tesselation as discussed in §9. The cocycle ¢ representing r¢’ F’

is determined by

cr(x;2) = f (z—1""F(z)dz,

where x C © is an oriented edge in X;r’y.

The function cg(x; -) is defined on C\ x, and represents an element of Z)U‘:’z. Since
Dy, c &, the same cocycle represents id(r;’F). The image of id(q;’F) under the
map «, in Proposition 10.10 is an automorphic form u € A,(I',v). By analytic
continuation it is determined by its value on the interior ‘Z”s'y of the face &y € X(Zr ¥,
(It is important to use a face that is completely contained in $; otherwise c(x) need
not be given by the integral above for all edges x in the boundary of 9,&y.) We

apply Proposition 10.15. It gives, for z € &y

1 1 |
U = g er@BOQ) = g ), ertid = g7 ), [a-orrerar
L S 1
= n )y, TV @ = T B0 = @& HE. o

Lemma 11.9. Let r € Zsy. The map ¥ : A,T,v) — H\T; &y, is injective and
the following diagram commutes:

o H'(T; D)

L.
H (T 83?") v,2—r

(11.9) leb(l“; Ew Sl(t)(;,exc

v,r>

qi’TE

AT, v)— AT, v)

Proof. Suppose that F € A.(I', v) satisfies ¢ F = 0. Then F is in the space A‘rg(l“, v)
in (10.17), and then F = 0O by the injectivity in Part i) of Theorem 10.18.
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The commutativity of the left triangle is a direct consequence of the definitions.
For the right triangle we start with the commutativity of the diagram in Proposi-

tion 6.10, where we can replace D", by Z)fgl_r, since r € Zx.
prj
H(T; We PL)) b H\(T; V%, (P}))
\ Tprjz_,
1. Pr 1. qypol
o H@E) H'(@ D)
Tqi“ f
rr
AT, 0)

We have chosen the spaces &, , in such a way the the image of q’ is in H \r; &)
From p, = prj;rp‘,’rj (Definition 6.17) and Part iii) of Proposition 8.3 it follows that

we can go directly from H'(T; &) to H LT Z)fgl_r). O

Recapitulation of the proof of Theorem D. The commutativity of various parts of
the diagram in (5) in Theorem D follows from Proposition 11.7 and the Lemmas
11.8 and 11.9.

The exactness of the top row and the second row, in Part ii), are given by Propo-
sition 11.7, which gives also the information in Part iii) of the theorem.

The injectivity of ¢ : A,(I',v) - H T &) is shown in Lemma 11.9, the in-
jectivity of the vertical maps between cohomology groups follows directly from
the definition of (mixed) parabolic cohomology. The bijectivity of r}’  is given
by Theorem A for weights not in Zs, and the injectivity of q¢ : A%T,v) —

leb(l“; &v 83?2’””) is a consequence of Theorem 10.18 and Corollary 11.4. O

v,r°
11.5. Comparison with classical results. In the following part of diagram (5) in
Theorem D

H\(T;82,) —&

(11.10) j

0 Pr 1
H;}b(r; &Y, &) —= leb(r; leg_r)

v,r>

H'\T P ) —>0

the absence of an arrow — 0 in the second row is remarkable. The surjectivity of
o, in the top row is a consequence of the general fact that H>(I'; V) = {0} for any
I'-module for groups I" with cusps. See, eg., [15, §11/2]. In the long exact sequence
corresponding to the diagram in (11.6) there is a sequel

HY(T D) — Hy (T3 D, Dl ) — Hay (T 2

0
v,r? 0v,r? 'DUU,)" e
that may be non-zero. It would be interesting to see that in general the second row
in (11.10) is surjective.
We review some classical results, under the assumption that the multiplier sys-
tem v for weight r € Zs, is unitary.
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The elements of Z);flr are polynomial functions, and hence are holomorphic on
C. This space of polynomials is invariant under the involution ¢ in (1.6). The action

. . 1 I . . .
is changed (unless v is real-valued): ¢ : DYy« OPY _ This induces involutions

H'\@ 0P ) ——= H'(; D)

(11.11)

1 (1. qypol L 1 (1. qyPol
Hy @D, ) — H,(5 D5 )

The linear map ¥’ : A,(I',v) - H T, Df;l_r) has an antilinear counterpart (r%’ :
AT,v) > H'(T; DP gl_r), in which irF is represented by

20

y - Fi)(Z-1'%dz.
7=y 20
We now look at the classical theory in [56], where Theorem 1 gives
(11.12) H\(T; Z)U‘jgl_r) = M, (I,v) & a?S,(T,0).

The restriction of r¥ to M,(I', v) is a multiple of the map 5 in [56] and [64, §1.3].
It is described by (r—1)-fold integration. The construction of (er’) f for f € S,(I', 0)
is carried out by forming g* € A,(I',v), the “supplementary function”, and then
forming (a multiple of) ry’g" with the property that r’g" is a multiple of «r?’ f. (The

resulting antilinear map S,(I',0) - H T Z)Up 31_,) is called « in [56]. In particular,
r¢g is a parabolic class, in leb(l“; Z)Up gl_r). The computations in §3.4, especially
Lemma 3.8, show that g € AQ(F, v). With Theorem 1 in [56], we conclude that
leb(l"; legl_r) is contained in r A%, v). The diagram in Theorem D implies that

H(T; Z)If;l_r) = r? A%T,v). So indeed, the classical theory gives us the missing
surjectivity, for unitary multiplier systems.

We note that in [64] the map « is constructed in a different way, with automor-
phic integrals of Niebur [91]. For the purpose of this subsection the supplementary
functions used in [56] are more useful.

Remark. Knopp, Lehner and Raji [68] [70] [100, 101] have studied cohomology
classes associated to generalized modular forms for which the multiplier systems
need to satisfy |v(;r)] = 1 only for parabolic 7 € I'.

11.6. Related work. In this section we connected the classical results concerning
the relation between automorphic forms and Eichler cohomology to the boundary
germ cohomology in Theorem 10.18.

Part IV. Miscellaneous

We have proved Theorems A-D in the introduction, and some of the isomor-
phisms in Theorem E in §1.7. In Sections 12 and 13 we complete the proof of
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Theorem E. In Section 14 we discuss quantum automorphic forms and their re-
lation to cohomology. We close this part with Section 15, which gives further
remarks on the literature.

12. IsOMORPHISMS BETWEEN PARABOLIC COHOMOLOGY GROUPS

12.1. Invariants under hyperbolic and parabolic elements. For I'-modules V C
W there is a natural map Hl}b(l“; V,W) - leb(F ; W), which turns out to be an iso-
morphism in several cases under consideration. It takes quite some work to sort
this out. As a first step, we consider for parabolic and hyperbolic elements y € T’
the spaces V¥ = {v € V vly = v} of invariants in the I'-modules V under
consideration.

Parabolic elements.
(D7 < D

v,2—r
Lemma 12.1. Let r € C, and let m € I be parabolic. We denote A = v(r).

Lemma 3.1 implies that for a parabolic 7 € I' we have
[a], where a is the cusp fixed by .

a) The dimensions of various spaces of invariants are as follows:

réZsiord#1 | r=1landAd=1|reZsyand =1
dim(D,_)" 00 00 00
dim(D Y oo 0o o0
dim(D,*"Py" 0 1 1
dim(D*, )" 0 0 1
b) In all cases (D) = (DY, and (D%_)n = (D5 Y if r € Zso.

Proof. Going over to n~! if necessary, the element 7 is conjugate in SL,(R) to

T = ((1) }) After conjugation we find that invariance amounts to ¢(f + 1) = A1¢(?),

eZm‘nt 2ria _ A

with 4 = v(m) € C*. This has solutions given by >’,-,1) ax with e

For Dlj"z*_r we need convergence on a half-plane Im¢ < & for some &£ > 0. For

Z):’;f:‘c the A-periodicity of ¢ implies that ¢ extends holomorphically to all of C,
and hence we need convergence on all of C. In both cases in Part i) we get an
infinite-dimensional space of invariants.

In the other parts there is a condition at co, which implies that (prj,_,@)(t) :=
(i — )*>7" ¢(t) has an asymptotic expansion of the form (prj,_,@)(t) ~ S¢spcet™,
valid as ¢t € $~ approaches co. For Z):“z_srmp we have k = —1, and for Z);”z_o: and its
submodules, k = 0.

So if ¢ # 0 the expansion starts with d, 2w d 37"+ .- whered, # 0
and n > k. We insert this into the invariance relation. If 4 # 1, the starting term

shows that d,, = 0. So for A # 1 no invariants exist in Z)U“’;’_Sflp and smaller modules.

If 2 = 1 then we find from the second term that d, ’(r —2—-n) = 0. So for an
invariant the expansion should start at n = r — 2. Since n > k, this leads to r € Z5,

for Z):“;_Srmp , and r € Z; for the smaller modules. Thus we have ¢(¢) = d,—, +

d,_1 7" + ... There is indeed an easy invariant under these conditions, namely
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the constant function ¢ (#) = 1. It is in each of the modules. If ¢ — d;_ pcg 1S
non-zero it is O(t~!) and has to be zero. So the dimension of the space of invariants
equals 1. O

Remark. For m = T and v(T)) = 1, the proof shows that the invariants are the
constant functions. For other parabolic elements 7 = gTg~! the spaces of invariants
in Parts ii)-iv) of the lemma have dimension 1, but need not consist of constant
functions.

Hyperbolic elements and closed geodesics. An element y = (fZ) e SLr,(R) is
hyperbolic if a+d > 2. A hyperbolic element y of SL,(R) has exactly two invariant
points in PL, situated on Pll&, say & and ¢’. On the geodesic in $ connecting ¢ and &’
the action of y on the points of the geodesic amounts to a shift over a fixed distance
for the hyperbolic metric, which we call £(y). We note that £(y") = |n|{(y) for
n € Z. The image in '\ $ of that invariant geodesic is a so-called closed geodesic,
with length £(y).

A hyperbolic subgroup H of T is a subgroup generated by a hyperbolic y and
—1. Such a hyperbolic generator y is a primitive hyperbolic element of I'. The
inverse y~! is the other primitive hyperbolic element in H. We can conjugate a

hyperbolic element y in SL,(R) to (1’ :)/2 pf} /2) with p = ¢/ > 1. This element has
oo as attracting fixed point, and O as repelling fixed point.

Lemma 12.2. Let A € C*, and let y € SLy(R) be hyperbolic. If f € Z)é"_* . satisfies
flary = f, then f € DY [£,€'], where & and & are the fixed points of vy.

Proof. Analogous to the proof of Lemma 3.1. O

To formulate the following result it is convenient to introduce for a hyperbolic
v €I the quantity « := k,2_,(y) € C that is uniquely determined by

T T
(12.1) K = y(y) PV gnd - S < Imk < —,
7 () )

where £(y) is the length of the periodic geodesic corresponding to y.

Lemma 12.3. Let r € C, and let y be a hyperbolic element of T, corresponding to
a closed geodesic in T'\$ with length £(y).
a) With k = «,o—(y) as in (12.1) the dimensions of various spaces of invari-
ants are as follows:

réZor r € Zso and Kk, r € Z and
k<2o0rk>r|kef{-1,r-1}|0<k<r-2
dim(D,_,) 00 00
dim(D% )

[ee] [ee]
dim(D®, Py 0 1
0 0

v,2—r

dim(D% )

(o]
(o]
1
v,2-r 1
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b) Inall cases (D_) = (DY, and (D) = (DF5. ) if r € .

Proof. We conjugate y in SL,(R) to (1’ :)/2 pf{ 1’ ), where p = '@ which leaves fixed

0 and oo, and the geodesic between them. This leads to the equation

(12.2) P e(pt) = v(y) (1)
The solutions ¢ € Z)U“”;_r are given by a Fourier series of the form
Z d, (i t)a/+27rin/t’(y) ’
nezZ

convergent for at least —7 < arg(if) < 7, and « in the set

r log v(y) + 2rin’ ,
R R Z(y) ;0 ez
(12.3) 2min
= \Kyo—r(Y)+ —— 1 REZ;.
{ TG }

With the standard choice of the argument, (ir)* is well defined on C \ i[0, c0). The
coefficients in the Fourier series should be such that we have convergence on a
region —5 — & < arg(it) < 5 +& with some & > 0. To get a holomorphic function on
an excised neighborhood with excised set {0, oo}, we need to pick coefficients such
that we have convergence for —x < arg(it) < x. This leads to the first two lines in
the table in Part a).

For the smaller modules there should be asymptotic expansions at 0 and co. Let
k = —1for D:);’_Sflp and k£ = 0 for Z)lj”z_": In the expansion at zero there can be only
terms (iH)* with @ € E,>_,(y) N Zs,. The function ¢ — "2 o(—1/1) should also
have an expansion with terms " with m > k. Hence we have the further restriction
r —2 — a € Zsk. So the exponents « € E, »_,(y) should satisfy

a€E,(y)NZN(r-2+7Z) andk<a<r-2-k.
So we should have r € Z. The condition on Imk,,_(y) in (12.1) implies that
@ = Kky2-r(y) € Zand n = 0. The remaining condition gives k < k,2_,(y) < r=2—k.
This gives the third and fourth line in the table. This completes the proof of Part a).
Moreover, if r € Zs, any invariant ¢ — X that is in D;"Z_": is in Z)Lfgl_r. This
gives Part b). O

Remark. The characterization depends on the primitive hyperbolic element y. The
element y~! is primitive hyperbolic as well, and

(12.4) Koo—r(Y™") = 1 =2 = kyo-r(y) mod 27i/€(y).
The transition x — r — 2 — x maps the set E,>_,(y) in (12.3) into Ev,g_,(y_l).

Lemma 12.4. Suppose that both fixed points & and & of the hyperbolic element
v € I' are in R and satisfy ¢ < &. If r and « in the previous lemma are integral,
and —1 < k < r — 1, then the y-invariants in Z)fz’_sinp

function

are spanned by the rational

PN (t _ §’)’_2_K(t _ é'_‘)l( .
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Proof. We use
g = lE-g I (‘f f)eSL2<R>

to transform the geodesic i(0, o) into the geodesic from & to &. We work with
t € H, and denote by = that we ignore non-zero factors that do not depend on ¢:
'tk_—lt . [+ r=2 _fkit—”_z_’(t— K O
(itYrg™ (1) 2 (1+&) (Hg,) (=&)Y (-8

12.2. Modules of singularities. In the sequel we will deal with two I'-modules

V cW,where V = Z)“’2 ,» and W is one of the following larger modules:

(12.5) (a) : B): DU (©): DU (d) DU

02 r’ v,2—-r U2 r v,2-r
Definition 12.5. In each of the cases in (12.5) we consider the quotient module
(12.6) S = WV,
which we call the module of singularities. We write 8%, 53)2 ¢, ..., if we want

to indicate the case under consideration explicitly.

Definition 12.6. For & € ]Pl we put S = W[£]/V c S, where W[£] consists of
the elements f € W with BdSIngf C g}

Remarks. (a) The space S ¢ is a subspace of S, not the stalk of a sheaf.
(b) The direct sum P £ep! S P is a submodule of S.
R

Definition 12.7. We say that the module S = W/V has separation of singularities
if

Proposition 12.8. For all cases in (12.5) the module S has separation of singular-
ities.
Proof. In [15, Proposition 13.1] this is shown for the sheaves used in that paper:
= V¢, the sheaf of analytic functions with action of PSL,(R) specified by the
spectral parameter s and W a subsheaf of V¥ . It is based on the result of
complex function theory that if Q; and €, are open sets in C any holomorphic
function f on Q; N Q; can be written as f = f; — f» with fi € O(Q)), f> € O(,).
See, e.g., [55, Proposition 1.4.5].

This shows that if f € O(U) for some open set containing $~ and Pnlg\{f Lr-vsénl
represents an element of Z)‘”* then we can take a neighborhood U; > U of
H U (IP’1 N {&1}), and U, D U a neighborhood of H~ U (P1 N &2, ..., &)). Then
f> represents an element of Z)U’ _,[é1] and f; an element of Z)v’ _ &, ..., &) Suc-
cessively we can write each element of @;fz_r[gl, ..., &,] non-uniquely as the sum

of elements in the spaces D%, [£;]. This shows that Sﬁ’;_r has separation of sin-
gularities.
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For the other spaces S = W/V we have W C Dlj”;_r. All these subspaces are
defined by conditions on the singularities of a local nature, based on the properties
of a representative at each ¢ in the set of singularities separately. Addition of an
element for which £ is not in the set of boundary singularities does not influence

the condition at £. So separation of singularities is inherited from SZ";_r. O

Lemma 12.9. Let r € C.
i) The space of invariants St is zero.
ii) Let y € I be hyperbolic, with fixed points & and &'. By €(y) we denote the
length of the associated geodesic. Then the dimensions of the spaces of
invariants are as follows.

v(y) # e 2 | y(y) = e W/2
dim((SY,_,)e)” o0 o0
dim((SY,%))” o0 0
dim((SZ, ™))" 0 1
dim((S2,")¢)” 0 0

Proof. Parti) follows from the facts that the set of singularities BdSing f for f € W
is I'-invariant, and that all I'-orbits in Pﬂ{ are infinite.
In Part ii) we denote V. = O, , and take for W one of the modules D

v,2-1°

Z)lj”;’_erxc, D, and Z)lf"z_o;’ There is an injective map W”/V? — S”. The image
is contained in S é_‘693 Iz With separation of singularities, we can split each element

of S” as a component in (S 5)7 and a component in (Sf,)y.
We conjugate ¥ in SLy(R) to (p (1)/2 p_({/z) with p = /@, The invariants ¢

(it)“%}; in (12.3) in the proof of Lemma 12.3 have a singularity at 0, unless possi-
bly for n = 0. This leads to the first two lines in the table.

Now let W = Z)::’;’_sflp or W = Z);”z_‘): The component in (S,)” of the image
f + Vin 8 is invariant if and only if 0 € BdSing f and f|,,—,(y — 1) € V. Let
f(t) ~ 3,5k ¢ ™ be the asymptotic expansion at 0, with k = —1 for D;’;f;np, and
k =0 for DY,

If k = —1 the term c_;7~! can be non-zero if p"/ 2= v(y). Then f(¢) = t~! leads
to a non-zero element of (80)7.

If my > 0 a term with p~"/2*1+m0 = y(y) leads to an invariant in W? which is
also in V7, so not to a non-zero element of (S))”. The remaining asymptotic series
Dm0, m#my Cm 1" for ¢ € W[E], leads to an asymptotic series

Z Cn (U(,y)—lp—r/2+1+m _ 1) o

m>0, m#myg
for ¢|,2—-(y — 1). For an invariant in S this last series should be convergent on

a neighborhood of 0 in C. But since p™ is exponentially increasing, then also
om0, m#mo Cm I 18 convergent on that neighborhood, and hence is in V. O
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12.3. Mixed parabolic cohomology and parabolic cohomology. For I'-modules
V c W asin (12.5) there is a natural map leh(l"; V,W) - leb(l"; W). We’ll show
that it is injective, and investigate its surjectivity.

Lemma 12.10. Let V = D% C W, where W is one of the modules Z);”;’_Cfnd

in (12.5), or one of the corresponding modules Z)l:“;’_crond. The following sequence
is exact:

(12.7) 0— Hy[T;V,W) > Hy([;W) > H'T;S).

Proof. The exact sequence of [-modules 0 - V — W — § — 0 induces a long

exact sequence in mixed parabolic cohomology. This is discussed in [15] at the

end of §11. We use the following part of the long exact sequence:

(12.8) HT;8) —» HLT;V, W) » Hy([ W) —» H'(T;.S)

Part 1) of Lemma 12.9 leads to the desired sequence. O
The lemma shows that leb(l“; V,W) - leb(l“; W) is injective. It is surjective if

the image of H\,(I; W) — H'(I'; S) is zero.

Definition 12.11. For each I'-orbit x C Py, put
(12.9) Six} = @ S,

£ex

For each orbit x € T’ \IP%& the space S{x} is a [-module. Since S has separation
of singularities we have

(12.10) S = P s

xel\PL

To investigate the image of leb(F : W) — H'(I'; S) we can investigate separately
the images of H'(I; W) — H I(T; S{x}). The following statement is analogous
to [15, Proposition 13.4]:

Proposition 12.12. Let x be a I'-orbit in P]%Q. The natural map
H,(T; W) — H'(T; S{x))
is the zero map in each of the following cases:
a) the stabilizers I'y of the elements & € x are equal to {1, -1},
b) the orbit x consists of cusps of T,
C) the stabilizers Iy of the elements & € x contains hyperbolic elements, with

the additional condition that for all y € T'¢ the space of invariants Sg is
zero.

Remarks. (a) This result shows an important difference between hyperbolic ele-
ments of " and other elements. If the Condition c) is not satisfied it opens the way
to construct cocycles that do not come from automorphic forms via the injection r¢’
and the natural map from mixed parabolic cohomology to parabolic cohomology.
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(b) In Case c) we need to check that SZ“ = {0} only for one generator y of I'¢.

(c) We do not repeat the proof, since it is completely analogous to the proof of [15,
Proposition 13.4]. We explain the main steps.

The proof uses the description of cohomology based on a tesselation 7~ of the up-
per half-plane, as discussed in §9. We quote two lemmas from [15] before sketch-
ing the proof of Proposition 12.12.

Lemma 12.13. For each cocycle c; € ZI(F‘T; W) there is ¢ € ZI(F_T; W) in the
same cohomology class with the properties that c(e) = 0 for all edges e € XIT that
occur in the boundary of any cuspidal triangle.

We recall that each cusp a of I' oc-
curs as vertex of infinitely many faces
n,"V, € X;r , n € Z, +m, generators of
the stabilizer of a. These ;" V, are cus-
pidal triangles. The edges n," f, form a
horocycle in $. If the cusp ais in R this
horocycle is a euclidean circle.

The lemma says that we can arrange
that ¢ vanishes on all edges m;"¢e, and

7." fa- FiGure 21

Proof. See the proof of [15, Lemma 13.2]. O

Letx e T \]P]IIQ' If a cohomology class in H;b(F; W) is given by a cocycle in
Zl(Ffr; W) as in Lemma 12.13 its image ¢ € Zl(Fir;S{x}) vanishes on all edges
in X‘lr \ X(lr’y, so it is in fact a cocycle on F ‘17‘,Y' Therefore ¢ represents a class in
H'(I'; S{x}). Anyhow, c is a cocycle that vanishes on all edges Y~ f, and y~le,
withy € I'and a € F (the intersection of P%& with the closure of the fundamental
domain & underlying the tesselation 7).

For any edge e € X'IT we denote by c(e)s the component of c(e) in Sf in the

decomposition S{x} = P fex S - We put, for the fixed cocycle ¢
(12.11) D) = {ee X! : cle) #0}.

Lemma 12.14. For each & € x, x € T'\PL, the set D(¢) consists of finitely many
[¢-orbits.

Proof. See the proof of [15, Lemma 13.5]. O

Sketch of the proof of Proposition 12.12. To the cocycle ¢ € Z'(F”;S{x}) is as-
sociated a function XOT Y XOT’Y — S{x}, also denoted c. The value c¢(P, Q) is
determined by the value of ¢ on any path in Z[X'lr] from P to Q.

Let a be a cusp of I'. If we can show that c(y‘lPa, P,) = 0for all y €T, then the
group cocycle ¢, = c(y~' P, P,) vanishes, and hence the cohomology class of ¢ is
trivial.

The proof in [15, §13.1] considers the three cases given in Proposition 12.12
separately. In all cases it is argued for a given & € x, that there is a path in Z[X;T’Y]



AUTOMORPHIC FORMS AND COHOMOLOGY 113

from y‘lPa to P, that does not contain edges in D(¢). This gives c(y‘lPa, Pye =0,
and leads to [c] = 0 in H(T; S{x}).

Case a) in Proposition 12.12 is easiest, since in this case S (£) is a finite set of
edges, which is easily avoided.

In Case b) the orbit x consists of cusps, and we take a € x. Now the set D(¢) may
be infinite. Let y € T be fixed. If & ¢ {a, ¥ 'a} it is shown that there is a path from
y~1P, to P, avoiding D(¢). Then the observation that c(y~!P,, P,) € Sy‘la ®S,is

the basis for an argument showing that y — c(y~' P, P,) is a coboundary.

In Case c) the set D(£) may be a barrier that makes it impossible to find a suitable
path between y~'P, and P, if they are on opposite sides of the barrier. If this
happens the cocycle relation can be used to show that c(y™ Py, Py)¢ is in SSZ for a
generator y of I's. Under the additional condition in Part c) in Proposition 12.12,
this invariant is zero. O

Theorem 12.15. Let v be a multiplier system for the weight r € C on the cofinite
discrete subgroup I" of SLy(R) with cusps. The natural map

H, ([ DY, W) > Hy (I W)
is an isomorphism for each of the following I'-modules W :

. . 0 0 0 o 0
i) W is one of the T-modules D, , D¢, DT oy D@

. v,2-r ~v2-r > Tv2-r v,2-r"
i) W= DU“’2’_°;’.
W ,smp .. o =rt(y)/2
i) W=D, under the additional condition that v(y) # e for all

primitive hyperbolic elements y € I'. (By €(y) we denote the length of the
associated closed geodesic in I'\$.)

Proof. We use Proposition 12.12 to show that leb(l"; W) — HYT;S8) is the zero
map. Then the exact sequence in (12.7) gives the desired bijectivity.

For the spaces W in Part i) we have W/V = EB o cusp S,, and need only Case b)
in Proposition 12.12. For Parts ii) and iii) we have to take into account all cases in
Proposition 12.12, and need the vanishing of Sg for all hyperbolic y € I" that leave
fixed £. Part ii) of Lemma 12.9 shows that this is the case for W = Z):g’_o;’, and also

for D;”;’_Sf’p provided e "/@/2 £ y(y). O

Missing case. Missing in Theorem 12.15 is the module W = Z)U“’Z*’_erxc. That case is
discussed in Proposition 13.5.

12.4. Related work. We followed closely the approach in [15, §13.1].

13. COCYCLES AND SINGULARITIES

There are several natural maps between cohomology groups that we did not yet
handle in the previous sections. Theorem E in §1.7 states explicitly some maps that
are not isomorphisms. In this section we prove those statements by constructing
cocycles with the appropriate properties.
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13.1. Cohomology with singularities in hyperbolic fixed points. In the excep-
tional case in Part iii) of Theorem 12.15 we want to show that the injective map

H\(T;D%_,, W) - H\([T; W)

0,2—r°

F

is not surjective for W = O, **, or for W = Z):;’_Srmp under the additional condition
v(y) = e7"“@/2 for at least one primitive hyperbolic element of T'.

We use the description of cohomology based on a tesselation 7~ of the upper
half-plane, as discussed in §9.

Notations. We work with a hyperbolic subgroup H of I'. So H is generated by a
primitive hyperbolic element ¢, and —1. All elements of H leave fixed the repelling
fixed point {; and the attracting fixed point {; of 6. The elements of H leave invari-
ant the geodesic between | and ;. The image of this geodesic in I'\$ is a closed
geodesic, whose length we indicate by £(6).

Lemma 13.1. Let 7 be a I'-invariant tesselation of 9. Let 6 € Hand {1,{; € P}R
as indicated above.
There is a path p from ;| to & in  with the following properties:
a) pis an oriented C'-curve in $ U PL, with respect to the structure of Pé: as
a Cl-variety.
b) p has no self-intersection, and intersects PIIR only in the end-points
and 3.
¢) p does not go through points of Xg— = XOT ny.
d) p intersects each edge e € XIr transversely, at most a finite number of
times.
e) For each edge e € XIT there are only finitely many T-translates y~' p that
intersect e.

f) 6 'p=p.

Remark. All T-translates y~! p form C'-paths in § from y~'¢| to y~'¢, with prop-
erties b)—e), and (y'6y) Ly I p =y 1p.

Proof. Intuitively, we may start with the geodesic from {; to {» and deform it to
satisfy the conditions.

More precisely, we take a point Py in the interior of a face of the tesselation, and
take a C! -path pg from Py to 6Py, taking care to arrive in 6Pg with the same deriv-
ative as 0pg departs from 6Py. If pg goes through a vertex or has a non-transversal
intersection with an edge, or coincides with an edge, we deform it locally. In this
way we arrange that pg intersects finitely many edges once, transversally. Near Py
and 6Py we have not changed py. Taking the union | J,,cz 8" po and closing it in
Péj, we get a C'-path p satisfying Properties a)-d), and f).

The compact path pg intersects only finitely many I'-translates of the fundamen-
tal domain & on which the tesselation 7~ is built. A given edge e is contained in
the closure of one I'-translate of . So there are only finitely many y € I such that
e intersects Y~ ! po. If e intersects 8! py with 8 € T, then there is an m € Z such
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X X
y'p y'p
ep(x,y"'p) =1 ep(x,y"'p) = ~1
y~!p crosses x from right to left y~!p crosses x from left to right

Ficure 22. Choice of ep(x,y ! p).

that S~16™ is one of these finitely many 7’s. This implies that the path satisfies
Property e) as well. O

Definition 13.2. Let p be a path as in Lemma 13.1, lety € I', and let x € inT be
an oriented edge.
1) For each point intersection point P € x N p we define ep(x, y‘l p) € {x1}
depending on the orientation as indicated in Figure 22.
ii) We put

(13.1) exy'p) = ) ey p).
Pexny~lp

iii) We extend x — e(x, v~ p) to a C-linear map (C[X'lr ]— C.

Remarks. (a) If x and y~!p have no intersection, then the sum in (13.1) is empty,
hence e(x,y"'p) = 0.

(b) Like in [15] we use the convention that XIr consists of oriented edges of the
tesselation, and that if e € XlT, then the edge —e with the opposite orientation is not
in XlT.

(c) Property d) in Lemma 13.1 implies that the total number of crossing of x and
y~!p is finite. So e(x,y!p) in Part ii) is well defined. It counts the number of
crossings from right to left minus the number of crossings from left to right.

(d) The definition of € is arranged in such a way that for each oriented edge x
occurring in the boundary 9,V of a face V € X;r the quantity e(x,y~!p) counts the
number of times that y~! p enters the face V through the edge x minus the number
of times it leaves V through x. This gives €(0,V,y~! p) = 0 for all faces V € XZ .
(e) We have ep(—x,y 'p) = —ep(x,y ' p) and e(—x,y"'p) = —e(x, 7' p). Hence
the C-linear extension in Part iii) is possible.

(f) For an oriented path g € Z[XT] we can view €(g, ¥~ ! p) as the number of times
g crosses y~! p where y~! p goes from right to left, with respect to the orientation
of ¢, minus the number of times g crosses y~!' p where y~! p goes from left to right.
(g) The function € is I'-invariant:

(13.2) eB %,y p) = e(x,y ' p) forallgel.
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Proposition 13.3. Let H be a hyperbolic subgroup of T, and let p be a path as in
Lemma 13.1 between the fixed points {1 and {, of H. Let W be a I'-module.
For each a € WH we put

(13.3) c(p,a;x) = Z e(x,y_lp) aly forx e FIT = (C[X(IT] .
yeH\I'

a) This defines a cocycle c(p,a;-) € Z! (F_T; Ww).

b) Its cohomology class in leb(F; W) depends only on the initial and final

points {1 and &> of p.

Remark. Without the counting function €(-, -) the values c(p, a; x) of the cocycle
c(p, a;-) are hyperbolic Poincaré series. Hence we call the sums in (13.3) signed
hyperbolic Poincaré series.

Proof. The terms in the sum are invariant under y — ¢y with 6 € H. It is a finite
sum by Property e) in Lemma 13.1. So c(p, a; x) is well-defined. In Remark (c)
after Definition 13.2 we have noted that €(d,V,y"!p) = 0 for each V ¢ Xz— . This
gives the cocycle property. With (13.2) we have forg e I’

cp.afx) = Y e xy pray = ) e x (B p) abyp
yeH\I' yeH\I'
= D, ey 'pans = cp.a 0.
yeH\I'

This gives the C[I']-linearity of x — ¢(p, a; x), and ends the proof of Part 1).

To prove Part b) we consider the function ¢(p,a;-,-) on XJ x X] given by
c(p,a; Q1, 02) = c(p,a; q) independent of the choice of the path g € Z[Xrlr] from
Q1 to Q>. The cohomology class of the cocycle depends only on the values of
this function on A X A where A C X;f is one I'-orbit. So it suffices to show that
c(p,a; a,b) for cusps a and b depends only on the points ¢ and 5.

The points ; divide P%& into two cyclic intervals ({1, {2)cyct and ({2, {1)cycl for
the cyclic order on PIE. See Figure 23.

« 1 {2eyel
~§1\ &
(&2,¢ lcycl/(
FiGure 23

For cusps a and b we choose a path g, € Z[X(lr] from a to b. By Remark (f)
after Definition 13.2, the values of €(gq,y ' p) are zero if a and b are not separated
in ]P)]}Q by the points y~!£; and y~'¢,. Table 5 gives the values of €(gqp,y ! p) for
v € I and the cusps a and b for the fixed path p. See also Figure 24. This implies
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€(qap, YD) be(y 0,y 1 O)eya DEG O, Y eyl
ae (¥ 10,y 1oy 0 -1
ae (10, Y ey 1 0
TABLE 5
q
y'p / \
1 1
v s a Y & b

Ficure 24. Illustration of case a € (y‘lg“l,y‘lg’g)cycl and b €

o,y )eyel in Table 5. The path vy~ !'p crosses g from left
to right.

that c(p, a; a,b) only depends on the position of the cusp a and b in relation to {;
and >, not on the actual path p. O

Remarks. (a) The cocycle is I'-equivariant in the following way:

(13.4) c(p,a;) = c(y 'p,aly;)  forallyeTl.

(b) The cocycle c(p, a; -) depends linearly on a € WH; ie, for all A1, eC
c(p, hay + haz;-) = i e(p,ais-) + 2 c(p,az;-).

(c) The construction is canonical for a morphism of I'-modules W — W;: If
a € WH is mapped to b € W', then

c(p,a;-) = c(p,b;-) under the natural map Zl(F.T; W) — Zl(Ffr; wy).

Geodesics with elliptic fixed points. The geodesic from %—% V5 to %+% V5 induces
a closed geodesic on I'(1)\$. The corresponding hyperbolic subgroup H of I'(1) can

be generated by D = (% }) and —I. This geodesic passes through the point i € 9,

which is fixed by the elliptic element S = ((1) 7(1)) e I'(1). It induces an element +S

in (1) of order two, so i is an elliptic point of (1) of order 2. All points D" i, with
n € Z, are elliptic points of I'(1) of order 2, fixed by D"S D™ € I'(1).

In general, a geodesic of I' may go through elliptic fixed points of I" of order 2
in T'. Then there are elliptic elements of order two in o € I such that oyo = y~!
for all v € H. The action of ¢ interchanges the two fixed points of H. The element
o normalizes H, but is not an element of H. Conversely, each o € I' \ H such that
oHo™! = H, is elliptic with a fixed point of order 2 on the geodesic.
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Lemma 13.4. Let V = D% _, and either W = D°™ or W = D . Denote

v,2—r

S = W/V. For each hyperbolic subgroup H C T’ there is a linear map
(13.5) Pyt WM — HL(T; W)
with the following properties:

i) The image of the composition Py : whH ﬂ; leb(r; W) - H'T;S) is
contained in the T -invariant summand H'(T'; S{T £1}+S{T' &) of H(T'; S),
where (| and {, are the fixed points of H.

ii) The kernel of Py is the space

v+ {a ewh . alp2—r0 = a for some o € I' \ H normalizing H} .

Remarks. (a) The summands S{I'{;} and S{I"{»} of S either coincide or have
intersection {0}.

(b) The second term in the description of ker Py in Part ii) is zero if there are no
elliptic elements normalizing H.

Proof. We use a path p from ¢| to {> as in Lemma 13.1. For a € W we de-
fine Wy (a) as the cohomology class of c¢(p, a; -) in Proposition 13.3. This gives a
linear map, and the construction shows that the cocycle c¢(p, a;-) has values with
singularities in the I'-orbits of BdSing a C {{1, {>}. This gives Part i).

First suppose that there exist elliptic elements o € I normalizing the hyperbolic
subgroup H. Such elements form one class Ho in H\I'. In the sum over y € H\I'
in the definition of c¢(p, a; -) in (13.3) we combine the summands y and oy. Since
o~ !p is p with the opposite orientation, we have e(x, (cy)"!p) = e(y !(-p)) =
—e(x, 7! p). The two corresponding terms in the sum in (13.3) give

€0,y p) (@luop—ry = ali2-r0y) = €6,y p) alup—r(1 =)y
So if a € WH satisfies aly2-ro = a, then the cocycle c(p,a;-) is zero, so a €
ker Wy C ker Ph.

If a € VM, then c(p, a; -) has values in V, hence the image cocycle in S vanishes.
This establishes the inclusion D in Part ii).

To show the other inclusion, suppose that ¢ € WH is in ker Pyy. If there are
elliptic o € I' \ H normalizing H, then al,,—,0 = xa. If a|,»,—,0 = a then a is in
the right hand side in Part ii) and and we are done. If a|,»_,0 = —a then we will
show that a € V1.

Since a is H-invariant, BdSing a c {{1, {»} by Lemma 12.2. So the image @ of a
inSisinS 4 oS 0 Since the class of ¢(p, @; -) is zero, this cocycle is a coboundary,

and there exists f € CO(X(?;S{Q,{Z}) such that c(p, a;-) = df, with the notation
S{¢1, ) = S{a} + S{g)-

By I'-equivariance, f(a) = f(a)|, 2,7, for all cusps a. So BdSing f(a) C {a}, by
Lemma 3.1. Since £ and ¢ are no cusps, we have f(a) = 0 for all cusps.

Let gqp be a path in Z[XIT] from a cusp a € ({2, {1)cycl to a cusp b € ({1, 2)cycl-

Then €(¢ap, p) = 1, and e(qqep, 0 'p) = —1 if there is o € T’ \ H normalizing H.
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The contribution to c(p, a; gqp) With singularities in {1, {»} is given by
a or a-—alr,o.

So the components of ¢(p, d;q) in S 5 ® S o is equal to the component of & or 2a
in S{. ® S&. On the other hand ¢(p,@;q) = f(a) — f(b) = 0. Since BdSinga c
{¢1, ), this implies that @ = 0, hence a € V. Buta € WH, soa € VH. O

Theorem 12.15 asserts that the canonical map H, (I'; V, W) — H)(I'; W) is an
isomorphism if V = Z)U‘i’z_r and W is one of a list of larger modules, each contained
in Z)sz)z*—r' Now we focus on the following two cases, for which Theorem 12.15
does not give information:

Q) V=09 W=D

v,2—r’ v,2—r

by V=0 ,W=D""" and there are primitive hyperbolic elements
y €T for which v(y) = 7 ™/2,

The following result gives information concerning Case a), and partial information

concerning Case b).

Proposition 13.5. Let r € C.
1) The natural map

leb(r; Dli)Z—r’ Dw*,exc) N leb(r; DY ,exc)

v,2—r v,2—r
1) is injective,
2) and its image in H)(T'; D;f’z*’_erxc) has infinite codimension.
1) Suppose that the set

P = {y €T : yis primitive hyperbolic, and v(y) = ¢~/ 2}

is non-empty. (Recall that £(y) is the length of the closed geodesic associ-
ated to y.)
1) The natural map

(13.6) HL(T; D%, D) — HL(T D0™)

v,2—r v,2—r
is injective.
2) It is not surjective if r € Zsy and for some y € P one of the following
two conditions is satisfied:
a) There are no o € T such that oyo~! = y71.
b) r =0, v(y) = 1, and there exist o € T such that 0')/0'_1 = y‘l,
and v(o) = 1.

Remark. If in Part i1)2) none of the conditions a) and b) holds, we do not know
whether the map in (13.6) is surjective.
Proof. The injectivity in Parts 1)1) and ii)1) follows from the exact sequence (12.7).

Parti)2). Let Hbe a hyperbolic subgroup of I, with primitive hyperbolic genera-
tor y. We consider two cases:
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e Elliptic elements. Suppose there is an elliptic element oo € I such that
oyo~! = y71. Then we check that v(y) = +1 by a computation. The con-
jugation {; — 0, {&» — oo in the proof of Lemma 12.3 can be arranged
to send the fixed point of o to i. Then o corresponds to £S5 = ( i(l) :(1))‘
We can check that |20 corresponds to an involution of the exponents
in (12.3). In this case we note that there are infinitely many linearly inde-
pendent a € (Z)“’ XY for which al,»-,0- = a, that are almost all not in

DY, .. So Lemma 13.4 produces an infinite dimensional space of classes

in H;b(F; Z)l)‘"zfr"c) with infinite dimensional image in H'(T'; S).
o No elliptic elements. If H is not normalized by an elliptic element, then
Part 1)2) holds directly by Lemma 13.4.

Furthermore, Lemma 13.4 shows that different hyperbolic subgroups of I lead
to cohomology classes with values in different summands of S, which is an other
source of infinite dimensionality.

Part ii)2).  We show non-surjectivity of the map by producing cocycles that
have non-zero image in H'(I'; S). See Lemma 12.10. Lemma 13.4 provides us
with cocycles More precisely, consider y € P. To apply Lemma 13.4 we need
a e (Z)w gmp)y that is not in (D uz ,)7. Lemma 12.3 shows that there is a one-
dimensional space with such elements, occurring for r € Zsg and « € {-1,r — 1},
with « as indicated in that lemma. That gives e/®**1 = 1, hence k = —1. Under

Condition a) in Part ii)2) we conclude that there is a class in H b(F Z):’;’_Sflp) with
w* smp)
v,2—r
Under Condition b) we have +1 = v(y) = ¢ "™/2_ Since r € Zs this is possible
only for r = 0 and v(y) = 1. Conjugation as above brings us to the situation
a(t) = (ir)~'. Hence aly2-00 = —v(0) a. So we need the value v(o) = 1 of the two
possible values +1 to complete the proof with Lemma 13.4. O

non-trivial image in H 1(1" ;S

13.2. Mixed parabolic cohomology and condition at cusps.

DY has infinite

02 r’ =v2-r

Proposition 13.6. Let r € C \ Zxy. The space H (5D

o}
codimension in the space b(l“ u2 r’DUZ )

We prepare the proof of this proposition in two lemmas, one of geometric nature,
like Proposition 13.3, the other an infinite codimension result.

In the lemma with a geometric flavor, we work with a tesselation as discussed
in §9.1, based on a fundamental domain & of I'\$, which is split up in a compact
set §y, and cuspidal triangles V;, where b runs over a set of representatives of the
I"-orbits of cusps. The edge f; is the intersection of the boundaries of &y and V5.

Lemma 13.7. Letr € C\Zx), let abe a cusp of T, and let 6 € T\Ty. Leta € DY,
such that

alpr— (1 =06~ )E I —mo).

U2 r |U,2—r (
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a) There exists a C-linear map a v c(a;-) from Dy, to Z\(F _T’Y ;D)

such that c(a; fo) = alp2-(1 - 571, and if there are cusps b not in the orbit
I"athen c(a; fy) = 0.

b) The C[I'l-equivariant linear map c(a;-) : Fr]r’Y - D, _, has a C[I']-

equivariant linear extension ¢(a;-) : F Ir — DY such that

v,2—r
da;) e Z'FT D% D).
¢) The cohomology class [¢(a;-)] € leb(l"; D, D

) satisfies

[6(a; )] € Hy(T: DY D50 &= dlup-(1 =67 € DG, (1 -70).
Remark. In the simplest situation, we Ta
apply the lemma with a choice of 6 € I'
such that the fundamental domain 6~' &
is a neighbor of the fundamental do-
main &, and has common edges with it.
Since § ¢ I', the edges e, and nglea in
0, & that go to a are not edges of 61,
A general choice of 6 € I' \ I, leads to
fundamental domains & and 6§ that
are far apart. We can connect them by a
finite corridor of fundamental domains FIGURE 25
yj‘.l?j such that yjf_ll‘& and yj‘.l?} have a
common edge.

b 5 la

Proof. To construct a cocycle c(a; -) with the desired properties we adapt the geo-
metric approach in §13.1 to the present needs.

We take a C! path from a to ¢ 'a

p* not going through vertices in XJ , ex-

fa cept the initial and final points a and

6~'a, passing through the interior of

Va, leaving it through a point of f,

then going on through the interior of

'« Oy = Uyer vy~ &y, crossing edges in

Y’ «Y XIT’Y transversally, entering 6~!V, via
a point of 67! f, and going through the

b 5 'a interior of 6™V, to 6~ 'a.

We can choose the path p in such a

way that it has many of the properties
in Lemma 13.1, namely a)—d).

FiGure 26

In b) we replace ¢; and /> by a and §~'a. In d) we have intersections only with
the edges f,, 6~ f;, and a finite number of intermediate edges in XT’Y. Since p
runs through finitely many translates of &, Property e) is also satisfied. Moreover,
all edges ey, to cusps b do not intersect p. Property f) does not apply here.



122 ROELOF BRUGGEMAN, YOUNGJU CHOIE, AND NIKOLAOS DIAMANTIS

We define e(x,y~! p) for x € XT and y € I" as in Definition 13.2, and next define
co(a;-) € C/(FT ;DY _ ) by

(13.7) cola; x) = Z e(x,y_lp) aly forxe F(lr.

ye{xI\I'
The I'-equivariance is clear from the equivariance of €, however co(a; ) is not a
cocycle, since the path p leaves the cuspidal triangle V, via f,, but € does not take
into account that the path enters V, at the cusp a. However, we still have

cola; 0y ' Fy) =0 forally eT.

So the restriction c¢(a; -) of cpa; ) to F(]T’Y = C[X]T’y] isin Z'(F7-", D%, ).
The path p intersects f, with e(f;, p) = 1 and 6! f, with e(6~' £, p) = —1, and
no other I'-translates of edges fi; with b’ a cusp of I'. So no path y~'p withy € T

intersects f with b # a in the closure of & in Pé:. For f, we find

cla; fo) = el(fosp)a+e(fo,6pald™ = alp(1-67.
So c(a; -) satisfies the requirements in Part a) of the lemma.

Part b) asks for defining ¢(a; ep) for the cusps b in the closure of . For b # a
this is easy: We have c(a; f;) = 0, and define &(a; ep) = 0 to have ¢(a; 9, Vy) = 0.
The assumptions on a in the lemma show that there exists h € Z)ljf'z_r[a] such
that Alyo—,(1 — ) = aly2-r(1 - 51 = c(a; f;). By taking ¢(a;e,) = h we
have ¢(a;0,V,) = 0. By I'-equivariance we use this to define a cocycle &(a;-) €
Z\(FT; 0% D ) that coincides with ¢ on F] .

The imf)licatioil & in Part c) is a direct consequence of the definition of c¢. For
the implication = we suppose that there exists f € CO(F” ; D D ) such that

0,2—-r> " v,2-r
&a;-) — (df)() € ZYFT; D> DY) The I-equivariance of f implies that

v,2—r’> "v,2—r

F(@)o2-rma = f(a). Denote k = &(a; ex) — df(eq); s0 k € DO . Then

v,2—r

klv,Z—r(l - 71'0) = E‘(Cl; ea)lv,Z—r(l —Ty) — (f(Pﬂ) - f(a))lv,Z—r(l - o)
= hlpo—r(1 = 7o) = f(P)lp2-r(1 —70) + 0

€ ca; fo) + DY _lor(1 7))  (since Py € X))
= dluar(1 =67+ D _ o2 r(1 - o).
Hence al,»—,(1 = 671) € D (1 - y). O

Lemma 13.8. Letr € C\Zsp, A, p € C', andy = (*}) € SLy(R) with ¢ # 0. Then
the space

(13.8) (0, |, A =uy ™) n (7], A -a7'T))
has infinite codimension in the space

(13.9) (05, ], A=uy ™) n (D, ], 10 -27'T)).
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Proof. This may be compared with Lemma 4.13, which implies, with Lemma 3.1,
that for » € C \ Zx, the space

DY, N (DY, (1 = 7' T))
has finite codimension in the space 2%’ . So we have to show that imposing the

condition “exc” and applying |,_.(1 — uy~!) makes an infinite-dimensional differ-
ence. We do this by giving an infinite-dimensional space

-1 * -1
RC (@;’_r |2—r (1 THY )) n (DZw—r |2—r (1 -4 T))’
for which we then show that it has zero intersection with
DY b (1= 7' T).
We take zp € $, on which we will impose some restrictions later on, and put
R = {go|2_r(1 - ,uy‘l) €Dy’ )= (i- t)’_2 p(?) where p is a rational
function on ]P’é, such that p(c0) = p(yeo) = 0, and
p has a singularity at ¢ = zp, and nowhere else in P@lj} .

Since the order of the singularity of p at ¢+ = zg is not prescribed, this space has
infinite dimension. There should be a zero at at least two points in P, so any non-
zero p has a singularity at # = zo of order at least 2. The factor (i — £)"~2 may give
¢ a boundary singularity at t = co. This factor has no influence on the singularities
of patt =zgandt =7yz.

The singularities of ¢ in Pé occur at
20, from p, and on the line i[ 1, co], from 20
the factor (i — 1)"2. The singularities : [
of @by (1) = (a - c2) 2 p(y™'1) are
contained in the union of a/c + i[0, o] yi
and 7y applied to the singularities of .

We choose zg such that the set zp + Yoo
Z does not contain points of i[1, c0] U FiGure 27
Y(i[l, 0)] U (yeo + i[0, eo]) U {y z0}.

Let f = gh-(1-uy™") € R. We have prj,_,¢(1) = p(1), hence (prj,_,)(c0) = 0;
and also (prj,_,(¢la—ry™H))(e0) = (pl5’, ¥ ")(e0) = 0. (See (1.20).) Using a one-

’%0

2—r
sided average (Proposition 4.6) we find i € 9’ [co] such that
(13.10) WO = 27h+ D) = f(0) = @)~ pleh-y™H0),

at least for r € $~. We have to show that if p # 0, then none of the solutions of
(13.10) can be in D5**[eo].

If a solution 4 of (13.10) were in Z)Z‘“_’jxc[oo], then it extends holomorphically
to an {oo}-excised neighborhood. So % can have singularities only inside a strip
[Re z| < N for some N > 0. In particular 4 can have singularities at zy + n only for
a finite number of n € Z.
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The right hand side in Rela-
tion (13.10) has singularities at zgp + n
only if n = 0. So the maximal n > 0
i such that zp + n is a singularity of &

- cannot be larger than 0, since otherwise
there would be a singularity zo9 + n + 1
as well. Similarly, the minimum value
Yoo of n < 0 such that 4 is singular at zg +n
FiGure 28 is also 0. However, a singularity of A
only at zg is also impossible, since f is

holomorphic at zop = 1.

So h cannot have a singularity at any point of zo + Z. The choice of zp shows
that then ¢ has no singularity at zg, in contradiction with p # 0. O

yi

Proof of Proposition 13.6. We have to show that
dim(H) (0 D _,. D) [ Hy (T D, D5 5)) = oo,

v,2—r
We choose a cusp a of I'and 6 € I' \ I'y, and apply Parts b) and c) of Lemma 13.7.
The map a — [&(a; -)] induces a linear map

( 12)2—7 |u,2—r(1 - 6_1)) N ( ;’U;_r |u,2—r (1 - ﬂa))
- H (D% D% ) [ Hy(T: D%, DY),

0,2—r° =v,2—-r 0,2-r> ~v,2—r
with kernel
) -1 w*,exc
(DUJ—’” |v,2—r (1 -9 )) n (Z)UQ—F |v,2—r (1 - 7Ta)) '
So it suffices to show that this kernel has infinite codimension in

—1 *
(Dlaer Ly (1= 7D) N (Dl |y, (1= 0)-
Conjugating a to oo and ¢ to y, we arrive at a statement handled in Lemma 13.8,
with A and u determined by v(rr,) and v(0). O

13.3. Recapitulation of the proof of Theorem E. Part i) concerns the case r €
C \ Zs,. We have to show

a) HL(: DY DY) = HYT DY, D45) = HLT: D).

0,2—r’ "v2—-r v,2—r v,2—r

b) HL(T; D, D) has infinite codimension in H'(T; D, ).

1 . wO,CXC 1 . W*eXC\ :. so: . . . . .
<) Hpb(.l“, Du,_z—r ) — H, (I Z)U’z_r ) is injective with an image of infinite
codimension.
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In the following diagram we indicate where we have carried out the various steps.
(To save space we suppress I in the notation.) For Parts i)a) and i)b) we have:

Prop. 3.2 *
1 w WOexcy _ 11OP-9-2 o4 ) " ,exc
Hpb(@vl—r’ z)11,2—r ) ————— Hpb(Dv,Z—r,’\ Dv,Z—r )
EiThm. 12.15 inf. codim. | Prop. 13.6
13.11 1w’ .exc 1 rqyw w*
( ) Hpb(Dv,Z—r ) Hpb(@v,Z—[\’ Dv,Z—r)
fin. codim. | Prop. 4.12

H'(DY, )

Part i)c) follows from the following commuting diagram:

Prop. 3.2 1 » 0F exc
- Hpb(Dv,Z—r’ Dv,2—r )

1 w wo,exc
Hpb(@U,Z—r’DU,Z—r )
(13.12) = | Thm. 12.15 inf. cod. | Prop. 13.5

1 w*,exc
Hpb(Dv,Z—r )

1 " exc
HPb (Dv,2— r )

Part ii) of the theorem states the following identities and isomorphisms:
wo,oo,exc _ 1 . wo,oo _ 1 . w*,00
© D ) = HY D% . D% = HLT:DY_ . D5)

1.
Hpb(r’Dv,Z—r’ v,2—r
L. @’y o gl (. @'
HL(T; D) = HLT D).

IR

It follows from the diagram

0
1 w W ,00,eXC
HPb(Dv,Z—r’ Dv,Z—r )

Prop. 4.11
Prop. 3.2 *
1 ) wo,oo v 1 ) w00
(1313) HPb(Dv,2—r’ z)1),2—r ) H, b(Z)U,Z—r’ Z)1),2—r)
ElThm. 12.15 ElThm. 12.15
1 w00 1 (qyw* e
Hpb(@v,l—r ) Hpb(DU,Z—r )

Only for the first equality we need r € R \ Z5,. For all other steps r € C \ Zx,

suffices.

Part iii) states forr € R \ Zsi:
0
a) The image ry’S, (I, v) = Hy ([ D, D, P) is equal to
1. yw 0, smp 1 /. o w*,smp
Hpb(r’ z)U,Z—r’ Dv,Z—r ) HPb(F’ DU,Z—V’ ’Z)U,Z—r )
0
and canonically isomorphic to leb(F ; Z);“z’_srmp .
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1 ) 0 smp,exc, - . . .
b) The space H,(I; D, _, D5 ) is canonically isomorphic to the space

H)\(T; Z)Uwz*’_sflp) if v(y) # e~/ for all primitive hyperbolic elements y €
I', where {(y) is the hyperbolic length of the closed geodesic associated
toy

Part iii)a) follows from the diagram

0
H;b(z)w Dw ,smp,exc)

0v,2—-r’ " v,2-r

Prop. 4.11, ii)
0 Prop. 3.2 X
1 w ', smpy = P22 g4 W w”,smp
(13.14) Hpb(Dv,Z—r’ Z)1),2—1’ ) th(Dv,Z—r’ Z)U,Z—r )
= lThm. 12.15
Hl (Z)woﬁmp)
pb T, 2—r

The condition that r is real is needed only for the first step. Part iii)b) follows also
from Theorem 12.15 under a condition on hyperbolic elements.

13.4. Related work. The constructions in this section arose from a generalization
of the examples in Propositions 13.7 and 14.3 in [15]. The paths p in Lemma 13.1
and in the proof of Lemma 13.7 represent cycles in homology. It is conceivable that
they can be related to the computations of Ash [1], who computes the parabolic
cohomology with values in the rational functions by computing first homology
groups. We have not succeeded in making this relation explicit.

14. QUANTUM AUTOMORPHIC FORMS

Theorem E implies that r¥ : A.(I',v) - H LT, D, ) is far from surjective.

Quantum automorphic forms may be put, for weights r € C \ Z5, on the place of
the question mark in the diagram

Ap(I,0) oo

(14.1) ry i =
0, L.
Hy ([ D2, ;D5 ——H D))
This is similar to the role of quantum Maass forms in [15, §14.4].

14.1. Quantum modular forms. Zagier [119] gives examples of quantum modu-
lar forms as functions on Q that have a modular transformation behavior modulo a
smooth function on R.

Example:  Powers of the Dedekind eta-function. We attach a quantum modular
form to n>" with Re r > 0.
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The cusps of I'(1) form one orbit, P}Q = Q U {oo}. For each cusp a € Q the
function

Qa a
(142) o = [ w0 = [ P@e-d
20 20
is well defined for t € H~ and satisfies hgly 2 (T, —1) = f;;, o where 7, = O'QTO';1
generates the stabilizer I',.

Let¢s = (fZ) € I'(1) such that a,5~'a € Q. Then

0" ct-+ dY 2 ooon) = o) = ([ L | oz,
671z 20

(14.3)
= ¥,
by Lemma 2.3. All terms in this relation are in 57 , hence
(14.4) p(a) = he(a) (aeQ
is well defined, and satisfies
(14.5) Plo,2-r(6 = D) () = lﬁfﬁr’&(a) (0,60 €Q).

The function p : Q — C has no reason to have a continuous extension to R.
However, pl,,2-+(6 — 1) is the restriction of a real-analytic function on R. The
function p is an example of a quantum modular form.

Strong quantum modular forms. Since h, as indicated above is an element of 27° ,
we have an asymptotic series hq(f) ~ P(a,1) := 3,50 cn(a) (f — a)", approximating

ho(t) as t — a through $~ U R. For ¢ € I as above we have from (14.3):

(14.6) v,8)~! (ct + d) 2 P(8a,61) — P(a,1) ~ vs, 50

as t — a through $~ U R. This means that P is a strong quantum modular form in
the sense of Zagier [119].

Constant function. Now we take r = 0, hence ° = 1 € My(['(1),1). It seems
sensible to take now

(14.7) ho(2) = _L .
Now we cannot substitute ¢ = a. However, with ¢ as above
(14.8) 00(®) ™! (et +d)"2 hsoB0) ~ ha(t) = —— = Fa(t).
ct+d
with the cocycle i € Zl(F(l);Z){‘j;’exc) in (2.23). So P(a,t) = ﬁ can be viewed

as a strong quantum automorphic form if we allow asymptotic series of the form

2ins—1 CaQ) (1 — )",
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14.2. Quantum automorphic forms. For general cofinite discrete groups I' we
define quantum automorphic forms as simply as possible for our purpose. The ex-
ample of the constant function shows that we need to use series starting at order —1.

It turns out that we get satisfactory results in the context of these notes if we use
expansion starting at order —1, namely, P(a,1) := c_; (t—a)~! +cg - - -, and leaving
implicit the terms cy, ¢, . . ..
Definition 14.1. By C we denote the set of cusps of I'. By a system of expansions
p on C we mean a map assigning to all except finitely many points a € C N R an
expression

pla,n) = c(@) (=) +coa) + (7= a)Cllr — al,

where C[[¢ — a] is the ring of formal power series in t — a. Two such systems p
and p; are equivalent if p(a,?) = pi(a,t) mod (¢ — a) C[[# — a]| for all but finitely
many a € CNR. By R we denote the linear space of equivalence classes of systems
of expansions.

If t — () is real-analytic on a neighborhood of a in R, then multiplication by
@(1) is well defined for elements of (t — a)"'C[[¢ — a]] mod (¢ — a) C[[7 — a].
Definition 14.2. The action |,>—, of I' on R is induced by
(14.9) (Pla-)@, D) = vy~ (et +d) 2 plya, y1)
foralla € CNRandy = () € I for which p(a,-) and p(ya,-) are defined. If
r ¢ Z we define (ct + d)"2 by the argument convention (1.2) for t € H~.

Remarks. (a) The operations in both parts of the definition preserve the equivalence
between systems of expansions. We will mostly identify an equivalence class with
a representative of it.

(b) The inclusion Dy,

(14.10) Pola, ) = @(a) + (t — a)C[[7 — a]] forallae CNR,

is equivariant for the actions |,2—, of I" on Z)ljf’z_r and R.

— R given by ¢ - p,, where

Definition 14.3. Let € C and let v be a multiplier system for the weight .

a) By R, .-, we denote R provided with the action |, >, of I.
b) We define the I-module @, 2, := R, 2-, / DY, _,.
¢) We define the space 94,_,(I', v) of quantum automorphic forms of weight

2 — r with multiplier system v as a quotient of I'-invariants:
(14.11) WUy (Tov) = Q,_ /R

v,2—r 0,2—r*

Remarks. (a) So we have an exact sequence of I'-modules
0 - D~

0,2—r - Rv,Z—r - Qv,Z—r -0,
with the associated long exact sequence

0— (D;’)z_r)r N Rr N QF N Hl (F;Du,)Z—r) 5 e

v,2—r v,2—r v
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T
v,2—-r’

We choose to define quantum automorphic forms as the quotient QE IR
which can automatically mapped into H'(T, D, _,) injectively.

In this way a quantum automorphic form is a function defined on almost all
of C N R that has automorphic transformation behavior modulo functions that are
analytic on R minus finitely many points. Further we work modulo functions on
C N R that are exactly automorphic.

(b) We leave it to the reader to explore the examples of Zagier [119]. The pur-
pose of our definition is not to cover all those examples. We are content to define

quantum automorphic forms in such a way that they fill the hole in diagram 14.1.
14.3. Quantum automorphic forms, cohomology, and automorphic forms.

Proposition 14.4. Let v be a multiplier system on T for the weight r € C.
a) There is an injective natural map

(14.12) 9C %A (T, 0) - H'(T; D5, -
b) If r € C\ Zsy, then IC is surjective.

Proof. Injectivity, Part a). Definition 14.3 implies that the sequence
(14.13) 0 - D~

v2—r Roz—r = Qv,Z—r -0
is exact. The part
r r 1
RU,Z—V - Qv,Z—r - H (r; leZ—r)
of the corresponding long exact sequence in group cohomology shows that the

connecting homomorphism induces an injective linear map
Ao (T,0) = H T3 D5 ,),

which we call 9C. It sends a quantum automorphic form represented by p € R, 2_,
to the class of the cocycle y — plya2-(y — 1).

Surjectivity, Part b). Letr € C\ Zs1, and let A € C*. Proposition 4.6 shows that
for each f € O)” atleast one of the one-sided averages AV;:’ 1f and Avy , f exists in

2)2“’_* .» and that (Av;" W1 —A7'T) = f. Furthermore, by Proposition 4.9, there is
an asymptotic formula (prjz_rAV;‘, WO =cat+co+ Ot HYast— +oo through R,
with coefficients c_; and cp determined by f, independent of + if both averages
exist. By conjugation, we define for parabolic 7 = oTo~!, with o € SLy(R),

{=0oc0#coand f € DY
(14.14) A = (A ()
It satisfies
(A -1 =2""1) = f,
(AENE) = e (=& +co+ 0@ - &),

where ¢ T & for AV;: pand | & for Av,. The constants c-; and ¢y depend on the
expansion of f at &, but not on the choice of + if both averages are defined. (They
differ from the constants at c0.) This definition depends on the choice of ¢ such
that ¢ = oco. For cusps a € C N R we use 0, as in §1.3.

(14.15)
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After this preparation we consider a cohomology class in H'(T; Dy,
sented by the cocycle ¢ € Z'(T; D,_,). Forae CNNR we put

(14.16) p,1) 1= =(AVE o )0 + (£ = @) Cllt = all,

where we choose + such that the average exists. If both averages exist they may
differ, but lead to the same expansion.
Let§ = (%) € I with a,6a € R. Then
(Av,i,v(na)lpna)bl—r(ﬂa -1) = —Yr,
Tsa = 67Ta6_1 s wngn = 'ﬁnﬂlv,Z—ré_l + w6|v,2—r(7ra - 1)6_1 s
0(6)_1 (ca + d)r_Z (Avéa,v(m;a)wﬂ&a)(ét) = (Avéa,y(nb-a)'ﬁﬂda)lv,l—ré (t)
(AVéa,U(ﬂéa)lﬁmsu)lv,Z—r5(7Ta -1) = (A éa’y(ﬂéa)wﬂﬁq)lv,z—r(ﬂéa -1)o
= _‘//(Salv,Z—r(S = _l//na - l/’élv,Z—r(ﬂ'a - 1) s
((Av,imv(néa)wmu)|U,2—r6 - (Av,i,v(ﬂa)wnﬂ))bl—r(ﬂa -1) = _¢6|U,2—r(7ra -1).
The function (Avéa,u(ﬂéa)wﬂaa)lv,z_,é - (Av;a wiro¥r) T Y5 has a one-sided asymp-
totic expansion at a starting at a multiple of (r — a)~! and is invariant under lp2—rTq.
Conjugating this to co and applying Part ii) of Lemma 3.4 we conclude that

(Avi’y(ﬂa)wﬂa) ~ _'70(5
as t approaches a from one direction. We conclude that

(14.17) (Plo2-r6)(a, 1) — p(a,1) = Ys(t) + O — a)
fortTaort| a. Sopla—r (6 —1)=y¢sinR, and IC(p) = [y]. O

), repre-

Remark. For weight r = 1, Part i) of Proposition 4.6 implies (after conjugating co
to a € CNR) that Avy, yr,)¥r, 1s defined if Y (a) = 0. Since there are finitely many
I"-orbits of cusps, the construction in proof of surjectivity of 9C goes through for a
subspace of H!(T; @U(ﬁ) of finite codimension.

Proposition 14.5. Let v be a multiplier system on T for the weight r € C \ Zs.
There is an injective linear map Q : A.(I',v) — Ay_,(I', v) such that the following
diagram commutes:

re

r 1.
AT, v)C H T:D), )

Ar-r(I', v)

Proof. Theorem A implies that r is injective. Since C is bijective by Proposi-
tion 14.4 the map C is invertible, so Q = 4C~! o r®. |

Remark. This result shows that for r € C\ € Zs; each class in H'(T; D, ) is the
image of an object with automorphic flavor.
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Back to the examples. 'We now discuss that the examples of quantum modular
forms in 14.1 come under Definition 14.3.
For the powers of the Dedekind eta-function with Re r > 0 we gave in (14.2)

(14.18) p(a) = ho(a)  with k(1) = f a 7' (2) (z— 1) 2 dz.

20

On the other hand, if r € C \ Zs1, then Q(*") = %C~!(r*(3*")) in Proposition 14.5
can be given by

(14.19) 9@.1) = ~(AVE, W2, )W)+ (=) Cllr - all,

according to the construction in (14.16), where + has to be chosen such that the
one-sided average exists.

First take r € (0, 00) \ Z;. Then h, € Z)lj‘:”;'i’fxc (Lemma 2.5, conjugated from oo
to a) satisfies hqly, 2— (M — 1) = T iy By Part ii) of Lemma 4.10 (also conjugated

TIZV
to a) we have h, = Av;—’a ,U,_(ﬂa)(//;g, " for both choices of +. So p(a) = ¢(a, ) mod
(t — a)C[[t — a]] in this case.
For Rer > 0, r € C \ R, we consider only the case that Imr > 0; the other
case goes similarly. We note that v.(7,) = v,(T) = ™16 for all cusps a. We

use Avﬂ o) and the asymptotic of (Avjr‘a ’Ur(ﬂﬂ);bf]‘;,ﬂa)(t) ast | a. Since h, and
—Avﬂa,vr(na)wn% . satisfy the same equation, we have h, = —Av Ur(ﬂ'a)w + P

with avr(na)—périodic function P. The asymptotic behavioras ¢ | a shows that P()
has tobe O(t — a) as ¢ | a. So hy and —Av_ )wf;;, . determine the same element

a0 (T
of Rv,,Z—r-

For the constant function n° = 1 we used hq(f) = (t — a)~!. It leads in (14.8)
to a cocycle with values in Z)l“j;’exc, not in Dy,. So it does not represent O(1) €
A (I(1), 1).

For an explicit computation, we write a € Q in the form 0,00, with oy = (‘C‘ Z) €
I'(1), and hence a = £. Then

- 1 —nac na®
© 7\ —ne2 1+nacl’
So we have, with 7 = 7, = O'aTO'_l

W0 = Dt law0 = 3 [ i onar

n>0 n>0

Zf Zo(z—t)z

n=0

We have lim,,_,« 7;""z0 = a/c = a. Hence

0 dz 1 1
+ 20 — —
Avﬂ’lz//hﬂ(t) = —j; s = t—a+zO—t'
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This modification of the function A, in (14.7) leads to the element of R given by
P@D = —— -0 + (- Clall,

which satisfies pl12(6 — 1)(a,t) = l//i(?(s(l) mod (¢ — a) C[[£ — a]].

Dependence on the parameters. The family of modular forms r — 7" depends
holomorphically on r. This suggest to look for quantum modular forms given by

az(i’ :) B, + (= O Cllt - all,

where r — a(a,r) and r — f(a,r) are at least continuous on [0, c0). This is
impossible (proof left to the reader). It is a phenomenon similar to the asymptotic
expansion in (4.14), where the coefficient in the leading term is discontinuous in A.

pla, 1) =

14.4. Related work. The concept of quantum automorphic is due to Zagier. His
paper [119] gives beautiful explicit examples of quantum modular forms. Za-
gier mentioned the concept long before the appearance of [119]. The paper [11]
was written during the preparation of [15], to fill a hole in a diagram analogous
to (14.1).

15. REMARKS ON THE LITERATURE

Like we mentioned in §2.5, an indication of what we now call the Eichler inte-
gral is present in a paper of Poincaré in 1905, [97]. Eichler’s definition in [41] is
based on Bol’s equality .~ '(F|,_,y) = F"~V|,, which appears in [6, §8]. In [30]
Cohn indicated this approach for weight 4. The paper [107] of Shimura has a
different atmosphere; it stresses cohomology with values in a Z-module. In the
following years Gunning, Knopp, Lehner and others studied the relation between
automorphic forms and cohomology: [51, 52,42, 31, 78, 54,79, 102, 103, 50]. Kra
[73, 74] started the study of cohomology of kleinian groups. Here the cohomology
group is not generated by Eichler integrals. We have not included in the list of
references all papers on the cohomology of kleinian groups.

Manin [84] discussed arithmetical questions. For a cuspidal Hecke eigenform
for SL,(Z) of even weight the ratio between the even periods are in the field gener-
ated by the Fourier coefficients of the cusp form; for the ratios of the odd periods
the same holds. The cocycles are present in the background, for instance in the
period relations. So apart from the Fourier coefficients there are two, possibly tran-
scendental, numbers involved in the coefficients of the period polynomials. The
arithmetic of the period polynomials, associated with values of L-functions at in-
tegral points in the critical strip, are an important area of study in connection with
the cocycles attached to automorphic forms. It goes further than the central idea
in these notes, which is establishing the relation between automorphic forms and
cohomology. Therefore we have not tried to include all papers in this area in the
list of references. We mention the concept “modular symbol”; see [84, 108]. We
mention also Haberland’s paper [53], and [60, 46, 47, 113]. In [117] Zagier de-
scribes rather explicitly how to reconstruct a cuspidal Hecke eigenform from its
period polynomial.
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The step from weights in Zs, to general real weights was done by Knopp in
his paper [64]. For general real weights one needs a multiplier system, which
Knopp assumes to be unitary. This definition leads to a map from cusps forms to
cohomology classes with values in the highest weight module D° , characterized
by the condition of polynomial growth. Knopp’s cocycle integral also occurs in
the paper [91] of Niebur. In the proofs in [64] Knopp uses the construction of
“supplementary series”, from [63]. It is nice to see that with hindsight we can view
the resulting functions as mock automorphic forms. The isomorphism between the
space of cusp forms and the cohomology group was completed for all weights in
2010 by Knopp and Mawi, [69].

Knopp, [65], started the study of rational period functions and gave examples.
He showed in [66] that the singularities can occur only in the rational points 0, co,
and in points in real-quadratic fields (which are hyperbolic fixed points of I'(1)),
and Choie[21] showed the existence of rational period functions with singularities
in any real quadratic irrationals. Several authors expanded the theory, [86, 71, 1,
21,22,23,24,25,54,92,26, 105, 46, 39]. We expect that the approach in Sections
12 and 13 can be applied to cohomology with values in the module of rational
functions.

In [67] Knopp and Mason start the study of “generalized modular forms”, which
are vector-valued automorphic forms with at most exponential growth at the cusps
for the modular group SL,(Z) with real weight and matrix-valued multiplier sys-
tems that need not be unitary. The papers [68, 70, 100, 101] deal with the coho-
mology classes associated to these automorphic forms.

The I'-behavior of automorphic forms can be formulated as the vanishing of
Fl,(y = 1) for all y € I. This has been generalized to the condition that

Flo,(;i =D (y2=1D---(yq—1) = 0 forally,...,y, €T,

leading to “higher order automorphic forms”, for which Deitmar, [34, 36], has
studied cohomological questions. See also Diamantis and O’Sullivan [38], Sim
[109]. Cohomological techniques have also been used in the context of higher-
order forms by Taylor [111]. See further [14].

In [2] Bringmann, Guerzhoy, Kane and Ono consider period polynomials for
r-harmonic modular forms with negative even weights. Bringmann, Diamantis
and Raum [4] extended the construction to account for non-critical values of L-
functions.

The condition of holomorphy can be completely removed from the definition of
automorphic forms, and replaced by a second order differential equation. Formu-
lated in terms of functions on the universal covering group G this is the eigenvalue
equation for the Casimir operator. This leads to the so-called “Maass forms” and
their generalizations. For Maass forms of weight O the relation between automor-
phic forms and cohomology has been studied by many authors. Lewis, [80], gave
a bijection between even Maass cusp forms and spaces of holomorphic functions
on C\ (—o0, 0] that satisfy a functional equation similar to the equation satisfied by
period function for the modular group PSL,(Z). In the papers [81] and especially
[82] this is further discussed for the modular group. Miihlenbruch, [88] extended
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this to real weights. See also [89]. A relation between the period functions of
Lewis and the hyperfunctions associated to Maass forms was explored in [10], the
ideas in which were expanded in [32, 33, 35].

Another, rather unexpected, relation is with eigenfunctions of the transfer op-
erator introduced by Mayer, [85], in connection with the Selberg zeta-function.
Transfer operators are a concept from mathematical physics, applied by Mayer to
the geodesic flow on the quotient PSL,(Z)\$. The eigenfunctions of the trans-
fer operator with eigenvalue 1 are, after a simple transformation, identical with
Lewis’s period functions. So the eigenfunctions of the transfer operator are related
to cohomology classes. See [81], [82, Chap. IV, §3], and [116] for a further discus-
sion. In [12] this relation with cohomology is used to relate eigenfunctions of two
transfer operators. See also [87, 94, 95, 96]. As far as we see, the use of a transfer
operator is less suitable in the present context, since the space %’ is not the space
of global sections of a sheaf on PfR.

The aim of the paper [15] is to explore the relation between Maass forms of
weight zero and cohomology more completely, for all cofinite discrete group. For
cocompact discrete groups rather complete results were available, even in the con-
text of automorphic forms on more general symmetric spaces, in the work of Bunke
and Olbrich, [19, 20]. For groups with cusps a reasonably complete description was
obtained with use of three ideas: (1) use of mixed parabolic cohomology groups;
(2) work with boundary germs as coefficient module; (3) description of the mixed
parabolic cohomology groups with resolutions based on a suitable tesselation of the
upper half-plane. In the present notes we tried to apply these ideas in the context
of holomorphic automorphic forms.

APPENDIX A. UNIVERSAL COVERING GROUP AND REPRESENTATIONS

The discussion in this appendix is not really essential for these notes, but several
definitions and arguments become more natural if we relate them to the universal
covering group of SL,(R).

A.1. Universal covering group. The universal covering group G of SLy(R) is a

simply connected Lie group that is locally isomorphic to the Lie group SL,(R).
We can describe G with help of the Iwasawa decomposition of SLy(R), which

writes each g € SL,(R) uniquely as

VY % ( cos ) sinﬂ)

9= 0 —sin ¥ cos ¥

<

with z = x+ iy € 9 and ¥ € R mod 22aZ. As an analytic variety, SLy(R) is
isomorphic to $ X (R/27Z). A simply connected analytic variety that covers $ X
(R/277Z) is H X R, with the natural map R — R/2z2Z. We denote its points as (z, ),
with z € 9, ¥ € R. It is possible to define a group structure on $ X R such that the
projection map H X R — 9 X (R/27Z) is an real-analytic group homomorphism.
The resulting group with underlying space $ x R is the universal covering group G
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of SL,(R), with projection homomorphism
(A.1) pr:G — SLy(R).

Here we do not describe the group structure of G explicitly. (See, eg., [9,
§2.2.1].) We mention that there is a group homomorphism k : R — G, given
by k(%) = (i,©). It covers the isomorphism R/27Z — SO(2) given by @ >
( cos Sinﬂ). We note that {k(27n) : n € Z} is the kernel of pr : G — SL,(R),

—sin® cos
and that Z := {k(zn) : n € Z} is the center of G.
The most important aspect of the group structure is the lift g — § from SL,>(R)
to G, given by

;E ai+b . .
(A.2) (c d) = (ci T arg(ci + d)) with — 7 < arg(cz+d) <.
It takes a preimage for the covering map pr. It satisfies
(Tl; az+b
A3 ) = [——, 0 - +d)).
(A3) (cd)@ ) = (o p? - arelez+ )
This map is continuous on the open dense subset Gog € SL(R), in (1.3). We have
@' =g  forgeGo,
(A4) —_— ==
gpg™' = gp@~" forgeGo, p= \(/)y ‘{g s XHIYED.
Y

All elements of G can be, non-uniquely, written as a product g k(rn), with g € Gy,
nez.

A.1.1. Weight functions and actions by right and left translation.
Definition A.1. A function f : G — C has weight r € Cif f(z,9) = f(z,0)e"?.

A function f on G with weight r is determined by its values on (z, 0), with z € .
We define a corresponding function R, f on $ by

(A.5) (R.)@) = y? f(z,0), hence fz.P) = y/>R.f)2)e"”.

Left translation. The group G has a right action in the space of functions G — C
given by left translation

(A.6) forge G : f - flg, givenby (flg)g1) = fl(gg1)-

We also use the notation L, f = flg.
The action by left translation preserves the weight. Moreover, we have

b
(A7) R(f1P)2) = (cz+d)" (R fHz)  forg = (j d) € SLy(R).

Thus, we see that the operators |.g in (1.1) correspond naturally to the represen-
tation of G by left translation in the functions on G of weight r. The argument
convention for arg(cz + d) for z € $ in (1.2) is coupled to the choice of the argu-
ment in (A.2). Then the convention for z € 9 is determined by the wish to have
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relation (1.7). Since g — g is not a group homomorphism, the operators |,g do not
form a representation of SL,(R).

Right translation. There is also the left action of G on the functions on G by right
translation:

(A.8) Ry f)g1) = [f(g19).

It commutes with left translations. It does not preserve the weight.

A.1.2. Discrete subgroup. For a cofinite discrete subgroup I' ¢ PSL,(R) we de-
fine

(A.9) [ :={geG : prgeT}.
It is a discrete subgroup of G. It contains the center Z.

Any character xy : I' — C* of I induces a central character of Z which is
determined by y(k(rr)), which we can write as y(k(xr)) = €™ with r € C mod 2nZ.
The map v, : I' — C* given by

wo AT (e

is a multiplier system on I" for the weight r. One can check that all multiplier
systems on I arise in this way.

The representation IUX,, of T on the functions on $, in (1.10), corresponds to the
representation y~' ® L of T" on the functions of weight  on G. For these functions
the generator k() of Z acts as multiplication by )((I~<(7r))_1 " = 1. So indeed,
v~ ! ® Lis a representation of I'/Z = T.

The invariants of the representation y~! ® L in the functions of weight r cor-
respond to the space of all functions on $ with (I', v)-automorphic transformation
behavior of weight r. For automorphic forms one requires also that the functions
are eigenfunctions of a differential operator. These differential operators can be
described with the Lie algebra. (See §A.1.3.)

Modular group. The modular group I'(1) = SL»(Z) is covered by I:(T) c G. The

generators T = ((1) }) and § = (? _(1)) can be lifted to give generators r = (i + 1,0)

and s = (i, —n/2) of I;(l), with relations genera"tgd by ts?> = s*tand tstst = s.
All characters of I'(1) are of the form y, : ['(1) —» C* with r € C/12aZ given by

(A.1D) xit) = &0 x(s) = e,
corresponding to the multiplier system v, in (2.12).

A.1.3. Lie algebra. The real Lie algebra of SL,(R) is
(A.12) ar = {g € My(R) : Traceg = 0.

A basis is W = (_(1)(1)), H = ((1) _?), V = ((1)(1)) For each X € g, the exponential

expX = 3,50 % X" is an element of SL,(R). For small values of # € R we have
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exp(tX) € Go; the lift ¢ — (expX)™ extends to a group homomorphism R — G.
This leads to differential operators on G:

d d
(A13) (Lxf)g) = —f(expiX)g)| . Rxf)9) = —flglexpiX))|_ .

This can be extended to a linear map X — Lx from the complexified Lie algebra
g := C®g g, to the first order right-invariant differential operators on G. Similarly
we have a linear map X — Rx from g to the first order left-invariant differential
operators on G. So the operators Rx leave invariant the space of invariants for the
representation y~' ® L in C*(G), and the operators Ly leave invariant the space of
differentiable functions with a given weight.

The relation with the Lie product [X, Y] = XY - YXis

(A.14) RxRy —RyRx = Rxy], LxLy-LyLx=-Lixy].
We also write X f instead of Rx f. For the basis W, Ef = H+iV,E- =H-iVofg

we have in the coordinates (z, #) € G:
W = 61’} ’

A.15 ; ;
( ) E* = *(iyd, +2yd, —ids), E - = e 2(2iyd, +2yd, +idy).

The Lie algebra g can be embedded in the universal enveloping algebra U,
generated by all products of elements of g, with the relations XY -YX = [X, Y] for
all X,Y € g. The maps X — Rx and X — Lx can be extended to U, and describe
the ring of all left-invariant, respectively right-invariant, differential operators on G.
The center of U is a polynomial algebra in one variable, for which we can take

1 1 i 1 1 i
A.l = ——EE'+-W?+-W = ——E'E"+-W? - —W.
(A.16) w 2 +4W+2W 7 +4W 2W
It gives rise to the following bi-invariant differential operator on G:
(A.17) Ly, = R, = ¢ (=2iyd, +2yd, +idy),

called the Casimir operator.

A.1.4. Automorphic forms on G. One may define an automorphic form on G with
character y as a function f : G — C with transformation behavior f(yg) =
x(y) f(g) for all g € G, y € T, that is an eigenfunction of R, and Ry. With this
definition, an automorphic form has a weight r € C, determined by Rwf = irf,
and an eigenvalue A € C, determined by R, f = Af.

There are several interesting sets of values for (4, r). If one wants to do spectral
theory, it is convenient to take » € R. Then square integrability of the automorphic
forms restricts A to a subset of R containing the interval (1/4, co).

The automorphic forms considered in [15] correspond to » = 0 and A = s(1 — )
withO < Res < 1.

The differential operator A, in (1.27) corresponds under R, in (A.6) to R, —
5(1 = 5). If f has weight r, then E” f has weight r — 2. With (A.5) we have

(A.18) RaE7f) = ~4iy R f (= 2y 26 F).
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So the condition of holomorphy corresponds to being in the kernel of E~. Then
(A.17) implies that A = 5(1~-7). For the same eigenvalue there are more eigenfunc-
tions of the Casimir operator than there are in the kernel of E™. They correspond
to the larger space of r-harmonic automorphic forms.

A.L1.5. Polar functions. The polar r-harmonic functions P, M, ,, and H,, in §7.1

are specializations of functions in [9, §4.2]. Fourier terms F(u, ) transforming
according to F(u, )|, (_C;fsg s(l;lg) = /+20% F(yy, ) for small values of ¢ are of the

form R, f(u,-), as in (A.5), where f(u,-) : G — C satisfies
(A19) f(u.kgkw) = T2 fug). Rofrg) = 3 (1-3) fa.9).

Such a function can be written as
~ . ~ Qiun+i ( ‘H/I) u /1/2 _ /2 1
(A.20) k) (i1, 0) k() o P (—— 1) w+1)" hﬂ(—u " 1),

with t > 1, u = ((¢'/2 + r71/2)/2)*, where h,, satisfies the differential equation in [9,
§4.2.6]. In Table 6 we summarize the relation between the variables in [9] and

[9] here [9] here

n = r+2u I = r
_ (=+1)? _ ol

w = - s = 7

p = 3l & = Signp
_ =P 2ip  _  z=i et

u = "z e T Fi

Q20y) = 20 il

e )

TaBLE 6. Relations for the computation in §A.1.5

here. The solutions in [9, 4.2.6 and 4.2.9] give:

u(n, s;(it,0)) = ( “ )#/2 (u + 1)*’/2 ,

u+1
. U \u/2 /o 1
(Aop) A0 =s3000) = () @ PR =2 ),
ifu<0:
L _ u /2 —r/2 . . u
w(n.s:(it,0) = (—=) " @+ D72l 1+l ——).

We write (z, 0) = k(1) (it, 0) k1), and have to multiply with y~"/2 ¢/"1+¥)+2ink (o get
the corresponding function F(u, -). Table 6 shows also that the functions in (A.21)
correspond to P.,, M, ,, and H,,, respectively. This requires some computations
and, for M,.;, with u < 0, use of a Kummer relation (Relation (2), [43, §2.9]).
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A.1.6. Resolvent kernel. Let m, denote the function on G such that R,m, = M.
So m,(k(m)gk(y)) = ") m,(g). The kernel function Q, in (8.11) corresponds
to the function g,(g1,92) := mr(gflgz), which satisfies ¢,(g1k(%1), g2k(92)) =
@290 g (g1, g5). So it has weight —r in g; and weight r in g», and we should

have 0,(z1,22) = ¥ *y;""* 4:(21,0), (22, 0)), which is indeed the case:
-1/2 _ -1/2\~
r —r, Y X1y
¥y 421,00, (22,00) = (y1/y2)"? mr( ( 10 1/12 ] (Zz,O))
Y

(W1 /y2)"* m((z2 = x1)/y1,0)
W1/y2) W2 /y)* M(za — xD) /1) = M(z2 — x1)/y1).

Since ¢,(g9g1,992) = q.(g1,92) for all g € G, this immediately implies the invari-
ance relation (8.14).

For the differential equations we use that in weight r the Casimir operator cor-
responds to A, + (1 — 5). Since w is left-invariant, we have

Rugr(g1,") = %(1—2)%(91,-)-

This corresponds to (8.12).
The Casimir operator commutes with g — ¢~! and with right translations, so
wqr(,92) = 5(1=5) q,(-,g2). Since O, has weight —r in the first variable, we have

—-r r r r
(A—r + 7 (1 + 5))Qr(, 22) = E (1 - E) 0r(92),
which is (8.13).

A.2. Principal series. Induced representation. The set P := {(z,mn) € G
z € H, m € Z} is a subgroup of G. The principal series representations of G are
obtained by induction from the characters, which can be written as

—mmnir

(A.22) Xsr i (@ mm) = yte ™,

with s € C, r € C mod 2Z. This leads to the space V“[s, r] consisting of the
real-analytic functions G — C that satisfy f(gp) = xs.,(p)"! f(g) with p € P,
g € G. The action of G by left translation makes V“[s, r] into a representation
of G. The collection {V¥[s,r] : s € C, r € R/2Z} is called the principal series
of representations of G, depending on the spectral parameter s € C and the central
character k(mn) — e ™™ . The superscript w indicates that, for the moment, we
consider analytic vectors.

The classes of G/P can be parametrized as l}(ﬁ)f’ with ¢ € R mod nZ. We can
describe the elements of V“[s, r] as functions f : R — C that satisfy f(¢ + n) =

€™ f(19). With some work one can explicitly describe f + f | (‘CZ [bi) in terms of
analytic functions of # depending on a, b, ¢, and d.

This is not a practical way to work with principal series representations. We
choose p € r+27Z and relate f as above to ¢ on P%& by @(—cot ) = e~'P? f(9). This
leads to a realization of the principal series V“[s, r] in the real-analytic functions
on IP’%&. We denote this realization by V“(s, p), and call it a projective model of
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Vs, r]. The model depends on the choice of p = r mod 2. If one carries out the
computations one arrives at the following description of the action

el k() (1) = € () (independent of ¢ = r mod 2),
elg () = (a+ic) P2 (a—icy™r?
t—i 2 t+i S+PI2 (ieb
(t—g—l i) (m) (ct+d)’

for g = (“%) € Go  SLy(R), as defined in (1.3).

(A.23)

Remarks. (a) The description in (A.23) is complicated. The factor (#ji)s_p /2

is holomorphic on Péj minus a path in $ from i to ¢g~'i, and similarly the factor
( t+i )S+P/2

=g~ (=i)
 is a real-analytic function on Pﬁ, then ¢|

is holomorphic on P(}: minus a path in $~ from —i to g~'(=i). So if

prj
S,p

(b) Any real-analytic function on P]%{ is the restriction of a holomorphic function on
some neighborhood of P%K in ]P(é. We can view V“(s, p) as a space on holomorphic
functions on some neighborhood U, of P} in Pl. The action [}, preserves this
space.

~ . 1
g is also real-analytic on Pp.

(c) We do not have one projective model of V*[s, r], but infinitely many. Multi-
plication by the function ¢ — (%)f, with £ € Z, gives an isomorphism

(A.24) VO(s,r+20) — V©(s,r).

(d) The action I‘;r,jp leaves invariant other spaces of functions on P!, for instance the
C*-functions. This leads to the space V*(s, p) of smooth vectors in the principal
series representation. The discussion in [13, §2] of the space distribution vectors
and hyperfunction vectors can be applied here, leading to V~>(s, p) and V~“(s, p).

(e) All elements of V“(s, p) can be represented as a sum

t—iu
A.25 —
(A.25) Z u (t +i ) ’
UEZ
with ¢, = O(e~?y for some a > 0. For the larger spaces V*(s, p) with x =
00, —oo, —w, there are similar descriptions, like in [15, (2.18)], each with a condition

on the growth of the coefficients c,,.

A.2.1. Highest weight subspaces. For general combinations of s,p € C the G-
module V®(s, p) is irreducible. (Reducibility has to be understood as the existence
of a closed non-trivial invariant subspace, for the topology on V“(s, p) that in the
projective model is induced by the collection of supremum norms on the neighbor-
hoods U of ]P’Hl{ in ]P’(é.) Reducibility occurs if 2s = p or 25 = —p modulo 2. For our
purpose we consider 2s = —p mod 2. In view of the isomorphism in (A.24) we can
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look at the case (s, p) = (1 — 5,7 — 2). In that case the action in (A.23) is given by
O, Dk (@) = & (),

(a—ic)? (%)z_r (p(%) )

(A.26) g

P09 @

2—
The factor ((t -0/t - g‘li)) " has singularities only on a path in $ from i to
g~'i. Hence V¥ (1 — 5. = 2) contains as an invariant subspace the vectors repre-

sented by a holomorphic function on a neighborhood of $™ N Pﬁ% in Pé:. That is just
the projective model prj,_, 05’ . Moreover, a comparison of (A.26) with (1.20)
shows that ‘]’rj r/2r29 is the same as the operator g”_ .g- In this way, the space D’

can be viewed as an invariant subspace of V¢ (1 — 5= 2).

In the representation (A.25) the subspace prj,_,. D%’ c V(1 - 5,r - 2) is char-
acterized by ¢, = 0 for u > 0. Then the sum represents a a holomorphic function
on a neighborhood of $~ U Py in Pf..

The function ¢ — (%)lJ is an eigenfunction of k() with eigenvalue ™0+,
One calls r + 2u the weight. In prj, D¢ only weights r + 2u with u < 0 occur,
hence the name highest weight subspace.

We may proceed similarly with the larger representations spaces V*(1-5, r-2),
V=1 - 5,r—2),and V=“(1 - 3, r - 2), to obtain descriptions of the projective

models of D, with x = co, —c0, —w.

A.3. Related work. The idea to view automorphic forms as functions on a Lie
group is well-known, and has led to wide generalizations. We have not tried to
find the first place where this idea appears in the literature. To handle automor-
phic forms of non-integral weight one has to use a central extension of the Lie
group SL,(R). For half-integral weights one needs a double cover, the metaplectic
group. See, e.g., Gelbart‘s treatment [48]. For general complex weights we need
the universal covering group G. See Selberg [106], and Roelcke [104, §4].

Covering groups are often described with a 2-cocycle on SLy(R) with values
in the center, Z/2Z for the metaplectic group, Z = Z for G. This cocycle turns
up naturally in the description of multiplier systems, even if one does not use the
language of Lie groups. Petersson gives itin [93, (11)], and Roelcke in [104, (1.7)].
We feel more comfortable with the description of G as the space $ x R provided
with an analytic group structure. This keeps the 2-cocycle hidden in the properties
of the lift g — §.

For all semisimple Lie groups the principal series of representations is impor-
tant. In [62, Chap II] one finds examples. For the universal covering group G of
SL,(R) it was developed by Pukdnski [99], since he needed it for function theory
on G. Chapter VII of [62] discusses the construction of principal series represen-
tations as an induced representation.
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