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HOLOMORPHIC AUTOMORPHIC FORMS AND COHOMOLOGY

ROELOF BRUGGEMAN, YOUNGJU CHOIE, AND NIKOLAOS DIAMANTIS

A. We investigate the correspondence between holomorphic automor-
phic forms on the upper half-plane with complex weight and parabolic cocycles.
For integral weights at least 2 this correspondence is given by the Eichler inte-
gral. We use Knopp’s generalization of this integral to real weights, and apply
it to complex weights that are not an integer at least 2. We show that for these
weights the generalized Eichler integral gives an injection into the first cohomol-
ogy group with values in a module of holomorphic functions, and characterize
the image. We impose no condition on the growth of the automorphic forms at
the cusps. So our result covers exponentially growing automorphic forms, like
those studied by Borcherds, and like those in the theory of mock automorphic
forms.

For real weights that are not an integer at least 2 we similarly characterize
the space of cusp forms and the space of entire automorphic forms. We give a
relation between the cohomology classes attached to holomorphic automorphic
forms of real weight and the existence of harmonic lifts.

A tool in establishing these results is the relation to cohomology groups with
values in modules of “analytic boundary germs”, which are represented by har-
monic functions on subsets of the upper half-plane. It turns out that for integral
weights at least 2 the map from general holomorphic automorphic forms to coho-
mology with values in analytic boundary germs is injective. So cohomology with
these coefficients can distinguish all holomorphic automorphic forms, unlike the
classical Eichler theory.
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I

Classically, the interpretation of holomorphic modular forms of integral weight
on the complex upper half-plane H in terms of group cohomology has provided a
tool that has had many important applications to the geometry of modular forms,
the study of their periods, the arithmetic of special values of their L-functions, for
instance in [107, 64, 84, 71].

A similar interpretation for Maass forms had to wait until the introduction of
periods of Maass forms given by Lewis and Zagier [80, 82]. The analogue of Eich-
ler cohomology and the Eichler-Shimura isomorphism for Maass forms of weight
zero was established in [15].

We recall that Eichler [41] attached a cocycle ψ to meromorphic automorphic
forms F of weight k ∈ 2Z≥1 by

(1) ψF,γ(t) =
∫ z0

γ−1z0

F(z) (z − t)k−2 dt .

This cocycle has values in the space of polynomial functions of degree at most
k − 2, with the action of weight 2 − k. The action of a Fuchsian group Γ is induced
by the action |2−k on functions f : H→ C, and is given by

( f |2−kγ)(z) := (cz + d)k−2 f (γz).

The class of the cocycle does not depend on the base point z0 in H. To get indepen-
dence of the integrals on the path of integration F is supposed to have zero residue
at all its singularities. This is the case for cusp forms F. In that case we can put the
base point z0 at a cusp, and arrive at so-called parabolic cocycles.
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For cusp forms for the modular group Γ(1) = SL2(Z) one takes z0 at ∞. Then
the cocycle is determined by its value on S =

(
0
1
−1

0

)
. One calls ψF,S a period

polynomial of F, whose coefficients are values of the L-function of F at integral
points in the critical strip.

Knopp [64] generalized this approach to automorphic forms with arbitrary real
weight. Then a multiplier system is needed in the transformation behavior of holo-
morphic automorphic forms. The factor (z − t)k−2 becomes ambiguous if one re-
places the positive even weight k by a real weight r. Knopp solves this problem by
replacing t by t̄ for points t ∈ H, and restoring holomorphy by complex conjugation
of the whole integral. The values of the resulting cocycle are holomorphic func-
tions on the upper half-plane. Knopp [64] shows that for cusp forms F they have
at most polynomial growth as t approaches the boundary. In this way he obtains
an antilinear map between the space of cusp forms and the first cohomology group
with values in a module of holomorphic functions with polynomial growth. He
showed, [64], that for many real weights, this map is a bijection, and conjectured
this for all r ∈ R. Together with Mawi [69] he proved it for the remaining real
weights.

For positive even weights this seems to contradict the classical results of Eichler
[41] and Shimura [107], which imply that the parabolic cohomology with values in
the polynomials of degree at most k−2 is isomorphic to the direct sum of the space
of cusp forms of weight k and its complex conjugate. The apparent contradiction
is explained by the fact that Knopp uses a larger module for the cohomology. Half
of the cohomology classes for the classical situation do not survive the extension
of the module.

In the modular case the period function of a modular cusp form of positive even
weight satisfies functional equations (Shimura-Eichler relations). Zagier noticed
that a functional equation with a similar structure occurs in Lewis’s discussion in
[80] of holomorphic functions attached to even Maass cusp forms. Together [82]
they showed that there is a cohomological interpretation. In [15] this relation is
extended to arbitrary cofinite discrete groups of motions in the upper half-plane
and Maass forms of weight zero with spectral parameters in the vertical strip 0 <
Re s < 1. It gives an isomorphism between spaces of Maass cusp forms of weight
0 and a number of parabolic cohomology groups, and for the spaces of all invariant
eigenfunctions to larger cohomology groups.

In this paper we study relations between the space of automorphic forms without
growth condition at the cusps and various parabolic cohomology groups. We use
the approach of [15] in the context of holomorphic automorphic forms for cofinite
discrete groups of motions in the upper half-plane that have cusps. Like in [15] we
do not need to impose growth conditions at the cusps, and speak of unrestricted
holomorphic automorphic forms. We take the module of holomorphic functions in
which the cocycles take their values as small as possible. That means the classical
space of polynomials of degree at most k − 2 for weights k ∈ Z≥2. Also for other
weights we use a smaller module than Knopp [64]. To avoid the complex conjuga-
tion we use modules of holomorphic functions on the lower half-plane H−. It turns
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out that, for the main results, working with arbitrary weights in C r Z≥2 takes no
more effort than working with real weights; so that is the generality that we choose
where possible. We shall show that the definition in (1), suitably interpreted, gives
a bijection between the spaces of unrestricted holomorphic automorphic forms and
several isomorphic parabolic cohomology groups.

There are several motivations and potential applications for this. Knopp’s ap-
proach could “see” only cusp forms, we work with smaller modules of analytic
vectors in a highest weight subspace of a principal series representation, and obtain
a cohomological description of all automorphic forms. In particular, this covers the
case of automorphic forms with exponential growth at the cusps. This case is im-
portant especially because of its prominent role in Borcherds’s theory [7] and in
the theory of mock modular forms.

In the same way that representation theory has provided an important unified set-
ting for holomorphic and Maass forms, our construction reflects a common frame-
work for the cohomology of holomorphic and Maass forms.

There are a lot of important relations between the theory of cohomology of
modular forms and various problems in number theory. For instance, Zagier [115]
gives a new elementary proof of the Eichler-Selberg trace formula using the explicit
description of the action of Hecke operators on the space of cohomology groups.
In the same paper Zagier connects cocycles with double zeta values, in which many
interesting further results are developed recently ([57], [120]). Another application
is the possibility of an interpretation of the higher Kronecker limit formula in terms
of cohomology group [112].

Finally, we note that one of striking applications of Eichler cohomology con-
cerns algebraicity results for critical values of L-functions of classical (integral
weight) cusp forms, eg, Manin’s periods theorem [84], or [83]. The results ob-
tained were later extended, at least conjecturally, to other values and to values of
derivatives in a manner eventually formalized in the conjectures of Deligne, Beilin-
son, Bloch-Kato and others. See [72].

In the case of values of derivatives, the main pathway to such results did not
involve directly Eichler cohomology. However, for f of weight 2, in [49], (resp.
[37]), L′f (1) (resp. L(n)

f (1)) is expressed in terms of a “period” integral similar to an
Eichler cocycle, when L f (1) = 0. Despite the similarity, this “period” integral does
not seem at first to have a direct cohomological interpretation. Nevertheless, in §9.4
we are able to show that, L′f (1) can be expressed as a derivative with respect to a the
parameter of a family of parabolic cocycles r 7→ ψ∞fr ,· associated to a family r 7→ fr
of automorphic forms. With [37], similar expressions can be proved for higher
derivatives. We hope that better insight into the cohomology whose foundations we
establish here should yield information about the algebraic structure of derivatives
of L-functions along the lines of the algebraicity results for critical values derived
with the help of classical Eichler cohomology.

We now proceed with a discussion of the results of this paper. We avoid many
technicalities, and state the main theorems giving only rough descriptions of the
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cohomology groups and coefficient modules involved. In the next sections we
define precisely all objects occurring in the statements.

Let Γ be a cofinite discrete subgroup of SL2(R) with cusps. We take a complex
weight r ∈ C and an associated multiplier system v : Γ → C∗. We denote by
Ar(Γ, v) the space of all holomorphic functions F : H→ C such that

F(γz) = v(γ) (cz + d)r F(z) for all γ =
(
∗

c
∗

d

)
∈ Γ, z ∈ H .

For a fixed z0 ∈ H and an F ∈ Ar(Γ, v) consider the map ψz0
F : γ 7→ ψz0

F,γ on Γ,
where ψz0

F,γ is the function of t ∈ H− given by t

(2) ψz0
F,γ(t) :=

∫ z0

γ−1z0

(z − t)r−2 F(z) dz .

We take the branch of (z − t)r−2 with −π2 < arg(z − t) < 3π
2 .

Our first main theorem is:

Theorem A. Let Γ be a cofinite discrete subgroup of SL2(R) with cusps. Let r ∈
C r Z≥2, and let v be an associated multiplier system.

i) The assignment ψz0
F : γ 7→ ψz0

F,γ is a cocycle, and F 7→ ψz0
F induces an

injective linear map

(3) rωr : Ar(Γ, v)→ H1(Γ;Dω
v,2−r) .

Here Dω
v,2−r denotes a space of holomorphic functions on the lower half-

plane H− that are holomorphically continuable to a neighborhood of H− ∪
R, together with an action depending on v.

ii) The image rωr Ar(Γ, v) is equal to the mixed parabolic cohomology group
H1

pb

(
Γ;Dω

v,2−r,D
ω0,exc
v,2−r

)
, which consists of elements of H1(Γ;Dω

v,2−r) repre-
sented by cocycles whose values on parabolic elements of Γ satisfy certain
additional conditions at the cusps.

This result is comparable to Theorem C in Bruggeman, Lewis, Zagier [15] where
a linear injection of Maass forms of weight 0 into a cohomology group is estab-
lished.

The proof of Theorem A will require many steps, and will be summarized in
Subsection 10.5.

We characterize the images under rωr of the spaces Sr(Γ, v) of cusps forms and
Mr(Γ, v) of entire automorphic forms:

Theorem B. Let Γ be a cofinite discrete subgroup of SL2(R) with cusps. Let r ∈ R
and let v be a unitary multiplier system on Γ for the weight r.

i) If r ∈ R r Z≥2

rωr Sr(Γ, v) = H1
pb(Γ;D

ω
v,2−r,D

ω0,∞,exc
v,2−r ) ,

where Dω0,∞,exc
v,2−r is a subspace of Dω0,exc

v,2−r defined by a smoothness condi-
tion.
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ii) If r ∈ R r Z≥1

rωr Mr(Γ, v) = H1
pb(Γ;D

ω
v,2−r,D

ω0,smp,exc
v,2−r ) ,

with the Γ-moduleDω0,smp,exc
v,2−r ⊃ D

ω0,∞,exc
v,2−r also contained inDω0,exc

v,2−r .

Here we give only a result for real weights. It seems that for non-real weights
the cusp forms do not form a very special subspace of the space of all automorphic
forms. There is, as far as we know, no nice bound for the Fourier coefficients and
it seems hard to define L-functions in a sensible way.

In Theorems A and B automorphic forms of weight r are related to cohomology
with values in a module with the “dual weight” 2 − r.

The characterization in Theorems A and B of the images of spaces of automor-
phic forms is one of several possibilities given in Theorem E, which we state in
Subsection 1.7, after some Γ-modules containing Dω

v,2−r have been defined. There
we see that the map rωr in Theorem A is far from surjective. In Section 14 we
discuss a space of quantum automorphic forms, for which there is, if r < Z≥1, a
surjection to the space H1(Γ;Dω

v,2−r).
In §2.3 we will compare Part i) of Theorem B to the main theorem of Knopp

and Mawi [69], which gives an isomorphism Sr(Γ, v) → H1(Γ;D−∞v,2−r) for some
larger Γ-module D−∞v,2−r ⊃ D

ω
v,2−r. The combination of the theorem of Knopp and

Mawi with Theorem A shows that there are many automorphic forms F ∈ Ar(Γ, v)
for which rωr F is sent to zero by the natural map H1(Γ;Dω

v,2−r) → H1(Γ;D−∞v,2−r).
This means that the cocycle γ 7→ ψz0

F,γ becomes a coboundary when viewed over
the moduleD−∞v,2−r, ie, that there is Φ ∈ D−∞v,2−r such that ψz0

F,γ = Φ|v,2−r(γ − 1) for all
γ ∈ Γ.

The following result relates the vanishing of the cohomology class of γ 7→ ψz0
F,γ

over a still larger module D−ω
v,2−r ⊃ D

−∞
v,2−r to the existence of harmonic lifts, a

concept that we will discuss in Subsections 1.8 and 5.2.

Theorem C. Let Γ be a cofinite discrete subgroup of SL2(R) with cusps. Let r ∈ C
and let v be a multiplier system for the weight r. The following statements are
equivalent for F ∈ Ar(Γ, v):

a) The image of rωr F under the natural map H1(Γ;Dω
v,2−r) → H1(Γ;D−ω

v,2−r)
vanishes.

b) The automorphic form F has a harmonic lift in Harm2−r̄(Γ, v̄); ie, F is in
the image of the antilinear map Harm2−r̄(Γ, v̄) → Ar(Γ, v) given by H 7→
2iy2−r ∂z̄H.

We prove this theorem in Subsection 5.2. Combining the theorem of Knopp
and Mawi [69] with Theorem C we obtain the existence of harmonic lifts in many
cases. See Theorem 5.3 and Corollary 5.2.

Boundary germs. An essential aspect of the approach in [15] is the use of “analytic
boundary germs”. These germs form Γ-modules isomorphic to the modules in [15]
corresponding to Dω

v,2−r and Dω0,exc
v,2−r in our case. In [15] the boundary germs are
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indispensable for the proof of the surjectivity of the map from Maass forms of
weight zero to cohomology. The same holds for this paper.

In Sections 6–8 we study the spaces of boundary germs that are relevant for our
present purpose. In particular we define spaces Eωv,r and Eω

0,exc
v,r that are for weights

in C r Z≥2 isomorphic to Dω
v,2−r and Dω0,exc

v,2−r , respectively. In Theorem 10.18 we
obtain, for all complex weights r, an injective map

(4) qωr : Ar(Γ, v)→ H1(Γ;Eωv,r)

and study the image.
For weights r ∈ C r Z≥2 we use Theorem 10.18 in the proof of Theorem A.

Theorem 10.18 is also valid for weights in Z≥2. For these weights it leads to the
following result:

Theorem D. Let r ∈ Z≥2, let Γ be a cofinite discrete subgroup of SL2(R) with
cusps, and let v be a multiplier system on Γ with weight r.

i) Put cr =
i

2 (r−1)! , let ρr denote the natural morphism Eωv,r → D
ω
v,2−r, and let

D
pol
v,2−r denote the submodule of Dω

v,2−r consisting of polynomial functions
of degree at most r − 2. The following diagram commutes:

(5)

H1(Dω
v,r) // H1(Eωv,r)

ρr // H1(Dpol
v,2−r)

// 0

H1
pb(D

ω
v,r,D

ω0,exc
v,r ) //

?�

OO

H1
pb(E

ω
v,r,E

ω0,exc
v,r )

ρr //
?�

OO

H1
pb(D

pol
v,2−r)

?�

OO

A2−r(v)
cr ∂

r−1
τ //

�rω2−r

OO

A0
r (v)

�qωr

OO

� � // Ar(v)

rωr

__

, L

qωr

ff

(To save space the group Γ is suppressed in the notation.)
ii) The top row and the middle row are exact.

iii) The maps H1(Γ;Dω
v,r) → H1(Γ;Eωv,r) in the top row and the map and

H1
pb(Γ;D

ω
v,r,D

ω0,exc
v,r ) → H1

pb(Γ;D
ω
v,r,D

ω0,exc
v,r ) in the middle row are injec-

tive, unless r = 2 and v is the trivial multiplier system. In that exceptional
case both maps have a kernel isomorphic to the trivial Γ-module C.

Remarks. (a) For r ∈ Z≥1 the Γ-module Dω
v,r can be considered as a submodule of

Eωv,r. The space A0
r (Γ, v) is the space of unrestricted holomorphic automorphic form

for which the Fourier terms of order zero at all cusps vanish.
(b) We note that automorphic forms both of weight r and of the dual weight 2 − r
occur in the diagram. The theorem shows that boundary germ cohomology in some
sense interpolates between the cohomology classes attached to automorphic forms
of weight 2 − r and of weight r, with r ∈ Z≥2.
(c) The second line in diagram (5) has no closing→ 0. In §11.5 we will discuss
how this surjectivity can be derived by classical methods, provided that we assume
that the multiplier system v is unitary.
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Comparison with [15]. This paper has much in common with the notes [15]. Both
give isomorphisms between spaces of functions with automorphic transformation
behavior and mixed parabolic cohomology groups. The main difference is in the
modules in which the cohomology groups have their values. The Γ-modules in [15]
are spherical principal series representations. The linear map in [15] analogous to
our map rωr sends Maass forms of weight zero to cohomology classes in H1(Γ;Vω

s ),
where Vω

s is the space of analytic vectors in the principal series representation of
PSL2(R) with spectral parameter s. The assumption 0 < Re s < 1 ensures that the
representationVω

s is irreducible. Holomorphic automorphic forms of weight r ∈ C
correspond to a spectral parameter r

2 , for which the corresponding space of analytic
vectors is reducible. Hence here we work with the highest weight subspace. It is
irreducible precisely if r < Z≥2, which explains that in this paper weights in Z≥2
require a special treatment.

Another complication arises as soon as the weight is not an integer. This means
that we deal with highest weight subspace of principal series representations of
the universal covering group of SL2(R). In the main text of these notes we have
avoided use of the covering group. We discuss it in the Appendix.

Although the main approach of this paper relies heavily on methods from [15],
and also on ideas in [82], it was far from trivial to handle the complications not
present in [15].

Overview of the paper. In Sections 1–4 we discuss results that can be formulated
with the modules D∗v,2−r. Here the proof of Theorem B is reduced to that of Theo-
rem A. Sections 5–7 give results for harmonic functions and boundary germs. In
section 5 one finds the proof of Theorem C. We use the boundary germs in Sec-
tions 8–11 to determine the image of automorphic forms in cohomology, and prove
Theorems A and D. Sections 12 and 13 give the proof of Theorem E (which itself
is stated on page 17). The map rωr in Theorem A is not surjective. In Section 14
we discuss how quantum automorphic forms are mapped, under some conditions,
onto H1(Γ;Dω

v,2−r).
At the end of most sections we mention directly related literature. In Section 15

we give a broader discussion of literature related to the relation between automor-
phic forms and cohomology. In the Appendix we give a short discussion of the
universal covering group and its principal series representations.
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Part I. Cohomology with values in holomorphic functions

1. D  

We work with the upper half-plane H =
{
z ∈ C : Im z > 0} and the lower

half-plane H− defined by Im z < 0. For z ∈ H ∪ H− we will often use without
further explanation y = Im z, x = Re z. Both half-planes are disjoint open sets in
the complex projective line P1

C
= C∪{∞}, with the real projective line P1

R = R∪{∞}
as their common boundary.

1.1. Operators on functions on the upper and lower half-plane. Let r ∈ C. For
functions f on the upper or lower half-plane

(1.1) f |rg (z) := (cz + d)−r f
(az + b
cz + d

)
for g =

(
a
c

b
d

)
∈ SL2(R) ,

where we compute (cz + d)−r according to the argument convention to take

(1.2) arg(cz + d) ∈ (−π, π] if z ∈ H , arg(cz + d) ∈ [−π, π) if z ∈ H− .

These operators |rg do not define a representation of SL2(R). (One may relate it
to a representation of the universal covering group of SL2(R). See the Appendix,
§A.1.1.) There are however two useful identities. Set

(1.3) G0 :=
{(a

c
b
d

)
∈ SL2(R) : −π < arg(ci + d) < π

}
.

Then, for all g ∈ G0 and p =
(
y
0

x
y−1

)
with x ∈ R and y > 0:

( f |rg−1)|rg = ( f |rg)|rg−1 = f ,(1.4)

f |rgpg−1 =
(
( f |rg)|r p

)
|rg
−1 .(1.5)

To interchange functions on the upper and the lower half-plane we use the anti-
linear involution ι given by

(1.6)
(
ι f

)
(z) := f (z̄) .

It maps holomorphic functions to holomorphic functions, and satisfies

(1.7) ι
(
f |rg

)
= (ι f )|r̄g

(
g ∈ SL2(R)

)
.

1.2. Discrete group. Everywhere in this paper we denote by Γ a cofinite discrete
subgroup of SL2(R) with cusps, containing

(
−1

0
0
−1

)
. Cofinite means that the quo-

tient Γ\H has finite volume with respect to the hyperbolic measure dx dy
y2 . The pres-

ence of cusps implies that the quotient is not compact. The standard example is the
modular group Γ(1) = SL2(Z).

Multiplier system. A multiplier system on Γ for the weight r ∈ C is a map v : Γ →
C∗ such that the function on Γ × H given by

(1.8) jv,r
((a

c
b
d

)
, z

)
= v

(
a
c

b
d

)
(cz + d)r
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satisfies the following conditions:

(1.9)

jv,r(γδ, z) = jv,r(γ, δz) jv,r(δ, z) for γ, δ ∈ Γ ,

jv,r
((
−a
−c
−b
−d

)
, z

)
= jv,r

((a
c

b
d

)
, z

)
for

(
a
c

b
d

)
∈ Γ .

We call a multiplier system unitary if
∣∣∣v(γ)

∣∣∣ = 1 for all γ ∈ Γ.

Action of the discrete group. Let v be a multiplier system on Γ for the weight r. For
functions on H and p ≡ r mod 2 we put for γ =

(
a
c

b
d

)
∈ Γ:

(1.10) f |v,pγ (z) := v(γ)−1 (cz + d)−p f (γz) = jv,p(γ, z)−1 f (γz) ,

and for functions on H− and p ≡ −r mod 2

(1.11) f |v,pγ (z) := v(γ)−1 (cz + d)−p f (γz) .

The operator |v,p defines a holomorphy-preserving action of Γ on the spaces of
functions on H and on H−, ie., ( f |v,pγ)|v,pδ = f |v,pγδ for all γ, δ ∈ Γ. Furthermore,
f |v,p

(
−1

0
0
−1

)
= f , hence we have an action of Γ̄ := Γ/{1,−1} ⊂ PSL2(R). Finally,

(1.12) ι
(
f |v,rγ

)
= (ι f )|v̄,r̄γ for γ ∈ Γ .

1.3. Automorphic forms. We consider automorphic forms without any growth
condition.

Definition 1.1. A unrestricted holomorphic automorphic form on Γ with weight
r ∈ C and multiplier system v on Γ for the weight r is a holomorphic function
F : H→ C such that

(1.13) F|v,rγ = F for all γ ∈ Γ .

We use Ar(Γ, v) to denote the space of all such unrestricted holomorphic automor-
phic forms. We often abbreviate unrestricted holomorphic automorphic form to
holomorphic automorphic form or to automorphic form.

Cusps. A cusp of Γ is a point a ∈ P1
R = R ∪ {∞} such that the stabilizer Γa :={

γ ∈ Γ : γ a = a
}

is infinite and has no other fixed points in P1
C

. This group is of
the form Γa =

{
±πn
a : n ∈ Z} for an element πa ∈ Γ that is conjugate to T =

(
1
0

1
1

)
in SL2(R). The elements πn

a have trace 2, and are, for n , 0, called parabolic. The
elements πa and π−1

a are primitive parabolic since they are not of the form γn with
γ ∈ Γ and n ≥ 2.

For each cusp a there are (non-unique) σa ∈ G0 such that πa = σaTσ−1
a . We

arrange the choice such that for all γ ∈ Γ we have σγa = ±γσaT n for some n ∈ Z.
The set of cusps of a given discrete group Γ is a finite union of Γ-orbits. Each of

these orbits is an infinite subset of P1
R.

Fourier expansion. Each F ∈ Ar(Γ, v) has at each cusp a of Γ a Fourier expansion

(1.14) F|rσa (z) =
∑

n≡αa mod 1

an(a, F) e2πinz ,
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with αa such that v(πa) = e2πiαa . The Fourier coefficients an(a, F) depend (by a
non-zero factor) on the choice of σa in SL2(R). In general, σa < Γ, so we have to
use the operator |rσa, and not the action |v,r of Γ.

If the multiplier system is not unitary, it may happen that
∣∣∣v(πa)∣∣∣ , 1 for some

cusps a. Then αa ∈ C r R, and the Fourier term orders n in (1.14) are not real.

Definition 1.2. We define the following subspaces of Ar(Γ, v):
i) The space of cusp forms is

Sr(Γ, v) :=
{
F ∈ Ar(Γ; v) : ∀a cusp ∀n≡αa(1) Re n ≤ 0⇒ an(a, F) = 0

}
.

ii) The space of entire automorphic forms is

Mr(Γ, v) :=
{
F ∈ Ar(Γ, v) : ∀a cusp ∀n≡αa(1) Re n < 0⇒ an(a, F) = 0

}
.

If v(πa) , 1 the name “entire” is not very appropriate, since then the Fourier
expansion at a in (1.14) needs non-integral powers of q = e2πiz.

This implies that F ∈ Sr(Γ, v) has exponential decay at all cusps:

(1.15)
∀a cusp of Γ ∀X > 0∃ε>0 ∀x∈[−X,X]

F
(
σa(x + iy)

)
= O(e−εy) as y→ ∞ .

If v is not unitary we need to restrict x to compact sets. Similarly, functions F ∈
Mr(Γ, v) have at most polynomial growth at the cusps:

(1.16)
∀a cusp of Γ ∀X > 0∃a>0 ∀x∈[−X,X]

F
(
σa(x + iy)

)
= O(ya) as y→ ∞ .

1.4. Cohomology and mixed parabolic cohomology. We recall the basic defini-
tions of group cohomology. Let V be a right C[Γ]-module. Then the first cohomol-
ogy group H1(Γ; V) is

(1.17) H1(Γ; V) = Z1(Γ; V) mod B1(Γ; V) ,

where Z1(Γ; V) is the space of 1-cocycles and B1(Γ; V) ⊂ Z1(Γ; V) the space of 1-
coboundaries. A 1-cocycle is a map ψ : Γ→ V : γ 7→ ψγ such that ψγδ = ψγ|δ+ψδ
for all γ, δ ∈ Γ and a 1-coboundary is a map ψ : Γ → V of the form ψγ = a|γ − a
for some a ∈ V not depending on γ.

Definition 1.3. Let V ⊂ W be right Γ-modules. The mixed parabolic cohomology
group H1

pb(Γ; V,W) ⊂ H1(Γ; V) is the quotient Z1
pb(Γ; V,W)/B1(Γ; V), where

(1.18) Z1
pb(Γ; V,W) =

{
ψ ∈ Z1(Γ; V) : ψπ ∈ W |(π − 1) for all parabolic π ∈ Γ

}
.

The space H1
pb(Γ; V) := H1

pb(Γ; V,V) is the usual parabolic cohomology group.
We call cocycles in Z1

pb(Γ; V,W) mixed parabolic cocycles, and parabolic cocy-
cles if V = W.

In (1.18) it suffices to check the condition ψπ ∈ W |(π − 1) for π = πa with a in a
(finite) set of representatives of the Γ-orbits of cusps.
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1.5. Modules. The coefficient modules that we will use for cohomology are based
on the following spaces:

Definition 1.4. Let r ∈ C. For functions ϕ define the function prj2−rϕ by

(1.19) (prj2−rϕ)(t) := (i − t)2−r ϕ(t) ,

where (i − t)2−r denotes the branch with arg(i − t) ∈
(
−π2 ,

3π
2
)
.

i) D−ω2−r :=
{
ϕ : H− → C : ϕ is holomorphic

}
.

ii) D−∞2−r :=
{
ϕ ∈ D−ω2−r : ∃B>0 ϕ(t) = O

(
|Im t|−B) + O

(
|t|B

)
on H−

}
, the space

of functions with at most polynomial growth.
iii) D∞2−r =

{
ϕ ∈ D−ω2−r : prj2−rϕ ∈ C∞(H− ∪ P1

R)
}

iv) Dω
2−r = prj−1

2−rlim−→ O(U) where U runs over the open neighborhoods of

H− ∪ P1
R in P1

C
, and O denotes the sheaf of holomorphic functions on P1

C
.

v) For r ∈ Z≥2 we put Dpol
2−r :=

{
ϕ ∈ Dω

2−r : ϕ is given by a polynomial

function on C of degree at most r − 2
}
.

Discussion. (a) The largest of these space, D−ω2−r, consists of all holomorphic
functions on the lower half-plane. The subspaceD−∞2−r is determined by behavior of
ϕ(t) as t approaches the boundary P1

R of H−. The real-analytic function Q(t) = |Im t|
|t−i|2

on P1
C
r {i} satisfies 0 < Q(t) ≤ 1 on the lower half-plane and zero on its boundary.

A more uniform definition of polynomial growth requires that functions f satisfy
f (t) � Q(t)−B for some B > 0. In Part ii) we use Knopp’s formulation in [64],
transformed to the lower half-plane. Both are equivalent. To see this, we use in
one direction that (for t ∈ H−)

|Im t|−B + |t|B

Q(t)−B ≤
1 + |t|2B

|t − i|2B ≤ 1 + 1 .

In the other direction we carry out separate estimates for the following three cases
(1) |t| ≤ 1, with Q(t)−B ≤ |Im t|−2B; (2) |t| ≥ 1, |Im t| ≥ 1

2 with Q(t)−B � |t|2B + 1;

(3) |t| ≥ 1, |Im t| ≤ 1
2 , with Q(t)−B ≤

|t|2B

|Im t|B + |Im t|−B ≤ |t|4B + |Im t|−2B + |Im t|−B.

(b) With t ∈ H−, the factor (i − t)2−r in (1.19) is O(1) if Re r ≥ 2 and O(|t|2−Re r) if
Re r ≤ 2, and its inverse (i − t)r−2 satisfies similar estimates. So the function ϕ on
H− has at most polynomial growth if and only prj2−rϕ has polynomial growth. So
we could formulate the definition ofD−∞v,2−r with prj2−rϕ instead of ϕ.
(c) The polynomial growth in Part ii) concerns the behavior of ϕ(t) as t approaches
the boundary P1

R of H− at any point. The polynomial growth at the cusps in (1.16)
concerns the approach of F(z) as z approaches cusps in the boundary P1

R of H.
(d) For some holomorphic ϕ on H− it may happen that prj2−rϕ extends from H−

to yield a function that is smooth on H− ∪ P1
R. Then prj2−rϕ satisfies near ξ ∈ R a

Taylor approximation of any order N

prj2−rϕ(t) =
N−1∑
n=0

an (t − ξ)n + O
(
(t − ξ)N)
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as t approaches ξ through H−∪R. Near∞ we have a Taylor approximation in −1/t.
This defines the space in Part iii) as a subspace ofD−ω2−r.

These Taylor expansions imply that prj2−rϕ has at most polynomial growth at
the boundary. SoD∞2−r is in fact a subspace ofD−∞2−r .
(e) Instead of Taylor expansions of any order, we may require that prj2−rϕ is near
each ξ ∈ P1

R given by a convergent power series expansion. Then it extends as a
holomorphic function to a neighborhood of H− ∪ P1

R in P1
C

. That defines the space
Dω

2−r in Part iv).
The formulation with an inductive limit implies that we consider two extensions

to be equal if they have the same restriction to H−.
(f) If r ∈ Z≥2, and ϕ is a polynomial function of degree at most r − 2 the function
prj2−rϕ(t) extends holomorphically to P1

C
r {i}.

(g) We have defined a decreasing sequence of spaces of holomorphic functions on
the lower half-plane: D−ω2−r ⊃ D

−∞
2−r ⊃ D

∞
2−r ⊃ D

ω
2−r ⊃ D

pol
2−r (the last one only if

r ∈ Z≥2).
One can show that the spaces D∗2−r arise as highest weight subspaces occurring

in principal series representations of the universal covering group of SL2(R). Then
Dω

2−r corresponds to a space of analytic vectors, D∞2−r to a space of C∞-vectors,
D−∞2−r to a space of distribution vectors, and D−ω2−r to a space of hyperfunction vec-
tors. This motivates the choice of the superscripts ω, ∞, −∞ and −ω. See §A.2 in
the Appendix.
(h) The vector spaces Dω

2−r and D∞2−r depend on r, the spaces D−∞2−r and D−ω2−r do
not.

Projective model. We have characterized the spaces D∗2−r in iii) and iv) in Defi-
nition 1.4 by properties of prj2−rϕ, not of ϕ itself, and could also equally well use
prj2−rϕ in i) and ii).

We call prj2−rD
∗
2−r the projective model of D∗2−r. Advantages of the projective

model are the simpler definitions and the fact that none of the spaces prj2−rD
∗
2−r

depends on r. Moreover, the projective model focuses our attention to the behavior
of the functions near the boundary P1

R of the lower half-plane.
A big advantage of the spaces D∗2−r themselves is the simple form of the oper-

ators |2−rg with g ∈ SL2(R). We will mostly work with these spaces, and use the
projective model only where it makes concepts or proofs easier.

The formula in (1.1) for the operators |rg is the usual formula when one works
with holomorphic automorphic forms. Of course these operators can be formulated
in the projective model, as is done in Proposition 1.5 below. At first sight that de-
scription looks rather complicated. However, even this formula has its advantage,
as will become clear in the proof of Proposition 1.6.

Proposition 1.5. Let r ∈ C. Under the linear map prj2−r the operators |2−rg with
g =

(
a
c

b
d

)
∈ SL2(R) correspond to operators |prj

2−rg given on h in the projective
model by

(1.20) h|prj

2−rg(t) = (a − ic)r−2
( t − i
t − g−1i

)2−r
h(gt) ,
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for t ∈ H− and the choice arg(a − ic) ∈ [−π, π).

Proof. We want to determine the operator |2−rg for g =
(

a
c

b
d

)
∈ SL2(R) such that

the following diagram commutes:

prj2−rD
−ω
2−r

|
prj
2−rg // prj2−rD

−ω
2−r

D−ω2−r
|2−rg //

prj2−r

OO

D−ω2−r

prj2−r

OO

For ϕ ∈ D−ω2−r put h = prj2−rϕ. So ϕ(t) = (i − t)r−2 h(t). Then h|prj

2−rg (t) should be
given by (

prj2−r(ϕ|2−rg)
)
(t) = (i − t)2−r (ct + d)r−2 (i − gt)r−2 h(gt)

So we need to check that

(i − t)2−r (ct + d)r−2 (i − gt)r−2 = (a − ic)r−2
( t − i
t − g−1i

)2−r
.

For g near to the identity in SL2(R) and t near −i this can be done by a direct
computation. The equality extends by analyticity of both sides to (t, g) ∈ H− ×G0.
(See (1.3) for G0.)

All factors are real-analytic in (t, g) on H− × SL2(R), except (ct + d)r−2 and
(a− ic)r−2. So we have to check that the arguments of these two factors tend to the
same limit as g =

(
a
c

b
d

)
→

(
−p

0
q

−p−1

)
∈ SL2(R) r G0, with p > 0 and q ∈ R. We

have indeed arg(ct + d)→ −π, and arg(a − ic)→ −π. �

Proposition 1.6. Each of the spacesDpol
2−r, D

ω
2−r, D

∞
2−r, D

−∞
2−r andD−ω2−r is invariant

under the operators |2−rg with g ∈ SL2(R).

Proof. We work with the projective model. The factor
( t−i

t−g−1i

)2−r and its inverse
are holomorphic on P1

C
r p, were p is a path in H from i to g−1i in H. Multiplication

by this factor preserves the projective models of each of the last four spaces. The
invariance ofDpol

2−r is easily checked without use of the projective model. �

Definition 1.7. Let Γ be a cofinite subgroup of SL2(R) and let v be a multiplier
system for the weight r ∈ C. For each choice of ∗ ∈

{
−ω,−∞,∞, ω, pol

}
, we define

D∗v,2−r as the spaceD∗2−r with the action |v,2−r of Γ, defined in (1.11).

Remark. The finite-dimensional module Dpol
v,2−r is the coefficient module used by

Eichler [41]. Knopp [64] used an infinite-dimensional module isomorphic (under
ι in (1.6)) to D−∞v,2−r for the cocycles attached to cusp forms of real weight. In our
approachDω

v,2−r will be the basic Γ-module.

1.6. Semi-analytic vectors. For a precise description of the image of the map
rωr from automorphic forms to cohomology with values in Dω

v,2−r, we need more
complicated modules, in spaces where we relax the conditions in Part iv) of Defi-
nition 1.4 in a finite number of points of P1

R.
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Definition 1.8. Semi-analytic vectors.
i) Let ξ1, . . . , ξn ∈ P

1
R.

(1.21) Dω
2−r[ξ1, . . . , ξn] := prj−1

2−r lim
−→
O(U) ,

where U runs over the open sets in P1
C

that contain H− and P1
Rr{ξ1, . . . , ξn}.

ii) Dω∗

2−r := lim
−→
Dω

2−r[ξ1, . . . , ξn], where {ξ1, . . . , ξn} runs over the finite subsets

of P1
R.

iii) Dω0

2−r := lim
−→
Dω

2−r[a1, . . . , an], where {a1, . . . , an} runs over the finite sets of
cusps of Γ.

iv) For ϕ ∈ Dω∗

2−r we define the set of boundary singularities BdSingϕ as the
minimal set {ξ1, . . . , ξn} such that ϕ ∈ Dω

2−r[ξ1, . . . , ξn].

Conditions on the singularities. The elements of the spaces in Definition 1.8
can be viewed as real-analytic functions on R r E for some finite set E, without
conditions on the nature of the singularities at the exceptional points in E. We will
define subspaces by putting restrictions on the singularities that we allow.

If ϕ ∈ Dω
2−r then h = prj2−rϕ is holomorphic at each point ξ ∈ P1

R, hence its
power series at ξ represents h on a neighborhood of ξ in P1

C
:

(1.22) h(t) =
∑
n≥0

an (t − ξ)n (ξ ∈ R) , h(t) =
∑
n≥0

an t−n (ξ = ∞) .

If ϕ is in the larger spaceD∞2−r, then there need not be a power series that converges
to the function h = prj2−rϕ, but only an asymptotic series

(1.23) h(t) ∼
∑
n≥0

an (t − ξ)n (ξ ∈ R) , h(t) ∼
∑
n≥0

an t−n (ξ = ∞) ,

valid as t approaches ξ through H− ∪ P1
R. By this formula we mean that for any

order N ≥ 1 we have

h(t) =
N−1∑
n=0

an (t − ξ)n + O
(
(t − ξ)N)

as t → ξ through H− ∪ P1
R, and analogously for ξ = ∞.

Smooth semi-analytic vectors. The first condition on the singularities that we define
is rather strict:

Definition 1.9. Dω,∞
2−r [ξ1, . . . , ξn] := Dω

2−r[ξ1, . . . , ξn] ∩ D∞2−r. We call it a space of
smooth semi-analytic vectors.

Semi-analytic vectors with simple singularities. We may also allow the asymptotic
expansions in (1.23) to run over n ≥ −1. This gives the following space of semi-
analytic vectors with simple singularities:



16 ROELOF BRUGGEMAN, YOUNGJU CHOIE, AND NIKOLAOS DIAMANTIS

Definition 1.10. We define spaces of semi-analytic vectors with simple singulari-
ties by

(1.24)

D
ω,smp
2−r [ξ1, . . . ξn] :=

{
ϕ ∈ Dω

2−r[ξ1, . . . , ξn] :

t 7→ (t − ξ j) (prj2−rϕ)(t) is in C∞(H− ∪ R) if ξ j ∈ R ,

t 7→ t−1 (prj2−rϕ)(t) is in C∞(H− ∪ P1
R r {0}) if ξ j = ∞

}
.

Example. Elements ofDω,smp
2−r [· · · ] turn up naturally. Often we will be interested in

equations like the following one:

h(t + 1) − h(t) = ϕ(t) ,

where ϕ is given. In the case ϕ ∈ Dpol
2−r with r ∈ Z≥2, we cannot find a solution

h in Dω
2−r if ϕ is a (nonzero) polynomial with degree equal to r − 2. If there is

a solution h of the equation given by a polynomial, then deg h = r − 1, and h
cannot be in Dpol

2−r. Further note that such a solution h is even not in Dω
2−r, since

(prj2−rh)(t) = (i − t)2−r h(t) is not holomorphic at ∞. However, t 7→ t−1 (prj2−rh)(t)
is holomorphic at∞, hence h ∈ Dω,smp

2−r [∞].

Semi-analytic vectors supported on an excised neighborhood. Much more free-
dom leaves the last condition that we define. It does not work with asymptotic
expansions, but with the nature of the domain to which the function can be holo-
morphically extended.

Definition 1.11. A setΩ ⊂ P1
C

is an excised neighborhood of H−∪P1
R, if it contains

a set of the form
U r

⋃
ξ∈E

Wξ ,

where U is a standard neighborhood of H− ∪P1
R in P1

C
, where E is a finite subset of

P1
R, called the excised set, and where Wξ has the form

Wξ =
{
hξz ∈ H : |Re z| ≤ a and Im z > ε

}
,

with hξ ∈ SL2(R) such that hξ∞ = ξ, and a, ε > 0 .
Instead of “excised neighborhood of H− ∪ P1

R with excised set E” we shall often
write E-excised neighborhood.

A typical excised neighborhood Ω of H− ∪ P1
R with excised set E = {∞, ξ1, ξ2}

looks as indicated in Figure 1.

Definition 1.12. For ξ1, . . . , ξn ∈ P
1
R we define spaces of excised semi-analytic

vector

(1.25) D
ω,exc
2−r [ξ1, . . . , ξn] := prj−1

2−r lim
−→
O(Ω) ,

where Ω runs over the {ξ1, . . . , ξn}-excised neighborhoods.



AUTOMORPHIC FORMS AND COHOMOLOGY 17

ξ1 ξ2Ω

Ω

Ωr r?

Wξ1

W∞

6

not in Ω

�� ��� �

F 1. An {∞, ξ1, ξ2}-excised neighborhood.

Definition 1.13. For cond ∈ {∞, smp, exc} we define

(1.26)
D
ω∗,cond
2−r = lim

−→
D
ω,cond
2−r [ξ1, . . . , ξn] ,

D
ω0,cond
2−r = lim

−→
D
ω,cond
2−r [a1, . . . , an] ,

where {ξ1, . . . ξn} runs over the finite subsets of P1
R, and {a1, . . . an} over the finite

sets of cusps of Γ.

Notation. The conditions ∞, and ‘smp’ can be combined with ‘exc’. For instance,
byDω∗,∞,exc

2−r we meanDω∗,∞
2−r ∩D

ω∗,exc
2−r .

Proposition 1.14. i) Dω
2−r[ξ1, . . . , ξn]|2−rg = D

ω
2−r[g

−1ξ1, . . . , g
−1ξn] for each

g ∈ SL2(R). Hence
a) The spaceDω∗

2−r is invariant under the operators |2−rgwith g ∈ SL2(R).
b) The spaceDω0

2−r is invariant under the operators |2−rγ for γ ∈ Γ.
ii) The same holds for the corresponding spaces with condition∞, smp or exc

at the singularities.
iii) BdSing (ϕ|2−rg) = g−1 BdSingϕ for ϕ ∈ Dω∗

2−r and g ∈ SL2(R).

Proof. Most is clear. For Part ii) we check that the conditions are stable under the
operators |2−rg. �

Notation. We denote for each of these spaces Dω∗

2−r, D
ω0

2−r, D
ω∗,cond
2−r , Dω0,cond

2−r , by
D∗v,2−r that space provided with the action |v,2−r of Γ.

1.7. Isomorphic cohomology groups. Theorems A and B give one characteriza-
tion of the images of Ar(Γ, v), Sr(Γ, v) and Mr(Γ, v) under the map rωr in Theorem A
to the analytic cohomology group H1(Γ;Dω

v,2−r). At this point we have available all
Γ-modules to give several more characterizations of these images, thus extending
Theorems A and B.

Theorem E. Let Γ be a cofinite discrete subgroup of SL2(R) with cusps, and let v
be a multiplier system for the weight r ∈ C.
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i) Suppose that r < Z≥2.
a) The image rωr Ar(Γ, v) = H1

pb(Γ;D
ω
v,2−r,D

ω0,exc
v,2−r ) is equal to

H1
pb(Γ;D

ω
v,2−r,D

ω∗,exc
v,2−r ) ,

and canonically isomorphic to

H1
pb(Γ;D

ω0,exc
v,2−r ) .

b) The codimension of H1
pb(Γ;D

ω
v,2−r,D

ω0,exc
v,2−r ) in H1(Γ;Dω

v,2−r) is infinite.

c) The natural map H1
pb(Γ;D

ω0,exc
v,2−r )→ H1

pb(Γ;D
ω∗,exc
v,2−r ) is injective, and its

image has infinite codimension in H1
pb(Γ;D

ω∗,exc
v,2−r ).

ii) Suppose that r ∈ R r Z≥2.
The image rωr Sr(Γ, v) = H1

pb(Γ;D
ω
v,2−r,D

ω0,∞,exc
v,2−r ) is equal to

H1
pb(Γ;D

ω
v,2−r,D

ω0,∞
v,2−r ) , H1

pb(Γ;D
ω
v,2−r,D

ω∗,∞
v,2−r ) ,

and canonically isomorphic to

H1
pb(Γ;D

ω0,∞
v,2−r ) , H1

pb(Γ;D
ω∗,∞
v,2−r ).

iii) Suppose that r ∈ R r Z≥1.
a) The image rωr Sr(Γ, v) = H1

pb(Γ;D
ω
v,2−r,D

ω0,smp,exc
v,2−r ) is equal to

H1
pb(Γ;D

ω
v,2−r,D

ω0,smp
v,2−r ) , H1

pb(Γ;D
ω
v,2−r,D

ω∗,smp
v,2−r )

and canonically isomorphic to H1
pb(Γ;D

ω0,smp
v,2−r ).

b) The space H1
pb(Γ;D

ω
v,2−r,D

ω0,smp,exc
v,2−r ) is canonically isomorphic to the

space H1
pb(Γ;D

ω∗,smp
v,2−r ) if v(γ) , e−r`(γ)/2 for all primitive hyperbolic

elements γ ∈ Γ, where `(γ) is the hyperbolic length of the closed
geodesic associated to γ

Remarks. (a) In the statement of the theorem we speak of equality of mixed par-
abolic cohomology groups, all contained in H1(Γ,Dω

v,2−r), and of canonical iso-
morphisms, given by natural maps in cohomology corresponding to inclusions of
Γ-modules.
(b) Some of the isomorphisms underlying this theorem are valid for a wider class
of weights. See the results in Sections 12 and 13.

(c) Proposition 13.5 gives some additional information concerning H1
pb(Γ;D

ω∗,smp
v,2−r )

if v(γ) = e−r`(γ)/2 for some primitive hyperbolic γ ∈ Γ.
(d) We will obtain Theorem E in many steps. We recapitulate the proof in Subsec-
tion 13.3
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1.8. Harmonic lifts of holomorphic automorphic forms. The spaces of holo-
morphic automorphic forms are contained in larger spaces of harmonic automor-
phic forms.

Definition 1.15. Let r ∈ C.
i) If U ⊂ H is open and the function F on U is twice continuously differ-

entiable, then we call F an r-harmonic function on U if ∆rF = 0 for the
differential operator

(1.27) ∆r = −4y2 ∂2

∂z ∂z̄
+ 2iry

∂

∂z̄
.

ii) An r-harmonic automorphic form with the multiplier system v is a function
F : H→ C that satisfies

a) F|v,rγ = F for all γ ∈ Γ.
b) F is r-harmonic.

We denote the linear space of such forms by Harmr(Γ, v).

Definition 1.16. Let r ∈ C. We call the following map ξr the shadow operator:

(1.28) (ξrF)(z) = 2i yr̄ ∂

∂z̄
F(z) .

A useful property of the shadow operator, which allows us to detect r-harmonic-
ity, is the following equivalence:

(1.29) F ∈ C2(U) is r-harmonic ⇔ ξrF is holomorphic .

This is based on the relation ∂
∂z̄ (ξrF) = − iyr̄−2

2 ∆rF.
The shadow operator induces an antilinear map

ξr : Harmr(Γ, v)→ A2−r̄(Γ, v̄)

because ξr sends elements in the kernel of ∆r to holomorphic functions, and

(1.30) ξr
(
F|rg) = (ξrF)|2−r̄g for each g ∈ SL2(R) .

We have an exact sequence of R-linear maps

(1.31) 0→ Ar(Γ, v)→ Harmr(Γ, v)
ξr
→ A2−r̄(Γ, v̄) .

Definition 1.17. Let F ∈ A2−r̄(Γ, v̄). We call H a harmonic lift of F if

H ∈ Harmr(Γ, v) and ξrH = F .

In §A.1.4 in the Appendix we discuss r-harmonic automorphic forms on the
universal covering group.

Remark 1.18. The action |v,r of Γ in the functions on H gives rise to various spaces
of invariants, for instance:

C∞v,r(Γ\H) =
{
f ∈ C∞(H) : f |v.rγ = f for all γ ∈ Γ

}
;

ker
(
∆r − λ : C∞v,r(Γ\H) −→ C∞v,r(Γ\H)

)
with λ ∈ C ,

real-analytic automorphic forms ;
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Harmr(Γ, v) = ker
(
∆r : C∞v,r(Γ\H) −→ C∞v,r(Γ\H)

)
,

harmonic automorphic forms ;
Ar(Γ, v) = Harmr(Γ, v) ∩ O(H) ,

holomorphic automorphic forms .

For each of these spaces growth conditions at the cusp give rise to subspaces.

Real-analytic. A function on an open set U ⊂ R is real-analytic if on an open
neighborhood of each x0 ∈ U it is given by a convergent power series of the form∑

n≥0 cn (x − x0)n. This gives a holomorphic extension of the function to a neigh-
borhood of U in C.

A function on an open set U ⊂ C) is real-analytic if an open neighborhood of
each point z0 = x0 + iy0 ∈ U it is given by an absolutely convergent power se-
ries

∑
n,m≥0 cn,m(x − x0)n (y − y0)m, or equivalently by a convergent power series∑

n,m≥0 dn,m
(
z− z0

)n (
z − z0

)m. The latter representations give a holomorphic exten-
sion of the function to some neighborhood in C2 of the image of the domain of the
function under the map z 7→ (z, z̄).

On P1
C

one proceeds similarly, using power series in 1/z and 1/z̄ on a neighbor-
hood of∞.

2. M  

In Section 1 we fixed the notations and defined most of the modules occurring in
the main theorems in the Introduction. Now we turn to the map from automorphic
forms to cohomology induced by (2). We also discuss the relation with the theorem
of Knopp and Mawi [69].

2.1. The map from automorphic forms to cohomology.

Definition 2.1. Let F be any holomorphic function on H.

(2.1) ωr(F; t, z) :=
(
z − t

)r−2 F(z) dz

for z ∈ H and t ∈ H−; we take −π2 < arg(z − t) < 3π
2 .

This defines ωr(F; t, z) as a holomorphic 1-form in the variable z. The presence
of the second variable enables us to view it as a differential form with values in the
functions on H−.

Lemma 2.2. i) The differential form ωr(F; ·, z) has values inDω
2−r.

ii) If r ∈ Z≥2 it has values in the subspaceDpol
2−r.

Proof. In the projective model the differential form looks as follows:

(2.2) ωprj
r (F; t, z) :=

(
prj2−rωr(F; ·, z)

)
(t) =

(z − t
i − t

)r−2
F(z) dz ,

where for t ∈ H− and z ∈ H we have arg z−t
i−t ∈ (−π, π). The factor

(
z−t
i−t

)r−2
is

holomorphic for t ∈ P1
C
r p, where p is a path in H from i to z, which implies

Part i). Part ii) is clear from (2.1). �
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Lemma 2.3. Let F be holomorphic on H.
i) ωr(F; ·, gz)|2−rg = ωr

(
F|rg; ·, z) for each g ∈ SL2(R).

ii) ωr(F; ·, γz)|v,2−rγ = ωr
(
F|v,rγ; ·, z

)
for each γ ∈ Γ.

iii)
∫ γz2

γz1
ωr(F; ·, z)|v,2−rγ =

∫ z2

z1
ωr

(
F|v,rγ; ·, z) for γ ∈ Γ and z1, z2 ∈ H. The

integral is independent of the choice of the path.

Proof. i) The relation amounts for g =
(

a
c

b
d

)
∈ SL2(R) to

(ct + d)r−2
( z − t
(ct + d) (cz + d)

)r−2
F(gz)

dz
(cz + d)2 = (z − t)r−2 (cz + d)−r F(z) dz .

With the argument conventions in (1.2) for arg(cz + d) with z ∈ H and
z ∈ H− this equality turns out to hold for t = −i and z = i. It extends
holomorphically for t ∈ H− and z ∈ H.

ii) With g = γ ∈ Γ we multiply the relation in Part i) by v(γ)−1.
iii) We note that∫ γz2

γz1

ωr(F; ·, z)|v,2−rγ (t) =
∫ z2

z1

ωr(F; ·; γz)|v,2−rγ (t) =
∫ z2

z1

ωr
(
F|v,rγ; t, z) .

The differential form is holomorphic, hence closed, and the integral does
not depend on the path of integration, only on the end-points.

�

Proposition 2.4. Let F ∈ Ar(Γ, v).
i) The map ψz0

F : γ 7→ ψz0
F,γ defined in (2) in the introduction is an element of

Z1(Γ;Dω
v,2−r).

ii) The linear map rωr : Ar(Γ, v) → H1(Γ;Dω
v,2−r) associating to F the coho-

mology class of ψz0
F is well defined.

iii) If r ∈ Z≥2 then rωr Ar(Γ, v) ⊂ H1(Γ;Dpol
v,2−r).

Proof. i) Since we integrate over a compact set in H the values ψz0
F,γ are in

Dω
2−r. For the cocycle relation we compute for γ, δ ∈ Γ:

ψz0
F,γδ−ψ

z0
F,δ =

(∫ z0

δ−1γ−1z0

−

∫ z0

δ−1z0

)
ωr(F; ·, z) =

∫ δ−1z0

δ−1γ−1z0

ωr(F; ·z)

Part iii) in Lemma 2.3
=

∫ z0

γ−1z0

ω
(
F|v,rδ−1; ·, z)|v,2−rδ = ψz0

F,γ|v,2−rδ .

ii) To see that the cohomology class of ψz0
F does not depend on the choice of

the base point z0 we check that with two base points z0 and z1 the difference
is a coboundary:

ψz0
F,γ − ψ

z1
F,γ =

(∫ z0

γ−1z0

−

∫ z1

γ−1z1

)
ωr(F; ·, z)

=
(∫ γ−1z1

γ−1z0

−

∫ z1

z0

)
ωr(F; ·, z)

Part iii) in Lemma 2.3
= b|v,2−rγ − b ,

with b =
∫ z1

z0
ωr(F; ·; z) inDω

v,2−r. Hence rωr is well defined.
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iii) See Part ii) of Lemma 2.2. �

2.2. Cusp forms. A cusp form F ∈ Sr(Γ, v) decays exponentially at each cusp a
of Γ, and we can define for the cusp a

(2.3) ψaF : γ 7→ ψaF,γ(t) :=
∫ a

γ−1a

ωr(F; t, z) .

We use σa such that a = σa∞ and πa = σaTσ−1
a as in §1.3. If |v(πa)| , 1, then

F
(
σa(x + iy)

)
may be unbounded as a function of x ∈ R. Then it is important to

approach the cusps a and γ−1a along a geodesic half-line.

Remarks. (a) If |v(πa)| , 1 some care is needed in the choice of the path of
integration in its approach of a. Now F(σaz) may have exponential growth in
x = Re z, although for a given x it has exponential decay as Im (z) = y ↑ ∞. The
integral converges uniformly if we restrict x to a suitable compact set, for instance
by requiring that the path approaches a along a geodesic half-line.
(b) Proposition 2.4 extends easily to the situation with a as the base point, and
we see that ψaF is a cocycle, and that a change in the choice of the cusp a adds

a coboundary. The following lemma prepares the identification of Dω0,∞,exc
v,2−r as a

Γ-module in which ψaF takes its values.

Lemma 2.5. Let a = g∞ with g ∈ SL2(R). Suppose that F is a holomorphic
function onH and that there is a > 0 such that F(gz) = O(e−ay) as Im (z) = y→ ∞
for each value of x = Re z. For z0 ∈ H and t ∈ H− we define h by

(2.4) h(t) =
∫ a

z0

ωr(F; t, z) ,

Then h extends holomorphically across P1
Rr{a} and defines an element of the space

D
ω,∞,exc
2−r [a].

Proof. By Part i) of Lemma 2.3 it suffices to consider the case a = 0 and g =
(

0
1
−1

0

)
.

Inspection of (2.2) shows that

(prj2−rh)(t) =
∫ 0

z0

(z − t
i − t

)r−2
F(z) dz

extends holomorphically to C r p, where p is path from z0 to 0. Since we can take
this path as a geodesic half-line, we have a holomorphic extension to a {0}-excised
neighborhood. Hence h ∈ Dω,exc

2−r [0].
To show that h ∈ D∞2−r we need to show that h(t) has Taylor expansions of any

order at 0 valid on a region {t ∈ C : Im t ≤ 0, |t| < ε} for some ε > 0.
We can assume that the path of integration approaches 0 vertically, and hence

h(t) = −i
∫ ε

0
(iy − t)r−2 F(iy) dy + a contribution inDω

v,2−r .

The contribution in Dω
v,2−r is automatically in D∞v,2−r, so we consider only the inte-

gral. For y ∈ (0, ε], |t| ≤ ε and Im t ≤ 0 we have

(iy − t)r−2 = eπir/2 yr−2 (
1 + it/y

)r−2 ,
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with Re it/y ≥ 0. Taylor expansion of the factor (1 + it/y)r−2 is not completely
standard, since it/y is unbounded for the values of t and y under consideration. We
use the version of Taylor’s formula in Lang [77, §6, Chap. XIII]. It shows that the
error term in the Taylor expansion of order N − 1 of (1 + q)a is

ON

(∫ 1

0
(1 − x)N−1 (1 + xq)a−N qN dx

)
= ON(qN) ,

if N > Re a. (The subscript N indicates that the implicit constant may depend
on N.) For sufficiently large N this leads to(

1 + it/y
)r−2

=

N−1∑
n=0

(
r − 2

n

)
in tn y−n + ON

(
tNy−N)

and hence∫ ε

0
(iy − t)r−2 F(iy) dy = eπir/2

N−1∑
n=0

(
r − 2

n

)
intn

∫ ε

0
yr−2−n F(iy) dy

+ ON

(∫ ε

0
yr−2−N tN F(iy) dy

)
.

The exponential decay of F implies that all integrals converge, and we obtain a
Taylor expansion of the integral of any order that is valid for t ∈ H−∪R near 0. �

Parabolic cohomology and mixed parabolic cohomology. For z0 ∈ H the cocycle
ψz0

F for a cusp form F takes values in Dω
v,2−r. The next result shows that ψaF is a

parabolic cocycle in a larger module, and relates both cocycles.

Proposition 2.6. Let r ∈ C.
i) For each cusp a of Γ and each F ∈ Sr(Γ, v) the cocycle ψaF defined in (2.3)

is a parabolic cocycle in H1
pb(Γ;D

ω0,∞,exc
v,2−r ).

ii) Associating to F ∈ Sr(Γ, v) the cohomology class [ψaF] defines a linear map

(2.5) r∞r : Sr(Γ, v) −→ H1
pb(Γ;D

ω0,∞,exc
v,2−r ) .

iii) rωr Sr(Γ, v) ⊂ H1
pb(Γ;D

ω
v,2−r,D

ω0,∞,exc
v,2−r ).

iv) The following diagram is commutative:

(2.6)

Sr(Γ, v)
rωr //

r∞r ''PPPPPPPPPPPPP H1
pb(Γ;D

ω
v,2−r,D

ω0,∞,exc
v,2−r ) � � //

��

H1(Γ;Dω
v,2−r)

H1
pb(Γ;D

ω0,∞,exc
v,2−r )

The vertical arrow denotes the natural map associated to the inclusion
Dω
v,2−r ⊂ D

ω0,∞,exc
v,2−r .

Remark. For r ∈ Z≥2, the linear maps rωr and r∞r take values in the much smaller
Γ-moduleDpol

v,2−r.
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Proof. We split the integral in (2.3) as −
∫ γ−1a

z1
+

∫ a
z1

for any z1 ∈ H, and find

with Lemma 2.5 that ψaF ∈ D
ω∗,∞,exc
v,2−r ∩ Dω

v,2−r[a, γ
−1a] ⊂ Dω0,∞,exc

v,2−r . So ψaF ∈

Z1(Γ;Dω0,∞,exc
v,2−r ).

Like in the proof of Proposition 2.4, replacing the cusp a by another cusp means
adding a coboundary in B1(Γ;Dω0,∞,exc

v,2−r ). We have ψaF,πa = 0, and hence for a cusp

η there is p ∈ Dω0,∞,exc
v,2−r such that

ψaF,πη = ψ
η
F,πη
+ p|v,2−r(πη − 1) ∈ 0 +Dω0,∞,exc

v,2−r |v,2−r(πη − 1) .

So ψaF is a parabolic cocycle, and F 7→ [ψaF] defines a linear map r∞r as in Part ii).
For F ∈ Sr(Γ, v) and z0 ∈ H we have for each cusp a of Γ

ψz0
F,πa
= ψaF,πa + h|v,2−r(πa − 1) ,

with h =
∫ a

z0
ωr(F; ·, z). With Lemma 2.5 we have ψz0

F,πa
∈ D

ω0,∞,exc
v,2−r |v,2−r(πa − 1).

This gives Parts iii) and iv). �

2.3. The theorem of Knopp and Mawi. Suppose that ∞ is a cusp of Γ, and that
Γ∞ is generated by T =

(
1
0

1
1

)
. (This can be arranged by conjugation in SL2(R).)

The involution ι in (1.6) gives a parabolic cocycle ιψ∞F of the form

(2.7) (ιψ∞F,γ)(w) =
∫ ∞

γ−1∞

(z − w̄)r−2 F(z) dz =
∫ ∞

γ−1∞

(
z̄ − w

)r̄−2 F(z) dz̄ .

This describes Knopp’s cocycle [64, (3.8)]. In that paper the weight r is real and
the multiplier system v unitary, so v̄ = v−1. (Actually, in [64] the multiplier system
for F is called v̄, and the weight is called r + 2.)

The values of ιψ∞F are in the space ιDω0,∞
2−r which is contained in the space

(2.8) P := ιD−∞2−r =
{
ϕ ∈ O(H) : ∃A∈R ϕ(z) = O

(
y−A) + O

(
|z|A

)}
(polynomial growth), which is invariant under the action |v̄,r̄ of Γ. (The notation P
is taken from [64].)

Knopp [64] conjectured that the map F 7→ [ιψ∞F ] gives a bijection Sr(Γ, v) →
H1

pb(Γ,P), and proved this for r ∈ R r (0, 2). He also gives a proof, by B.A. Taylor,
that H1

pb(Γ;P) = H1(Γ;P). In [69] Knopp and Mawi prove the isomorphism for all
weights r ∈ R and unitary multiplier systems v. Transforming their result to the
lower half-plane we obtain the following theorem:

Theorem 2.7. (Knopp, Mawi) Let v be a unitary multiplier system on Γ for the
weight r ∈ R. Then

(2.9) Sr(Γ, v) � H1(Γ;D−∞v,2−r) � H1
pb(Γ;D

−∞
v,2−r) .

In combination with the, not yet proven, Theorems A and B we obtain the fol-
lowing commuting diagram, valid for weights r ∈ R r Z≥2 and unitary multiplier
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systems:

(2.10)

Ar(Γ, v)
� � rωr // H1(Γ;Dω

v,2−r)

��
Sr(Γ, v)

� //?�

OO

H1(Γ;D−∞v,2−r)

This implies that there is a complementary subspace X giving a direct sum de-
composition Ar(Γ, v) = Sr(Γ, v) ⊕ X, such that for F ∈ X the cocycle ψz0

F becomes a
coboundary in Z1(Γ;D−∞v,2−r). Then there is H ∈ D−∞v,2−r such that H|v,2−rγ−H = ψz0

F,γ
for all γ ∈ Γ, in other words∫ z0

γ−1z0

(z − t)r−2 F(z) dz = (H|v,2−rγ)(t) − H(t) .

Remark 2.8. The operator ι can also be applied to the linear map rωr . Thus we
have two R-linear maps from automorphic forms to cohomology:

(2.11)
rωr : Ar(Γ, v)→ H1(Γ;Dω

v,2−r) ,

ιrωr : Ar(Γ, v)→ H1(Γ; ιDω
v,2−r) .

The second map is antilinear.
These two maps become interesting in the case r ∈ Z≥2 with a real-valued multi-

plier system v. ThenDω
v,2−r and ιDω

v,2−r have a nonzero intersection, namelyDpol
v,2−r.

2.4. Modular group and powers of the Dedekind eta-function. The modular
group Γ(1) = SL2(Z) is generated by T =

(
1
0

1
1

)
and S =

(
0
1
−1

0

)
. In the quotient

Γ(1) = SL2(Z) the relations are S̄ 2 = 1 and (S̄ T̄ )3 = 1. There is a one-parameter
family of multiplier systems parametrized by r ∈ C mod 12Z, determined by

(2.12) vr(T ) = eπir/6 , vr(S ) = e−πir/2 .

It can be used for weights p ≡ r mod 2. The complex power η2r of the Dedekind
eta-function can be chosen in the following way:

(2.13) η2r(z) := e2r log η(z) , log η(z) =
πi
12
−

∑
n≥1

σ−1(n) e2πinz .

It defines η2r ∈ Ar
(
Γ(1), vr

)
. The Fourier expansion at the cusp∞ has the form

(2.14) η2r(z) =
∑
k≥0

pk(r) e2πi(12k+r)z/12 ,

where the pk(r) are polynomials in r of degree k with rational coefficients. These
polynomials have integral values at each r ∈ 1

2Z. For Re r > 0 we have η2r ∈

Sr
(
Γ(1), vr

)
, and the parabolic cocycle ψ∞

η2r given by

(2.15) ψ∞
η2r ,γ

(t) =
∫ ∞

γ−1∞

(z − t)r−2 η2r(z) dz .
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Convergence is ensured by the exponential decay of η2r(z) as y ↑ ∞, and by the
corresponding decay at other cusps by the invariance of η2r under |vr ,rγ.

Since T∞ = ∞ we have ψ∞
η2r ,T
= 0. The cocycle ψ∞

η2r is determined by its value
on the other generator

(2.16) ψ∞
η2r ,S (t) =

∫ ∞

0
(z − t)r−2 η2r(z) dz .

We have ψ∞
η2r ,S
∈ D

ω,exc
vr ,2−r[0,∞] ⊂ Dω0,exc

vr ,2−r . This function is called the period func-

tion of η2r. The relations between S̄ and T̄ imply

(2.17) ψ∞
η2r ,S |vr ,2−rS = −ψ∞η2r ,S , ψ∞

η2r ,S |vr ,2−r
(
1 + S T + S TS T ) = 0 ,

which is equivalent to

(2.18) ψ∞
η2r ,S |vr ,2−rS = −ψ∞η2r ,S , ψ∞

η2r ,S = ψ∞
η2r ,S |vr ,2−r

(
T + TS T

)
.

Let us put

(2.19) I(r, s) :=
∫ ∞

0
ys η2r(iy)

dy
y
.

The decay properties of η2r imply that this function is holomorphic in (r, s) for
Re r > 0 and s ∈ C.

The reasoning in the proof of Lemma 2.5 gives that for a given ε > 0 and t ∈ H−

with |t| < ε we have

i
∫ ε

0
(iy − t)r−2η2r(iy) dy = eπir/2

N−1∑
n=0

(
r − 2

n

)
intn

∫ ε

0
yr−2−nη2r(iy) dy + On(tN)

for all sufficiently large N. The integral over (ε,∞) can be computed by direct
insertion of the Taylor series for (iy − t)r−2. Since tN = O(εN), this leads to the
following equality for the period function:

(2.20) ψ∞
η2r ,S (t) = eπir/2

∑
n≥0

in
(
r − 2

n

)
I(r, r − 1 − n) tn ,

for Re r > 0, s ∈ C and t ∈ H− near 0.
For a real weight r > 0 one has the estimate pk(r) = O(kr/2) from the fact that

η2r is a cusp form. For Re s > 1 + r/12 the integral I(r, s) can be expressed in the
L-series

(2.21)
L(η2r, s) =

∑
k≥0

pk(r)
(r/12 + k)s ,

I(r, s) = (2π)−s Γ(s) L(η2r, s) .

Usually one defines the analytic continuation of L-functions by the expressing it in
the period integral (2.20).

If Re r ≤ 0, ψz0
η2r is defined only with a base point z0 ∈ H. For instance, the case

r = 0 gives the constant function 1 = η0 ∈ A0
(
Γ(1), 1

)
, with the trivial multiplier
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system v0 = 1, for which

(2.22) ψz0
η0,γ

(t) =
1

γ−1z0 − t
−

1
z0 − t

.

It can be checked by a direct computation that ψz0
1,γ − ψ

z1
1,γ = b|1,2(γ − 1), with

b(t) = 1
z0−t −

1
z1−t .

We use this to find a substitute for the cocycle ψ∞
η0 . The rational function b∞(t) =

1
z0−t is an element ofDω,exc

1,2 [∞]. Subtracting the coboundary γ 7→ b∞|2(γ− 1) from

ψz0
η0 gives the parabolic cocycle ψ̃ ∈ Z1(Γ(1);Dω0,exc

1,2
)

given on γ =
(

a
c

b
d

)
∈ Γ(1) by

(2.23) ψ̃γ(t) =
−c

ct + d
.

This cocycle ψ̃ is parabolic, since ψ̃T = 0. It gives the period function ψ̃S =
−1
t

in Dω0,exc
1,2 . It is in the subspace of rational functions, hence one calls it a rational

period function. In §5.2 we will return to this example.

2.5. Related work. Much of the work on the relation between automorphic forms
and cohomology is done for integral weights at least 2. The association of cocycles
to automorphic forms is stated clearly in 1957 by Eichler, [41, §2]. Eichler gives
the integral in (2), and notes [41, (17),§2] that for cusp forms the cocycles have the
property that we now call parabolic.

The idea can be found earlier in the literature. As pointed out in [39], Poincaré
mentions already in 1905 [97, §3] the repeated antiderivative of automorphic forms
and polynomials measuring the non-invariance. Also Cohn [30] mentions this re-
lation in the main theorem, for modular forms of weight 4.

Shimura [107] studies the relation between cusp forms and cohomology groups
with the aim of obtaining a lattice in the space of cusp form such that the quotient
is an abelian variety. He discusses real and integral structures in the cohomology
groups.

Since then the relation between automorphic forms and cohomology has been
studied in numerous papers, of which we here mention Manin [84].

The use of the space of rational functions for cocycles associated to modular
forms originates in Knopp [65]. Kohnen and Zagier [71] used it for period func-
tions on the modular group. In [71] the concept of mixed parabolic cohomology
seems to be arising. See also [114].

3. T      

The main goal of this section is to show that

(3.1) rωr Ar(Γ; v) ⊂ H1
pb(Γ;D

ω
v,2−r,D

ω0,exc
v,2−r ) .

This will contribute to the proof of Theorem A (which will be completed in Sub-
section 10.5). In Subsection 3.6 we will describe, under assumptions on r and v,
and based on the truth of Theorem A, the images rωr Sr(Γ, v) and rωr Mr(Γ, v). This
gives Theorem B.
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We start in Subsection 3.1 with a simple lemma, with which we immediately
can prove some of the isomorphism in Theorem E on page 17.

3.1. Mixed parabolic cohomology groups. To show that ψ ∈ Z1(Γ;Dω
v,2−r) is a

parabolic cocycle in Z1
pb(Γ;D

ω
v,2−r,W) for some Γ-module W ⊂ Dω∗

v,2−r we have to
find for each cusp a of Γ an element ha ∈ W such that

(3.2) ψπa = ha|v,2−r(πa − 1) .

The following result gives the position of the singularities of the solutions.

Lemma 3.1. If h ∈ Dω∗

2−r satisfies λ−1 h|2−rπ − h ∈ Dω
2−r for a parabolic element

π ∈ SL2(R) and λ ∈ C∗, then BdSing h ⊂ {a}, where a is the unique fixed point of π.

Proof. Each parabolic element π ∈ SL2(R) is conjugate in SL2(R) to T =
(

1
0

1
1

)
or

to T−1. With (1.5) we can transform the hypothesis in both cases to λ−1 h|2−rT −h ∈
Dω

2−r. If h has singularities in R put them in increasing order: ξ1 < ξ2 < · · · . Then
ξ1 − 1 = T−1ξ1 ∈ BdSing

(
h|2−rT

)
, and cannot be canceled by a singularity of h.

So a singularity can occur only at∞, and only at a in the original situation. �

Proposition 3.2. Let r ∈ C. Then

H1
pb(Γ;D

ω
v,2−r,D

ω0

v,2−r) = H1
pb(Γ;D

ω
v,2−r,D

ω∗

v,2−r) ,

H1
pb(Γ;D

ω
v,2−r,D

ω0,exc
v,2−r ) = H1

pb(Γ;D
ω
v,2−r,D

ω∗,exc
v,2−r ) ,

H1
pb(Γ;D

ω
v,2−r,D

ω0,smp
v,2−r ) = H1

pb(Γ;D
ω
v,2−r,D

ω∗,smp
v,2−r ) ,

H1
pb(Γ;D

ω
v,2−r,D

ω0,∞
v,2−r ) = H1

pb(Γ;D
ω
v,2−r,D

ω∗,∞
v,2−r ) .

Proof. If ψ ∈ Z1
pb(Γ;D

ω
v,2−r,D

ω∗

v,2−r) then we have for each cusp a an element h ∈
Dω∗

v,2−r such that h|v,r(πa − 1) = ψπa . This is the situation considered in Lemma 3.1,

so h ∈ Dω
v,2−r[a]. Hence ψ ∈ Z1

pb(Γ;D
ω
v,2−r,D

ω0

v,2−r). The same argument is valid for
the other cases. �

3.2. The parabolic equation for an Eichler integral.

Definition 3.3. We call a function F on a subset of C that is invariant under hor-
izontal translations, λ-periodic if it satisfies F(t + 1) = λ F(t) for all t in its
domain.

Example. For an automorphic form F ∈ Ar(Γ, v) and a cusp a, the relation F|v,rπa =
v(πa) F implies that the translated function F|rσa is v(πa)-periodic.

Parabolic difference equation. We take an arbitrary holomorphic λ-periodic func-
tion E on H. It has an absolutely convergent Fourier expansion

(3.3) E(z) =
∑

n≡α mod 1

an e2πinz
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on H with λ = e2πiα, α ∈ C. In the next subsections we aim to find functions h such
that

(3.4) λ−1 h(t + 1) − h(t) =
∫ z0

z0−1
(z − t)r−2 E(z) dz

at least for t ∈ H− ∪ R, and to get information concerning its behavior near∞.

3.3. Asymptotic behavior at infinity. It will be useful to understand the behavior
of prj2−rh at∞ for solutions h of (3.4). For functions f on Rwe understand in these
notes f (t) ∼

∑
n≥k cn t−n to mean f (t) =

∑N−1
n=k cn t−n + O(t−N) as t → ±∞ for all

N ≥ k. So f (t) ∼ 0 means f (t) = O(t−N) for all N ∈ Z≥0.
For elements f ∈ D∞2−r we know that there are coefficients bn such that

(prj2−r f )(t) ∼
∑
n≥0

bn t−n

as t approaches∞ through H−∪R. So we have surely this behavior as t approaches
∞ through R.

Lemma 3.4. Let r ∈ C and λ ∈ C∗, and suppose that f ∈ Dω
2−r[∞] is λ-periodic.

We consider asymptotic expansions of (prj2−r f )(t) = (i − t)2−r f (t) of the type

(3.5) (prj2−r f )(t) ∼
∑
n≥k

bn t−n for some k ∈ Z .

i) If f satisfies (3.5) for t ↑ ∞ as well as for t ↓ −∞ (with the same coefficients
bn), then

a) f is a constant function if λ = 1 and r ∈ Z. In this case r ≥ k + 2.
b) f = 0 in all other cases.

ii) Let ε ∈ {1,−1}. Suppose that f satisfies (3.5) as εt ↑ ∞. Then
a) if λ = 1 and r ∈ Z≥k+2, then f is a constant function;
b) else if |λ| = 1, then f = 0;
c) else f (t) ∼ 0 as εt ↑ ∞.

Proof. Consider f ∈ Dω
2−r[∞] that is λ-periodic and has an expansion (3.5) as

t ↑ ∞, or t ↓ −∞, or both. If the expansion is non-zero it has the form bn t−n +

bn+1 t−n−1 + · · · where bn , 0. Insertion in

(prj2−r f )(t + 1) = λ
(1 − (i − 1)/t

1 − i/t

)2−r
(prj2−r f )(t)

gives
λ bn = bn , λ

(
bn+1 − (r − 2) bn) = bn+1 − n bn .

This is impossible with bn , 0 if λ , 1. If λ = 1 it is possible if n = r − 2 ≥ k, and
has solutions corresponding to a constant function f (t) = c, and

(prj2−r f )(t) = (i − t)2−r c .

This shows that non-zero expansions occur only in the Case a) in Part i).
In this case we set f0(t) = f (t)− c. We set f0 = f otherwise. Then f0 ∈ Dω

2−r[∞]
is λ-periodic with expansion (prj2−r f0)(t) ∼ 0. In other words, (prj2−r f0)(t) =
O(t−N) for any order N ∈ Z≥0, and then the same holds for f0(t). To show that
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f = 0 in Case b) of i), we notice that, as a λ-periodic function, f0 has a Fourier
expansion and the estimate f (t) = O(t−N) holds for each Fourier term, which is of
the form cn e2πint with e2πin = λ. For expansion in both directions, |t| → ∞, this
implies that all Fourier terms vanish, and hence f = 0. This finishes the proof of
Part i).

For a one-sided expansion, say t → ∞, there might be Fourier terms that satisfy
e2πint ∼ 0 as t ↑ ∞, namely if Im n < 0. This possibility and the same possibility
as t ↓ −∞ are excluded by the assumption |λ| = 1 in Part ii)b). Without this
assumption, f (t) ∼ 0. �

3.4. Construction of solutions. We break up the Fourier expansion (3.3) in three
parts, according to Re n > 0, Re n < 0 and Re n = 0.

Cuspidal case.

Lemma 3.5. Suppose that the Fourier expansion (3.3) has the form

E(z) =
∑

n≡α mod 1, Re n>0

an e2πinz ,

with α ∈ C, λ = e2πiα.
i) If r ∈ C r Z≥2, then there is a unique h ∈ Dω,∞,exc

2−r [∞] satisfying (3.4).
ii) If r ∈ Z≥2 then (3.4) has solutions inDpol

2−r.
a) If λ = e2πiα , 1, then there is a unique solution.
b) If λ = 1, then the solutions of (3.4) in Dpol

2−r are unique up to addition
of a constant.

Proof. Lemma 2.5 states that

(3.6) h0(t) :=
∫ ∞

z0

(z − t)r−2 E(z) dz

defines h0 ∈ D
ω,∞,exc
2−r [∞]. If we take a vertical path of integration, then h0 is a

holomorphic function on C r (z0 + i[0,∞)).

Let us consider t ∈ C with Im t <
Im z0. The integral over the closed path
sketched in Figure 2 on the right equals
zero for all a > 0, and due to the expo-
nential decay of E the limit as a → ∞
of the integrals over the sides depend-
ing on a > 0 exist. Hence we get∫ ∞

z0−1
(z − t)r−2 E(z) dz

=

∫ z0

z0−1
(z − t)r−2 E(z) dz + h0(t) .

q q

q qz0 + iaz0 − 1 + ia

z0 − 1 z0

F 2
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Like in Part iii) of Lemma 2.3 this gives

λ−1 h0(t + 1) = λ−1
∫ ∞

z0

(z − t − 1)r−2 E(z) dz =
∫ ∞

z0−1
(z − t)r−2 E(z) dz

= h0(t) +
∫ z0

z0−1
(z − t)r−2 E(z) dz .

This relation extends holomorphically to all t ∈ C outside the region determined
by Re z0 − 1 ≤ Re t ≤ Re z0 and Im t ≥ Im z0. So h0 is a solution of (3.4) in
D
ω,∞,exc
2−r [∞].
Let h be another solution in Dω,∞,exc

2−r [∞]. Then p = h − h0 is a λ-periodic
function inD∞2−r, and hence prj2−r p has an expansion as in Lemma 3.4, with k ≥ 0.
If r ∈ C r Z≥2 then Part i) a) and Part ii) of Lemma 3.4 implies that p = 0 so that
we have proved Part i) of this lemma.

To prove Part ii) let r ∈ Z≥2. It is clear from the integral that h0 ∈ D
pol
2−r if

r ∈ Z≥2. If λ = 1 it reduces to the case b) in Part i) of Lemma 3.4. So p is a non-
zero constant. This handles Part ii)b) of the present lemma. If λ , 1, it reduces to
the case a) in Part ii) of Lemma 3.4 so that p = 0. This gives Part a) in Part ii) of
the present lemma. �

Exponentially increasing part.

Lemma 3.6. Suppose that the Fourier expansion (3.3) has the form

(3.7) E(z) =
∑

n≡α mod 1, Re n<0

an e2πinz ,

with α ∈ C, λ = e2πiα.
i) Equation (3.4) has solutions h ∈ Dω,exc

2−r [∞], among which occurs a solu-
tion for which prj2−rh(t) has an asymptotic expansion as t ↑ ∞ of the form∑

n≥0 cnt−n.
ii) Let |λ| = 1 and E , 0. For none of these solutions h we have an asymptotic

expansion of the form prj2−rh(t) ∼
∑

n≥k qk t−n valid for t ↑ ∞ and for
t ↓ −∞ with the same coefficients.

Proof. We cannot use the integral in (3.6), since E has exponential growth on H.

R

rz0

?

F 3

The convergence of E(z) in H implies
good growth for its Fourier coefficients.
This growth then implies that E(z) can
be defined on C with exponential decay
as Im z ↓ −∞. So we use a path of inte-
gration as in Figure 3.
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In this way we obtain a holomorphic function hri on the region Re t > Re z0
given by

(3.8) hri(t) =
∫

z0−i[0,∞)
(z − t)r−2 E(z) dz ,

and satisfying (3.4) for these values of t.

R

rz0

'$

?
F 4

Deforming the integral as in Figure 4
we get the holomorphic continuation of
hri to a larger region. In this way we get
the continuation to the region Cr

(
z0 +

i[0,∞)
)
. By analytic continuation, the

extension satisfies (3.4) on the region
Cr

(
z0+[−1, 0]+i[0,∞)

)
. We normalize

the factor (z−t)r−2 by requiring that π2 ≤
arg(z − t) ≤ 3π

2 if Re t > Re z0 and z is
on the path of integration.

We have

(3.9) (prj2−rhri)(t) =
∫

z0

(z − t
i − t

)r−2
E(z) dz ,

over a path of integration starting at z0 going down to∞, adapted to t, and normal-
ized by arg

( z−t
i−t

)
→ 0 as t ↑ ∞. We consider the asymptotic behavior of (prj2−rhri)(t)

as t ↑ ∞ through R. The exponential decay of E as Im z ↓ −∞ implies that for a
fixed large t in R the contribution of the integral over Im z < −1

2 t can be estimated
by O(e−εt) as t → ∞, with ε > 0 depending on E, α in (3.7), and z0. We insert the
Taylor expansion of order N of

( z−t
i−t

)r−2 in 1
t into the remaining part of the integral,

and find an expansion starting at k = 0, but only as t ↑ ∞. In this way we obtain
the second statement in Part i).

Actually, if we apply the same reasoning to the integral in (3.9) for t ↓ −∞
we get the same expansion, with the same coefficients. However, that is not an
expansion of hri, but of another solution hle, which we can define in the following
way.

An equally sensible choice is the
path of integration sketched in Fig-
ure 5. Now the path has to be chosen
such that t is to the left of it, and be-
low it if Re t > Re z0. This defines an-
other solution hle ∈ D

ω,exc
2−r [∞] of (3.4).

The normalization of the correspond-
ing integrand for prj2−rhle is also by
arg

( z−t
i−t

)
→ 0 as t ↑ ∞.

As indicated above, hle(t) has an as-
ymptotic expansion as t ↓ −∞, with the
same coefficients as in the expansion of
hri(t) as t ↑ ∞.

R

rz0

��

?

F 5
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st
��

?

��

6

F 6

Both hri and hle are solutions of (3.4)
for E as in (3.7). We have for t ∈ R(

prj2−r(hri(t) − hle)
)
(t)

=

∫
D

(z − t
i − t

)r−2
E(z) dz ,

over a path of integration indicated in
Figure 6.
This integral is holomorphic in r ∈ C.
For Re r > 1 it can be computed by
deforming the path of integration to
the vertical half-line downward from t.
This leads to the following result:

(3.10)(
prj2−r(hri − hle)

)
(t) =

(2π)2−r eπir/2

Γ(2 − r)
(i − t)r−2

∑
n≡α mod 1,Re (n)<0

an

(−n)r−1 e2πint .

This difference gives a λ-periodic function H = hri − hle. Moreover, the difference
is holomorphic in r ∈ C. So the equality is valid for all r ∈ C.

Now let |λ| = 1. Suppose that h ∈ Dω,exc
2−r is a solution of (3.4) with a two-

sided asymptotic expansion. We have h = hri + pr = hle + p` with λ-periodic
pr, p` ∈ D

ω,exc
2−r [∞].

Suppose that the difference pr = h − hri has an asymptotic expansion as t ↑ ∞.
Part ii) of Lemma 3.4 shows that pr is constant (and zero in most cases). Similarly
p` = h− hle is constant. So hri − hle is constant. However, in (3.10) we see that this
implies hri − hle = 0 by the assumption Re n < 0 in (3.7). Then all an vanish and
E = 0. �

Remaining Fourier term. We are left with the multiples of e2πinz with Re n = 0. So
n = i Imα ≡ α mod 1.

Lemma 3.7. Suppose that E(z) = e−2πzn with Re n = 0, n , 0. Then Equation (3.4)
has solutions inDω,exc

2−r [∞].

Proof. We can still find a direction in which E(z) decays exponentially.

In the case Im n < 0 we choose a path
as indicated in Figure 7. We can pro-
ceed as in the proof of Lemma 3.6. R

rz0

��

F 7
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R

rz0

� -

F 8

For Im n > 0 we use the path in Fig-
ure 8. Again,we can proceed as in the
proof of Lemma 3.6. �

Lemma 3.8. Let r ∈ C, λ = 1 and E(z) = 1.
i) Equation (3.4) has the following solution inDω,exc

2−r [∞]:

(3.11) h(t) =

(1 − r)−1 (z0 − t)r−1 if r , 1 ,
− log(z0 − t) if r = 1 ,

where we choose in both cases −π2 < arg(z0 − t) < 3π
2 .

ii) For r , 1 this is the unique solution inDω,exc
2−r [∞] for which prj2−rh has an

asymptotic expansion valid for t ↑ ∞ and for t ↓ −∞.
iii) If r = 1 there are no solutions in Dω,exc

2−r [∞] that have a two-sided asymp-
totic expansion at∞ in the projective model.

Proof. Part i) can be checked by a computation of the integral in (3.4). For r ,
1 it is seen that (prj2−rh)(t) has a two-sided asymptotic expansion of the form
(prj2−rh)(t) ∼

∑
n≥−1 cnt−n. For r = 1 this solution clearly has no such expansion.

Any other solution is of the form h + p with a 1-periodic function p. If it has
a two-sided asymptotic expansion it is zero, by Part i) of Lemma 3.4. This gives
Part ii) of the present lemma. For Part iii) one can check that no 1-periodic function
can produce logarithmic behavior at∞. �

Example. Only for a constant function E we have given an explicit formula for a
solution h. It is possible to express solutions for the other cases in terms of sums
of incomplete gamma-functions.

For the powers of the Dedekind eta-function we get for Re r > 0 a solution of
the form

(3.12)
h(t) = −ieπir/2 (2π)1−r

∑
k≥0

pk(r)
(
r/12 + k)1−r

· e2πi(12k+r)t/12 Γ
(
r − 1, 2πi(r/12 + k)(t − z0)

)
,

with the incomplete gamma-function

(3.13) Γ(a, u) =
∫ ∞

u
va−1 e−v dv = e−u

∫ ∞

x=0
(u + x)a−1 e−x dx .

The incomplete gamma-function is well defined on C r (−∞, 0]. That suffices
for (3.12) if Re r > 0 and t ∈ H−.

If Re r ≤ 0, the same formulas can be used for the terms in the Fourier expansion
with Re r

12 + k > 0. For the remaining terms with k + r
12 , 0 the choices in this

subsection lead also to the same expression with incomplete gamma-functions, but
now interpreted with a choice of a suitable branch of the multivalued extension.
For k + r

12 = 0 we can use the formula for r , 1 in Lemma 3.8.
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3.5. Image of automorphic forms in the analytic cohomology. Now we can
take a step towards the proof of Theorem A:

Theorem 3.9. For all r ∈ C and all multiplier systems for the weight r:

(3.14) rωr Ar(Γ, v) ⊂ H1
pb(Γ;D

ω
v,2−r,D

ω0,exc
v,2−r ) .

Proof. As explained in §3.2 we have to solve, for each cusp a of Γ, Equation (3.2)
with an element of Dω0,exc

v,2−r . Lemma 3.1 shows that such solutions always satisfy

BdSing h ⊂ {a}, hence if we have a solution inDω∗,exc
v,2−r it is inDω0,exc

v,2−r .
By conjugation, the task is equivalent to solving (3.4) with E replaced by F|rσa.

The Fourier series of E, which is the Fourier expansion of F at the cusp a, is split
up as a sum of two or three terms. The existence of solutions is obtained in the
Lemmas 3.5–3.8. �

3.6. Proof of Theorem B. Assuming that Theorem A has been proved, we now
prove Theorem B. We use the results concerning asymptotic expansions in §3.4.
There we have seen that we need |λ| = 1 to get satisfactory results. Hence we
impose the assumptions of real weight and unitary multiplier system, which are
the same assumptions as in the Theorem of Knopp and Mawi. See Theorem 2.7.

Proof of Theorem B on the basis of Theorem A. In Proposition 2.6 we saw that the
space rωr Sr(Γ, v) is contained in H1

pb(Γ;D
ω
v,2−r,D

ω0,∞,exc
v,2−r ) for all r ∈ C. Part i) of the

Lemmas 3.5 and 3.8 show that rωr Mr(Γ, v) is contained in H1
pb(Γ;D

ω
v,2−r,D

ω0,smp,exc
v,2−r )

for r ∈ C r {1}, since for h as in (3.11) the function prj2−rh(t) has an asymptotic
expansion at∞ starting at t1 (“k = −1”).

Let r ∈ R r Z≥2. Under Theorem A any class in H1
pb(Γ;D

ω
v,2−r,D

ω0,exc
v,2−r ) is of the

form rωr F for some F ∈ Ar(Γ, v). We want to show that F satisfies the following:

Part i) Part ii)

r < Z≥2 r < Z≥1

wish: F ∈ Sr(Γ, v) F ∈ Mr(Γ, v)

We consider a cusp a of Γ, and put E = F|rσa. The assumptions on F imply that
there is ha inDω,∞,exc

2−r [∞], respectivelyDω,smp,exc
2−r [∞] such that

ha|2−r
(
1 − v(πa)−1 T

)
(t) =

∫ z0

z0−1
(z − t)r−2 E(z) dz .

we write E = Ec+E0+Ee by taking the Fourier terms with n > 0, n = 0 and n < 0,
respectively. Note that |v(πa)| = 1, hence the Fourier term orders are real.

We take hc provided by Lemma 3.5, h0 by Lemma 3.8, and he by Lemma 3.6.
Then ha|2−rσa = hc + h0 + he + p, with a v(πa)-periodic element p in Dω,exc

2−r [∞].
Table 1 gives information on the asymptotic behavior, where we use the definitions
ofDω,∞,exc

2−r andDω,exc
2−r , and Lemmas 3.5, 3.6, and 3.8. (The cn in the table depend

on the function.)
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Part i) Part ii)

r < Z≥2 r < Z≥1

ha|σa ∈ D
ω,∞,exc
2−r [∞] ha|σa ∈ D

ω,smp,exc
2−r [∞]

2-sided:
(
prj2−rha|σa

)
(t) ∼

∑
n≥0 cn t−n (

prj2−rha|σa
)
(t) ∼

∑
n≥−1 cn t−n

2-sided: (prj2−rhc)(t) ∼
∑

n≥0 cn t−n

as t ↑ ∞ : (prj2−rhe)(t) ∼
∑

n≥0 cn t−n

v(πa) , 1 h0 = 0

v(πa) = 1 (prj2−rh0)(t) ∼
∑

n≥−1 cnt−n if r , 1

no asymptotic expansion if r = 1

T 1

Let r ∈ R r Z≥1. Note that the v(πa)-periodic function p has an asymptotic
expansion as t ↑ ∞, and is O(t). Part ii) of Lemma 3.4 implies that either p = 0 or
p is a non-zero constant and r ∈ Z≥1. Since the latter case is impossible, we deduce
that p = 0.

We conclude that he = ha|2−rσa − hc − h0 has a two-sided expansion. Part ii) of
Lemma 3.6 shows that he = 0, and hence Ee = 0. So F|2−rσa = Ec, and hence F
behaves like an element of Sr(Γ, v) at the cusp a. Since a was chosen arbitrarily,
this finishes the proof of both parts under the assumption r , 1.

For Part i) we have still to consider r = 1. If we work modulo functions with
an asymptotic expansion in powers of t−1 as t ↑ ∞, the v(πa)-periodic function p
has to compensate for the possible logarithmic behavior of h0 given in Lemma 3.8.
The logarithmic term is growing as t ↑ ∞ and the periodic function is bounded
(since |v(πa)| = 1), so this is impossible, and h0 = 0.

Now we proceed as above, with asymptotic expansions starting at t0. For he this
rules out the constant function, and we arrive again at he=0, and hence F|2−rσa =
Ec. �

Remark 3.10. Since we have used the unitarity of the multiplier system v only
for |v(πa)| = 1, Theorem B is still true under the assumption that |v(π)| = 1 for all
parabolic π ∈ Γ, without such an assumption concerning hyperbolic elements.

3.7. Related work. Pribitkin [98, Theorem 1] uses integrals along paths like those
in §3.4.

Proposition 3.2 is analogous to [15, Proposition 10.3]. Here we use the explicit
integrals in §3.4, since we want to handle complex weights.

4. O- 

In §3.2 we considered the parabolic equation with an Eichler integral as the
given function. We now take the right hand side to be more general, and use the
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one-sided averages given by

(4.1)

(
Av+T,λg

)
(t) :=

∑
n≥0

λ−n g(t + n) ,

(
Av−T,λg

)
(t) := −

∑
n≤−1

λ−n g(t + n) ,

where λ ∈ C∗, and where the subscript T refers to T : t 7→ t + 1.

4.1. One-sided averages with absolute convergence. If one of the series in (4.1)
converges absolutely then h = Av±T,λg provides a solution of the equation

(4.2) h(t) − λ−1 h(t + 1) = g(t) .

Proposition 4.1. Let λ ∈ C∗, and suppose that g represents an element ofDω
2−r.

a) the one-sided average Av±T,λg converges absolutely if one of the following
the conditions is satisfied:

(4.3)
λ |λ| > 1 |λ| = 1 and Re r < 1 |λ| < 1

Av+T,λϕ convergent convergent undecided
Av−T,λϕ undecided convergent convergent

b) The average defines a holomorphic function Av±T,λg on a region

(4.4) D±ε :=
{
z ∈ C : y < ε or ± x > ε−1

}
,

for some ε ∈ (0, 1).
c) Av±T,λg satisfy (4.2).
d) Av±T,λg represent an element ofDω

2−r[∞].

Remark 4.2. We can interpret the phrase g represents an element of Dω
2−r in two

ways, and we will have reasons to use both interpretations.
a) g is a holomorphic function on an {∞}-excised neighborhood, and prj2−rg

is holomorphic on a neighborhood of∞ in P1
C

;
b) g ∈ C2(C) has a holomorphic restriction to an {∞}-excised neighborhood,

and prj2−rg is holomorphic on a neighborhood of∞ in P1
C

.
Under the first interpretation, Av±T,λg is a holomorphic function on D±ε , where ε
depends on the domain of g. In the second interpretation, we have g ∈ C2(C) such
that prj2−rg is holomorphic on a neighborhood of H− ∪ P1

R in P1
C

, and Av±T,λg is in
C2(C) and holomorphic on D±ε .

Proof of proposition 4.1. Representatives of the projective model prj2−rD
ω
2−r are

holomorphic on P1
C
r K for some compact set K ⊂ H, which is contained in a

set of the form [−ε−1, ε−1] × [iε, iε−1] for some small ε ∈ (0, 1). To get a represen-
tative in the space Dω

2−r itself, we have to multiply by (i − t)r−2. So we work with
functions g that are holomorphic on

C r
(
[−ε−1, ε−1] × i[ε,∞)

)
.
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For t in a compact region V anywhere in C, there is a tail of the series with z+ n
in the region where g is holomorphic. Moreover, g(t) = O

(
|t|Re r−2) as |t| → ∞. So

the tail converges absolutely on V , and represents a holomorphic function on the
interior of V . If g ∈ C2(H), then the remaining terms give a C2 contribution, and
g ∈ C2(C). If we take V ⊂ D±ε the whole series may be taken as the tail, and we get
the holomorphy of the one-sided average on D±ε .

Note that the form of the set D±ε implies that Av±T,λg represents an element of
Dω

2−r[∞], but not necessarily ofDω,exc
2−r [∞]. �

Remark. The relation (4.2) between Av±T,λg and g implies this relation for the ele-
ments inDω

2−r[∞] andDω
2−r that they represent.

Proposition 4.3. Let r ∈ Z≤0 and λ = e2πiα with α ∈ R. Suppose that g is a
representative of an element ofDω

2−r of the type b) in Remark 4.2.
a) Then

(4.5) AvT,λg := Av+T,λg − Av−T,λg

defines a λ-periodic element of C2(C).
b) There is ε ∈ (0, 1) such that the function AvT,λg is holomorphic on two

regions, with Fourier expansions of the following form:

(4.6) AvT,λg (z) =


∑

m≡α(1), m>0 aup
m e2πimz on

{
z ∈ H : y > ε−1} ,∑

m≡α(1), m<0 adown
m e2πimz on

{
z ∈ C : y < ε

}
.

Proof. The function (prj2−rg)(z) = (i − z)2−r g(z) represents an element of the pro-
jective model of Dω

2−r. Since r ∈ Z≤0 the function g itself is holomorphic on a
neighborhood of∞ in P1

C
, and has a zero of order at least 2 − r at∞. Since |λ| = 1,

both series Av+T,λg and Av−T,λg converge absolutely on C, by Proposition 4.1.
These functions are now holomorphic on a set of the form

C r
(
(−∞, ε−1] × i[ε, ε−1]

)
, respectively C r

(
(−ε−1,∞] × i[ε, ε−1]

)
.

So (AvT,λg)(z) =
∑

n≡α(1) λ
−ng(z + n) defines a λ-periodic function on C that is

holomorphic on the two regions in the proposition. On both regions the Fourier
coefficients are given by integral∫

Im z=v
e−2πimz g(z) dz ,

representing the coefficients aup
m if v > ε−1, and the coefficients adown

m if v < ε. The
coefficients can differ on both regions. The integral is invariant under changes in v
in the corresponding interval. Since g(z) = O

(
|z|Re r−2) as |z| → ∞ through C, the

integral satisfies am = o
(
e2πmv) for fixed v. So aup

m = 0 for m ≤ 0, and adown
m = 0 for

m ≥ 0. �

In §11 we will use the following result:
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Lemma 4.4. Let r ∈ Z≤0. Suppose that g is a representative of an element ofDω
2−r

of the type b) in Remark 4.2. Suppose that there exists h ∈ C2(C) representing an
element of Dω,exc

2−r [∞] satisfying h(z) − h(z + 1) = g(z) for z ∈ U ∩ H, where U is a
neighborhood of R in C. Then

a) There are 1-periodic p+, p− ∈ O(C) such that

(4.7) h(z) = (Av+T,1g)(z) + p+(z) = (Av−T,1g)(z) + p−(z)

for all z ∈ H with Im z < ε for some ε > 0.
b) Av+T,1g and Av−T,1g represent elements ofDω,exc

r [∞].

Proof. Proposition 4.1 shows that we are in the domain of absolute convergence of
Av±T,1g, and that these averages are holomorphic on a set D±ε with some ε ∈ (0, 1).
Now the weight is an integer, and the factor (i− z)r−2 is non-zero and holomorphic
on P1

C
r {i,∞}. The function z 7→ g(z+n) is holomorphic outside the smaller region

[−ε−1 − n, ε−1 − n] × i[ε, ε−1] .

Hence the averages Av±T,1g are holomorphic on

C r
(
(−∞, ε−1] × i[ε, ε−1]

)
, respectively C r

(
[−ε−1,∞) × i[ε, ε−1]

)
.

The function h is holomorphic on an {∞}-excised neighborhood. So after adap-
tation of ε > 0 on a region

C r
[
−ε−1, ε−1] × i

[
ε,∞

)
.

On 0 < Im (z) = y < ε the functions h, Av+T,1g and Av−T,1g satisfy the same
relation, hence there are 1-periodic p+ and p− on this region that satisfy (4.7). The
relations between h and the averages extend by holomorphy to the half-plane y < ε
in C, and the 1-periodic functions p+ and p− extend holomorphically to y < ε.

The relation p+ = h − Av+T,1g extends p+ to a region{
z ∈ C : Im (z) < ε

}
∪

{
z ∈ C : Re (x) > ε−1} .

Then by 1-periodicity p+ has a 1-periodic holomorphic extension to C. But then
the relation Av+T,1g = h − p+ provides a holomorphic extension of Av+T,1g to an
{∞}-excised neighborhood, hence Av+T,1g represents an element ofDω,exc

2−r [∞].
The case of p− and Av−T,1g goes similarly. �

4.2. Analytic continuation of one-sided averages. To obtain the one-sided aver-
ages with |λ| = 1 on representatives of Dω

2−r for more values of r, we use that the
space of the projective model prj2−rD

ω
2−r does not depend on r. The representa-

tives in the projective model are holomorphic functions h on a neighborhood Ω of
H− ∪ P1

R in P1
C

. For a fixed h the function gr := prj−1
2−rh represents an element of

Dω
2−r for each r ∈ C, ie.

(4.8) gr(t) = (i − t)r−2 h(t) (t ∈ Ω) .

In this subsection we work with the interpretation a) in Remark 4.2.

Lemma 4.5. Let |λ| = 1, and let gr be as defined in (4.8). Let ε ∈ (0, 1) be such
that Av±T,λ gr is holomorphic on the set D±ε in (4.4) for Re r < 1.
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a) The function (r, z) 7→
(
Av±T,λgr

)
(z) extends as a holomorphic function on

(C r Z≥1) × D±ε .
b) If h(∞) = 0 then (r, z) 7→

(
Av±T,λ gr

)
(z) can be extended holomorphically to

the slightly larger region (C r Z≥2) × D±ε .

Proof. We use the Hurwitz-Lerch zeta-function

(4.9) H(s, a, z) =
∑
n≥0

e2πian (z + n)−s ,

which converges absolutely and is holomorphic in (s, z) for Im a ≤ 0, z ∈ C r Z≤0
and Re s > 1. Kanemitsu, Katsurada and Yoshimoto [59, Theorem 1*] give the
holomorphy of (s, z) 7→ H(s, a, z) on (C r {1}) × {z ∈ C : Re z > 0} with a first
order singularity at s = 1 if a ∈ Z, and no singularity in s at all otherwise. With

H(s, a, z) =
m−1∑
n=0

e2πian (z + n)−s + H(s, a, z + m)

for each m ∈ Z≥1, we obtain holomorphy in z ∈ Cr (−∞, 0]. (Lagarias and Li [75]
study the continuation in three variables. Here we need only the continuation in
(s, z).)

The function h in (4.8) is holomorphic on a neighborhood of P1
R in P1

C
, and hence

has a convergent power series expansion on a neighborhood of∞:

(4.10) h(z) =
∞∑

k=0

ãk z−k .

This implies that we have for z ∈ D±ε

(4.11) gr(z) =
N−1∑
k=0

ak(r) (z − i)r−2−k + gr,N(z) ,

with gr,N(z) = O(zr−2−N) as z → ∞ through D±ε , uniformly for r in compact sets
in C. The ak(r) are polynomials in r. We take arg(z − i) ∈

(
−3π

2 ,
π
2
)
. The one-sided

averages of gr,N converge absolutely, and provide holomorphic functions in (r, z)
on Re r < N + 1 and z ∈ D±ε . For the remaining finitely many terms we have a sum
of

ak(r) λ−n (z + n − i)r−2−k

= ak(r) e−2πinα

(z − i + n)r−2−k for n ≥ 0 and Re z > ε−1 ,

e−πi(r−2−k) (i − z + |n|)r−2−k for n ≤ −1 and Re z < −ε−1 ,
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where α ∈ C has been chosen such that λ = e2πiα. In this way we obtain:

(4.12)

(
Av+T,λgr

)
(z) =

N−1∑
k=0

ak(r) H(k + 2 − r,−α, z − i) +
(
Av+T,λgr,N

)
(z) ,

(
Av−T,λgr

)
(z) =

N−1∑
k=0

ak(r) λ eπi(k−r) H(k + 2 − r, α, 1 + i − z)

+
(
Av−T,λgr,N

)
(z) .

The function (r, z) 7→ H(k + 2 − r,−α, z − i) is meromorphic on the region r ∈ C,
z ∈ i+Cr(−∞, 0], with a singularity at r = k+1. The function (r, z) 7→ (Av+T,λgr,N)(z)
is holomorphic on the region Re r < 1+N, z ∈ D+ε . So (r, z) 7→ (Av+T,λgr)(z) extends
meromorphically to the region Re r < 1+N, z ∈ D+ε , and its singularities can occur
only at r = a with a ∈ {1, . . . ,N}. The case of Av−T,λgr goes similarly. �

Proposition 4.6. Let r ∈ C, λ ∈ C∗, and let g represent an element ofDω
2−r.

i) There are well-defined one-sided averages Av±T,λg holomorphic on D±ε , as
in (4.4), for some ε ∈ (0, 1) depending on g, under the following conditions

(4.13)

|λ| > 1 |λ| = 1, λ , 1 or λ = 1 |λ| < 1
λ = 1, (prj2−rg)(∞) = 0 (prj2−rg)(∞) , 0

Av+T,λg r ∈ C r ∈ C r Z≥2 r ∈ C r Z≥1
Av−T,λg r ∈ C≥2 r ∈ C r Z≥1 r ∈ C

ii) These one-sided averages satisfy Av±T,λg|2−r(1 − λ−1 T ) = g.
iii) If g = gr = prj−1

2−rh as in (4.8), and |λ|±1 ≥ 1, then r 7→ Av±T,λgr is a
meromorphic function on C.

Proof. Each representative g of an element of Dω
2−r is of the form gr = prj2−rh

for some holomorphic function on a neighborhood of H− ∪ P1
R in P1

C
. If |λ| , 1,

Proposition 4.1 gives the convergence of one of the averages and the relation in
Part ii). The convergence is sufficiently quick to have holomorphy in r.

Let |λ| = 1. Proposition 4.1 gives convergence of both averages for Re r < 1,
and Lemma 4.5 provides the meromorphic continuation to C, with singularities
only in the points indicated in Part i). The relation in Part ii) stays valid by analytic
continuation. �

Remark 4.7. If |λ| = 1, λ , 1, the proof of Lemma 4.5 can be adapted to give
holomorphy of Av±T,λ gr in r ∈ C. We can strengthen the statements in Cases i)
and iii) of Proposition 4.6 as well.

Asymptotic behavior. To get the asymptotic behavior of Av±T,λgr(t) as ±Re t → ∞,
we use the following result:

Proposition 4.8. (Katsurada, [61]) Let s, a ∈ C, Im a ≤ 0. There are bk(λ, s) ∈ C
such that for each K ∈ Z≥0 we have as |z| → ∞ on any region δ − π ≤ arg z ≤ π − δ
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with δ > 0

(4.14) H
(
s, a,

1
2
+ z

)
=

ε(λ)
1 − s

z1−s +

K−1∑
k=0

bk(λ, s) z−k−s + O
(
|z|−Re s−K)

,

with λ = e2πia, ε(λ) = 1 if λ = 1 and ε(λ) = 0 otherwise. The coefficients bk satisfy

(4.15) λ−1 bk(λ−1, s) = (−1)k+1 bk(λ, s) .

The first three coefficients are as follows:

(4.16)

λ = 1 λ , 1

b0(λ, s) 0 1
1−λ

b1(λ, s) − s
48 − s

4
1+λ

(1−λ)2

b2(λ, s) 0 s(s+1)(1+6λ+λ2)
48(1−λ3)

Proof. This is a direct consequence of [61, Theorem 1], applied with α = 1
2 .

We have H(s, a, z) = Φ(a, z, s) with Katsurada’s Φ. This gives (4.14) with

bk(λ, s) =
(−1)k+1

(k + 1)!
Bk+1

(1
2 , λ

)
(s)k ,

where the Bk are generalized Bernoulli polynomials, given by∑
k≥0

Bk(x, y)
zk

k!
=

zexz

yez − 1
.

Relation (4.15) follows from

zez/2

yez − 1
=

z
yez/2 − e−z/2 = y−1 −z

y−1e−z/2 − ez/2 . �

Proposition 4.9. Let |λ| = 1, and let g be a representative of an element of Dω
2−r,

with r ∈ C such that Av+T,λ g and Av−T,λ g exist.
a) There are coefficients ck depending on λ, r and on the coefficients of the

expansion of prj2−rg at∞, such that for each M ∈ Z≥0 we have:

(4.17) (Av±T,λ g)(t) = (it)r−2
M−1∑
k=−1

ck t−k + O
(
|t|r−2−M)

as |t| → ∞ with ±Re t ≥ 0, Im t ≤ 0.
ii) If g(t) = (it)r−2 (

a0 + a1 t−1 + · · ·
)

near∞, then

(4.18)

λ = 1 λ , 1

c−1
a0

r−1 0

c0
a1

r−2
λ a0
λ−1

c1
a2

r−3 +
(r−2) a0

48
λ a1
λ−1 +

(r−2) λ (λ+1) a0
4(λ−1)2
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Remark. It is remarkable that if both one-sided averages exist, then the coefficients
in both expansions are the same, although Av+T,λ g and Av−T,λ g have in general no
reason to be equal.

Proof. It suffices to consider large values of M. We take M > Re r + 1. If g(t) =
O
(
|t|r−3−M)

we have (Av±T,λ g)(t) = O
(
|t|r−2−M)

, which only influences the error term.
So the explicit terms in the asymptotic expansion are determined by the part

(it)r−2
M∑
j=0

a j t− j

of the expansion of f at ∞. We consider for 0 ≤ j ≤ M functions g j representing
elements ofDω

2−r for which g j(t) = (it)r−2 t− j + O
(
|t|r−3−M)

as t → ∞.
In (4.11) we took t − i as the variable. Now t − 1

2 is more convenient. We put
λ = e2πiα, and have, modulo terms that can be absorbed into the error term:

(Av+T,λ g j)(1/2 + t) ≡ −eπir/2 H(2 + j − r,−α, 1/2 + t) ,

(Av−T,λ g j)(1/2 + t) ≡ e−πir/2 (−1) j λH(2 + j − r, α, 1/2 − t) .

With Proposition 4.8 this gives

(Av+T,λ g j)(1/2 + t) ≡ (it)r−2
( ε(λ)
r − j − 1

t1− j +

M− j∑
k=0

bk(λ−1, 2 + j − r) t−k− j
)
,

(Av−T,λ g j)(1/2 + t) ≡ e−πir/2(−1) jλ
( ε(λ)
r − 1 − j

(−t)r−1− j

+

M− j∑
k=0

bk(λ, 2 + j − r) (−t)−k− j+r−2
)

= (it)r−2
( ε(λ)
r − 1 − j

t1− j −

M− j∑
k=0

(−1)k λ bk(λ, 2 + j − r) t−k− j
)
.

(In the last step we have used that λ = 1 if ε(λ) , 0.)
For g with expansion (it)r−2 ∑

j≥0 a j t− j near ∞ this leads to an expansion as
in (4.17), with coefficients c±` of the form

c±−1 =
ε(λ)
r − 1

a0 ,

and for ` ≥ 0

c+` =
ε(λ)

r − ` − 2
a`+1 +

∑̀
j=0

b`− j(λ−1, 2 + j − r) a j ,

c−` =
ε(λ)

r − ` − 2
a`+1 −

∑̀
j=0

(−1)`− j λ b`− j(λ, 2 + j − r) a j .

Relation (4.15) shows that c+` = c−` . �

Lemma 4.10. Let |λ| = 1.



44 ROELOF BRUGGEMAN, YOUNGJU CHOIE, AND NIKOLAOS DIAMANTIS

i) Let r ∈ R r Z≥1. The following statements concerning ϕ ∈ Dω
2−r are equiv-

alent:
a) There is a representative g of ϕ for which Av+T,λg and Av−T,λg represent

the same element ofDω
2−r[∞].

b) There is a function h representing an element of Dω,smp
2−r [∞] such that

h|2−r(1 − λ−1 T ) represents ϕ.
If these statements hold, then Av+T,λg, Av−T,λg and h represent the same ele-
ment ofDω,smp

2−r [∞].
ii) Let r ∈ R r Z≥2. The following statements concerning ϕ ∈ Dω

2−r are equiv-
alent:

a) There is a representative g of ϕ such that prj2−rg(∞) = 0, and for
which Av+T,λg and Av−T,λg represent the same element ofDω

2−r[∞].
b) There is a function h representing an element of Dω,∞

2−r [∞] such that
h|2−r(1 − λ−1 T ) represents ϕ.

If these statements hold, then Av+T,λg, Av−T,λg and h represent the same ele-
ment ofDω,∞

2−r [∞].

Proof. Let g be a representative of ϕ as in one of the statements a). Then Av+T,λg(z) =
Av−T,λg(z) for y < ε for some ε ∈ (0, 1). Let us call this function f . It is holomorphic
on a neighborhood of H− ∪ R in C, and Proposition 4.9 shows (prj2−r f )(z) has an
asymptotic expansion as z → ∞ through H− ∪ R required in Definition 1.10 for
representatives of elements of Dω,smp

2−r [∞]. This gives b) in Part i). If we have the
additional condition (prj2−rg)(∞) = 0, the asymptotic expansion starts at k = 0
instead of k = −1, and we conclude that f represents an element ofDω,∞

2−r [∞]. This
concludes the proof of a)⇒b) in both parts.

Let h as b) be given. With any representative g of ϕ, we have also Av+T,λg and
Av−T,λg inDω

2−r[∞] satisfying the same relation. So h−Av±T,λg is a λ-periodic function
on a neighborhood of R, with a one-sided asymptotic expansion of the type (4.17)
as ±Re z→ ∞. Hence this λ-periodic function is zero by Lemma 3.4, and the three
functions h, Av+T,λg and Av−T,λg are the same on a neighborhood of H− ∪R in C, and
represent the same element ofDω

2−r[∞]. That gives a) in Part i). For Part ii) we note
that the fact that h represents an element ofDω,∞

2−r [∞] implies (prj2−rg)(∞) = 0. �

4.3. Parabolic cohomology groups. With the one-sided averages we can prove
some of the isomorphisms in Theorem E on page 17.

Proposition 4.11. Let r ∈ R, and let v be a unitary multiplier system.
i) If r < Z≥2 then

H1
pb(Γ;D

ω
v,2−r,D

ω0,∞,exc
v,2−r ) = H1

pb(Γ;D
ω
v,2−r,D

ω0,∞
v,2−r ) .

ii) The codimension of H1
pb(Γ;D

ω
v,r,D

ω0,smp,exc
v,r ) in H1

pb(Γ;D
ω
v,r,D

ω0,smp
v,r ) is finite

if r = 1, and zero if r < Z≥1.

Proof. Let ψ ∈ Z1(Γ;Dω
v,2−r,D

ω0,∞
v,2−r ). For cusps a in a (finite) set of representatives

of the Γ-orbits of cusps we consider ha ∈ D
ω0,∞
v,2−r such that ha|v,2−r(1 − πa) = ψπa ∈
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Dω
v,2−r. After conjugation, we are in the situation of Part ii)b) of Lemma 4.10 with

λ = v(πa). Since the conditions on r and λ in that lemma are satisfied, we have
h = Av+T,λψπa = Av−T,λψπa near H− ∪ R. Since Av±T,λψπa is holomorphic on D+ε ∪ D−ε
for some ε > 0, with D±ε as in (4.4), the function h is holomorphic on a {∞}-excised
neighborhood, hence h ∈ Dω,∞,exc

2−r [∞], and ha ∈ D
ω,∞,exc
2−r [a] ⊂ Dω0,∞,exc

2−r .
The other case goes similarly, except if r = 1 and v(πa) = 1. If prj1(ψπa)(∞) = 0

then Proposition 4.9 implies that the starting term of the asymptotic expansion
(4.17) satisfies k ≥ 0, and ha is in Dω,∞

v,1 [a], and the same reasoning applies. Since
the number of cuspidal orbits is finite, this imposes conditions on the cocycles
determining a subspace of finite codimension. �

Proposition 4.12. If r ∈ C r Z≥1, then

(4.19) H1
pb(Γ;D

ω
v,2−r,D

ω∗

v,2−r) = H1(Γ;Dω
v,2−r) .

If r = 1, then the space H1
pb(Γ;D

ω
v,1,D

ω∗

v,1 ) has finite codimension in the space
H1(Γ;Dω

v,1).

Remark. So for all r < Z≥2 the space H1
pb(Γ;D

ω
v,2−r,D

ω∗

v,2−r) has finite codimension
in H1(Γ;Dω

v,2−r).
We prepare the proof of Proposition 4.12 by a lemma.

Lemma 4.13. Let r ∈ C and λ ∈ C∗. Then

(4.20)
Dω

2−r ⊂ D
ω
2−r[∞]|2−r(1 − λ−1T ) if r < Z≥1 ,

dim
(
Dω

1
/ (
Dω

1 ∩
(
Dω

1 [∞]|1(1 − λ−1T )
)))
≤ 1 if r = 1 .

In the case r = 1 an element ϕ ∈ Dω
1 is in Dω

1 [∞]|1(1 − λ−1T ) if λ , 1 or if
prj1ϕ(∞) = 0.

Proof. Proposition 4.6 shows that if r < Z≥1 or if λ , 1, we can use at least one
of the one-sided averages to show thatDω

2−r is contained inDω
2−r[∞]|2−r(1− λ−1T ).

If r = 1 and λ = 1 we have to restrict ourselves to a subspace of Dω
1 [∞] of

codimension 1. �

Proof of Proposition 4.12. The inclusion ⊂ follows from the definition of parabolic
cohomology. To prove the other inclusion we consider a cocycle ψ ∈ Z1(Γ;Dω

v,2−r)
and need to show that for a representative a of each Γ-orbit of cusps there is h ∈
Dω∗

v,2−r such that h|v,2−r(1 − πa) = ψπa . By conjugation this can be brought to ∞,
into the situation considered in Lemma 4.13. Since there are only finitely many
cuspidal orbits, we get for r = 1 a subspace of finite codimension. �

4.4. Related work. Knopp uses one-sided averages in [64, Part IV], attributing
the method to B.A. Taylor (non-published). In [15] the one-sided averages are an
important tool, defined in Section 4, and used in Sections 9 and 12.
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Part II. Harmonic functions

5. H   

5.1. The sheaf of harmonic functions. By associating to open sets U ⊂ H the
vector space Hr(U) of r-harmonic functions on U (as defined in Definition 1.15)
we form the sheafHr of r-harmonic functions on H.

The shadow operator ξr in (1.28) determines a morphism of sheavesHr → OH,
where OH denotes the sheaf of holomorphic functions on H, and leads to an exact
sequence

(5.1) 0→ OH → Hr
ξr
→ OH → 0 .

The maps ξr : Hr(U) → O(U) are antilinear for the structure of vector spaces
over C. The surjectivity of ξr follows from classical properties of the operator ∂z̄.
(It suffices to solve locally ∂z̄h = ϕ for given holomorphic ϕ. See, eg., Hörmander
[55, Theorem 1.2.2].)

Actions. Let r ∈ C. For each g ∈ SL2(R) the operator |rg gives bijective linear
mapsHr(U)→ Hr(g−1U) and OH(U)→ OH(g−1U). For sections F ofHr

(5.2) ∆r
(
F|rg

)
= (∆rF)|rg , ξr

(
F|rg

)
=

(
ξrF

)
|2−r̄g .

If v is a multiplier system for Γ for the weight r, then we have also the actions |v,r
of Γ onHr and |v̄,2−r̄ on O. With these actionsHr and O are Γ-equivariant sheaves.

5.2. Harmonic lifts of automorphic forms. In this subsection we will prove The-
orem C.

Example. The image in H1(Γ(1);Dω0,exc
1,2

)
of rω0 1 ∈ H1(Γ(1);Dω

1,2
)

can be repre-
sented by the cocycle ψ̃ in (2.23), given by ψ̃γ(t) = −c

ct+d . The cocycle ιψ̃ in the func-
tions on H, obtained with the involution ι in (1.6) can be written as γ 7→ h|1,2(1−γ),
with the 2-harmonic function h(z) = i

2y .
The holomorphic Eisenstein series of weight 2

(5.3) E2(z) = 1 − 24
∑
n≥1

σ1(n) e2πinz

is not a modular form. Adding a multiple of h we get E∗2 =
6i
π h + E2, which is a

harmonic modular form in Harm2
(
Γ(1), 1

)
. The function E∗2 is a 2-harmonic lift of

the constant function 3
π . See Definition 1.17. Furthermore, we have

ιψ̃γ =
π

6i
E2|1,2(γ − 1) .

Since E2 has polynomial growth near the boundary P1
R of H, we conclude that with

b = πi
6 ιE2 ∈ D

−∞
1,2 we obtain b|1,2(γ − 1) = ψ̃γ. So the class rω0 1 becomes trivial

under the natural map to H1(Γ(1);D−∞1,2
)
.

Alternative description of cocycles. Generalizing this example, we first use the
differential form ωr(F; ·, ·) in (2.1) to describe the cocycle ψz0

F in (2) in an alterna-
tive way. We recall the involution ι in (1.6).
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Lemma 5.1. Let r ∈ C and F ∈ Ar(Γ, v). We put for t ∈ H−:

(5.4) QF(t) :=
∫ t̄

z0

ωr(F; t, z) .

i) The function QF on H− satisfies

(5.5) QF |v,2−r(γ − 1) = ψz0
F,γ for each γ ∈ Γ.

ii) The corresponding function ιQF on H is (2 − r̄)-harmonic, and

(5.6) ξ2−r̄ ιQF(z) = 2r−1 eπi(r−1)/2 F(z) .

Proof. For Part i) we use Part iii) of Lemma 2.3. For γ =
(

a
c

b
d

)
∈ Γ

QF |v,2−rγ (t) = v(γ)−1 (ct + d)r−2 QF(γt)

=

∫ γt̄

z0

ωr(F; ·, z)|v,2−rγ (t) =
∫ t̄

γ−1z0

ωr(F; t, z) .

For Part ii) we note that the function ιQF on H satisfies

ιQF(z) =
∫ z

τ=z0

(τ − z̄)r−2 F(τ) dτ ,

ξ2−r̄ ιQF(z) = 2i y2−r ∂

∂z
ιQF(z) = 2i y2−r (z − z̄)r−2 F(z)

= 2r−1 eπi(r−1)/2 F(z) .

Since the image of ιQF under the shadow operator is holomorphic, the function
ιQF is inH2−r̄(H). �

Proof of Theorem C. The theorem states the equivalence of two statements con-
cerning an automorphic form F ∈ Ar(Γ, v). Statement a) means that the cocycle ψz0

F
is a coboundary in B1(Γ;D−ω

v,2−r). This is equivalent to

a’) ∃Φ ∈ O(H−) ∀γ ∈ Γ : Φ|v,2−r(γ − 1) = ψz0
F,γ.

Statement b) amounts to the existence of a (2− r̄)-harmonic lift of F, and is equiv-
alent to

b’) ∃H ∈ Harm2−r̄(Γ, v̄) : ξrH = F.
We relate these two statements by a chain of intermediate equivalent statements
s1)–s6).

s1) ∃Φ ∈ O(H−) ∀γ ∈ Γ : Φ|v,2−r(γ − 1) = QF |v,2−r(γ − 1).
Relation (5.5) implies the equivalence of a’) and s1).

We rewrite s1) as follows:
s2) ∃Φ ∈ O(H−) ∀γ ∈ Γ : (Φ − QF)|v,2−rγ = Φ − QF .

Functions on H− and H are related by the involution ι in (1.6), which preserves
holomorphy. So s2) is equivalent to the following statement:

s3) ∃M ∈ O(H) ∀γ ∈ Γ : (M − ιQF)|v̄,2−r̄γ = M − ιQF .
The holomorphy of M is equivalent to the vanishing of ξ2−r̄ M. Hence s3) is

equivalent to the following statement:
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s4) There is a function M on H such that ∀γ ∈ Γ : (M− ιQF)|v̄,2−r̄γ = M− ιQF
and ξ2−r̄ M = 0.

Now we relate functions H and M on H by H = M − ιQF . With (5.6) this shows
that s4) is equivalent to the following statement:

s5) There is a function H on H such that ∀γ ∈ Γ : H|v̄2−r̄γ = H and ξ2−r̄H =
−2r−1eπi(r−1)/2F.

The statement that ξrH is holomorphic is equivalent to the statement that H is
(2 − r̄)-harmonic. Hence we get the equivalent statement:

s6) ∃H ∈ Harm2−r̄(Γ, v̄) : ξ2−r̄H = −2r−1eπi(r−1)/2F.
Up to replacing H by a non-zero multiple, statement s6) is equivalent to state-

ment b’). �

Remark. The r-harmonic function QF in (5.4) describes the cocycle ψz0
F by the

relation (5.5). Theorem C relates the existence of a holomorphic function also
describing ψz0

F to the existence of a r-harmonic lift. One may call such holomorphic
functions automorphic integrals. In the work of Knopp [64] and others there is the
additional requirement that automorphic integrals are invariant under T .

Consequences. Kra’s result [73, Theorem 5] is equivalent to the statement that
H1(Γ;D−ω1,2−r) = {0} for even weights r. So we have the following direct conse-
quence of Theorem C.

Corollary 5.2. Let r ∈ 2Z and let v be the trivial multiplier system. Then each
automorphic form in Ar(Γ, 1) has a harmonic lift in Harm2−r(Γ, 1).

A bit more work is needed for the following consequence of Theorem C.

Theorem 5.3. Let v be a unitary multiplier system for the weight r ∈ R. If each
cusp form in Sr(Γ, v) has a (2−r)-harmonic lift, then each unrestricted holomorphic
automorphic form in Ar(Γ, v) has a (2 − r)-harmonic lift.

Proof. Comparing our results with the Theorem of Knopp and Mawi [69], refor-
mulated as Theorem 2.7 above, we noted that the diagram (2.10) shows that for real
r and unitary v we can decompose Ar(Γ, v) = Sr(Γ, v) ⊕ X, where X is the kernel of
the composition

Ar(Γ, v)
rωr
→ H1(Γ;Dω

v,2−r)→ H1(Γ;D−∞v,2−r) .

So all elements of this space X have (2 − r̄)-harmonic lifts, which are (2 − r)-
harmonic lifts, since here the weight is real. So if one can lift cusps forms, one can
lift all elements of Ar(Γ, v). �

5.3. Related work. Knopp [64, §V.2] discussed the question how far the module
has to be extended before a cocycle attached to an automorphic forms becomes a
coboundary.

The relation between harmonic automorphic forms, automorphic integrals and
cocycles for the shadow is mentioned by Fay on p. 145 of [44].
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Bruinier and Funke [17] explicitly considered the shadow operator and the ques-
tion whether harmonic lifts exist. Existence of harmonic lifts is often shown with
help of real-analytic Poincaré series with exponential growth, introduced by Niebur
[90]. For instance, Bringmann and Ono [3] (cusp forms for Γ0(N) weight 1

2 ), Bru-
inier, Ono and Rhoades [18] (integral weights at least 2), Jeon, Kang and Kim
[58] (weight 3

2 , exponential growth), Duke, Imamoḡlu, and Tóth [40] (weight 2).
The approach in [16] (modular forms of complex weight with at most exponential
growth) is similar; it uses no Poincaré series but similar meromorphic families.
Bruinier and Funke [17, Corollary 3.8] use Hodge theory for the the existence of
r-harmonic lifts, and Bringmann, Kane and Zwegers [5, §3, §5] explain how to
employ holomorphic projection for this purpose.

The harmonic lifts are related to “mock automorphic forms”. For a given unre-
stricted holomorphic automorphic form F ∈ Ar(Γ, v) it is relatively easy to write
down a harmonic function C such that ξ2−r̄ C = F. The function ιQF in (5.4) is an
example. Any holomorphic function M such that M+C is a harmonic automorphic
form may be called a mock automorphic form. The function E2 in (5.3) is a well
known example. In the last ten years a vast literature on mock automorphic forms
has arisen. For an overview we mention [45, 118].

It should be stressed that our Theorem C concerns the existence of harmonic
lifts and of automorphic integrals. An enjoyable aspect of the theory is the large
number of mock modular forms with a explicit, number-theoretically nice descrip-
tion, often with weights 1

2 and 3
2 , related to functions on the Jacobi group. See, for

instance, [27, 28, 29]). This leads to explicit harmonic lifts, and via Theorem C to
the explicit description of cocycles as coboundaries.

6. B 

To complete the proof of Theorem A we have to show that each cohomology
class in H1

pb(Γ;D
ω
v,2−r,D

ω0,exc
v,2−r ) is of the form rωr F for some unrestricted holomor-

phic automorphic form. To do this, we use the spaces of “analytic boundary
germs”, in Definition 6.3. This allows us to define, for r ∈ C r Z≥2, Γ-modules
isomorphic to Dω

v,2−r and Dω0,exc
v,2−r , consisting of germs of functions. These germs

are sections of a sheaf on the common boundary P1
R of H− and H. Using these

isomorphic modules we will be able, in Section 10, to complete the proof of The-
orem A.

6.1. Three sheaves on the real projective line.

6.1.1. The sheaf of real-analytic functions on P1
R. Recall that O denotes the sheaf

of holomorphic functions on P1
C

.

Definition 6.1. For each open set I ⊂ P1
R we define the sheafVω

2−r by

(6.1) Vω
2−r(I) := lim

−→
O(U) ,

where U runs over the open neighborhoods of I in P1
C

. The operator |prj

2−rg in (1.20)
gives a linear bijectionVω

2−r(I)→Vω
2−r(g

−1I) for each g ∈ SL2(R).
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The sections inVω
2−r(I) for I open in P1

R are holomorphic on some neighborhood
of I in P1

C
, and hence have a real-analytic restriction to I. Conversely, any real-

analytic function on I is locally given by a convergent power series, and hence
extends as a holomorphic function to some neighborhood of I. So we can view
Vω

2−r for each r as the sheaf of real-analytic functions on P1
R, provided with the

operators |prj

2−rg with g ∈ SL2(R).
The space of global sectionsVω

2−r(P
1
R) contains a copy ofDω

2−r. Indeed, the map
(prj2−rϕ)(t) = (i − t)2−r ϕ(t) induces the injection

prj2−r : Dω
2−r →V

ω
2−r(P

1
R)

that intertwines the operators |2−rg and |prj

2−rg for g ∈ SL2(R). It further induces a
morphism of Γ-modules prj2−r : Dω

v,2−r → V
ω
v,2−r(P

1
R) and an injective map from

Dω
2−r[ξ1, . . . , ξn] intoVω

2−r

(
P1
R r {ξ1, . . . , ξn}

)
.

6.1.2. The sheaf of harmonic boundary germs. We recall thatHr denotes the sheaf
of r-harmonic functions on H.

Definition 6.2. For open I ⊂ P1
R

(6.2) Br(I) := lim
−→
Hr(U ∩ H) ,

where U runs over the open neighborhoods of I in P1
C

. The induced sheaf Br on P1
R

is called the sheaf of r-harmonic boundary germs.
The operator |rg with g ∈ SL2(R) induces linear bijections Br(I)→ Br(g−1I) for

open I ⊂ P1
R.

We identifyHr(H) with its image in Br(P1
R).

6.1.3. The sheaf of analytic boundary germs. We now turn to the boundary germs
that are most useful for the purpose of this paper.

Definition 6.3. Let r ∈ C.
i) Consider the real-analytic function fr on H r {i} given by

(6.3) fr(z) :=
2i

z − i

( z̄ − i
z̄ − z

)r−1
.

ii) For open U ⊂ P1
C

we define

(6.4) Hb
r (U) :=

{
F ∈ Hr(U ∩ H) : F/ fr has a real-analytic continuation to U

}
.

iii) For open sets I ⊂ P1
R we define

(6.5) Wω
r (I) := lim

−→
Hb

r (U) ,

where U runs over the open neighborhoods of I in P1
C

. This defines a
subsheafWω

r of Br, called the sheaf of analytic boundary germs.
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Remark 6.4. The function fr is analogous to the function z 7→
( 4y
|z+i|2

)s (or to
w 7→ (1 − |w|2

)s in the disk model) in [13], Definition 5.2 and the examples after
Equation (5.9).

The function fr can be written as cq(z)1−r z+i
z−i (z + i)2−r, where q(z) = y

|z+i|2 is a
real-valued real-analytic function on P1

C
r {−i} with P1

R as its zero set, and c is some
factor in C∗.

The motivation for our choice of fr is that it is the right choice to make Proposi-
tion 6.6 below work.

Lemma 6.5. Let r ∈ C. For each g ∈ SL2(R) the operator |rg induces a linear
bijectionWω

r (I)→Wω
r (g−1I).

Proof. Let g =
(

a
c

b
d

)
∈ SL2(R). We have

(6.6) (cz + d)−r fr(gz)
fr(z)

= (a − ic)r−2 z − i
z − g−1i

( z̄ − i
z̄ − g−1i

)r−1
.

To see this up to a factor depending on the choice of the arguments is just a com-
putation. Both sides of the equality are real-analytic in z ∈ H r {i, g−1i} and in g
in the dense open set G0 ⊂ SL2(R), defined in (1.3). The equality holds for g = I,
hence for g ∈ G0. Elements in SL2(R) rG0 are approached with c ↓ 0, and a and
d tending to negative values. The argument conventions §1.1 and Proposition 1.5
are such that both (cz + d)−r and (a − ic)r−2 are continuous under this approach.

Suppose that F ∈ Hb
r (U) represents a section inWω

r (I), with I = U ∩ P1
R and

A = F/ fr real-analytic on U ⊂ P1
R. Then we have

F|rg(z) = fr(z) (cz + d)−r fr(gz)
fr(z)

A(gz) ,

which is of the form fr times a real-analytic function near g−1I. �

Examples. (a) Consider the r-harmonic function

(6.7) F(z) = y1−r

on H. Since

A(z) =
F(z)
fr(z)

=
z − i
2i

( z̄ − i
−2i

)1−r

extends as a real-analytic function to U = Cr {i}, the function F is inHb
r (C r {i}).

It is not in Hb
r

(
P1
C
r {i}

)
, since A is not given by a convergent power series in 1/z

and 1/z̄ on a neighborhood of∞ in P1
C

. So the function F represents an element of
Wω

r (R).
(b) For r ∈ C r Z≥2 and µ ∈ Z≥0

(6.8) Mr,µ(z) := fr(z)
(z − i
z + i

)µ+1
2F1

(
1 + µ, 1 − r; 2 − r;

4y
|z + i|2

)
.

At this moment we only state that Mr,µ is r-harmonic on H r {i}, and postpone

giving arguments for this statement till §7. The function z 7→ 4y
|z+i|2 = 1 −

∣∣∣∣ z−i
z+i

∣∣∣∣2 is
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real-analytic on P1
C
r{−i}, with value 0 on P1

R. Since the hypergeometric function is

holomorphic on the unit disk in C, this implies that
(

z−i
z+i

)−µ−1
Mr,µ(z) is real-analytic

on P1
C
r {i,−i}, and hence Mr,µ is inHb

r

(
P1
C
r {i,−i}

)
, and represents an element of

Wω
r (P1

R).

(c) Let Re r > 0. Then η(z)2r = e2r log η(z) is a cusp form of weight r for the modular
group Γ(1). The function

(6.9) Φ(z) =
∫ i∞

0
η2r(τ)

2i
z − τ

( z̄ − τ
z̄ − z

)r−1
dτ ,

defines an r-harmonic function on H r i(0,∞), if we take the path of integration
along the geodesic from 0 to ∞. (To check the harmonicity one may apply ξr; this
gives a holomorphic function.) Deforming the path of integration leads to other
domains. Such a change in the function does not change the r-harmonic boundary
germ inWω

r (R) it represents.

6.2. Relation between the sheaves of harmonic boundary and analytic bound-
ary germs. The sheaf Wω

r is related to the simpler sheaf Vω
2−r by the important

restriction morphism that we will define now.

Proposition 6.6. Let r ∈ C. There is a unique morphism of sheaves ρprj
r : Wω

r →

Vω
2−r with the following property: If f ∈ Wω

r (I) for an open set I ⊂ P1
R is repre-

sented by F ∈ Hb
r (U), and ρprj

r f ∈ Vω
2−r(I) is represented by ϕ ∈ O(U0) for some

open neighborhood U0 of I in P1
C

, then the real-analytic function F/ fr on U is
related to ϕ by (

F/ fr
)
(t) = ϕ(t) for t ∈ I .

This is called the restriction morphism and is compatible with the actions of
SL2(R):

(6.10) ρprj
r ( f |rg) = (ρprj

r f )|prj

2−rg for f ∈ Wω
r (I) and g ∈ SL2(R) .

Proof. Let F ∈ Hb
r (U) for some neighborhood U of I in P1

C
. Then A := F/ fr

on U ∩ H extends as a real-analytic function to U. If we replace F by another
representative F1 ∈ H

b
r (U1) of the same element ofWω

r (I), then F1 and F have
the same restriction to U2 ∩ H for a connected neighborhood U2 ⊂ U ∩ U1 of I
in P1

C
. Since U2 is connected, the functions A and A1 extend uniquely to U2, and

hence to I ⊂ U2. We thus obtain a well-defined function on I which has further a
holomorphic extension to some neighborhood U0 of I in P1

C
since it is real-analytic

on I. Hence it represents an element ofVω
2−r(I) that is uniquely determined by the

element f ∈ Wω
r (I) represented by F.

This defines ρprj
r :Wω

r (I)→Vω
2−r(I). We have compatibility with the restriction

maps associated to I1 ⊂ I, and hence obtain a morphism of sheaves.
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Let g =
(

a
c

b
d

)
∈ SL2(R). From relation (6.6) we see that the map Wω

r (I) →
Wω

r (g−1I) determined by F 7→ F|rg sends F/ fr to the real-analytic function(F|rg
fr

)
(z) =

(cz + d)−r F(gz)
fr(z)

= (cz + d)−r fr(gz)
fr(z)

(
F/ fr)(gz)

= (a − ic)r−2 z − i
z − g−1i

( z̄ − i
z̄ − g−1i

)1−r
(F/ fr)(gz) .

For z = t ∈ I, this equals ((F/ fr)|
prj

2−rg)(t) by (1.20). Thus, we obtain (6.10). �

Illustration. Let I be an interval in P1
R, and let U be an open neighborhood of

I in P1
C

. For representatives F of f ∈ Wω
r (I) a representative ϕ of the image

ρprj
r f ∈ Vω

2−r is obtained by a sequence of extensions and restrictions. See Figure 9.

F
ext
→ F/ fr

res
→ (F/ fr)|I = ϕ|I

ext
→ ϕ

"!
# 

??"!
# 

"!
# 

? ?

6 6
6
?

�
�

@
@

@
@

�
�

r-harmonic real-analytic real-analytic holomorphic on
on U ∩ H on U on I some neighborhood

F 9. ρprj
r as a sequence of extensions and restrictions.

Examples. (a) The restriction of F(z) = y1−r in (6.7) is

(ρprj
r F)(t) =

t − i
2i

( t − i
−2i

)1−r
= −

( t − i
−2i

)2−r
.

(b) For Mr,µ in (6.8) we use that 4y
|z+i|2 = 0 on P1

R and that 2F1(·, ·; ·; 0) = 1 to obtain

(6.11) (ρprj
r Mr,µ)(t) =

( t − i
t + i

)µ+1
.

6.3. Kernel function for the map from automorphic forms to boundary germ
cohomology.

Proposition 6.7. For r ∈ C let Kr be the function on (H × H) r (diagonal) given
by:

(6.12) Kr(z; τ) :=
2i

z − τ

( z̄ − τ
z̄ − z

)r−1
.

For each z ∈ H the function Kr(z; ·) is holomorphic on Hr{z}, and for each τ ∈ H
the function Kr(·; τ) is r-harmonic on Hr {τ} and represent an element ofWω

r (P1
R)

with restriction

(6.13)
(
ρprj

r Kr(·; τ)
)
(t) =

(τ − t
i − t

)r−2
.
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For each g ∈ SL2(R) it satisfies

(6.14) Kr(·; ·) |rg ⊗ |2−rg = Kr .

Remark. In (6.14) we use Kr(·; ·)|rg ⊗ |2−rg(z, τ) = (cz + d)−r (cτ + d)r−2 Kr(gz; gτ)
for g =

(
a
c

b
d

)
.

Proof. The shadow operator, defined in (1.28), gives

(6.15) (ξrKr(·; τ)
)
(z) = (r̄ − 1)

(z − τ̄
2i

)r̄−2
.

The result is holomorphic in z, hence z 7→ Kr(z; τ) is r-harmonic.
The quotient

(6.16) Kr(z; τ)/ fr(z) =
i − z
τ − z

(τ − z̄
i − z̄

)r−1
.

extends real-analytically in z across P1
R, to Uτ = P

1
C
r ({τ} ∪ p), where p is a path

in H− from −i to τ̄. So Kr(·; τ) ∈ Hb
r (Uτ) represents an analytic boundary germ on

P1
R. On P1

R the values of z and z̄ coincide, and we find the restriction in (6.13).
For the equivariance in (6.14) we check by a computation similar to the compu-

tation in the proof of Lemma 6.5 that

(cz + d)−r (cτ + d)r−2 Kr(gz; gτ) = Kr(z; τ) . �

Remark. The restriction ρprj
r Kr(·; τ) in (6.13) gives a function in prj2−rD

ω
2−r. Since

it is convenient to work withDω
2−r itself, we introduce the following operator:

Definition 6.8. We set

(6.17) ρr := prj−1
2−r ρ

prj
r

So (ρr f )(t) = (i − t)r−2 (ρprj
r f )(t), and we find

(6.18)
(
ρrKr(·; τ)

)
(t) = (τ − t)r−2 .

This shows that the kernel Kr(·; ·) is analogous to the kernel function (z, t) 7→
(z − t)r−2 in the Eichler integral. For fixed τ ∈ H the representative

z 7→ Kr(z; τ)

of an element ofWω
r (P1

R) is sent by the restriction map to the representative

t 7→ (z − t)r−2

of an element ofDω
2−r.

Definition 6.9. Let F ∈ Ar(Γ, v). We put for z0 ∈ H and γ ∈ Γ:

(6.19) cz0
F,γ(z) :=

∫ z0

γ−1z0

Kr(z; τ) F(τ) dτ .

Proposition 6.10. Let r ∈ C, z0 ∈ H, and F ∈ Ar(Γ, v).
i) The map γ 7→ cz0

F,γ defines a cocycle cz0
F ∈ Z1(Γ;Wω

r (P1
R)

)
.

ii) The cohomology class qωr F :=
[
cz0

F
]

in H1(Γ;Wω
v,r(P

1
R)

)
does not depend

on the base point z0 ∈ H.
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iii) With the natural map H1(Γ;Dω
v,2−r) → H1(Γ;Vω

2−r(P
1
R)

)
corresponding to

prj2−r : Dω
v,2−r →V

ω
v,2−r, the following diagram commutes:

(6.20)

Ar(Γ, v)
rωr //

qωr
++WWWWWWWWWWWWWWWWWWWWWWWW H1(Γ;Dω

v,2−r)
prj2−r // H1(Γ;Vω

v,2−r(P
1
R)

)

H1(Γ;Wω
v,r(P

1
R)

)ρ
prj
r

OO

Proof. Proposition 6.7 shows that the differential form Kr(z; τ) F(τ) dτ has prop-
erties analogous to those of ωr(F; t, τ) in §2.1. The proof of Parts i) and ii) goes
along the same lines as the proof of Proposition 2.4. For Part iii) use (6.13). �

Thus, we see that the map rωr to cohomology in Theorem A is connected to
the map qωr to boundary germ cohomology by the restriction map ρprjr. However,
in Theorem A the basic module is Dω

v,2−r and not the larger module Vω
2−r(P

1
R). We

need to study the boundary germs more closely, in order to identify insideWω
v,r(P

1
R)

a smaller module that can play the role ofDω
v,2−r.

6.4. Local study of the sheaf of analytic boundary germs.

6.4.1. Positive integral weights. At many places in this section positive integral
weights require separate treatment. A reader wishing to avoid these complications
may want to concentrate on the general case of weights in C r Z≥1.

The next definition will turn out to be relevant for weights in Z≥1 only.

Definition 6.11. For U open in P1
C

let

(6.21)
Hh

r (U) :=
{
F ∈ O(U ∩ H) ∩Hb

r (U) :

F has a holomorphic extension to U
}
.

Lemma 6.12. Let r ∈ Z≥1. For open sets U ⊂ P1
R such that U ∩P1

R , ∅ and −i < U
the restriction to U ∩H of F ∈ O(U) is inHh

r (U) if one of the following conditions
is satisfied:

a) U ⊂ C,
b) ∞ ∈ U and F has at∞ a zero of order at least r.

Proof. F is holomorphic on U ∩ H, hence r-harmonic on U ∩ H. For z ∈ U ∩ H:

F(z)/ fr(z) =
1
2i

F(z) (z − i) (z̄ − i)1−r (z̄ − z)r−1(6.22)

=
1
2i

(
zrF(z)

)
(1 − i/z) (1 − i/z̄)1−r (1/2 − 1/z̄)r−1 .(6.23)

Equality (6.22) shows that F/ fr is real-analytic on Ur{∞,−i} = Ur{∞}. If∞ ∈ U
then (6.23) shows that it is also real-analytic on some neighborhood of∞. �
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6.4.2. Local structure. We return to the sheavesVω
2−r andWω

r , in Definitions 6.1
and 6.5.

The sections of Vω
r−2 are holomorphic on neighborhoods of open sets I ⊂ P1

R,
and are locally at x ∈ R given by a power series expansion in z − x converging
on some open disk with center x. At ∞ we have a power series in z−1. The real-
analytic functions A = F/ fr corresponding to representatives of sections of Wω

r
are also given by a power series near x ∈ I, now in two variables, z − x and z̄ − x,
which also converges on a disk around x. At ∞ we have a power series expansion
in 1/z and 1/z̄.

With the operators |rg for g ∈ SL2(R) we can construct isomorphisms between
the stalks ofWω

r . So for a local study it suffices to work with a disk around 0. A
problem is that the points i and −i play a special role in the function fr. Hence it is
better not to use arbitrary elements of SL2(R) to transport points of P1

R to 0, but to
use k(ϑ) =

(
cosϑ
− sinϑ

sinϑ
cosϑ

)
∈ SO(2).

We denote disks around 0 by

(6.24) Dp =
{
z ∈ C : |z| < p

}
,

where we take p ∈ (0, 1) to have ±i < Dp. All points of P1
R are uniquely of the

form k(ϑ) 0 = tanϑ with ϑ ∈ R mod πZ. All k Dp ⊂ P
1
C

with k ∈ SO(2) do not
contain ±i; in general they are Euclidean disks in C. The sets k Dp are invariant
under complex conjugation.

Proposition 6.13. Suppose that the set U ⊂ P1
C

is of the form U = kDp with
k ∈ SO(2), 0 < p < 1.

i) Restriction. Let r ∈ C. If F ∈ Hb
r (U) then the restriction ρprj

r F extends as
a holomorphic function on U.

ii) a) If r ∈ C r Z≥1 thenHh
r (U) = {0}.

b) If r = 1, thenHb
1 (U) = Hh

1 (U).
c) If r ∈ Z≥1, thenHh

r (U) ⊂ Hb
r (U).

iii) a) If r ∈ C r Z≥2, then the restriction map ρprj
r : Hb

r (U) → O(U) is
bijective.

b) If r ∈ Z≥2 then the following sequence is exact:

0→ Hh
r (U)→ Hb

r (U)
ρ

prj
r
→ prj2−rD

pol
2−r → 0 ,

where the last space has to be interpreted as the space of functions on
U that extend to P1

C
r {i} as elements of the projective model ofDpol

2−r.
iv) Shadow operator. If F ∈ Hb

r (U), then the holomorphic function ξrF ∈
O(U ∩ H), defined in (1.28), extends holomorphically to U and satisfies

(6.25) (ξrF)(z) = (r̄ − 1)
(z + i

2i

)r̄−2
ρprj

r F(z̄) (z ∈ U ∩ H) .

Remarks. (a) Part i) shows that for small disks U the restriction of an element of
Hb

r (U) is represented by a function defined on the whole disk U, not just on some
unspecified neighborhood of U ∩ P1

R.
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(b) The shadow operator and the restriction morphism were defined in different
ways. Part iv) shows that they are related.

Proof. We start with proving the statements for U = Dp, and will at the end derive
the general case.

Part i), r ∈ CrZ≥1. First we consider the case when r ∈ CrZ≥1. We’ll show that
for any F ∈ Hb

r (Dp) ⊂ Hr(Dp ∩ H) (a representative of) ρprj
r F is holomorphically

continuable to Dp.

We note that we have F(z) = y1−r B(z) where

B(z) =
2i

z − i

( z̄ − i
−2i

)r−1 F(z)
fr(z)

.

Since F ∈ Hb
r (Dp), B is real-analytic on Dp and there are coefficients bn,m such

that

(6.26) B(z) =
∑

n,m≥0

bn,mznz̄m

converges absolutely on a disk Dp1 where 0 < p1 ≤ p. We define

b(z) := 2iyr∂z̄
(
y1−rB(z)

)
= 2i y Bz̄(z) + (r − 1) B(z) on Dp .

The condition of r-harmonicity on F is equivalent to the antiholomorphicity of b.
On Dp1 we have, by (6.26), the expansion

(6.27)

b(z) =
∑
m≥0

(r − 1 − m) b0,m z̄m

+
∑

m≥0, n≥1

(
(m + 1) bn−1,m+1 + (r − 1 − m) bn,m

)
znz̄m .

The antiholomorphy implies that for each n ≥ 1 the coefficient of znz̄m has to
vanish. If r < Z≥1 this gives the relation

(6.28) bn,m =
(1 − r)m

m!
bn+m,0

(with the Pochhammer symbol (a)m =
∏m−1

j=0 (a + j)), and

(6.29) b(z) = −
∑
m≥0

(1 − r)m+1

m!
bm,0 z̄m (z ∈ Dp1) .

This is the power series of an antiholomorphic function on Dp, hence it converges
absolutely on Dp.

Now, if φ is a representative of ρprj
r F, then, for t ∈ (−p, p),

ϕ(t) = −
( t − i
−2i

)2−r
B(t) = −

( t − i
−2i

)2−r ∑
n,m≥0

(1 − r)m

m!
bn+m,0 tn+m

= −
( t − i
−2i

)2−r ∑
`≥0

(2 − r)`
`!

b`,0t` .(6.30)
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Here we use the well-known formula
∑`

m=0
(1−r)m

m! =
(2−r)`
`! . A comparison of the

absolutely convergent series (6.29) and (6.30) shows that (6.30) also converges
absolutely on Dp. This implies that the restriction gives a mapHb

r (Dp)→ O(Dp).

Part i), r ∈ Z≥1. Secondly we show that in the case r ∈ Z≥1 the same conclusion
holds. In this case (6.28) is valid for m ≤ r − 1. For m ≥ r we get successively
bn,m = 0. Since the corresponding Pochhammer symbols vanish, expansion (6.29)
stays valid. We get the same estimate for bn+m,0 and arrive at

(6.31) ϕ(t) = −(
t − i
−2i

)2−r


∑r−2
`=0(1 − r)` (`!)−1 b`,0 t` if r ≥ 2 ,∑∞
n=0 bn,0 (n!)−1 tn if r = 1 ,

on Dp. This completes the proof of Part i) for U = Dp.

Part ii) a) and c). Let F ∈ O(U), and suppose that its restriction to U ∩ H is in
Hr(U), then

F(z)/ fr(z) =
z − i
2i

( z̄ − i
−2i

)
F(z) yr−1 .

If r ∈ C r Z≥1, then the presence of the factor y1−r shows that this can be real-
analytic near 0 only if F = 0. This implies Part a). If r ∈ Z≥2, all factors are
real-analytic. This implies Part c).

Part ii) b). If r = 1, all bn,m with m ≥ 1 vanish. Hence B(z) and F(z) = y1−1 B(z)
are holomorphic. This gives Part ii)b).

Part iii) a), surjectivity. In the case when r ∈ C r Z≥2, take ϕ ∈ O(Dp), which is
represented by an absolutely convergent power series

(6.32) ϕ(t) =
∑
`≥0

a` t` .

Hence a` = O(c−`) for all c ∈ (0, p). We put

(6.33) bn,m =
(1 − r)m (n + m)!

m! (2 − r)n+m
an+m ,

and define B by (6.26) with these coefficients bn,m. The factor (1−r)m (n+m)!
m! (2−r)n+m

has
polynomial growth in m and n. We arrive at absolute convergence of the power
series (6.26) on |z| < c for all c < p. Hence B is real-analytic on Dp. The structure
of the bn,m shows that b(z) = 2i yBz̄+(r−1) B is antiholomorphic, hence F := y1−r B

on Dp ∩ H is in Hb
r (Dp) and ρprj

r F(t) = −
(

t−i
−2i

)r−2
ϕ(t). This shows the surjectivity

if r < Z≥2.

Part iii) b), surjectivity. In the case of r ∈ Z≥2, Equation (6.31) shows that the
restriction map has the projective model of Dpol

2−r as its image, since we can freely
choose the b`,0 with ` ≤ r − 2. This gives the surjectivity in the exact sequence in
Part iii)b).

Part iii) a),b) injectivity. We suppose that ρprj
r F = 0 for F ∈ Hb

r (Dp). Then ϕ = 0,
which by (6.30) implies F = 0 if r ∈ C r Z≥2. Thus we have the injectivity in
Part iii)a), which completes the proof of iii)a).
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For r ∈ Z≥2 we have b`,0 = 0 for ` ≤ r − 2. So

B(z) =
∑
`≥r−1

b`,0 z`
r−1∑
m=0

(1 − r)m

m!
(z̄/z)m =

∑
`≥r−1

b`,0z`+1+1−r(2iy)r−1 .

So the kernel consists of the functions F on Dp ∩ H with expansion

(2i)r−1
∑
`≥0

b`+r−1,0 z` ,

which are just the restrictions to U ∩ H of the holomorphic functions on Dp. This
completes also the proof of Part iii)b).

Part iv). We find by a direct computation for z ∈ U ∩ H

(ξrF)(z) =
4

z̄ + i

(z + i
2i

)r̄−1 (1 − r̄
2i

z̄ + i
z + i

A(z) + y Az̄(z)
)
.

This shows that ξrF extends as a real-analytic function to U. We know that it is
holomorphic on U ∩ H, hence on U. It is determined by its values for x ∈ U ∩ R:

(ξrF)(x) = −2i
( x + i

2i

)r̄−2 (1 − r̄
2i

A(x) + 0
)

= (r̄ − 1)
(z + i

2i

)r̄−2
A(x) .

On U ∩ R we have A = ρprj
r F, hence

(ξrF)(x) = (r̄ − 1)
( x + i

2i

)r̄−2
(ρprj

r F)(x) ,

which extends to an equality of holomorphic functions on U, which is (6.25).

Shifted disks. To prove the proposition for kDp with general k = k(ϑ) (ϑ ∈(
−π2 ,

π
2
]
) we note that the bijective operator |prj

2−rk : O(Dp) → O(k−1Dp) preserves
holomorphy. This together with the bijective operator |rk : Hb

r (Dp)→ Hb
r (k−1Dp),

and Relation (6.10) imply Parts i), ii) and iii).
To prove (iv) for general kDp, we first apply (iv) to F|rk ∈ Hb

r (Dp) to get, for
z ∈ Dp ∩ C:

(6.34) (ξr(F|rk))(z) = (r̄ − 1)
(z + i

2i

)r̄−2
ρprj

r (F|rk)(z̄).
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Upon an application of (1.30) and (6.10), this becomes, with k =
(

a
c
−c

a

)
:

(6.35)

(ξrF)(kz) = (cz + a)2−r̄ (r̄ − 1)
(z + i

2i

)r̄−2
ρprj

r (F|rk)(z̄)

= (cz + a)2−r̄ (r̄ − 1)
(z + i

2i

)r̄−2
(ρprj

r F)|prj

2−rk (z)

= (cz + a)2−r̄ (r̄ − 1)
(z + i

2i

)r̄−2
(a + ic)r̄−2

·
( z̄ − i
z̄ − k−1i

)2−r
(ρprj

r F)(kz̄)

= (r̄ − 1)
(kz + i

2i

)r̄−2
(ρprj

r F)(kz̄) .

We used that k−1i = i, and that (a+ic) (z+i) = (cz+a)(kz+i). Since the conjugate of
a holomorphic function on H− is holomorphic on H, this proves the statement. �

Proposition 6.13 gives a rather precise description of the local relation between
the sheaves Vω

2−r and Wω
r . The next theorem ties this together to a global state-

ment, which will turn out to be crucial in Sections 8 and 10.

Theorem 6.14. i) If r ∈ Cr Z≥2 the morphism of sheaves ρprj
r :Wω

r →V
ω
2−r

is an isomorphism.
ii) For r ∈ Z≥1 we define the subsheaf hWω

r ofWω
r by

(6.36) hWω
r (I) := lim

−→
Hh

r (U) ,

where U runs over the open neighborhoods in P1
C

of open sets I in P1
R.

a) If r = 1, hWω
1 =W

ω
1 .

b) If r ∈ Z≥2, the following sequence is exact:

(6.37) 0→ hWω
r →W

ω
r

ρr
→ D

pol
2−r → 0 .

The spaceDpol
2−r is interpreted as a constant sheaf on P1

R.

Proof. Proposition 6.13 gives the corresponding statements on sets U near all
points of P1

R, giving all statements in the theorem on the level of stalks. �

6.5. Related work. In [15] the analytic boundary germs form the essential tool
to prove the surjectivity of the map from Maass forms of weight zero to coho-
mology considered there. This gave the motivation to study these boundary germs
for themselves, in the paper [13]. In the introduction of [13] (“Further remarks”,
p. 111) it is indicated that the boundary germs have been studied in the much wider
context of general symmetric spaces.

One finds the isomorphism analogous to the isomorphism in Part i) of Theo-
rem 6.14 in [13, §5.2]. There the isomorphism is approached in two ways: by
power series expansions and by integrals. In the proof of Proposition 6.13 we have
used only power series.
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7. P  

The subject of this section may seem slightly outside the line of thought of the
previous sections. It has its interest on itself, and it provides more examples of r-
harmonic function that do or do not represent analytic boundary germs. The main
reason to discuss it is in the case r ∈ Z≥2. Though Theorem 6.14 leads directly to
spaces of analytic boundary germs isomorphic to the spacesDω

2−r for r ∈ C r Z≥2,
the situation is less clear for r ∈ Z≥2. With polar harmonic functions we will arrive
in §8.1 at a satisfactory definition for all r ∈ C.

7.1. Polar expansion. The map z 7→ w(z) := z−i
z+i with inverse w 7→ z(w) := i 1+w

1−w
gives a bijection between the upper half-plane H and the unit disk in C. We write a
continuous function F on H in the form F(z) =

(
2i

z+i

)r
P
(
w(z)

)
. This has the advan-

tage that the transformation F 7→ F|r
(

cosϑ
− sinϑ

sinϑ
cosϑ

)
with −π2 < ϑ <

π
2 corresponds to

sending P to the function w 7→ eirϑ P
(
e2iϑw

)
.

We put

(7.1)
F(µ; z) :=

( 2i
z + i

)r 1
π

∫ π/2

−π/2
e−2iµϑP(e2iϑw) dϑ

=
1
π

∫ π/2

−π/2
e−i(2µ+r)ϑ

(
F|r

(
cosϑ
− sinϑ

sinϑ
cosϑ

))
(z) dϑ (µ ∈ Z) .

In the first expression we see a coefficient of the Fourier expansion of the function
ϑ 7→ P(e2iϑw). Thus we have a convergent representation

(7.2) F(z) =
∑
µ∈Z

F(µ; z) ,

the polar expansion. If we do not work on the whole of H, but on an annulus
c1 <

∣∣∣∣ z−i
z+i

∣∣∣∣ < c2, we can proceed similarly.
We use this in particular for r-harmonic functions F. From the second expres-

sion in (7.1) we see that F(µ; ·) is r-harmonic, since the operators |rg with g ∈
SL2(R) preserve r-harmonicity and we can exchange the order of differentiation
and integration. The terms F(µ; ·) can be written in the form F(µ, z) =

(
2i/(z+ i)

)r(
w/w̄

)µ pµ
(
|w|2

)
, for some function pµ on [0,∞). With some computations one can

obtain an ordinary differential equation the pµ, which turns out to be related to the
hypergeometric differential equation, with a two-dimensional solution space. This
leads to the following r-harmonic functions, all depending holomorphically on r in
a large subset of C.

Pr,µ(z) =
( 2i
z + i

)r
wµ =

( 2i
z + i

)r (z − i
z + i

)µ
, µ ∈ Z ,(7.3)

Mr,µ(z) =

 fr(z)
(

z−i
z+i

)µ+1
2F1

(
1 + µ, 1 − r; 2 − r; 4y

|z+i|2

)
if µ ≥ 0 ,

fr(z) z−i
z+i

(
z̄+i
z̄−i

)−µ
2F1

(
1 − µ − r, 1; 2 − r; 4y

|z+i|2

)
if µ ≤ 0 ,

(7.4)

Hr,µ(z) = fr(z)
z − i
z + i

( z̄ + i
z̄ − i

)−µ
2F1

(
1 − µ − r, 1; 1 − µ;

∣∣∣∣z − i
z + i

∣∣∣∣2), µ ≤ −1.(7.5)
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The function Pr,µ is holomorphic, hence r-harmonic. Checking the r-harmonicity
of Mr,µ and Hr,µ requires work, for which there are several approaches:

a) Carry out the computation for the differential equation for pµ, transform it
to a hypergeometric differential equation, and check that the hypergeomet-
ric functions in (7.4) and (7.5) are solutions.

b) Check by a direct computation (for instance with formula manipulation
software like Mathematica) that the shadow operator sends the functions
to the holomorphic functions indicated in Table 2, thus establishing r-
harmonicity.

c) Transform the problem to the universal covering group of SL2(R), and use
the remarks in §A.1.5 in the Appendix.

f = Pr,µ Mr,µ Hr,µ

f ∈ Hr(H) (µ ≥ 0) Hr(H r {i})

Hr(H r {i}) (µ < 0) Hr(H) (µ ≤ −1)

ξr f 0 (r̄ − 1)
(

2i
z+i

)2−r̄( z−i
z+i

)−µ−1
−µ

(
2i

z+i

)2−r̄( z−i
z+i

)−µ−1

f reprs. elt. if r ∈ Z≥1 if r ∈ C r Z≥2 or if

ofWω
r (P1

R) r ∈ Z≥2 and 1 − r ≤ µ ≤ −1

ρprj
r f 0 (r ∈ Z≥1)

(
t−i
t+i

)µ+1

T 2. Properties of polar r-harmonic functions.

Most of these facts follow directly from the formulas, and the properties of the
hypergeometric function. We note the following:

• The factor 4y
|z+i|2 is real-analytic on P1

C
r {−i} with zero set P1

R. It has values
between 0 and 1 on H, reaching the value 1 only at z = i. Since the hyper-
geometric functions are holomorphic on C r [1,∞), the definition shows
that Mr,µ ∈ H

b
r
(
P1
C
r {i,−i}

)
. To investigate the behavior of Mr,µ at i we

note that its shadow has a singularity at z = i if µ ≥ 1, so Mr,µ cannot be
real-analytic at i for µ ≥ 0.
• The functions Pr,µ and Mr,µ are linearly independent for r ∈ C r Z≥1.
• The Kummer relation [43, §2.9, (33)] implies

(7.6) Hr,µ =
µ

1 − r
Mr,µ +

|µ|!
(1 − r)|µ|

Pr,µ (µ ≤ −1) .

From the singularity of Pr,µ at i and the fact that Hr,µ ∈ Hr(H) we see that
Mr,µ has a singularity at i for µ ≤ −1 as well.
• If r0 ∈ Z≥2 the meromorphic function r 7→ Mr,µ has in general a first

order singularity at r = r0 with a non-zero multiple of Pr0,µ as the residue.
However, if 1 − r0 ≤ µ ≤ −1 it turns out to be holomorphic at r = r0. So
under these conditions Mr0,µ is well defined.
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Proposition 7.1. Hr(H) ∩ Wω
r (P1

R) = {0} for r ∈ C r Z≥1.

Proof. Let F ∈ Hr(H) ∩ Wω
r (P1

R). With (6.6) we see that

F(µ; z) =
∫ π/2

−π/2
A(ϑ, z) dϑ ,

with a function A that is real-analytic in (ϑ, z) with ϑ in a neighborhood of [−π2 ,
π
2 ]

in C, and z in a neighborhood of P1
R in P1

C
. So all terms F(µ; z) in the polar expan-

sion of F also represent elements ofWω
r (P1

R). Table 2 shows that F(µ; ·) should be
a multiple of Pr,µ for µ ≥ 0 and a multiple of Hr,µ if µ ≤ −1.

On the other hand, with the second line in (7.1) we see that F(µ; ·) should repre-
sent an element ofWω

r (P1
R). Again consulting Table 2 we conclude for r ∈ CrZ≥1

that F(µ; ·) is a multiple of Mr,µ. Hence all terms in the polar expansion of F vanish,
and F = 0. �

7.2. Polar expansion of the kernel function. The kernel function Kr(z; τ) = 2i
z−τ(

z̄−τ
z̄−z

)r−2
in §6.3 gives, for a fixed τ ∈ H, rise to two polar expansions in z, on the

disk
∣∣∣∣ z−i
z+i

∣∣∣∣ < ∣∣∣∣ τ−i
τ+i

∣∣∣∣ and on the annulus 1 >
∣∣∣∣ z−i
z+i

∣∣∣∣ > ∣∣∣∣ τ−i
τ+i

∣∣∣∣.
Proposition 7.2. i) Consider z, τ satisfying

∣∣∣ z−i
z+i

∣∣∣ > ∣∣∣ τ−i
τ+i

∣∣∣.
a) If r ∈ C r Z≥2, then

(7.7) Kr(z; τ) =
∑
µ≤−1

(2 − r)−µ−1

(−µ − 1)!
P2−r,−µ−1(τ) Mr,µ(z) .

b) If r ∈ Z≥2, then

(7.8) Kr(z; τ) =
−1∑

µ=1−r

(−1)−µ−1
(

r − 2
−µ − 1

)
P2−r,−µ−1(τ) Mr,µ(z) + pr(z; τ) ,

with

(7.9) pr(z; τ) :=
2i

z − τ

(τ − i
z − i

)r−1
.

ii) Consider z, τ satisfying
∣∣∣ z−i
z+i

∣∣∣ < ∣∣∣ τ−i
τ+i

∣∣∣. For all r ∈ C:

(7.10) Kr(z; τ) = −
∑
µ≤−1

(1 − r)−µ
(−µ)!

P2−r,−µ−1(τ) Hr,µ(z) −
∑
µ≥0

P2−r,−µ−1(τ) Pr,µ(z) .

iii) For r ∈ Z≥2:

(7.11)

y1−r =

1∑
µ=1−r

(1 − r)−µ
(−µ)!

Hr,µ(z) +
( 2i
z + i

)r−1

= −

−1∑
µ=1−r

(2 − r)−µ−1

(−µ − 1)!
Mr,µ(z) +

( 2i
z − i

)r−1
.
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Proof. We use the coordinates w = z−i
z+i and ξ = τ−i

τ+i , and put

X+ :=
{
(z, τ) ∈ H2 : |ξ| < |w| < 1

}
, X− :=

{
(z, τ) ∈ H2 : |w| < |ξ| < 1

}
.

General expansion. Most of the proof of Parts i) and ii) can be given by the same
reasoning. The function Kr(·; ·) has polar expansions on both regions, that have the
following form on X±:

Kr(z; τ) =
∑
µ∈Z

A±µ (r, τ) F±µ (r, z) ,

where the fact that Kr(·; τ) on X+ represents an element of Wω
r (P1

R) implies that
we can take F+µ = Mr,µ and where the fact that Kr(·; τ) has no singularity on X−
implies that we can take F−µ = Hr,µ for µ ≤ −1 and F−µ = Pr,µ for µ ≥ 0. The
integrals in (7.1) with F(z) = Kr(z; τ) for the terms in the polar expansion show
that each function r 7→ A±µ (r, τ)F±µ (r, z) is holomorphic in r ∈ C.

The invariance relation

(7.12) Kr(·; ·)|rg ⊗ |2−rg = Kr for each g ∈ SL2(R)

in (6.14), applied with g = k(ϑ) for small ϑ implies that A±µ (r, τ) transforms under
|rk(ϑ) by e−i(r+2µ)ϑ, hence it has the form A±µ (r, τ) = d±µ (r) P2−r,−µ−2(τ), for some
quantity d±µ (r).

For a given z ∈ H the function Kr(z; ·) has only a singularity in the upper half-
plane at τ = z. Since P2−r,−µ−1(τ) has a singularity at τ = i if −µ − 1 ≤ 0, we have
d+µ (r) = 0 for µ ≥ 0. Thus, we have the following:

(7.13)

on X+: Kr(z; τ) =
∑
µ≤−1

d+µ (r) P2−r,−µ−1(τ) Mr,µ(z) ,

on X−: Kr(z; τ) =
∑
µ≤−1

d−µ (r) P2−r,−µ−1(τ) Hr,µ(z)

+
∑
µ≥0

d−µ (r) P2−r,−µ−1(τ) Pr,µ(z) .

To both sides of both equations we apply the shadow operator ξr. With Table 2 and
the fact that Pr,µ is holomorphic, we get

(r̄ − 1)
(z − τ̄

2i

)r̄−2

=
∑
µ≤−1

P2−r,−µ−1(τ)
( 2i
z + i

)2−r̄ (z − i
z + i

)−µ−1
·

d+µ (r) (r̄ − 1) on X+ ,
d−µ (r) (−µ) on X− .
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We consider this for (z, τ) ∈ X+ with ξ near 0, and for (z, τ) ∈ X− with w near 0.
Then we can rewrite the left hand side of the equation such that the main factor is

(r̄ − 1) (1 − wξ̄)r̄−2 = (r̄ − 1)
∑
a≥0

(2 − r̄)a

a!
wa ξ̄a

= (r̄ − 1)
∑
µ≤−1

(2 − r̄)−µ−1

(−µ − 1)!

( τ̄ + i
τ̄ − i

)−µ−1 (z − i
z + i

)−µ−1
.

So for µ ≤ −1 we have

(7.14) d+µ (r) =
(2 − r)−µ−1

(−µ − 1)!
, d−µ (r) = −

(1 − r)−µ
(−µ)!

.

Part i)a) is now clear.

Part i)b). Let r ∈ Z≥2. The terms in the expansion should be holomorphic in r. For
1 − r0 ≤ µ ≤ −1 with r0 ∈ Z≥2, the function Mr,µ has a holomorphic extension to
r = r0 (remarks to Table 2). This gives the sum in (7.8). With (7.6) the terms with
µ ≤ −r0 can be written as

(1 − r) (1 − r)−µ−1

µ (−µ − 1)!
P2−r,−µ−1(τ) Hr,µ(z) + P2−r,−µ−1(τ) Pr,µ(z) .

The first of these terms has limit 0 as r → r0. The second term leads to a series
with pr(z; τ) as its sum.

Part ii). On X− we have

Kr(z; τ) = −
∑
µ≤0

(1 − r)−µ
(−µ)!

P2−r,−µ−1(τ) Hr,µ(z) +
∑
µ≥0

d−µ (r) P2−r,−µ−1(τ) Pr,µ(z) ,

with still unknown d−µ (r) for µ ≥ 0. In the coordinates w and ξ this becomes:

(7.15)

(1 − w)r (1 − ξ)2−r (1 − w̄ξ)r−1

(w − ξ) (1 − |w|2)r−1

= −
∑
µ≤−1

(1 − r)−µ
(−µ)!

(1 − ξ)2−r ξ−µ−1 Hr,µ(z)

+
∑
µ≥0

d−µ (r) (1 − ξ)2−r ξ−µ−1 (1 − w)r wµ .

We divide by (1 − ξ)2−r. The remaining quantity on the left has the following
expansion:

(1 − w)r

(1 − |w|2)r−1

∑
a,b≥0

(−1)waξ−a−1
(
r − 1

b

)
(−1)bw̄bξb .

Let n ≥ 1. The coefficient of ξ−n in this expansion is

−
∑
b≥0

wb+n−1
(
r − 1

b

)
(−w̄)b = −wn−1 (1 − |w|2)r−1 .

Hence d−1
µ (r) = −1 for µ ≥ 0. This gives Part ii).
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Part iii). Let r ∈ Z≥2. The equality (7.15) divided by (1 − ξ)2−r becomes

(1 − w)r (1 − w̄ξ)r−1

(w − ξ) (1 − |w|2)r−1 = −

−1∑
µ=1−r

(1 − r)−µ
(−µ)!

ξ−µ−1 Hr,µ(z) − (1 − w)rξ−1 (1 − w/ξ)−1 .

Now we let ξ tend to 1. We obtain:

−(1 − w)r−1 (1 − w̄)r−1 (1 − |w|2)1−r = −

−1∑
µ=1−r

(1 − r)−µ
(−µ)!

Hr,µ(z) − (1 − w)r−1 .

In terms of the coordinate z this is

−y1−r = −

−1∑
µ=1−r

(1 − r)−µ
(−µ)!

Hr,µ(z) −
( 2i
z + i

)r−1
,

which gives the first expression for y1−r in Part iii). We use (7.6) to obtain the
second expression. �

7.3. Related work. The polar expansion generalizes the power series expansion
in w = z−i

z+i for holomorphic functions on the upper half-plane. When dealing with
r-harmonic functions a straightforward generalization leads to the functions in Ta-
ble 2. Proposition 7.2 is analogous to [13, Proposition 3.3].

Part III. Cohomology with values in analytic boundary germs

We turn to the proof of the surjectivity in Theorem A and the proof of Theo-
rem D, by relating cohomology with values in Dω

v,2−r to cohomology in modules
Eωv,r ⊂ W

ω
v,r(P

1
R). Section 8 gives the definition of these modules.

We use a description of cohomology that turned out to be useful in the analogous
result for Maass forms, in [15]. This description of cohomology is based on a
tesselation of the upper half-plane. See Section 9.

Theorem 10.18 describes the relation between holomorphic automorphic form
and boundary germ cohomology. This theorem immediately implies the surjectiv-
ity in Theorem A. For the weights in Z≥2 work has to be done, in Section 11, to
prove Theorem D.

8. H      

This section serves to define the modules Eωv,r to take the place of the modules
Dω
v,2−r.

8.1. Definition of highest weight space. The cases r ∈ Z≥2, and r ∈ C r Z≥2 are
dealt with separately.
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8.1.1. Weight in C r Z≥2. Part i) of Theorem 6.14 points the way how to treat this
case. It states that ρprj

r :Wω
r (P1

R)→Vω
r (P1

R) is bijective. For ϕ ∈ Dω
2−r

(8.1) ρ−1
r ϕ = (ρprj

r )−1prj2−rϕ ∈ W
ω
r (P1

R) ,

where we use that (ρr f )(t) = (i−t)r−2 (ρprj
r f )(t). See (6.17). For ϕ ∈ Dω

2−r[ξ1, . . . , ξn]
we can proceed similarly to get ρ−1

r ϕ ∈ Wω
r [ξ1, . . . , ξn].

Definition 8.1. For r ∈ C r Z≥2 we define

(8.2) Eωr := ρ−1
r D

ω
2−r, Eω,exc

r [ξ1, . . . , ξn] := ρ−1
r D

ω,exc
2−r [ξ1, . . . , ξn]

for each finite set {ξ1, . . . , ξn} ⊂ P
1
R.

Weight 1. The case r = 1 is special. The restriction morphism is given by
(ρprj

1 F)(t) = 1
2i (t − i) F(t), and hence (ρ1F)(t) = i

2 F(t). This gives the following
equalities:

(8.3) Eω1 = D
ω
1 , E

ω,exc
1 [ξ1, . . . , ξn] = Dω,exc

1 [ξ1, . . . , ξn] .

Characterization with series. The projective model prj2−rD
ω
2−r consists of the holo-

morphic functions on some neighborhood of H− ∪ P1
R in C. So it consists of the

functions
t 7→

∑
µ≤0

cµ
( t − i
t + i

)µ
with coefficients that satisfy cµ = O

(
e−a|µ|) as |µ| → ∞, for some a > 0 depending

on the domain of the function. Table 2 in §7.1 gives
( t−i

t+i
)µ
= ρprj

r Mr,µ−1. Hence we
have for r ∈ C r Z≥2

(8.4) Eωr =

{ ∑
µ∈Z≤−1

cµ Mr,µ : cµ = O
(
e−a|µ|) for some a > 0

}
.

Highest weight spaces. We callDω
2−r and Eωr highest weight spaces. The use of this

terminology is explained in §A.2.1 in the Appendix.

8.1.2. Case r ∈ Z≥2. We note that representatives of elements of Dω
r are holo-

morphic functions on a neighborhood of H− ∪ P1
R in P1

C
that have at ∞ a zero

of order at least r, since (1.19) shows that the elements of Dω
r are of the form

t 7→ (i − t)−r · (holo. at∞). These functions represent also elements ofWω
r (P1

R).

Definition 8.2. For r ∈ Z≥2 we define:

(8.5)

Eωr := Dω
r +

−1∑
µ=1−r

C Mr,µ ,

Eω,exc
r [ξ1, . . . , ξn] := Dω,exc

r [ξ1, . . . , ξn] +
−1∑

µ=1−r

C Mr,µ ,

for finite sets {ξ1, . . . , ξn} ⊂ P
1
R.
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Remark. This defines Eωr as a subspace of Wω
r (P1

R), and Eω,exc
r [ξ1, . . . , ξn] as a

subspace ofWω
r

(
P1
R r {ξ1, . . . , ξn}

)
.

Comparison with weight 1. If we apply the formulas in (8.5) with r = 1, the sum
over µ is empty, and we get back (8.3).

Characterization with series. The elements of the projective model prj2−rD
ω
r are

the functions of the form h(t) =
∑
µ≤0 dµ

(
t−i
t+i

)µ
with dµ = O

(
e−a|µ|) for some a > 0.

In view of (1.19) and (7.3) f = prj−1
r h has an expansion of the form

(z − i)−r
∑
µ≤0

dµ
( t − i
t + i

)µ
=

∑
µ≤−r

cµ Pr,µ(z) ,

with the cµ satisfying the same estimate. This leads to

(8.6) Eωr =

{∑
µ≤−r

cµ Pr,µ(z) +
−1∑

µ=1−r

cµ Mr,µ : cµ = O
(
e−a|µ|) for some a > 0

}
,

which is similar to (8.4).
In the following result we use the subsheaf hWω

r , defined in (6.36). Its sections
are represented by holomorphic functions, contained in the kernel of the restriction
morphism ρr.

Proposition 8.3. Let r ∈ Z≥2.
i) Dω

r is a subspace of hWω
r (P1

R) invariant under the operators |rg with g ∈
SL2(R), and Dω,exc

r [ξ1, . . . , ξn]|rg = D
ω,exc
r [g−1ξ1 . . . , g

−1ξn] for all g ∈
SL2(R).

ii) Eωr is a subspace of Wω
r (P1

R) invariant under the operators |rg with g ∈

SL2(R), and Eω,exc
r [ξ1, . . . , ξn]|rg = E

ω,exc
r [g−1ξ1. . . . , g

−1ξn] for all g ∈
SL2(R).

iii) The following sequences are exact:

(8.7)
0→ Dω

r → E
ω
r

ρr
→ D

pol
2−r → 0 ,

0→ Dω,exc
r [ξ1, . . . , ξn]→ Eω,exc

r [ξ1, . . . , ξn]
ρr
→ D

pol
2−r → 0 .

Proof. For Part i) we use the definitions in §1.6, applied with r instead of 2 − r. In
particular, elements of Dω

r are represented by holomorphic functions with at ∞ a
zero of order at least r. In that way we see that all elements of Dω

r are sections in
hWω

r , and similarly forDω,exc
r [ξ1, . . . , ξn].

For Part ii) there remains to show that Mr,µ|rg ∈ E
ω
r . Relation (7.8) in Proposi-

tion 7.2 expresses Kr(·; τ) as a linear combination of the Mr,µ in Eωr and an explicit

kernel pr(·; τ). Since P2−r,−µ−1(τ) is essentially equal to
(
τ−i
τ+i

)−µ−1
, we can invert

the relation, and express each Mr,µ with 1 − r ≤ µ ≤ −1 as a linear combination
of Kr(·; τi) − pr(·; τi) for r − 1 elements τi ∈ H. The invariance relation (7.12)
implies that Kr(·; τi)|rg is a multiple of Kr(·; g−1τi), which is in Eωr by an applica-
tion of (7.8). The contribution of pr(·; τi) is in Dω

r , which is invariant under the
operators |rg.
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The exactness of the sequences in Part iii) follows directly from the fact that

ρr vanishes on Dω
r and the relations

(
ρrMr,µ

)
(t) = (i − t)r−2

(
t−i
t+i

)µ+1
, with (6.11)

and (8.1). �

8.2. General properties of highest weight spaces of analytic boundary germs.
In the previous subsection we have chosen spaces Eω,exc

r [ξ1, . . . , ξn] of boundary
germs for all finite subsets {ξ1, . . . , ξn} of P1

R, and the space Eωr , which we call
also Eω,exc

r []. The following proposition lists properties that these system have in
common for all r ∈ C. In Section 10 we shall work on the basis of these properties.

Proposition 8.4. The systems of spaces in Definitions 8.1 and 8.2 have the follow-
ing properties:

i) Eω,exc
r [ξ1, . . . , ξn] ⊂ Wω

r
(
P1
Rr{ξ1, . . . , ξn}

)
consists of boundary germs rep-

resented by functions inHb
r (U) where U is open in P1

C
such that U ∪H− is

a {ξ1, . . . , ξn}-excised neighborhood.
ii) a) If {ξ1, . . . , ξn} ⊂ {η1, . . . , ηm}, then

Eω,exc
r [ξ1, . . . , ξn] ⊂ Eω,exc

r [η1, . . . , ηm] .

b) If {ξ1, . . . , ξn} ∩ {η1, . . . , ηm} = ∅, then

Eω,exc
r [ξ1, . . . , ξn] ∩ Eω,exc

r [η1, . . . , ηm] = Eωr .

With the inclusion relation ii)a) we define

(8.8) Eω
∗,exc

r := lim
−→
Eω,exc

r [ξ1, . . . , ξn] ,

where {ξ1, . . . , ξn} runs over the finite subsets of P1
R.

iii) Eω,exc
r [ξ1, . . . , ξn]|rg = E

ω,exc
r [g−1ξ1, . . . , g

−1ξn] for each g ∈ SL2(R).
iv) The function z 7→

∫ z2

z1
Kr(z; τ) f (τ) dτ represents an element of Eωr for all

z1, z2 ∈ H and each holomorphic function f on H.
v) If F ∈ Hr(H) represents an element of Eωr , then F = 0.

vi) If F ∈ Hb
r (U) represents an element of Eω,exc

r [ξ1, . . . , ξn] then its shadow
ξrF ∈ O(U ∩ H) extends holomorphically to H.

vii) Let λ ∈ C∗. Suppose that f ∈ Eω,exc
r [∞] has a representative F that satis-

fies:
a) F ∈ Hr(U ∩ H) for some neighborhood U of P1

R in P1
C

,
b) the function z 7→ λ−1 F(z + 1) − F(z) on H ∩ U ∩ T−1U represents an

element of Eωr ,
then f = p + g with an element g ∈ Eωr and a λ-periodic element p ∈
E
ω,exc
r [∞].

Remarks. (a) In Property a) it is not always possible to choose the representa-
tive such that the set U such that it contains H−. Moreover, the property does
not state that all functions in Hb

r (U) with U as indicated represent elements of
E
ω,exc
r [ξ1, . . . , ξn].

(b) Condition a) in Part vii) is strong. In general representatives of an element of
E
ω,exc
r [∞] are r-harmonic only on an {∞}-excised neighborhood.
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Proof. We consider the various parts of the theorem, often separately for the gen-
eral case r ∈ C r Z≥2 and the special case r ∈ Z≥2.

a. Part i). Let r ∈ C r Z≥2. An element F ∈ Eω,exc
r [ξ1, . . . , ξn] is determined by

h = ρprj
r F in the projective model of Dω,exc

2−r [ξ1, . . . , ξn]. So h is holomorphic on a
{ξ1, . . . , ξn}-excised neighborhood U0. Each point ξ ∈ P1

R r {ξ1, . . . , ξn} is of the
form kξ · 0 with k ∈ SO(2). We choose p(ξ) ∈ (0, 1) such that kξ Dp(ξ) ⊂ U0. Then
Proposition 6.13 implies that F is in Hb

r (kξ Dp(ξ)) for all ξ ∈ P1
R r {ξ1, . . . , ξn}. So

F ∈ Hb
r (U) with

U :=
⋃

ξ∈P1
Rr{ξ1,··· ,ξn}

kξ Dp(ξ) .

We still have to show that the p(ξ) can be chosen such that H−∪U is a {ξ1, . . . , ξn}-
excised neighborhood.

We recall that near each of the points
ξ j a {ξ1, . . . , ξn}-excised neighborhood
looks like a full neighborhood of ξ j mi-
nus the sector between two geodesic
half-lines with end-point ξ j.

ξ j ξ j′

U0 U0 U0

U0

F 10

ξ j ξ j′
�����
��
��
��
���"!
# 

F 11

For ξ j ∈ R those geodesic half-lines
are parts of euclidean circles with their
center on R, or vertical euclidean lines.
(We can arrange {ξ1, . . . , ξn} ⊂ R by
conjugation.) This implies that there is
a small ε > 0 such that for all ξ ∈ R
with 0 < |ξ− ξ j| < ε the open euclidean
disk around ξ with radius |ξ−ξ j| is con-
tained in U0.

In this way we see that U is near ξ j a full neighborhood of ξ j minus the sectors
between two geodesics half-lines at ξ j in the upper and the lower half-plane. Then
H− ∪ U has near ξ j the structure of an excised neighborhood.

b. Part i) for r ∈ Z≥2. Elements of Dω,exc
r [ξ1, . . . , ξn] are already represented by

functions of the desired form. The functions Mr,µ are inHb
r
(
P1
C
r {i,−i}

)
.

c. Part ii). Immediate from the corresponding property ofDω,exc
p , with p ∈ {r, 2−r}.

d. Part iii). Immediate from Part i) of Proposition 1.14 and (6.10) if r < Z≥2, and
from Proposition 8.3, Part ii), if r ∈ Z≥2.

e. Part iv) for r < Z≥2. Integration over τ in a compact set in H preserves the
property that Kr(·; τ) represents an element ofWω

r (P1
R), and commutes with taking

the restriction. Applying ρr gives the integral
∫ z2

z1
(z − τ)r−2 F(τ) dτ, which has a

value inDω
2−r.

f. Part iv) for r ∈ Z≥2. Equation (7.8) in Proposition 7.2 expresses Kr(·; τ) as a
linear combination of the Mr,µ in Eωr and an explicit kernel pr(·; τ). Integration
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of the terms with Mr,µ gives a multiple of Mr,µ. The kernel pr(·; τ) is in Dω
r by

the description in Part i) of Proposition 7.2, and its elements stays there under
integration with respect to τ.

g. Part v) for r < Z≥1. See Proposition 7.1.

h. Part v) for r = 1. Let F ∈ H1(H) represent an element of Eω1 (P1
R). So ρ1F(z) =

z−i
2i F(z) is holomorphic on a neighborhood U of H− ∩ P1

R in P1
C

. Then F itself
is holomorphic on H ∩ U r {i}, hence F is holomorphic on H since it is already
real-analytic. Thus, F ∈ O(P1

C
) with a zero at∞, hence F = 0.

i. Part v) for r ∈ Z≥2. For r ∈ Z≥2, we consider F = F0 +
∑−1
µ=1−r cµ Mr,µ ∈ Hr(H)

with F0 representing an element ofDω
r and cµ ∈ C. Since the Mr,µ are r-harmonic

on H r {i} the function F0 is holomorphic on P1
C
r {i} with at ∞ a zero of order at

least r.
To investigate the singularity of F0 at i we use Kummer relation (7.6), which

relates Mr,µ, Hr,µ and Pr,µ. Since Hr,µ is r-harmonic on H, the singularity at i of∑−1
µ=1−r cµMr,µ is the same as that of

(8.9)

F1(z) =
−1∑

µ=1−r

(−µ − 1)!
(2 − r)−µ−1

cµ Pr,µ

=

−1∑
µ=1−r

(−µ − 1)!
(2 − r)−µ−1

cµ
( 2i
z + i

)r (z − i
z + i

)µ
.

This leads to a holomorphic function F0 + F1 on P1
C
r {−i}, with at z = −i a pole of

order at most r − 1. At ∞ the function F0 has a zero of order at least r. The same
holds for F1 by the factor (z + i)−r in (8.9). So the number of zeros is larger than
the number of poles, and we conclude that F0 + F1 = 0. However, F1 = −F0 has
to be in Dω

r , in particular, it has to be holomorphic at z = −i. Inspection of (8.9)
shows that successively c1−r, c2−r, . . . have to vanish. So F = 0.

j. Part vi). The representative F is defined on U ∩ H, where the open set U ⊂ P1
R

contains P1
R r {ξ1, . . . , ξn}. Part iv) of Proposition 6.13 implies that there is an open

set U1 ⊂ U, still containing P1
R r {ξ1, . . . , ξn} (obtained as the union of sets k Dp)

such that on U1 the shadow ξrF(z) is a holomorphic multiple of a(z) = (ρprj
r F)(z̄).

So the domain of a is some neighborhood U2 of P1
R r {ξ1, . . . , ξn} in P1

C
. Since

ρrF ∈ Dω∗

v,2−r the functions Re rF and ρprj
r F are holomorphic on H−. Hence the

domain of the holomorphic function a contains H− = H.

k. Part vii). See §8.5. �

8.3. Splitting of harmonic boundary germs, Green’s form. We discuss now a
splitting of the space of global sections of r-harmonic boundary germs. We shall
use this to prove Part vii) in Proposition 8.4 in the case that r ∈ C r Z≥1. To obtain
the splitting we use the Green’s form for harmonic functions and the resolvent
kernel.
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Theorem 8.5. If r ∈ C r Z≥1 then

(8.10) Br(P1
R) = Hr(H) ⊕ Wω

r (P1
R) .

Since we have already Proposition 7.1, we need only to show that Br(P1
R) =

Hr(H) +Wω
r (P1

R).

Resolvent kernel. We put

(8.11) Qr(z1, z2) = Mr,0
(z2 − Re z1

Im z1

)
,

with the r-harmonic function Mr,0 ∈ Hr
(
H r {i}

)
in (7.4). So Qr(z1, z2) is defined

on H × H r (diagonal). It is called the free space resolvent kernel . It is a special
case of the resolvent kernel that inverts the differential operator ∆r − λ on suitable
functions. See, eg., [76, §3, Chap. XIV].

The following properties can be checked by a computation, but are more easily
seen on the universal covering group, as we explain in §A.1.6.

∆rQr(z1, ·) = 0 ,(8.12)

4y2∂z∂z̄Qr(·, z2) + 2iry ∂z̄Qr(·, z2) + r Qr(·, z2) = 0 ,(8.13)

for
(
a
c

b
d

)
∈ SL2(R) : (cz1 + d)r (cz2 + d)−r Qr(g z1, g z2) = Qr(z1, z2) .(8.14)

The r-harmonic function z2 7→ Qr(z1, z2) represents an element ofWω
r (P1

R).

Green’s form. For f1, f2 ∈ C∞(U), with U ⊂ H, we define the Green’s form

(8.15)
[
f1, f2

]
r =

(
∂z f1 +

r
z − z̄

f1
)

f2 dz + f1(∂z̄ f2) dz̄ .

This is a 1-form on U, which satisfies

(8.16)
[
f1|rg, f2|−rg

]
r = [ f1, f2]r ◦ g on g−1U for g ∈ SL2(R) .

If f1 is r-harmonic on U and if f2 satisfies the differential equation in (8.13) on U,
then [ f1, f2]r is a closed differential form on U. (These results can be checked by
some computations.)

Cauchy-like integral formula.

Proposition 8.6. Let r ∈ C r Z≥1. Let U be an open set in H, and let C be a
positively oriented simple closed curve in U such that the region V enclosed by C
is contained in U. Then for each F ∈ Hr(U):∫

C

[
F,Qr(·, z′)

]
r =

2πi(1 − r)F(z′) if z′ ∈ V ,

0 if z′ ∈ H r (C ∪ V) .

Proof. In this result the kernel Qr and the Green’s form are combined to give for
r-harmonic functions F ∈ Hr(H) the closed differential form[

F,Qr(·, z′)
]
r(z)

on H × H r (diagonal). It satisfies for g =
(

a
c

b
d

)
∈ SL2(R)

(8.17) (cz′ + d)−r[F,Qr(·, gz′)
]
r(gz) =

[
F|rg,Qr(·, z′)

]
r(z) .
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Hence it suffices to establish the relation for z′ = i. The proof proceeds along the
same lines as the proof of [13, Theorem 3.1].

We have

(8.18)

Qr(z, i) =
2iy
i − z̄

(z + i
2i

)r−1
2F1

(
1, 1 − r; 2 − r;

4y
|z + i|2

)
= 2(r − 1) log |z − i| + O(1) as z→ i ,

∂z̄Qr(z, i) =
r − 1
z̄ + i

+ O(log |z − i|) as z→ i .

The integral of the term with dz in
[
F,Qr(·, i)] over a circle around i with radius ε

is O(ε log ε) = o(1) as ε ↓ 0. The other term gives∫ 2π

ϕ=0

(
F(i) + O(ε)

) ( r − 1
ε e−iϕ + O(log ε)

)
(−iε e−iϕ) dϕ = 2πi(1 − r) F(i) + o(1) . �

We first illustrate a possible use of Proposition 8.6 in an example, and will after
that complete the proof of Theorem 8.5.

Let r ∈ C r Z≥1.In the situation
sketched in Figure 12, the integral

1
2πi(1 − r)

∫
C

[
F,Qr(·, z′)

]
represents a function of z′ on the re-
gions inside and outside the simple
positively oriented closed path C. Ac-
cording to Proposition 8.6 the resulting
function inside C is equal to F, and out-
side C we get the zero function.
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The situation is different if we let C
run around a hole in U. Now the inte-
gral defines an r-harmonic function Fi
on the region inside C (including the
hole), and a function Fo outside C.

Since the differential form is closed,
we can deform the path of integration
inside U, thus obtaining extensions of
Fi and Fo to overlapping regions inside
U. On the intersection of the domains
Proposition 8.6 implies Fi − Fo = F.

Completion of the proof of Theorem 8.5. Let F represent an element ofBr(P1
R). So

F ∈ Hr(U) for any open U ⊂ H that contains a region of the form 1−ε <
∣∣∣∣ z−i
z+i

∣∣∣∣ < 1.

The disk
∣∣∣∣ z−i
z+i

∣∣∣∣ ≤ 1 − ε will play the role of the hole in Figure 13.
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For a positively oriented simple closed curve C in U we have two r-harmonic
functions:

(8.19)
Fi(z′) =

1
2πi(1 − r)

∫
C

[
F,Qr(·, z′)

]
r for z′ ∈ H inside C ,

Fo(z′) =
1

2πi(1 − r)

∫
C

[
F,Qr(·, z′)

]
r for z′ ∈ H outside C .

By moving the path closer and closer to the boundary P1
R of H we obtain that Fi ∈

Hr(H). Further Fo is r-harmonic on a region U′ ⊂ U that contains the intersection
with H of a neighborhood of P1

R in P1
C

. The function Qr(z, ·) represents an element
ofWω

r (P1
R) for each z ∈ H. This property is preserved under integration. Hence Fo

represents an element ofWω
r (P1

R).
If z′ is in the intersection of the domains of Fi and Fo, then we apply the integral

representation with different paths, and get F(z′) = Fi(z′) − Fo(z′) by Proposi-
tion 8.6. This gives the desired decomposition.

Together with Proposition 7.1, this implies the theorem. �

8.4. Periodic harmonic functions and boundary germs. In Definition 3.3 we
introduced the concept of λ-periodic functions, for λ ∈ C∗. We use this termi-
nology also for boundary germs satisfying f |pT = λ f , with T =

(
1
0

1
1

)
. (The

transformation does not depend on the weight p.

Lemma 8.7. Put

(8.20) Fr,n(z) := e2πinz y1−r
1F1

(
1 − r; 2 − r; 4πny

)
(r ∈ C r Z≥2, n ∈ C) .

(For r = 1 we have F1,n(z) = e2πinz.)

i) For r ∈ Z≥2 the λ-periodic elements ϕ ∈ Dpol
2−r form the one-dimensional

subspace of constant functions if λ = 1, and are zero otherwise.
ii) If F ∈ Hb

r (U) represents a λ-periodic element of Eω,exc
r [∞] then it has an

r-harmonic extension as an element of Hr(H), and is given by a Fourier
expansion

(8.21) F(z) =


∑

n≡α(1) cn Fr,n(z) if r ∈ C r Z≥2 ,∑
n≡α(1) cn e2πinz + a0 y

1−r if r ∈ Z≥2 ,

where the coefficients cn satisfy cn = O
(
e−b |Re n|) as |Re n| → ∞, and where

a0 ∈ C is equal to zero unless λ = 1.
iii) Let r ∈ C r Z≥1. If F ∈ Hr(H) represents a λ-periodic element ofWω

r (R),
then F ∈ Eω,exc

r [∞]. (Hence the statements in Part ii) apply to F.)

Proof. SinceDpol
2−r consists of polynomials of degree at most r − 2, Part i) is imme-

diately clear.
For Parts ii) and iii) we consider first a neighborhood U of R in C and F ∈

Hb
r (U) that represents an element of Wω

r (R). Since F is λ-periodic the set U
contains a strip −ε < Im z < ε for some ε > 0.
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The λ-periodic, r-harmonic function F on U∩H is given by a Fourier expansion

F(z) =
∑

n≡α(1)

e2πinx fn(y)

that is absolutely convergent on H. Since the operator ∆r defining r-harmonicity
commutes with translation z 7→ z + u with u ∈ R, all Fourier terms have the form
e2πinx fn(y) and are also r-harmonic. Hence they are in a two-dimensional solution
space.

We use that the condition F ∈ Hb
r (U) is inherited by the Fourier terms. The

multiples of Fr,n are inHb
r (U) for some neighborhood U of R in C. If r ∈ Cr Z≥1,

a linearly independent element of the solution space is the holomorphic function
z 7→ e2πinz, which does not represent an analytic boundary germ. Thus we get for
r < Z≥1 a Fourier expansion of the form indicated in (8.21).

For r ∈ Z≥1 we consider the functions F(z) = e2πinz g(y) for which ξrF is holo-
morphic. In all cases we can take g(y) constant, and obtain the multiples of e2πinz.

If g is not constant, the condition that F ∈ Hb
r (U) leads to g(y) = y1−r a(y) with

a real-analytic function a on a neighborhood of y = 0 in R. We find that we should
have

r − 1
2i

a(y) + y a′(y) = c e4πny

with some c ∈ C. If r = 1 this is possible only with c = 0, and then a′(y) = 0. So
we do not get more than indicated in (8.21).

For r ∈ Z≥2 we take the restriction:

ρprj
r
(
e2πinz y1−r a(y)

)
(t) = −(−2i)r−2 (t − i)2−r e2πint a(0) .

This should be a λ-periodic element ofDpol
2−r, which can be non-zero only if λ = 1,

and then is a constant function. This leads to the term a0 y
1−r in (8.21).

For Part ii) we suppose that F represents an element of Eω,exc
r [∞]. This is an

assumption in Part ii). Part i) in Proposition 8.4 implies that U ∩ H contains a
region of the form {

z ∈ H : |Re z| > ε−1} ∪ {
z ∈ H : Im z < ε

}
for some ε > 0. The relation F(z + 1) = λ F(z) allows us to find a real-analytic
continuation of F to all of H. So under the assumptions of Part ii) we have U = C.
In Part iii) it is given that U contains H. So now we know only that U contains all
z ∈ C with Im z > −ε for some ε > 0.

In both parts we have the expansion (8.21) for all z ∈ H. This leads to informa-
tion concerning the coefficients.

For r ∈ C r Z≥1, we quote from [110, §4.1.1] the asymptotic behavior of the
confluent hypergeometric series:

1F1
(
1 − r; 2 − r; t

)
∼

(1 − r) t−1 et as Re t → ∞ ,
Γ(2 − r) (−t)r−1 as Re t → −∞ .

The absolute convergence of the Fourier expansion of F implies the estimate of the
coefficients cn.
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This gives, for r ∈ C r Z≥1 the growth of the coefficients, and finishes the
proof of Part ii) for r ∈ C r Z≥1 Moreover, dividing by y1−r we get a Fourier
expansion converging on all of C, and representing a real-analytic function on C.
That implies that F(z)/ fr(z) is real-analytic on C, hence F ∈ Hb

r (C), which shows
that F represents an element of Eω,exc

r [∞], by Part i) of Proposition 8.4. This gives
Part iii).

We are left with Part ii) for r ∈ Z≥1. For r = 1 we have (ρprj

1 F)(z) = z−i
2i F(z) in

D
ω,exc
1 [∞]. Hence F has a holomorphic extension to C. This extension is still given

by a convergent Fourier expansion, which should be the expansion
∑

n cn F1,n(z) =∑
n cn e2πinz. This convergence on C implies the estimate of the coefficients.
Finally, if r ∈ Z≥2, then the term

∑
n cn e2πinz is holomorphic, and hence is in

D
ω,exc
r [∞]. Again, we get convergence on all of C. This ends the proof of Part ii).

�

8.5. Completion of the proof of Proposition 8.4.

Proof of Part vii) for r ∈ C r Z≥1. The function F ∈ Hr(U ∩ H) represents an r-
harmonic boundary germ f ∈ Br(P1

R). According to Theorem 8.5 we have a unique
decomposition f = P + g, with P ∈ Hr(H) identified with the boundary germ it
represents, and g ∈ Wω

r (P1
R) with representative G = F − P inHr(U ∩H). Since G

represent an element ofWω
r (P1

R) it is an element ofHb
r (U1) for some neighborhood

U1 ⊂ U of P1
R in P1

C
.

Now
f |r(λ−1T − 1) = P|r(λ−1T − 1) + g|r(λ−1T − 1) .

The left hand side is in Eωr ⊂ W
ω
r (P1

R) by condition b) in the assumption. So the
direct sum in (8.10) shows that λ−1 P|rT = P.

Since P = F − G represents an element of Eω,exc
r [∞] +Wω

r (P1
R) ⊂ Wω

r (R) we
can apply Part iii) of Lemma 8.7 to P and conclude that P ∈ Eω,exc

r [∞]. Then
G = F − P represents an element

g ∈ Eω,exc
r [∞] ∩Wω

r (P1
R) = (ρr)−1

(
D
ω,exc
2−r [∞] ∩ prj−1

2−rV
ω
2−r(P

1
R)

)
= ρ−1

r D
ω
2−r = E

ω
r . �

The proof for r ∈ Z≥1 requires some preparation.

Lemma 8.8. Let r ∈ Z≥1. Suppose that F representing an element of Dω,exc
r [∞]

satisfies the conditions in Part vii) in Proposition 8.4. Then there is a λ-periodic
function P ∈ O(C) such that G = F − P is holomorphic on a neighborhood of
H− ∪ P1

R in P1
C

, and satisfies G(∞) = 0.

Proof. Condition a) in Part vii) of Proposition 8.4 tells us that F is r-harmonic on
H r K for some compact set K ⊂ H. Since we have the additional information
that F represents an element of Dω,exc

r [∞] it is holomorphic on a neighborhood of
H− ∪ R in C. Hence F ∈ O(C r K).

We define a holomorphic function P on C by

(8.22) P(z) =
1

2πi

∫
|τ|=c

F(τ)
dτ
τ − z

,
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where c is chosen larger than |z|, and in such a way that K is enclosed by the
path of integration. The function z 7→ λ−1 F(z + 1) − F(z) is holomorphic on
P1
C
r

(
K ∪ T−1K

)
. It represents an element of Eωr by Assumption b), hence it

represents an element of Dω
r , and has at ∞ a zero of order at least r. Since r ≥ 1,

Cauchy’s theorem implies that
1

2πi

∫
|τ|=c

(
λ−1 F(τ + 1) − F(τ)

) dτ
τ − z

= 0 ,

for all sufficiently large c. This implies that λ−1P(z + 1) = P(z) for all z ∈ C.
Take G = F − P. With (8.22) we find for all sufficiently large c and |z| < c < c1

1
2πi

∫
|τ|=c

G(τ)
dτ
τ − z

= P(z) −
1

2πi

∫
|τ1 |=c1

1
2πi

∫
|τ|=c

dτ
(τ1 − τ) (τ − z)

F(τ1) dτ1

= P(z) − P(z) = 0 .

Insertion of the Laurent expansion G(τ) =
∑

k∈Z bk τ
k of G at ∞ into the integral

shows that bk = 0 for k ≥ 0. So the function G is holomorphic on a neighborhood
of∞ with a zero at∞. �

Proof of Part vii) for r = 1. We have Eω1 = D
ω
1 and Eω,exc

1 [∞] = Dω,exc
1 [∞]; see

(8.3). We apply Lemma 8.8, and use that a first order zero at∞ suffices to conclude
that G represents an element ofDω

1 . �

Proof of Part vii) for r ∈ Z≥2. We have H ∈ Hr(H r K) with a compact set K ⊂ H,
for which we can arrange that i ∈ K.

We write F = F0 + m, with F0 representing an element of Dω,exc
r [∞] and m =∑−1

µ=1−r cµ Mr,µ ∈ E
ω
r , with the cµ in R. Then F0 is r-harmonic on H r K, and

is holomorphic on a neighborhood of H− ∪ P1
R in P1

C
, with a zero at ∞ of order at

least r. So F0 is holomorphic on P1
C
rK. The function F0 also satisfies Condition b)

in Part vii) of Proposition 8.4, so we can apply Lemma 8.8. This gives F0 =

G + P, with a λ-periodic holomorphic function P on C, and G holomorphic on a
neighborhood of H− ∪ P1

R in P1
C

with a zero at∞. For G to represent an element of
Dω

r we would need a zero at∞ of order at least r.
The function G shares with F0 the property that z 7→ λ−1 G(z + 1) −G(z) repre-

sents an element of Eωr , even an element of Dω
r by holomorphy. Insertion of this

property in the power series of G at ∞ shows that the zero of G at ∞ has order at
least r − 1. If λ = 1, we cannot reach order r.

We write G = G0 + c0 Rr, where

Rr(z) =
( 2i
z − i

)r−1
,

and where c0 is chosen such that G0 has a zero at ∞ of order at least r. So G0
represents an element ofDω

r .
Part iii) of Proposition 7.2 shows that Rr(z) = y1−r+m1, with m1 ∈ E

ω
r . Working

modulo elements of Eωr we have

F = F0 +m ≡ G + P = G0 + c0 Rr + P ≡ c0 y
1−r + c0 m1 + P ≡ c0 y

1−r + P .
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The function c0 y
1−r + P represents a λ-periodic element of Eω,exc

r [∞]. �

8.6. Related work. In [15] the analytic cohomology groups have values in the
space Vω

s (P1
R) which is isomorphic to the space Wω

s (P1
R) by the results in [13,

§5.2]. In the present context we work with the subspaceDω
v,2−r of prj−1

2−rV
ω
v,2−r(P

1
R),

and we have to do more work to determine a submodule of analytic boundary germs
related toDω

v,2−r.
For weights r ∈ C r Z≥1 we have the isomorphism in Part i) of Theorem 6.14,

which points the way to the definition of Eωv,r. The power series approach in that
theorem is more complicated than that in [13, Proposition 5.6]. For weights r ∈ Z≥1
we defined Eωv,r such that it satisfies the properties in Proposition 8.4.

Property vii) in Proposition 8.4 is similar to [15, Lemma 9.23]. It will be es-
sential for the proof of Theorem 10.4 in §10. The proof of this property in the
case r ∈ C r Z≥1 follows the proof in [15]. It uses the boundary germ splitting in
Theorem 8.5 which is similar to [13, Proposition 5.3]. The resolvent kernel Qr in
(8.11), the Green’s form in (8.15) and the Cauchy-like result Proposition 8.6 have
their examples in (3.8), (3.13), Theorem 3.1 in [13], respectively.

To prove property vii) in Proposition 8.4 for positive integral weights we had
to find other methods, which were inspired by the use of hyperfunctions and the
Poisson transformation (§2.2 and §3.3 in [13]). In these notes we avoid the explicit
use of hyperfunctions and the Poisson transformation.

9. T  

Up till now we worked with the standard description of group cohomology, re-
called in §1.4. For the boundary germ cohomology we turn to the description of
cohomology that turned out to be useful in [15]. We use the concepts and notations
of those notes, and do not repeat a complete discussion. We invite the reader to
have a quick look at [15, §6.1–3], where the approach is explained for cocompact
discrete groups, and then to consult [15, §11] for the case of groups with cusps.

9.1. Tesselations of the upper half-plane. The tesselations that we use are called
“of type Fd” in [15]. They are based on the choice of a suitable fundamental
domain for Γ\H.

Tesselation for the modular group. With the standard choice of the fundamental
domain F for Γ(1)\H, a part of the tesselation looks as in Figure 14. The tes-
selation T is obtained by taking all Γ(1)-translates of the fundamental domain
F divided in a cuspidal triangle V∞ and a compact part FY . The set of faces is
XT2 =

{
γ−1V∞, γ−1FY : γ ∈ Γ(1)

}
. In the boundary ∂2F of the fundamental

domain there are oriented edges e∞ from a point P∞ = 1
2 + iY (with some Y > 1) to

the cusp∞, and compact edges e1 from eπi/3 to P∞ and e2 from i to eπi/3. There is
also the horizontal edge f∞ from P∞ to T−1P∞. These four edges generate a set XT1
of oriented edges freely over Γ(1) = {±1}\Γ(1). If e ∈ XT1 then the same edge with
the opposite orientation is written as −e. We follow the convention used in [15] to
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F 14. Sketch of a tesselation for the modular group, based
on the standard fundamental domain.

include in XT1 only one of the two oriented edges corresponding to a given unori-
ented edge. The points i, eπi/3, P∞ of H together with the cusp ∞ generate over
Γ(1) the set XT0 of vertices, but not freely over Γ(1), since i and eπi/3 are fixed by
subgroups of Γ(1) of orders 2 and 3 respectively. The subgroup of Γ(1) fixing P∞
consists only of 1, and the group Γ(1)∞ fixing∞ is infinite.

We define the subsets XT ,Yi consisting of all elements that are compact in H. So
XT ,Y0 is generated by i, eπi/3, and P∞; XT ,Y1 by e1, e2 and f∞; and XT ,Y2 by FY .

General groups. In general, the fundamental domain F is chosen in such a way that
its closure in H ∪ P1

R contains only one cusp of Γ from each Γ-orbit of cusps. The
fundamental domain is the union of a compact part FY and a number of cuspidal
triangles Va, for the cusps a in the closure of F. Each Va has vertices a, Pa and
π−1
a Pa, and a boundary consisting of edges ea ∈ XT1 from Pa to a, π−1

a ea, and
fa ∈ XT ,Y1 from Pa to π−1

a Pa. So each of these cuspidal triangles looks the same as
the triangle V∞ for the modular group.

9.2. Resolutions based on a tesselation. The tesselation T gives rise to Γ-mod-
ules FTi := C[XTi ] ⊃ FT ,Yi := C[XT ,Yi ], which are considered as right modules, by
(x)|γ = (γ−1x). There are the obvious boundary operators ∂i : C[XTi ] → C[XTi−1]
that satisfy ∂iC[XT ,Yi ] ⊂ C[XT ,Yi−1 ].

For the modular group:

∂2(V∞) = (e∞)|(1 − T ) − ( f∞) , ∂2(FY ) = (e1)|(1 − T ) + (e2)|(1 − S ) + ( f∞) .
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This leads to complexes
(
FT·

)
⊃

(
FT ,Y·

)
of Γ-modules. It turns out ([15, §11.2])

that for right Γ-modules V that are vector spaces over C the cohomology of the
resulting complex homC[Γ](FT ,Y. ,V) is canonically isomorphic to the group coho-
mology H·(Γ; V). In working with this description of cohomology it is often useful
to identify a C[Γ]-homomorphism FTi = C[XTi ] → V with the corresponding map
c : XTi → V , which satisfies c(γ−1x) = c(x)|γ for all γ ∈ Γ, x ∈ XTi .

We use the complex
(
FT.

)
to describe the mixed parabolic cohomology. The

mixed parabolic cochains are defined by

(9.1)
Ci(FT. ; V,W) =

{
c : XTi → W : c(x) ∈ V if x ∈ XT ,Yi ,

c(γ−1x) = c(x)|γ for all γ ∈ Γ
}
.

A derivation can be defined by dic(x) = (−1)i+1 c(∂i+1x) for x ∈ XTi . We often
write d instead of di.

The space Zi(FT. ; V,W) of mixed parabolic cocycles is defined as the kernel of
di : Ci(FT. ; V,W)→ Ci+1(FT. ; V,W) and the subspace of mixed parabolic cobound-
aries Bi(FT. ; V,W) as di−1Ci−1(FT. ; V,W) if i ≥ 1 and as the zero subspace if i = 0.
Then the cohomology groups of the complex,

(9.2) Zi(FT. ; V,W)
/

Bi(FT. ; V,W) ,

are for i = 1 isomorphic to the mixed parabolic cohomology groups H1
pb(Γ; V,W) in

Definition 1.3. In [15, §11.3] the mixed parabolic cohomology groups Hi
pb(Γ; V,W)

are defined as the spaces in (9.2) for all i.
In particular for i = 1 we have the following commutative diagram for C[Γ]-

modules V ⊂ W:

Z1(Γ; V)/B1(Γ; V) Z1(FT ,Y· ; V)/B1(FT ,Y· ; V)
�oo

Z1(Γ; V,W)/B1(Γ; V)
?�

OO

Z1(FT· ; V,W)/B1(FT· ; V,W)
?�

OO

�oo

The isomorphic spaces in the top row give two isomorphic descriptions of H1(Γ; V),
and the two spaces in the bottom row of H1

pb(Γ; V,W).
The conditions on the tesselations are such that the action of Γ̄ = {±1}\Γ on

XT1 and XT2 is free on finitely many elements. So for i ≥ 1 the cochains c ∈
Ci(FT. ; V,W) are determined by their values on a C[Γ]-basis of C[XTi ]. For the
modular group, c ∈ C1(FT. ; V,W) is completely determined by c(e1), c(e2) and
c( f∞) in V , and c(e∞) ∈ W, and b ∈ C2(FT. ; V,W) is determined by c(FY ) ∈ V
and c(V∞) ∈ W. For i = 0 there are in general no bases over C[Γ̄]. The fact that
each cusp is fixed by an infinite subgroup of Γ(1) makes the difference between
parabolic cohomology and standard group cohomology. Points of XT ,Y0 may be
fixed by non-trivial finite subgroups of Γ̄. As long as we work with Γ-modules that
are vector spaces over C this is not important. For Γ(1) it suffices if we can divide
by 2 and 3 in the modules that we use.
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For a cocycle c ∈ Z1(FT. ; V,W) the value c(p) on a cycle p ∈ Z[XT1 ] corre-
sponding to a path from P1 to P2 (both in XT0 ) does not depend on the choice of
the path along edges in XT1 , only on the end-points P1 and P2. So we can write
c(p) = c(P1, P2), and view c as a function on XT0 × XT0 . In general c(p) ∈ W. It
satisfies

(9.3)
c(P1, P3) = c(P1, P2) + c(P2, P3) for P j ∈ XT0 ,

c(γ−1P1, γ
−1P2) = c(P1, P2)|γ for γ ∈ Γ , P j ∈ XT0 .

If both P1 and P2 are in XT ,Y0 , then the path can be chosen in Z[XT ,Y0 ], and hence
c(p) ∈ V .

Now choose a base point P0 ∈ XT ,Y0 . Then ψγ = c(γ−1P0, P0) is in V for each
γ ∈ Γ. It turns out to define a group cocycle ψ ∈ Z1(Γ; V). It is even a mixed
parabolic group cocycle in Z1

pb(Γ; V,W). Let us check this in the situation of the
modular group, with the tesselation discussed above. Then

ψT = c(T−1P0, P0) = c(T−1P0,T−1P∞) + c(T−1P∞,T−1∞)

+ c(∞, P∞) + c(P∞, P0) =
(
−c(e∞) + c(P∞, P0)

) ∣∣∣ (1 − T ) ∈ W |(1 − T ) .

This computation shows that the presence of∞ as a vertex of the tesselation forces
parabolicity of the cocycle. (We use | to denote the action of Γ on the FTi = C[XTi ],
as well as in the modules V and W.)

On can check that this association c 7→ ψ sends coboundaries to coboundaries
and that taking a different base point P0 does not change the cohomology class.
The map c 7→ ψ is an easy way to describe the canonical isomorphism between the
description of cohomology with a tesselation and the standard description of group
cohomology.

9.3. Cocycles attached to automorphic forms. To describe the linear maps rωr :
Ar(Γ, v) → H1(Γ;Dω

v,2−r) and qωr : Ar(Γ, v) → H1(Γ;Eωv,r) in Theorem A and
Proposition 6.10 in the approach to cohomology based on a tesselation T we
use for an unrestricted holomorphic automorphic form F ∈ Ar(Γ, v) the cocycles
ψF ∈ Z1(FT ,Y. ;Dω

v,2−r) and cF ∈ Z1(FT ,Y. ;Eωv,r) given on edges x ∈ XT ,Y1 by

ψF(x; t) :=
∫
τ∈x

ωr(F; t, τ) =

∫
τ∈x

(τ − t)r−2 F(τ) dτ ,(9.4)

cF(x; z) :=
∫
τ∈x

Kr(z; τ) F(τ) dτ =

∫
τ∈x

2i
z − τ

( z̄ − τ
z̄ − z

)r−1
F(τ) dτ .(9.5)

The orientation of the edge x determines the direction of the integration. We use
the boundary germ cohomology in the next section, and hence will work with the
cocycle cF . Property iv) in Proposition 8.4 implies that cF has values in Eωr .

Notations. Let Eω
0,exc

r = lim
−→
E
ω,exc
r [a1, . . . , an], where {a1, . . . , an} runs over the

finite subsets of cusps of Γ.
The space Eω

∗,exc
r , defined in Proposition 8.4, is invariant under the operators

|rg with g ∈ SL2(R), but these operators act in Eω
0,exc

r only if g maps cusps to
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cusps. By Eωv,r, E
ω0,exc
v,r , and Eω

∗,exc
v,r we denote the Γ-modules for the action |v,r on

the corresponding spaces.

Image of qωr . For edges in XT1 r XT ,Y1 the integration does not make sense, unless
F happens to be a cusp form. To extend cF to XT1 we need to define cF(ea) for each
cusp a of Γ such that cF(∂2Va) = 0, in the notation of §9.1.

For weights r ∈ C r Z≥2 and the highest weight spaces in Definition 8.1, Theo-
rem 3.9 implies qωr Ar(Γ, v) ⊂ H1

pb(Γ;E
ω
v,r,E

ω0,exc
v,r ). For r ∈ Z≥2 we will see in §11.1

that not all automorphic forms give rise to mixed parabolic cocycles with values in
the analytic boundary germs.

9.4. Derivatives of L-functions. In the introduction we mentioned that deriva-
tives of L-functions can be related to cocycles. We illustrate this here by an exam-
ple.

Let f be a newform of weight 2 for Γ = Γ0(N) such that L f (1) = 0 (under the
assumption that f is even for the Fricke involution). Set

u(z) = log(η(z)η(Nz)), z ∈ H.

Then, as shown in [49],

(9.6) L′f (1) =
1
π

∫ ∞

0
f (iy)u(iy)dy.

This integral, though reminiscent of a period integral, has an integrand that is far
from Γ-invariant and thus does not give a cocycle. To address this problem, we
first note that, by the defining formula of u(z), the RHS of (9.6) equals the value at
r = 0 of the derivative

d
dr

(
1
π

∫ ∞

0
f (iy) (η(iy)η(iNy))r dy

)∣∣∣∣∣
r=0
.

This integral is still not Γ-invariant but now it can be formulated in terms of cocy-
cles considered in these notes.

Set
fr(z) = f (z)(η(z)η(Nz))r .

This is a cusp form of weight 2 + r for Γ depending holomorphically on r on a
neighborhood of 0 in C. The corresponding multiplier system wr is also holomor-
phic in r.

We refine the tesselation in Figure 14 such that the geodesic from 0 to ∞ is a
sum of edges, forming a path p ∈ Z[XT1 ]. (Then the faces V∞ and FY are each
divided into two faces.) We have for any automorphic form F the value

ψF(p; t) =
∫
τ∈p

ωr(F; t, τ) .

Applying this to fr defined above, we obtain ψ fr (p; ·) ∈ Dω,∞
w,−r[0,∞], since fr is a

cusp form. In particular

(9.7) ψ fr (p; 0) = i eπir/2
∫ ∞

0
f (iy) er u(iy) yr dy .
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With the change of variables y 7→ 1/Ny, using the invariance of fr under the Fricke
involution, this can be seen to be equal to

−i N−r/2 eπir
∫ ∞

0
f (iy) er u(iy) dy .

With Goldfeld’s result we obtain the following relation between the cocycle ψ fr
and the L-function:

(9.8)

ψ fr (p; 0) = −i L f (1) + r
(πi

2
log N L f (1) − π2 L f (1) − πi L′f (1)

)
+ O(r2) (r → 0)

= −πir L′f (1) + O(r2) (r → 0) .

9.5. Related work. The general approach to group cohomology via an arbitrary
projective resolution is well known. See for instance, in Brown [8], Chap. III, §1,
for the definition, and Chap. I, §5, for the standard complex. Also more topolog-
ically oriented complexes are well known; see for instance [8, §4, Chap. 1]. In
[15] the tesselations of the upper half-plane based on a fundamental domain of the
discrete group in question turned out to be useful.

10. B     

10.1. Spaces of global representatives for highest weight spaces. Property i) in
Proposition 8.4 shows that elements of Eωr are represented by elements of Hb

r (U),
hence by r-harmonic functions on U ∩ H. Property v) shows that if F ∈ Hb

r (U) is
non-zero, then U ⊃ H is impossible. For the cohomological manipulations in this
section it is desirable to have spaces of representatives that are defined on H. If
non-zero, these functions cannot be r-harmonic everywhere on H.

Definition 10.1. We define the spaces Gωr , Gω
∗

r and Gω
0

r of functions on H:

Gωr :=
{
F ∈ C2(H) : there exists an open neighborhood U(10.1)

of P1
R in P1

C such that F|U∩H is inHb
r (U)

and represents an element of Eωr
}
,

Gω
∗,exc

r :=
{
F ∈ C2(H) : there exists an excised neighborhood U(10.2)

such that F|U∩H is inHb
r (U) and represents

an element of Eω
∗,exc

r

}
,

Gω
0,exc

r :=
{
F ∈ C2(H) : there exists an excised neighborhood U(10.3)

with excised set consisting of cusps, such that F|U∩H

is inHb
r (U) and represents an element of Eω

0,exc
r

}
.

The operators |rg with g ∈ SL2(R) act in Gωr and Gω
∗,exc

r , and in Gω
0,exc

r if g ∈ Γ. By
Gωv,r, G

ω∗,exc
v,r , Gω

0,exc
v,r we denote the corresponding Γ-modules with the action |v,r.
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Remarks. (a) This definition formalizes for Eωr what we did informally forDω
2−r in

Remark 4.2, b).
(b) While, by Part v) of Proposition 8.4,

(10.4) Hr(H) ∩ Gωr = {0} ,

the space Hr(H) ∩ Gω
∗,exc

r contains non-zero elements, for instance the functions
Fr,n in (8.20).

Definition 10.2. We define Nω
r , Nω∗,exc

r , or Nω0,exc
r as the kernels of the natural

maps Gωr → E
ω
r , Gω

∗,exc
r → E

ω∗,exc
r , or Gω

0,exc
r → E

ω0,exc
r which assign to F the

boundary germ represented by it.

Proposition 10.3. i) Nω
r , and Nω∗,exc

r are invariant under the operators |rg
with g ∈ SL2(R), and the action |v,r makesNω0,exc

r into a Γ-moduleNω0,exc
v,r .

ii) The space Nω
r is the space C2

c (H) of the twice differentiable compactly
supported functions on H, and Nω∗,exc

r , respectively Nω0,exc
r , is the space

of the twice differentiable functions on H with support contained in a set
H r U where U is an excised neighborhood of P1

R, which in the case of

N
ω0,exc

r has an excised set consisting of cusps.
iii) The diagram of Γ-equivariant maps

0 // Nω
v,r //
� _

��

Gωv,r //
� _

��

Eωv,r //
� _

��

0

0 // Nω∗,exc
v,r

// Gω
∗,exc

v,r
// Eω

∗,exc
v,r

// 0

commutes. The rows are exact sequences.

Proof. Part i) follows directly from Definition 10.2.
For Part ii), suppose that F is in the kernel of Gωr → E

ω
r , Gω

∗,exc
r → E

ω∗,exc
r , or

G
ω0,exc
r → E

ω0,exc
r , then F = 0 on a set U∩H with U a neighborhood of P1

R in P1
C

, or
U ∩H = U0∩H for an excised neighborhood U0 of P1

R. In the former case HrU is
relatively compact in H, hence F has compact support. In the latter case F is zero
on an excised neighborhood intersected with H.

For the exactness in Part iii) we need to prove the surjectivity of the linear maps
Gωr → E

ω
r and Gω

∗,exc
r → E

ω∗,exc
r . The commutativity of the diagram is clear.

We start with a representative F ∈ Hb
r (U) of an element of Eωr , respectively

E
ω∗,exc
r , where U is a neighborhood of P1

R in P1
C

, respectively contained in an ex-
cised neighborhood U0 of P1

R such that U ∩ H = U0 ∩ H. We take smaller sets
U1 ⊂ U2 ⊂ U such that U2 is a neighborhood of the closure of U1 and U is
a neighborhood of the closure of U2, and consider a cut-off function ψ ∈ C2(H)
equal to 1 on U1 and equal to 0 on H r U2. Then z 7→ ψ(z) F(z), extended by 0,
is an element of Gωr , respectively Gω

∗,exc
r , representing the same boundary germ

as F. �

Lemma 10.4. Let λ ∈ C∗. If h ∈ Eω
∗,exc

r and λ−1h|rT − h ∈ Eωr , then h ∈ Eω,exc
r [∞].
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Proof. In the same way as for Lemma 3.1. �

Definition 10.5. i) For f ∈ Eω
∗,exc

r we denote by BdSing f the minimal set
{ξ1, . . . , ξn} such that f ∈ Eω,exc

r [ξ1, . . . , ξn], and call it the set of bound-
ary singularities of f . For F ∈ Hb

r (U) we denote by BdSing F the set
BdSing f for the boundary germ f represented by F.

ii) For any twice differentiable function F on H we denote by Singr F the
complement of the maximal open set in H on which ∆rF = 0, and call it
the set of singularities of F.

iii) Analogously we define Gω,exc
r [ξ1, . . . , ξn] as the set of F ∈ Gω

∗,exc
r repre-

senting an element of Eω,exc
r [ξ1, . . . , ξn], and BdSing rF for F ∈ Gω

∗,exc
r as

the set of boundary singularities of the element of Eω
∗,exc

r that F represents.

Remarks. (a) BdSing F ⊂ P1
R and Singr F ⊂ H for each F ∈ Gω

∗,exc
r .

(b) For elements of Dω∗

2−r we dealt only with boundary singularities, and often
called them singularities. For Eω

∗,exc
r and Gω

∗,exc
r it is important to distinguish both

types of singularities.
(c) The properties in Proposition 8.4 imply properties of sets of boundary singu-
larities. For instance

(10.5) BdSing ( f |rg) = g−1 BdSing f for g ∈ SL2(R) .

(d) If F ∈ Gωr then Singr F is a compact subset of H, and if F ∈ Gω
∗,exc

r then
Singr F is contained in an excised neighborhood.

λ-periodic elements.

Definition 10.6. For λ ∈ C∗, put Ir(λ) :=
{
f ∈ Eω

∗,exc
r : f |rT = λ f

}
.

Lemma 10.7. Let λ ∈ C∗.
i) Each element of Ir(λ) is represented by a unique λ-periodic function in
Hr(H) ∩ Gω

∗,exc
r .

ii) If F ∈ Nω∗,exc
r is λ-periodic, then F = 0.

Proof. Let F ∈ Gω
∗,exc

r represent an element of Ir(λ). Then it represents an element
of Eω,exc

r [∞] by Lemma 10.4.

From Part i) in Proposition 8.4 we
see that F ∈ Hr(U ∩ H) for an ex-
cised neighborhood U with excised set
{∞}, and that λ−1F(z+ 1) = F(z) for all
z ∈ H ∩ U ∩ T−1U.

This implies that F can be analyti-
cally extended to give a λ-periodic ele-
ment of Hr(H). Since this analytic ex-
tension is determined by its values on a
strip 0 < Im z < ε it is unique.

U

U

singularities

F 15
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If the λ-periodic function F represents an element of Nω∗,exc
r then F is zero

on U, hence the extension is zero. �

Lemma 10.8. Let a be a cusp of Γ. Denote by Γa the subgroup of Γ fixing a. Then
the following sequence is exact:

0→
(
Nω∗,exc
v,r

)Γa → (
Gω

∗,exc
v,r

)Γa → (
Eω

∗,exc
v,r

)Γa → 0 .

Proof. The group Γa is generated by πa = gaTg−1
a . By conjugation we can reduce

the statement of the lemma to the exactness of the sequence one obtains if one takes
in the sequence

0→ Nω∗,exc
r → Gω

∗,exc
r → Eω

∗,exc
r → 0

the kernel of the operator |r(λ−1T − 1) with λ = v(πa). This does not necessarily
produce an exact sequence, but here we get by Lemma 10.7 the sequence

0→ 0→ Ir(λ)→ Ir(λ)→ 0 ,

which is exact. (We identify Ir(λ) with the space of the harmonic representatives
in Part i) of Lemma 10.7.) �

Lemma 10.9. Let λ ∈ C∗. Suppose that the function F on H satisfies:
a) F ∈ Gω

∗,exc
r ,

b) Singr F is a compact subset of H,
c) z 7→ λ−1 F(z + 1) − F(z) is an element of Gωr .

Then F = P +G with P ∈ Ir(λ) and G ∈ Gωr .

Proof. The open setHrSingr F is of the form U∩Hwith U a neighborhood of P1
R in

P1
C

. The restriction f of F to U∩H represents an element of Eω
∗,exc

r . Assumption a)
implies that f represents an element of Eω,exc

r [∞], by Lemma 10.4. Part vii) in
Proposition 8.4 implies the existence of p ∈ Ir(λ) such that g = f − p ∈ Eωr . Taking
P as the global representative of p in Part i) of Lemma 10.7 we get a representative
G := F − P of g in Gωr . �

10.2. From parabolic cocycles to automorphic forms. Now we start with a
mixed parabolic cocycle and construct a corresponding holomorphic automorphic
form.

Proposition 10.10. i) If c ∈ Z1(FT. ;Eωv,r,E
ω0,exc
v,r ) there is u([c], ·) ∈ Ar(Γ, v)

that depends only on the cohomology class of c, and [c] 7→ u([c], ·) defines
a linear map

(10.6) αr : H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r )→ Ar(Γ, v) .

ii) Let F ∈ Ar(Γ, v) such that qωr F ∈ H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r ), then u([cF], ·) = F,

with cF as in (9.5).

Proof. The proof is almost identical to that of [15, Proposition 12.2]. Table 3
compares the analogous quantities. Instead of repeating the proof, we give below
a discussion of the main ideas in the context of the modular group. There is one
complication, which is not present in [15]. We handle it in Lemma 10.11. �
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holomorphic forms Maass forms
Γ-module Eωv,r Γ-moduleWω

s

Γ-module Eω
0,exc

v,r Γ-moduleWω∗,exc
s

cocycle c cocycle ψ

cochain c̃ cochain ψ̃

Gωv,r, G
ω0,exc
v,r Gωs , G

ω∗,exc
s

Nω
v,r, N

ω0,exc
v,r Nω

s , N
ω∗,exc
s

u([c], ·) uψ
T 3. Correspondence between the quantities in the proof here,
for holomorphic automorphic forms, and the quantities in the
proof of [15, Proposition 12.2], for Maass forms of weight 0 and
more general invariant eigenfunctions. Here we work with bound-
ary singularities restricted to the cusps, whereas in [15] the singu-
larities were general at first, and had to be reduced to singularities
in cusps by an additional step.

Lift of the cocycle. Let c ∈ Z1(FT. ;Eωv,r,E
ω0,exc
v,r ) be given. Its values c(x) on

x ∈ XT1 are boundary germs in Eω
0,exc

v,e . See the right column in the diagram

in Proposition 10.3. We want to lift c to a cochain c̃ ∈ C1(FT· ;Gωv,r,G
ω0,exc
v,r ),

which involves the central column in the diagram. For each x in the C[Γ(1)]-
basis {e1, e2, f∞} of FT ,Y1 we can, according to Proposition 10.3 choose a repre-
sentative c̃(x) ∈ Gωv,r of c(x) ∈ Eωv,r. For c(e∞) we can choose a representative

c̃(e∞) ∈ Gω
0,exc

v,r . Since c̃(e∞)|v,r(1 − T ) represents c(e∞)|v,r(1 − T ) = c( f∞) ∈ Eωv,r,
we have BdSing c̃(e∞) ⊂ {∞} by Lemma 10.4. So c̃ is determined by

(10.7)
c̃(e1), c̃(e2), c̃( f∞) ∈ Gωv,r , representatives of c(e1), c(e2), c( f∞) ,

c̃(e∞) ∈ Gω,exc
v,r [∞] , representative of c(e∞) .

For each x ∈ {e1, e2, f∞} the set Singr c̃(x) is compact. So we can find R >
0 such that for each of these three edges the set Singr c̃(x) is contained in the
R-neighborhood (for the hyperbolic distance) of x. Furthermore Singr c̃(e∞) is
contained in the complement of an excised neighborhood with excised set {∞},
hence

Singr c̃(e∞) ⊂
{
z ∈ H : |Re z| ≤ ε−1 , Im z > ε

}
,

for some ε > 0.
Since c̃ is given on a basis of FT1 , we can extend it C[Γ(1)]-linearly, and obtain

a cochain c̃ ∈ C1(FT. ;Gωv,r,G
ω0,exc
v,r ). There is no reason for the lift c̃ to be a cocycle.

For any y ∈ XT1 and any γ ∈ Γ(1) we have Singr c̃(γ−1y) = γ−1 Singr c̃(y). So
for y ∈ XT ,Y1 the set Singr c̃(y) is contained in the R-neighborhood of x. Similarly,
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Singr c̃(γ−1e∞) is contained in

(10.8)
{
γ−1z : |Re z| ≤ ε−1 , Im z > ε

}
.

This means that the singularities of any c̃(y) cannot be “too far” from the edge
y ∈ XT1 .

Construction. We start the construction of an automorphic form. First we work
on a connected set Z ⊂ H that is contained in finitely many Γ(1)-translates of the
standard fundamental domain F. We choose a closed path C ∈ Z[XT1 ] encircling
Z once in positive direction. Since Z may contain a translate of F this path may
have to go through cusps, as illustrated in Figure 16. We can take the cycle C

&%

Z

C

6

F 16

far away from Z, such that Singr c̃(x) ∩ Z = ∅ for all x occurring in the path C.
Moreover, since the R-neighborhoods of edges in XT ,Y1 , and the sets in (10.8) are
simply connected, we even know that Z is contained in component of HrSingr c̃(x)
that has a part of the boundary P1

R of H in its closure. So Z is in the region on which
c̃(x) is a representative of c(x).

We define for z ∈ Z:1

(10.9) u(C; z) :=
1

4π
c̃(C) (z) .

So u(C; z) is the sum of contributions ±1
4π c̃(x)(z) with x ∈ XT1 occurring in C. Since

C is far away from Z the function u(C; ·) is r-harmonic on (the interior of) Z.

Independence of choices. The next step is to get rid of the choice of the lift c̃ and of
the choice of c in its cohomology class. This can be done in exactly the same way as
in [15, §7.1 and §12.2]. The main reasoning is given in [15, §7.1] for the cocompact
case. There it is explained that the definition does not depend on the choice of the
cycle C, provided it is far enough from Z. This implies that u(C; ·)|v,rγ = u(C; ·)
on the intersection Z ∩ γ−1Z for γ ∈ Γ. The function is r-harmonic on the interior

1The factor 1
4π differs from the factor 1

πi in [15]. This is caused by a difference in the normalization
of Kr(·; ·) in (6.12), and qs(·, ·) in [15, (1.4)].
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of z, by the same argument as in [15, §7.1]. The independence on C allows us to
enlarge the set Z, thus ending up with an element of Harmr(Γ, v), which we now
can call u(c̃; ·).

By the reasoning in [15, §7.1] the r-harmonic automorphic form that we ob-
tained is independent of the choice of the lift c̃ of c, and of the choice of c in its
cohomology class. So we may now denote it by u

(
[c]; ·

)
.

Remaining questions. There are two questions left: (1) Is u
(
[c]; ·

)
a holomorphic

automorphic form? (2) If qωr F happens to be in H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r ), what is then

the relation between F and u
(
qωr F; ·)?

Question (1) does not arise in [15]. The following lemma treats it, for general
cofinite Γ with cusps.

Lemma 10.11. Let c̃ ∈ C1(FT. ;Gωv,r,G
ω0,exc
v,r ) be a lift of c ∈ Z1(FT. ;Eωv,r,E

ω0,exc
v,r ).

Suppose that C =
∑

j ε j x j ∈ Z[XT1 ] (finite sum, with ε j = ±1, x j ∈ XT1 ) is a cycle
encircling an open set Z ∈ H once in positive direction, such that for each x j the
set Z is contained in the set where c̃(x j) represents c(x j). Then c̃(C) is holomorphic
on Z.

Proof. For each x j the function c̃(x j) represents an element of Eω
0,exc

v,r on some set
U j as in Property i) in Proposition 8.4, and Z ⊂ U j. By Property vi) we know that
ξrc̃(x j) has a holomorphic extension h j ∈ O(H). Since C is a closed cycle, we have

S1 S2

S3 S4

��
��

Z

V1 V2

F 17. Illustration for the proof of Lemma 10.11. We take
C =

∑4
j=1 ε j x j. The singularities of c̃(x j) are contained in S j,

and we can take U j = H r S j. The union V1 ∪ V2 is an excised
neighborhood, on which c̃(C) represents c(C).

c(C) = 0 in Eω
0,exc

v,r . So c̃(C) = 0 on an excised neighborhood V on which c̃(Z)
represents c(Z). This neighborhood is contained in the intersection of the U j, but
will in general not contain Z. See Figure 17.

We now know the following:

∀ j : c̃(x j) = c(x j) on U j ⊃ Z ,

∀ j : h j ∈ O(H) ,
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∀ j : c̃(x j) = h j on U j ⊃ Z ,
c̃(C) = c(C) = 0 on V ,

ξrc̃(C) =
∑

j

ε j ξrc̃(x j) = 0 on V∑
j

ε j h j =
∑

j

ε j ξrc̃(x j) = 0 on H (continuation)

ξrc̃(C) =
∑

j

ε j ξrc̃(x j) =
∑

j

ε j h j = 0 on Z

u([c]; ·) = c̃(C) is holomorphic on Z . �

This lemma implies directly that u
(
[c]; ·) ∈ Ar(Γ, v), thus completing the proof

of Part i) of Proposition 10.10.
The other remaining question concerns Part ii), to which we apply Cauchy’s

formula:

Lemma 10.12. Suppose that [c] = qωr F ∈ H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r ) for some automor-

phic form F ∈ Ar(Γ, v). Then u
(
[c]; ·) = F.

Proof. By analytic continuation it suffices to show the equality on some non-empty
open set. Let us take Z open and relatively compact in the interior of the compact
face FY of the tesselation contained in the fundamental domain.

For z in the interior of FY we have

(10.10) c(∂2FY )(z) =
∫
∂2FY

2i
z − τ

( z̄ − τ
z̄ − z

)r−1
F(τ) dτ ,

as follows from (9.5). The factor
(

z̄−τ
z̄−z

)r−1
is holomorphic as a function of τ. So the

value of the integral is 4π F(z) for z in the interior of FY , in particular for z ∈ Z.
The hyperbolic distance of Z to ∂2FY is larger than some ε > 0. We can choose the
lift c̃ of c such that for each x ∈ XT ,Y1 the singularities of c̃(x) are contained in the
ε-neighborhood of x. Then c̃(∂2FY ) is equal to c(∂2FY ) on the path of integration
in (10.10). �

Averages. An alternative to (10.9) is the description of u([c]; ·) as an infinite sum,
which is a kind of Poincaré series.

Definition 10.13. Let f be a continuous function on H with support contained
in finitely many Γ-translates of a fundamental domain of Γ\H. We define the Γ-
average of f by

(10.11)
(
AvΓ,v,r f

)
(z) :=

∑
γ∈{±1}\Γ

(
f |v,rγ) (z) .

Remarks. (a) We have |v,r(−γ) = |v,rγ, so it makes sense to sum over {±1}\Γ.
(b) Under the support condition in the definition the sum is locally finite and
defines a continuous function that is invariant for the action |v,r of Γ.
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(c) The name average is convenient but slightly incorrect, since we do not divide
by the (infinite) number of terms.
(d) To use the average to describe u([c], ·), we start with the exact sequence

(10.12) → H1
pb(Γ;G

ω
v,r,G

ω0,exc
v,r )→ H1

pb(Γ;E
ω
v,r,E

ω0,exc
v,r )→ H2

pb(Γ;N
ω
v,r,N

ω0,exc
v,w )→

The exactness follows from [15, Proposition 11.9]. To see that the conditions of
that theorem are satisfied, we use the diagram in Part iii) of Proposition 10.3 and
Lemma 10.8.

Let c̃ ∈ C1(FT. ;Gωv,r,G
ω0,exc
v,r ) be a lift of c ∈ Z1(FT. ;Eωv,r,E

ω0,exc
v,r ). The exact

sequence (10.12) shows that dc̃ ∈ H2
pb(Γ;N

ω
v,r,N

ω0,exc
v,r ). We apply dc̃ to the funda-

mental domain F of Γ\H underlying the tesselation T . So dc̃(F) = dc̃(FY )+dc̃(V∞)
in the case of Γ = Γ(1), and in general dc̃(F) = dc̃(FY ) +

∑
a dc̃(Va), where a

runs over the cusps in the closure of the fundamental domain F. This implies that
dc̃(F) ∈ Nω0,exc

v,r , hence we can apply AvΓ,v,r to it.

Proposition 10.14. With the notations of Proposition 10.10:

(10.13) u([c], z) =
1
4
(
AvΓ,v,rdc̃(F)

)
(z) =

1
4π

∑
γ∈{±1}\Γ

(
dc̃(F)

) ∣∣∣
v,r γ (z) .

Proof. The proof follows the approach to Propositions 7.1 and (12.5) in [15]. �

Remark. On first sight it may seem amazing that the sum of translates of the non-
analytic function dc̃(F) is a holomorphic function. See the discussion after [15,
Proposition 7.1].

10.3. Injectivity. Proposition 10.10 gives us a linear map αr from mixed para-
bolic cohomology that is left inverse to qωr . It might have a non-zero kernel.

Proposition 10.15. The linear map αr in (10.6) is injective.

Proof. The proof is based on the exact sequence (10.12) and the average in (10.13):

(10.14) H1
pb

(
Γ;Gωv,r,G

ω0,exc
v,r

) // H1
pb

(
Γ;Eωv,r,E

ω0,exc
v,r

)
αr

��

δ // H2
pb

(
Γ;Nω

v,r,N
ω0,exc
v,r

)
[b]7→AvΓ,v,rb(F)

��
Ar(Γ, v)

� � // C2(H)Γv,r

The vertical map on the right is given by associating to the cohomology class [b]
the average AvΓ,v,rb(F). By C2(H)v,r we mean the space C2(H) provided with the
action |v,r of Γ. The map αr is the composition of the connecting homomorphism δ
and the vertical map. Failure of injectivity might be caused by δ and by the average.

Lemma 10.16 below implies that the vertical map cannot contribute to the kernel
of αr. That leaves us with the connection homomorphism δ. Lemma 10.17 below
gives the vanishing of H1

pb(Γ;G
ω
v,w,G

ω0,exc
v,r ), and hence the injectivity of δ. �

Lemma 10.16. Let c ∈ Z1(FT. ;Eωv,r,E
ω0,exc
v,r ) and let c̃ be a lift of c as in (10.7). If

AvΓ,v,rdc̃(F) =
∑
γ∈{±1}\Γ dc̃(F)|v,rγ = 0 then dc̃ ∈ B2(FT. ;Nω

v,r,N
ω0,exc
v,r ).
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Proof. The proof is analogous to that of [15, Lemma 12.6]. Here we discuss it in
the modular case Γ = Γ(1).

A cocycle b ∈ Z2(FT. ;Nω
v,r,N

ω0,exc
v,r ) is determined by its values on the faces

(V∞) and (FY ). The freedom that we have within a cohomology class is to add
to

(
b(V∞), b(FY )

)
elements of three forms: (1) (u,−u), with u ∈ Nω

v,r (related to
the edge f∞), (2)

(
t|v,r(1 − T ), 0

)
with t ∈ Nω∗,exc

v,r (related to the edge e∞), (3)(
0, w|v,r(1 − γ)

)
with w ∈ Nω

v,r, γ ∈ Γ (related to the edges e1 and e2). So b(F) =
b(V∞)+b(FY ) is determined by b up to addition of an element ofNω∗,exc

v,r |v,r(1−T )+∑
γ∈ΓN

ω
v,r |v,r(1 − γ).

The first consequence of this description is that AvΓ,v,rb(F) does not depend on
the choice of b in its cohomology class.

Now we consider b = dc̃ as in the lemma. The element b(FY ) is inNω
v,r ⊂ C2

c (H).
So there is q > Y such that the support of b(FY ) does not intersect the region⋃

γ∈Γ

{
γz : Im z ≥ q

}
.

Further, since b(V∞) = c̃(e∞)|v,r(1 − T ) − c̃( f∞) and c̃(e∞) represents an element of
E
ω,exc
v,r [∞], we know that b(V∞) has support in a set of the form

{
z ∈ H : Im z >

ε, |Re z| ≤ ε−1} for some ε > 0. We deal with C2-functions, and hence we can
split off from b(V∞) an element u ∈ C2

c (H) = Nω
v,r and move it to b(FY ), by the

freedom indicated above. In this way we arrange that b(V∞) has support in the set
{z ∈ H : Im z > q − 1 , |Re z| ≤ ε−1}.

We take a partition of unity α on R: α ∈ C2
c (R) such that

∑
n∈Z α(x + n) = 1 for

all x ∈ R. We take β ∈ C2(0,∞) such that β(y) = 1 for y ≥ q + δ with δ > 0 and
β(y) = 0 for y ≤ q, and put χ(z) = α(Re z) β(Im z). So

∑
n χ(z+ n) = 1 for all z with

Im z ≥ q + δ.
The element b1 ∈ C2(FT· ;Nω

v,r,N
ω∗,exc
v,r ) determined by b1(FY ) = 0 and

b1(V∞)(z) =
∑
n∈Z

(
b(V∞) χ(· + n)

) ∣∣∣
v,r (1 − T−n)(z)

is a coboundary. (Note that the terms in the sum vanish for all but finitely many n.)
We define b̂ = b − b1, which is in the same cohomology class as b. Furthermore,

b̂(V∞)(z) = b(V∞)(z) −
∑

n

(
b(V∞)(z) · χ(z + n) − b(V∞)(z − n) · χ(z)

)
= α(Re z) β(Im z)

∑
γ∈{±1}\Γ(1)∞

b(V∞)|v,rγ (z)(10.15)

Now we use the assumption that AvΓ,v,rb(F) = 0. From our knowledge of the
supports of b(FY ) and b(V∞) we conclude that

(
AvΓ,v,rb(F)

)
(z) =

(
AvΓ,v,rb(V∞)

)
(z)

if Im z ≥ q + δ. Furthermore, for Im z ≥ q + δ the expression in (10.15) is equal
to α(x)

(
AvΓ,v,rb(V∞)

)
(z), since for the terms with γ < Γ(1)∞ the intersection of

the supports of the factors in (10.15) is empty. So b̂(V∞) vanishes on this domain,
hence it has compact support. So we can move b̂(V∞) to b̂(FY ).
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We are left with a cocycle b̂ given by b̂(V∞) = 0 and b̂(Fy) with support not
intersecting the region ⋃

γ∈Γ

{
γz : Im z ≥ q + δ

}
.

We take a Γ(1)-partition of unity ψ ∈ C∞(H) with support of ψ contained in the
union of finitely many Γ(1)-translates of F. So

∑
γ∈{±1}\Γ ψ(γz) = 1 for all z ∈ H,

and the sum is a finite sum for all z. We write f = b̂(F) = b̂(FY ), and know by the
assumption that AvΓ,v,r f = 0. For z ∈ H:

f (z) = f (z) − ψ(z)
(
AvΓ,v,r f

)
(z) =

∑
γ∈{±1}\Γ

(
f (z)ψ(γ−1z) − ψ(z) f |v,rγ (z)

)
=

∑
γ∈{±1}\Γ

(
f · (ψ ◦ γ−1)

)
|v,r(1 − γ) .

For almost all γ the intersection of the supports of f and ψ ◦ γ−1 have empty
intersections. So the sum is finite, and b̂ is a coboundary. �

Lemma 10.17. H1
pb(Γ;G

ω
v,r,G

ω0,exc
v,r ) = {0}.

Proof. Similar to the proof of [15, Proposition 12.5], to which we refer for the full
proof. Table 4 gives a list of corresponding notations and concepts.

holomorphic forms Maass forms wt. 0

Γ-module Gωv,r Γ-module Gωs
Γ-module Gω

0,exc
v,r Γ-module Gω

∗,exc
s

cocycle c cocycle ψ

c(ξ, ξ′) ψξ,ξ′

T 4. Correspondence with [15, Proposition 12.5].

Let c ∈ Z1(FT. ;Gωv,r,G
ω0,exc
v,r ) be given. This cocycle induces a map XT0 × XT0 →

E
ω0,exc
v,r which we also indicate by c. It has the properties in (9.3). The aim is to

show that it is a coboundary. To do that is suffices to show that the group cocycle
γ 7→ c(γ−1P0, P0) is a coboundary for one base-point P0 ∈ XT0 .

(a) There exists R > 0 such that Singr c(x) ⊂ NR(x) for all edges x ∈ XT1 . The set
NR(x) is an R-neighborhood of x for the hyperbolic metric if x is an edge in XT ,Y1 ,
and a more general neighborhood defined in [15, (12.2)] if x is an edge going to a
cusp.
(b) We prove that c(a, b) ∈ Hr(H) for any two cusps a, b.

Suppose that z ∈ Singr c(a, b). The value of c(a, b) is the value c(p) for any path
in Z[XT1 ] from a to b. We can move the path p away from z in such a way that z is
not in NR(x), in (a), for any of the edges x occurring in p. So Singr c(a, b) = ∅.
(c) By breaking up a path from a to b at a point P ∈ XT ,Y0 = XT0 ∩H it can be shown
that Singr c(P, a) is a compact subset of H for any path Z[XT1 ] from P to a ∈ C.
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(d) Now Lemma 10.9 can be applied to the conjugated element F = c(P, a)|rσ−1
a .

We note that F ∈ Gω
∗,exc

r , for Condition a), that its singularities are contained in a
compact set, for Condition b), and that

F|v,r(1 − πa) = c(P, a)|v,r(1 − πa) = c(P, π−1
a P) ∈ Gωv,r

implies Condition c). The conclusion is that F = Qa + G, with Qa ∈ G
ω0,exc
v,r

satisfying Qa|v,rπa = P, and G ∈ Gωv,r representing an element of Eωr . Then use
Lemma 10.7 to see that Qa ∈ Hr(H).
(e) Such an element Qa exists for all cusps a, and for b = γ−1a we have Qb =
Qa|v,rγ.
(f) The transformation properties of the Qa allow us to define another cocycle ĉ in
the same class as c by taking for x, y ∈ XT0 :

ĉ(x, y) := c(x, y) +
{

Qx if x ∈ XT0 r XT ,Y0
0 if x ∈ XT ,Y0

}
+

{
−Qy if y ∈ XT0 r XT ,Y0 ,

0 if y ∈ XT ,Y0 .

}
It has the property that ĉ(a, b) ∈ Hr(H) ∩ Gωr for all cusps a, b. Property (b) in
Part vii) of Proposition 8.4 implies that c(a, b) = 0 for all cusps. Taking a cusp as
the base point P0, we see that the cohomology class of the cocycle ĉ, and hence of
the original cocycle c, is zero. �

10.4. From analytic boundary germ cohomology to automorphic forms. We
have obtained two linear maps, qωr (Proposition 6.10) and αr (Proposition 10.10):

(10.16)

Ar(Γ, v)
qωr // H1(Γ;Eωv,r)

H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r )

αr

ggOOOOOOOOOOOO

We recall that H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r ) ⊂ H1(Γ;Eωv,r). The following theorem shows the

relation between these maps.

Theorem 10.18. Let Γ be a cofinite discrete group of SL2(R) with cusps. Let r ∈ C
and let v be a corresponding multiplier system.

i) Both linear maps qωr and αr in (10.16) are injective.
ii) Define

(10.17) AEr (Γ, v) :=
(
qωr

)−1H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r ) .

Then the restriction of qωr to AEr (Γ, v) and the restriction of αr to the
image qωr AEr (Γ, v) ⊂ H1

pb(Γ;E
ω
v,r,E

ω0,exc
v,r ) are inverse to each other.

AEr (Γ, v)
qωr // qωr AEr (Γ, v)
αr

oo
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Proof. Proposition 10.15 gives the injectivity of αr. Suppose that F ∈ ker qωr .
(Then F ∈ AEr (Γ, v) by the definition in (10.17).) Proposition 10.10 ii) shows that
αrqωr F = F, hence F = αr 0 = 0. This shows that qωr is injective. This gives Part i).

Part ii) of Proposition 10.10 shows that αr ◦ qωr is the identity on AEr (Γ, v). Since
qωr : AEr (Γ, v)→ qωr AEr (Γ, v) is surjective Part ii) follows. �

10.5. Completion of the proof of Theorem A for general weights. We con-
sider r ∈ C r Z≥2. Proposition 2.4 shows that rωr : Ar(Γ, v) → H1(Γ;Dω

r,2−r)
is a well-defined linear map. Theorem 3.9 shows that the image is contained in
H1

pb(Γ;D
ω
v,2−r,D

ω0,exc
v,2−r ). We have the following relations:

Ar(Γ; v)
rωr // H1

pb(Γ;D
ω
v,2−r,D

ω0,exc
v,2−r ) � � // H1(Γ;Dω

v,2−r)

AEr (Γ, v)
?�

OO

qωr // H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r )

ρr�

OO

Definition 8.1 of the highest weight spaces of boundary germs E∗r as isomorphic
to the corresponding highest weight spacesD∗2−r induces an isomorphism in coho-

mology. Theorem 3.9 implies that rωr Ar(Γ, v) ⊂ H1
pb(Γ;D

ω
v,2−r,D

ω0,exc
v,2−r ), and hence

qωr Ar(Γ, v) ⊂ H1
pb(Γ;E

ω
v,2−r,E

ω0,exc
v,2−r ) by qωr . So AEr (Γ, v) = Ar(Γ, v). Theorem 10.18

then gives the inverse αr of qωr :

Ar(Γ; v)
rωr // H1

pb(Γ;D
ω
v,2−r,D

ω0,exc
v,2−r ) � � // H1(Γ;Dω

v,2−r)

Ar(Γ, v)

=

OO

qωr // H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r )

ρr�

OO

αr
oo

10.6. Related work. As indicated at several places in this section, we followed
closely the approach of [15], §7 and §12.2–3.

11. A       2   
 

In this section we will prove Theorem D, which concerns automorphic forms
with weight r ∈ Z≥2 and analytic boundary germ cohomology.

Throughout this section we only treat the case of weight r ∈ Z≥2.

11.1. Image of automorphic forms in mixed parabolic cohomology. The linear
map qωr : Ar(Γ, v) → H1(Γ;Wω

v,r(P
1
R)

)
in Proposition 6.10 has image in H1(Γ;Eωr ),

by Property iv) in Proposition 8.4.

Definition 11.1. For all r ∈ C we define

(11.1) A0
r (Γ, v) :=

{
F ∈ Ar(Γ, v) : a0(a, F) = 0 for all cusps a with v(πa) = 1

}
.
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See (1.14) for the Fourier coefficients an(a, F) at the cusp a.
The idea is to allow automorphic forms with large growth at the cusps, but not

to allow constant terms in the Fourier expansion.

Proposition 11.2. Let r ∈ Z≥2. For each F ∈ Ar(Γ, v) the following statements are
equivalent:

a) qωr F ∈ H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r )

b) F ∈ A0
r (Γ, v).

We will base the proof on the following lemma:

Lemma 11.3. Let r ∈ Z≥2, z0 ∈ H, and λ = e2πiα with α ∈ C. Suppose that the
holomorphic function E on H is given by the Fourier expansion

E(τ) =
∑

n≡α(1)

an e2πinτ .

Then there exists h ∈ Eω,exc
r [∞] such that

(11.2) λ−1 h(z + 1) − h(z) =
∫ z0

τ=z0−1
Kr(z; τ) E(τ) dτ ,

if and only if λ , 1 or a0 = 0.

Remark. If λ , 1, then n in the Fourier expansion does not run over the integers,
and a0 is not defined.

Proof. This is a situation similar to that in §3.4. We can split up the Fourier expan-
sion of E. For the cuspidal part

Ec(τ) =
∑

n≡α(1),Re n>0

an e2πinτ

we can use

(11.3) hc(z) =
∫ ∞

τ=z0

Kr(z; τ) Ec(τ) dτ

for z ∈ Hr(z0 + i[0,∞)). (In this way we avoid the singularity at τ = z. See (6.12).)
Expression (7.8) gives, for those τ that have smaller hyperbolic distance to i

than z, an expression for Kr(z; τ) in terms of a linear combination of Mr,µ with
1 − r ≤ µ ≤ −1 and an explicit expression pr(z; τ). The factors of the Mr,µ are
holomorphic on P1

C
r {−i}, and pr(z; τ) is meromorphic on P1

C
×P1
C

, with singularity
in H × H given by 1

z−τ . So (7.8) is valid for all (z, τ) of interest in (11.3).
On insertion of (7.8) the integrals of the term with Mr,µ(z) yield, by the expo-

nential decay of Ec(τ), a multiple of Mr,µ, hence in Eωr . The term with pr(z; τ)
gives ∫ ∞

τ=z0

2i
z − τ

(τ − i)r−1

(z − i)r−1 Ec(τ) dτ .

It yields a holomorphic function on C r (z0 + i[0,∞)), hence the result is an ele-
ment of Dω,exc

r [∞]. Together with the multiples of Mr,µ we obtain an element of
E
ω,exc
r [∞] with the desired property.
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We proceed similarly with the contribution E∞(τ) of the part of the Fourier series
with Re n < 0. The path of integration is replaced by the path used in the proof of
Lemma 3.6. If |λ| , 1 we can take α ∈ iR, α , 0, and use the paths as in the proof
of Lemma 3.7. This gives a function h∞ satisfying

λ−1 h∞(z + 1) − h∞(z) =
∫ z0

τ=z0−1
Kr(z; τ) E∞(τ) dτ .

There remains the case of a constant Fourier term, present only if λ = 1. We
look for h ∈ Eω,exc

r [∞] such that

h0(z + 1) − h0(z) =
∫ z0

τ=z0−1
Kr(z; τ) dτ ,

which maps under the restriction map to a relation for ϕ = ρrh ∈ D
pol
2−r:

ϕ(t + 1) − ϕ(t) =
∫ z0

τ=z0−1
(τ − t)r−2 dτ =

(z0 − t)r−1 − (z0 − t − 1)r−1

r − 1
.

(We have used (6.13) and (1.19).) The right hand side is a polynomial in t with
(−t)r−2 as the term of highest degree in t. Any polynomial solution ϕ is a polyno-
mial with degree r − 1 in t, and hence is not inDpol

2−r. �

Remarks. (a) The function h = hc + h∞ + h0 ∈ E
ω,exc
r [∞] constructed in the proof

has Singr h ⊂ z0 + i[0,∞).
(b) If λ = 1 the constant term can be handled by

∫ z0

z0−1 Kr(z; τ) dτ = h0(z+1)−h0(z),
with

(11.4) h0(z) = −2i log(z − z0) + 2i log y − 2i
r−1∑
l=1

(
r − 1

l

)
(z − z0)l

l (z̄ − z)l .

We note that although h0 is an r-harmonic function, it does not represent an analytic
boundary germ: h0 <W

ω
r (R).

Proof of Proposition 11.2. Let z0 ∈ H, and consider the cocycle cz0
F in (6.19), which

represents the cohomology class qωr F of F ∈ Ar(Γ, v). The following statements
are equivalent:

• qωr F ∈ H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r ).

• For each cusp a there exists h ∈ Eω,exc
r [∞] that satisfies the relation (11.2)

with λ = v(πa), E = F|rσa, and z0 replaced by σ−1
a z0.

This gives the proposition. �

Relation (10.17) in Theorem 10.18 defines a subspace AEr (Γ, v) ⊂ Ar(Γ, v). We
state a direct consequence of Proposition 11.2:

Corollary 11.4. Let r ∈ Z≥2. Then AEr (Γ, v) = A0
r (Γ, v).

Next we would like to know that qωr A0
r (Γ, v) is equal to H1

pb(Γ;E
ω
v,r,E

ω0,exc
v,r ). This

requires quite some work, carried out in the following subsection.
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11.2. Image of mixed parabolic cohomology classes in automorphic forms.

Proposition 11.5. Let r ∈ Z≥2. The linear map αr : H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r )→ Ar(Γ, v)

in Proposition 10.10 has image in A0
r (Γ, v).

Proof. Let a cohomology class [c] ∈ H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r ) be given. In the proof

of Proposition 10.10 the image u = αr
(
[c]

)
is constructed in (10.9) as u(z) :=

u(C; z) = 1
4π c̃(C)(z), where the cochain c̃ ∈ C1(FT. ;Gωr ,G

ω0,exc
v,r ) is a lift of c ∈

Z1(FT. ;Eωv,r,E
ω0,exc
v,r ), and where C ∈ Z[XT1 ] is a path around z adapted to c̃. We

use a tesselation T and the corresponding resolution
(
FTi

)
=

(
Z[XTi ]

)
as discussed

in §9.
We want to show that the automorphic form has vanishing Fourier coefficients

at all cusps of Γ. It suffices to do this for one representative a of each Γ-orbit of
cusps for which v(πa) = 1. (If v(πa) , 1 there is no Fourier term of order zero at
the cusp a.) This can be handled for each such cusp separately. By conjugation we
can assume that a = ∞ and πa = T =

(
1
0

1
1

)
.

After the conjugation, the cuspidal sector V∞ looks exactly like that for the
modular group, in Figure 14, §9.1. The sector V∞ is bounded by edges e∞ from
P = 1

2 + iY (for some Y > 0) to ∞, T−1e∞ from T−1∞ to ∞, and f∞ from P∞
to T−1P∞. By holomorphy it suffices to consider the Fourier term of order 0 high
up in the cuspidal sector.

The cocycle c satisfies c( f∞) ∈ Eωr , c(e∞) ∈ Eω
∗,exc

r , and c(e∞)|r(1 − T ) = c( f∞).
By Lemma 10.4 this implies c(e∞) ∈ Eω,exc

r [∞]. We change the cocycle within
its cohomology class. Definition 8.2 shows that Eω,exc

r [∞] = Dω,exc
r [∞] + Eωr . So

there is k ∈ Eωr such that c(e∞)−k ∈ Dω,exc
r [∞]. We define f ∈ C0(FT. ;Eωr ,E

ω0,exc
r )

by taking f (γ−1P∞) = k|rγ for all γ ∈ Γ, and f = 0 on all other Γ-orbits in XT0 .
Then c1 = c − d f is in the same cohomology class as c, and satisfies c1(e∞) ∈
D
ω,exc
r [∞]. Replacing c by c1, we can assume that the cocycle c now satisfies

c(e∞) ∈ Dω,exc
r [∞] and then automatically c( f∞) ∈ Dω

r by the cocycle relation.
In the construction of u(C; z) in (10.9) we started with z in a given set Z and

showed that there are suitable cycles around it. Here we will take a special cycle C
and choose a region Z encircled by it, high up in H.
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e∞

Singr c̃( f∞)

�� �
��

Singr c̃(e∞)

F 18

Let c̃ ∈ C1(FT· ;Gωv,r,G
ω0,exc
v,r ) be a lift

of c. Since c( f∞) ∈ Dω
r , the set

Singr c̃( f∞) is compact in H. The lift
c̃(e∞) can be chosen such that H r
Singr c̃(e∞) is an {∞}-excised neigh-
borhood. The regions where c̃(e∞)
and c̃( f∞) are not holomorphic may be
large, and cover the sector V∞. We have
drawn the edges x = e∞, f∞ inside the
singular set Singr c̃(x). This can always
be arranged, by the freedom we have
in the choice of the representative c̃(x)
of c(x).

We would like to enclose the set Z
on which to study the function u by the
boundary ∂2V∞ = e∞ − T−1e∞ − f∞.
However, the corresponding sets of sin-
gularities may very well overlap, leav-
ing no space for a region Z. Instead of
this, we take the union of a number of
translates T−nV∞.

V∞T−1V∞ TV∞

f∞

F 19
We take k ∈ Z≥1 large, such that there is a region of width at least 2 between

Singr c̃(T−ke∞) = T−kSingr c̃(e∞) and Singr c̃(T ke∞) = T kSingr c̃(e∞). We put
gk =

∑k−1
n=−k T−n f∞. This leads to the situation in Figure 20. There is a region Q

�� �
����

Singr c̃(T ke∞)Singr c̃(T−ke∞)

Singr c̃(gk)

Q

R

F 20. Illustration of regions of non-holomorphy.

high up in the upper half-plane of width at least 2 on which c̃(T±ke∞) and c̃(gk) are
holomorphic. The region S is disjoint from the region R in the complement of the
three singular sets that has R in its boundary.

We consider the cycle C = (T ke∞) − (T−ke∞) − ( f (k)
∞ ) ∈ Z[XT1 ], with k as fixed

above. It encircles Q once, so 4π u(z) = c̃(C) (z) for z ∈ S . Furthermore, c̃(C) (z) =
0 for z ∈ R by the cocycle relation.
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We had arranged that c( f∞) ∈ Dω
r . Hence g = c̃( f∞) ∈ Gωr is a global repre-

sentative of an element of Dω
r and h ∈ C2(C) represents an element of Dω,exc

r [∞].
So we can apply Lemma 4.4, with r replaced by 2 − r. So there are holomorphic
1-periodic functions p+ and p− on C such that

c̃(e∞) = Av±T,1c̃( f∞) + p± on H.

This implies on H:

c̃(C)(z) =
((

Av−T,1c̃( f∞)
)
|rT−k(z) + p−(z)

)
−

(
Av+T,1c̃( f∞)

)
|rT k + p+(z)

)
−

k−1∑
n=−k

c̃( f∞)|T n

= −

−1−k∑
n=−∞

c̃( f∞)(z + n) + p−(z) −
∞∑

n=k

c̃( f∞)(z + n) − p+(z) −
k−1∑

n=−k

c̃( f∞)

= p−(z) − p+(z) −
∑
n∈Z

c̃( f∞)(z + n) .

Next we apply Proposition 4.3 to c̃( f∞). The 1-periodic function AvT,1c̃( f∞)(z) =∑
n∈Z c̃( f∞)(z + n) on H is holomorphic on a region of the form 0 < Im z < ε and

on a region y > ε−1 for some ε ∈ (0, 1). We denote the holomorphic function on
the upper region by Av↑T,1c̃( f∞), and the holomorphic function on the lower region

by Av↓T,1c̃( f∞). Proposition 4.3 states that Av↑T,1c̃( f∞) has a Fourier expansion with

terms of positive order only, and Av↓T,1c̃( f∞) a Fourier expansion with only terms of
negative order.

The domain of AvT,1 ↓ c̃( f∞) is contained in the region R. There we find

0 = c̃(C)(z) = p−(z) − p+(z) −
(
Av↓T,1c̃( f∞)

)
(z) .

So all Fourier terms of p− − p+ of order n ≥ 0 vanish. This holds on H, since
p− − p+ is holomorphic and 1-periodic on H.

If z ∈ Q then z is in the domain of Av↑T,1c̃( f∞), and

4π u(C; z) = c̃(C)(z) = p−(z) − p+(z) − Av↑T,1c̃( f∞) .

The function
(
Av↑T,1c̃( f∞)

)
(z) is given by a Fourier expansions with terms of positive

order. The term p− − p+ has a Fourier expansion with terms of negative order.
Hence the Fourier coefficient of u at∞ of order 0 vanishes. �

Corollary 11.6. Let r ∈ Z≥2. Then H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r ) = qωr A0

r (Γ, v).

Proof. By Proposition 11.5 we have αrH1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r ) ⊂ A0

r (Γ, v).

A given class [c] ∈ H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r ) has image αr[c] ∈ A0

r (Γ, v), and hence
qωr αr[c] ∈ qωr AEr (Γ, v) = qωr A0

r (Γ, v) (Corollary 11.4). Part ii) of Theorem 10.18
implies that αrqωr αr[c] = αr[c], and then qωr αr[c] = [c], by the injectivity of αr in
Part i) of that theorem. This proves that H1

pb(Γ;E
ω
v,r,E

ω0,exc
v,r ) ⊂ qωr A0

r (Γ, v).
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The other inclusion follows from (qωr )−1H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r ) = A0

r (Γ, v) (Proposi-
tion 11.2). �

11.3. Exact sequences for mixed parabolic cohomology groups.

Proposition 11.7. Let r ∈ Z≥2. We put K1,2 := Dpol
1,0 � C (trivial representation),

and Kv,r := {0} if r ∈ Z≥3 or v , 1.
The rows in the following commuting diagram are exact. (We have suppressed

Γ from the notation.)

(11.5)

Kv,r // H1(Dω
v,r) // H1(Eωv,r)

ρr // H1(Dpol
v,2−r)

// 0

Kv,r // H1
pb(D

ω
v,r,D

ω0,exc
v,r ) //

?�

OO

H1
pb(E

ω
v,r,E

ω0,exc
v,r )

ρr //
?�

OO

H1
pb(D

pol
v,2−r)

?�

OO

Proof. We use a commuting diagram of Γ-modules:

(11.6)

0 // Dω
v,r //
� _

��

Eωv,r
ρr //

� _

��

D
pol
v,2−r

// 0

0 // Dω0,exc
v,r

// Eω
0,exc

v,r
ρr // D

pol
v,2−r

// 0

Both rows in this diagram are exact. Most of the exactness is clear from the def-
initions. The surjectivity of ρr : Eωv,r → D

pol
2−r and of the corresponding map

in the second row follows from the fact that (ρprj
r Mr,µ)(t) =

(
t−i
t+i

)µ+1
, such that

(ρr Mr,µ)(t) = (i − t)r−2
(

t−i
t+i

)µ+1
form for 1 − r ≤ µ ≤ −1 a basis of the space

of polynomials of degree at most r − 2. See Table 2 in §7.1, (1.19) and (6.17). The
upper row in (11.5) is part of the long exact sequence in group cohomology. Since
Γ has cusps, all groups H2(Γ; V) are zero. (See, e.g., [15, §11.2].) The Γ-invariants
ofDpol

v,2−r are zero, unless r = 2 and v = 1, whenDpol
1,2−2 is the trivial representation.

This gives the exactness of the upper row.
To use [15, Proposition 11.9] for the lower row, we need also exactness of

0→ (Dω0,exc
v,r )Γa → (Eω

0,exc
v,r )Γa

ρr
→ (Dpol

v,2−r)
Γa → 0

for each cusp a of Γ. Most of the exactness follows from Part iii) in Proposition 8.3.
For the surjectivity of ρr we conjugate a to ∞, and use the Fourier expansion in
Part ii) of Lemma 8.7. The restriction ρr sends the holomorphic contributions
to zero. Only if v(πa) = 1 there may be a multiple of y1−r; and we note that
ρry

1−r = −(2i)r−2 spans the T -invariants inDpol
2−r. If v(πa) , 1 there is no multiple of

y1−r, and there are no non-zero elements inDpol
2−r on which T acts as multiplication

by v(πa).
Proposition 11.9 in [15] gives a long exact sequence of the corresponding mixed

parabolic cohomology groups, of which the lower row is a part. We use [15,
(11.11)], which tells us that H0

pb(Γ; V) is the space of invariants VΓ. Hence we
get Kv,r on the left. �
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Remark. In the second line of diagram (11.5) we have not written a terminating
→ 0. We did not succeed in proving this directly, for instance by showing that

H2
pb(Γ;D

ω
v,r,D

ω0,exc
v,r )→ H2

pb(Γ;E
ω
v,r,E

ω0,exc
v,r )

is injective. For unitary multiplier system the surjectivity of

ρr : H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r )→ H1

pb(Γ;D
pol
v,2−r)

is known to hold, by classical results, as we will discuss in §11.5.

11.4. Automorphic forms and analytic boundary germ cohomology. We pro-
ceed under the assumption r ∈ Z≥2. In the diagram

(11.7)

H1
pb(Γ;D

ω
v,r,D

ω0,exc
v,r ) // H1

pb(Γ;E
ω
v,r,E

ω0,exc
v,r )

αr �

��
A2−r(Γ, v)

�rω2−r

OO

A0
r (Γ, v)

qωr

OO

we use Theorem A in the weight 2− r ∈ Z≤0 to get the isomorphism rωr on the left.
The isomorphisms αr and qωr on the right follow from Theorem 10.18, Corollaries
11.4 and 11.6. The horizontal arrow denotes the natural map associated to the
inclusions Dω

v,r ⊂ E
ω
v,r and Dω0,exc

v,r ⊂ E
ω0,exc
v,r . The following results makes this into

a commutative diagram:

Lemma 11.8. Let r ∈ Z≥2. Let cr =
i
2

1
(r−1)! . Let Kv,r be as defined in Proposi-

tion 11.7.
The following diagram commutes and has exact rows:

(11.8)

Kv,r // H1
pb(Γ;D

ω
v,r,D

ω0,exc
v,r )

id // H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r )

αr �

��
Kv,r //

×(−i/2)

OO

A2−r(Γ, v)

� rω2−r

OO

cr ∂
r−1
z // A0

r (Γ, v)

qωr

OO

By id we indicate the homomorphism induced by the inclusionsD∗v,r → E
∗
v,r.

Proof. Bol’s equality ∂r−1
z

(
F|2−rg) = F(r−1)|rg for g ∈ SL2(R), which appears in [6,

§8], implies that cr ∂
r−1
z determines a map A2−r(Γ, v)→ Ar(Γ, v). Since the constant

functions are the sole polynomials that can be automorphic forms, the kernel is Kv,r.
So the lower row is exact. Proposition 11.7 gives the exactness of the upper row.

For the commutativity of the left rectangle we assume r = 2 and v = 1. The
map rω2−r sends the constant function 1 to the class represented by the cocycle
γ 7→ ψz0

1,γ(t) = 1
t−z0
− 1

t−γ−1z0
, for an arbitrary base point z0 ∈ H. The constant

function − i
2 ∈ K1,2 � (Dpol

1,0 )Γ has a lift t 7→ − i
2 K2(t; z0) in Eω1,2, with the kernel

function K2 defined in (6.12). So the connecting homomorphism sends ψz0
1 to the

cocycle χ determined by χγ = − i
2 K2(·; z0)|1,2(1 − γ). The kernel function Kr has
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the invariance property Kr(·; ·)|rg ⊗ |2−rg = Kr(·; ·), in (6.14). For γ =
(

a
c

b
d

)
∈ Γ:

χγ(t) = −
i
2

K2(t; z0) +
i
2

(a − cz0)0 K2(t; γ−1z0) =
1

t − z0
−

1
t − γ−1z0

= ψz0
1,γ(t) .

For the commutativity of the second rectangle we start with F ∈ Ar−2(Γ, v) and
compute its image under the composition αr ◦ id ◦ rωr−2. We use the description of
cohomology with a tesselation as discussed in §9. The cocycle c representing rωr F
is determined by

cF(x; z) =
∫

x
(z − t)−r F(z) dz ,

where x ⊂ H is an oriented edge in XT ,Y1 .
The function cF(x; ·) is defined on Crx, and represents an element ofDω

v,2. Since
Dω
v,r ⊂ E

ω
v,r, the same cocycle represents id(rωr F). The image of id(qωr F) under the

map αr in Proposition 10.10 is an automorphic form u ∈ Ar(Γ, v). By analytic
continuation it is determined by its value on the interior F̊Y of the face FY ∈ XT ,Y2 .
(It is important to use a face that is completely contained in H; otherwise c(x) need
not be given by the integral above for all edges x in the boundary of ∂2FY .) We
apply Proposition 10.15. It gives, for z ∈ F̊Y

u(z) =
1

4π
cF(∂2FY )(z) =

1
4π

∑
x∈∂2FY

cF(x; z) =
1

4π

∑
x∈∂2FY

∫
x
(τ − z)−r F(τ) dτ

=
1

4π

∫
∂2FY

(τ − z)−r F(τ) dτ =
2πi
4π

1
(r − 1)!

F(r−1)(z) =
(
cr ∂

r−1
z F

)
(z) . �

Lemma 11.9. Let r ∈ Z≥2. The map qωr : Ar(Γ, v) → H1(Γ;Eωv,r) is injective and
the following diagram commutes:

(11.9)

H1(Γ;Eωv,r)
ρr // H1(Γ;Dpol

v,2−r)

H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r )

?�

OO

A0
r (Γ, v)

qωr �
OO

� � // Ar(Γ, v)
P0

qωr

aaCCCCCCCCCCCCCCCCCCC

rωr

??�����������������

Proof. Suppose that F ∈ Ar(Γ, v) satisfies qωr F = 0. Then F is in the space AEr (Γ, v)
in (10.17), and then F = 0 by the injectivity in Part i) of Theorem 10.18.
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The commutativity of the left triangle is a direct consequence of the definitions.
For the right triangle we start with the commutativity of the diagram in Proposi-
tion 6.10, where we can replaceDω

v,2−r byDpol
v,2−r, since r ∈ Z≥2.

H1(Γ;Wω
v,r(P

1
R)

) ρ
prj
r // H1(Γ;Vω

v,2−r(P
1
R)

)

H1(Γ;Eωv,r)

ggOOOOOOOOOOOO
ρr // H1(Γ;Dpol

v,2−r)

prj2−r

OO

Ar(Γ, v)
rωr

66nnnnnnnnnnnn

qωr

__?????????????????????
qωr

OO

We have chosen the spaces E∗v,r in such a way the the image of qωr is in H1(Γ;Eωv,r).
From ρr = prj−1

2−rρ
prj
r (Definition 6.17) and Part iii) of Proposition 8.3 it follows that

we can go directly from H1(Γ;Eωv,r) to H1(Γ;Dpol
v,2−r). �

Recapitulation of the proof of Theorem D. The commutativity of various parts of
the diagram in (5) in Theorem D follows from Proposition 11.7 and the Lemmas
11.8 and 11.9.

The exactness of the top row and the second row, in Part ii), are given by Propo-
sition 11.7, which gives also the information in Part iii) of the theorem.

The injectivity of qωr : Ar(Γ, v) → H1(Γ;Eωv,r) is shown in Lemma 11.9, the in-
jectivity of the vertical maps between cohomology groups follows directly from
the definition of (mixed) parabolic cohomology. The bijectivity of rω2−r is given
by Theorem A for weights not in Z≥2, and the injectivity of qωr : A0

r (Γ, v) →
H1

pb(Γ;E
ω
v,r,E

ω0,exc
v,r ) is a consequence of Theorem 10.18 and Corollary 11.4. �

11.5. Comparison with classical results. In the following part of diagram (5) in
Theorem D

(11.10)

H1(Γ;Eωv,r)
ρr // H1(Γ;Dpol

v,2−r)
// 0

H1
pb(Γ;E

ω
v,r,E

ω0,exc
v,r )

ρr //
?�

OO

H1
pb(Γ;D

pol
v,2−r)

?�

OO

the absence of an arrow→ 0 in the second row is remarkable. The surjectivity of
ρr in the top row is a consequence of the general fact that H2(Γ; V) = {0} for any
Γ-module for groups Γwith cusps. See, eg., [15, §11/2]. In the long exact sequence
corresponding to the diagram in (11.6) there is a sequel

H1
pb(Γ;D

pol
v,2−r)→ H2

pb(Γ;D
ω
v,r,D

ω0,exc
v,r )→ H2

pb(Γ;D
ω
v,r,D

ω0,exc
v,r )

that may be non-zero. It would be interesting to see that in general the second row
in (11.10) is surjective.

We review some classical results, under the assumption that the multiplier sys-
tem v for weight r ∈ Z≥2 is unitary.
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The elements of Dpol
2−r are polynomial functions, and hence are holomorphic on

C. This space of polynomials is invariant under the involution ι in (1.6). The action
is changed (unless v is real-valued): ι : Dpol

v,2−r ↔ D
pol
v̄,2−r. This induces involutions

(11.11)

H1(Γ;Dpol
v,2−r)

ι // H1(Γ;Dpol
v̄,2−r)

H1
pb(Γ;D

pol
v,2−r)

ι //
?�

OO

H1
pb(Γ;D

pol
v̄,2−r)

?�

OO

The linear map rωr : Ar(Γ, v) → H1(Γ;Dpol
v,2−r) has an antilinear counterpart ιrωr :

Ar(Γ, v)→ H1(Γ;Dpol
v̄,2−r), in which ιrωr F is represented by

γ 7→

∫ z0

z=γ−1z0

F(z) (z̄ − t)r−2 dz̄ .

We now look at the classical theory in [56], where Theorem 1 gives

(11.12) H1(Γ;Dpol
v,2−r) = rωr Mr(Γ, v) ⊕ ιrωr̄ Sr(Γ, v̄) .

The restriction of rωr to Mr(Γ, v) is a multiple of the map β in [56] and [64, §1.3].
It is described by (r−1)-fold integration. The construction of (ιrωr̄ ) f for f ∈ Sr(Γ, v̄)
is carried out by forming g∗ ∈ Ar(Γ, v), the “supplementary function”, and then
forming (a multiple of) rωr g∗ with the property that rωr g∗ is a multiple of ιrωr̄ f . (The
resulting antilinear map Sr(Γ, v̄) → H1(Γ;Dpol

v,w−r) is called α in [56]. In particular,
rωr g is a parabolic class, in H1

pb(Γ;D
pol
v,2−r). The computations in §3.4, especially

Lemma 3.8, show that g ∈ A0
r (Γ, v). With Theorem 1 in [56], we conclude that

H1
pb(Γ;D

pol
v,2−r) is contained in rωr A0

r (Γ, v). The diagram in Theorem D implies that

H1
pb(Γ;D

pol
v,2−r) = rωr A0

r (Γ, v). So indeed, the classical theory gives us the missing
surjectivity, for unitary multiplier systems.

We note that in [64] the map α is constructed in a different way, with automor-
phic integrals of Niebur [91]. For the purpose of this subsection the supplementary
functions used in [56] are more useful.

Remark. Knopp, Lehner and Raji [68] [70] [100, 101] have studied cohomology
classes associated to generalized modular forms for which the multiplier systems
need to satisfy |v(π)| = 1 only for parabolic π ∈ Γ.

11.6. Related work. In this section we connected the classical results concerning
the relation between automorphic forms and Eichler cohomology to the boundary
germ cohomology in Theorem 10.18.

Part IV. Miscellaneous

We have proved Theorems A–D in the introduction, and some of the isomor-
phisms in Theorem E in §1.7. In Sections 12 and 13 we complete the proof of



106 ROELOF BRUGGEMAN, YOUNGJU CHOIE, AND NIKOLAOS DIAMANTIS

Theorem E. In Section 14 we discuss quantum automorphic forms and their re-
lation to cohomology. We close this part with Section 15, which gives further
remarks on the literature.

12. I    

12.1. Invariants under hyperbolic and parabolic elements. For Γ-modules V ⊂
W there is a natural map H1

pb(Γ; V,W) → H1
pb(Γ; W), which turns out to be an iso-

morphism in several cases under consideration. It takes quite some work to sort
this out. As a first step, we consider for parabolic and hyperbolic elements γ ∈ Γ
the spaces Vγ =

{
v ∈ V : v|γ = v

}
of invariants in the Γ-modules V under

consideration.

Parabolic elements. Lemma 3.1 implies that for a parabolic π ∈ Γ we have
(Dω∗

r,2−r)
π ⊂ Dω

v,2−r[a], where a is the cusp fixed by π.

Lemma 12.1. Let r ∈ C, and let π ∈ Γ be parabolic. We denote λ = v(π).
a) The dimensions of various spaces of invariants are as follows:

r < Z≥1 or λ , 1 r = 1 and λ = 1 r ∈ Z≥2 and λ = 1

dim(Dω∗

v,2−r)
π ∞ ∞ ∞

dim(Dω∗,exc
v,2−r )π ∞ ∞ ∞

dim(Dω∗,smp
v,2−r )π 0 1 1

dim(Dω∗,∞
v,2−r )π 0 0 1

b) In all cases (Dω∗,∞
v,2−r )π = (Dω

v,2−r)
π, and (Dω

v,2−r)π = (Dpol
v,2−r)

π if r ∈ Z≥2.

Proof. Going over to π−1 if necessary, the element π is conjugate in SL2(R) to
T =

(
1
0

1
1

)
. After conjugation we find that invariance amounts to ϕ(t + 1) = λ ϕ(t),

with λ = v(π) ∈ C∗. This has solutions given by
∑

n≡α(1) an e2πint with e2πiα = λ.
For Dω∗

v,2−r we need convergence on a half-plane Im t < ε for some ε > 0. For

D
ω∗,exc
v,2−r the λ-periodicity of ϕ implies that ϕ extends holomorphically to all of C,

and hence we need convergence on all of C. In both cases in Part i) we get an
infinite-dimensional space of invariants.

In the other parts there is a condition at ∞, which implies that (prj2−rϕ)(t) :=
(i − t)2−r ϕ(t) has an asymptotic expansion of the form (prj2−rϕ)(t) ∼

∑
`≥k c` t−`,

valid as t ∈ H− approaches ∞. For Dω∗,smp
v,2−r we have k = −1, and for Dω∗,∞

v,2−r and its
submodules, k = 0.

So if ϕ , 0 the expansion starts with dn tr−2−n + dn+1 tr−3−n + · · · , where dn , 0
and n ≥ k. We insert this into the invariance relation. If λ , 1, the starting term
shows that dn = 0. So for λ , 1 no invariants exist inDω∗,smp

v,2−r and smaller modules.
If λ = 1 then we find from the second term that dn (r − 2 − n) = 0. So for an

invariant the expansion should start at n = r − 2. Since n ≥ k, this leads to r ∈ Z≥1

for Dω∗,smp
v,2−r , and r ∈ Z≥2 for the smaller modules. Thus we have ϕ(t) = dr−2 +

dr−1 t−1 + · · · . There is indeed an easy invariant under these conditions, namely
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the constant function ϕcst(t) = 1. It is in each of the modules. If ϕ − dr−2 ϕcst is
non-zero it is O(t−1) and has to be zero. So the dimension of the space of invariants
equals 1. �

Remark. For π = T and v(T ) = 1, the proof shows that the invariants are the
constant functions. For other parabolic elements π = gTg−1 the spaces of invariants
in Parts ii)–iv) of the lemma have dimension 1, but need not consist of constant
functions.

Hyperbolic elements and closed geodesics. An element γ =
(

a
c

b
d

)
∈ SL2(R) is

hyperbolic if a+d > 2. A hyperbolic element γ of SL2(R) has exactly two invariant
points in P1

C
, situated on P1

R, say ξ and ξ′. On the geodesic in H connecting ξ and ξ′

the action of γ on the points of the geodesic amounts to a shift over a fixed distance
for the hyperbolic metric, which we call `(γ). We note that `(γn) = |n| `(γ) for
n ∈ Z. The image in Γ\H of that invariant geodesic is a so-called closed geodesic,
with length `(γ).

A hyperbolic subgroup H of Γ is a subgroup generated by a hyperbolic γ and
−1. Such a hyperbolic generator γ is a primitive hyperbolic element of Γ. The
inverse γ−1 is the other primitive hyperbolic element in H. We can conjugate a

hyperbolic element γ in SL2(R) to
(

p1/2

0
0

p−1/2

)
with p = e`(γ) > 1. This element has

∞ as attracting fixed point, and 0 as repelling fixed point.

Lemma 12.2. Let λ ∈ C∗, and let γ ∈ SL2(R) be hyperbolic. If f ∈ Dω∗

2−r satisfies
f |2−rγ = f , then f ∈ Dω

2−r[ξ, ξ
′], where ξ and ξ′ are the fixed points of γ.

Proof. Analogous to the proof of Lemma 3.1. �

To formulate the following result it is convenient to introduce for a hyperbolic
γ ∈ Γ the quantity κ := κv,2−r(γ) ∈ C that is uniquely determined by

(12.1) eκ `(γ) = v(γ) e(r/2−1) `(γ) , and −
π

`(γ)
< Im κ ≤

π

`(γ)
,

where `(γ) is the length of the periodic geodesic corresponding to γ.

Lemma 12.3. Let r ∈ C, and let γ be a hyperbolic element of Γ, corresponding to
a closed geodesic in Γ\H with length `(γ).

a) With κ = κv,2−r(γ) as in (12.1) the dimensions of various spaces of invari-
ants are as follows:

r < Z or r ∈ Z≥0 and κ, r ∈ Z and

κ ≤ −2 or κ ≥ r κ ∈ {−1, r − 1} 0 ≤ κ ≤ r − 2

dim(Dω∗

v,2−r)
γ ∞ ∞ ∞

dim(Dω∗,exc
v,2−r )γ ∞ ∞ ∞

dim(Dω∗,smp
v,2−r )γ 0 1 1

dim(Dω∗,∞
v,2−r )γ 0 0 1
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b) In all cases (Dω
v,2−r)

γ = (Dω∗,∞
v,2−r )γ, and (Dω

v,2−r)
γ = (Dpol

v,2−r)
γ if r ∈ Z≥2.

Proof. We conjugate γ in SL2(R) to
(

p1/2

0
0

p−1/2

)
, where p = e`(γ), which leaves fixed

0 and∞, and the geodesic between them. This leads to the equation

(12.2) p1−r/2 ϕ(pt) = v(γ)ϕ(t) .

The solutions ϕ ∈ Dω∗

v,2−r are given by a Fourier series of the form∑
n∈Z

dn
(
it
)α+2πin/`(γ) ,

convergent for at least −π2 < arg(it) < π
2 , and α in the set

(12.3)
Ev,2−r(γ) =

{ r
2
− 1 +

log v(γ) + 2πin′

`(γ)
: n′ ∈ Z

}
=

{
κv,2−r(γ) +

2πin
`(γ)

: n ∈ Z
}
.

With the standard choice of the argument, (it)α is well defined on C r i[0,∞). The
coefficients in the Fourier series should be such that we have convergence on a
region −π2 −ε < arg(it) < π

2 +ε with some ε > 0. To get a holomorphic function on
an excised neighborhood with excised set {0,∞}, we need to pick coefficients such
that we have convergence for −π < arg(it) < π. This leads to the first two lines in
the table in Part a).

For the smaller modules there should be asymptotic expansions at 0 and∞. Let
k = −1forDω∗,smp

v,2−r and k = 0 forDω∗,∞
v,2−r . In the expansion at zero there can be only

terms (it)α with α ∈ Ev,2−r(γ) ∩ Z≥k. The function t 7→ tr−2 ϕ(−1/t) should also
have an expansion with terms tm with m ≥ k. Hence we have the further restriction
r − 2 − α ∈ Z≥k. So the exponents α ∈ Ev,2−r(γ) should satisfy

α ∈ Ev,2−r(γ) ∩ Z ∩
(
r − 2 + Z) and k ≤ α ≤ r − 2 − k .

So we should have r ∈ Z. The condition on Im κv,2−r(γ) in (12.1) implies that
α = κv,2−r(γ) ∈ Z and n = 0. The remaining condition gives k ≤ κv,2−r(γ) ≤ r−2−k.
This gives the third and fourth line in the table. This completes the proof of Part a).

Moreover, if r ∈ Z≥2, any invariant t 7→ tκ that is in Dω∗,∞
v,2−r is in Dpol

v,2−r. This
gives Part b). �

Remark. The characterization depends on the primitive hyperbolic element γ. The
element γ−1 is primitive hyperbolic as well, and

(12.4) κv,2−r(γ−1) ≡ r − 2 − κv,2−r(γ) mod 2πi/`(γ) .

The transition x 7→ r − 2 − x maps the set Ev,2−r(γ) in (12.3) into Ev,2−r(γ−1).

Lemma 12.4. Suppose that both fixed points ξ and ξ′ of the hyperbolic element
γ ∈ Γ are in R and satisfy ξ < ξ′. If r and κ in the previous lemma are integral,
and −1 ≤ κ ≤ r − 1, then the γ-invariants in Dω∗,smp

v,2−r are spanned by the rational
function

t 7→ (t − ξ′)r−2−κ(t − ξ)κ .
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Proof. We use

g = |ξ − ξ′|−1/2
(
ξ′

1
ξ

1

)
∈ SL2(R)

to transform the geodesic i(0,∞) into the geodesic from ξ to ξ′. We work with
t ∈ H−, and denote by .

= that we ignore non-zero factors that do not depend on t:

(it)κ|2−rg
−1 (t) .

= (−t + ξ′)r−2
( t − ξ
−t + ξ′

)κ .
= (t − ξ′)r−2−κ (t − ξ)κ . �

12.2. Modules of singularities. In the sequel we will deal with two Γ-modules
V ⊂ W, where V = Dω

v,2−r, and W is one of the following larger modules:

(12.5) (a) : Dω∗

v,2−r , (b) : Dω∗,exc
v,2−r , (c) : Dω∗,smp

v,2−r , (d) : Dω∗,∞
v,2−r .

Definition 12.5. In each of the cases in (12.5) we consider the quotient module

(12.6) S := W/V ,

which we call the module of singularities. We write Sω
∗

v,2−r, S
ω∗,exc
v,2−r , . . ., if we want

to indicate the case under consideration explicitly.

Definition 12.6. For ξ ∈ P1
R we put Sξ := W[ξ]/V ⊂ S, where W[ξ] consists of

the elements f ∈ W with BdSing f ⊂ {ξ}.

Remarks. (a) The space Sξ is a subspace of S, not the stalk of a sheaf.

(b) The direct sum
⊕

ξ∈P1
R
Sξ is a submodule of S.

Definition 12.7. We say that the module S = W/V has separation of singularities
if

S =
⊕
ξ∈P1

R

Sξ .

Proposition 12.8. For all cases in (12.5) the module S has separation of singular-
ities.

Proof. In [15, Proposition 13.1] this is shown for the sheaves used in that paper:
V = Vω

s , the sheaf of analytic functions with action of PSL2(R) specified by the
spectral parameter s and W a subsheaf of Vω∗,exc

s . It is based on the result of
complex function theory that if Ω1 and Ω2 are open sets in C any holomorphic
function f on Ω1 ∩ Ω2 can be written as f = f1 − f2 with f1 ∈ O(Ω1), f2 ∈ O(Ω2).
See, e.g., [55, Proposition 1.4.5].

This shows that if f ∈ O(U) for some open set containingH− and P1
Rr{ξ1, . . . , ξn}

represents an element of Dω∗

v,2−r, then we can take a neighborhood U1 ⊃ U of
H− ∪

(
P1
R r {ξ1}

)
, and U2 ⊃ U a neighborhood of H− ∪

(
P1
R r {ξ2, . . . , ξn}

)
. Then

f2 represents an element ofDω
v,2−r[ξ1] and f1 an element ofDω

v,2−r[ξ2, . . . , ξn]. Suc-
cessively we can write each element of Dω

v,2−r[ξ1, . . . , ξn] non-uniquely as the sum
of elements in the spaces Dω

v,2−r[ξ j]. This shows that Sω
∗

v,2−r has separation of sin-
gularities.
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For the other spaces S = W/V we have W ⊂ Dω∗

v,2−r. All these subspaces are
defined by conditions on the singularities of a local nature, based on the properties
of a representative at each ξ in the set of singularities separately. Addition of an
element for which ξ is not in the set of boundary singularities does not influence
the condition at ξ. So separation of singularities is inherited from Sω

∗

v,2−r. �

Lemma 12.9. Let r ∈ C.
i) The space of invariants SΓ is zero.

ii) Let γ ∈ Γ be hyperbolic, with fixed points ξ and ξ′. By `(γ) we denote the
length of the associated geodesic. Then the dimensions of the spaces of
invariants are as follows.

v(γ) , e−r`(γ)/2 v(γ) = e−r`(γ)/2

dim
(
(Sω

∗

v,2−r)ξ
)γ

∞ ∞

dim
(
(Sω

∗,exc
v,2−r )ξ

)γ
∞ ∞

dim
(
(Sω

∗,smp
v,2−r )ξ

)γ 0 1

dim
(
(Sω

∗,∞
v,2−r)ξ

)γ 0 0

Proof. Part i) follows from the facts that the set of singularities BdSing f for f ∈ W
is Γ-invariant, and that all Γ-orbits in P1

R are infinite.
In Part ii) we denote V = Dω

v,2−r, and take for W one of the modules Dω∗

v,2−r,

D
ω∗,exc
v,2−r , Dω∗,smp

v,2−r , and Dω∗,∞
v,2−r . There is an injective map Wγ/Vγ → Sγ. The image

is contained in Sξ⊕Sξ′ . With separation of singularities, we can split each element
of Sγ as a component in (Sξ)

γ and a component in (Sξ′)
γ.

We conjugate γ in SL2(R) to
(

p1/2

0
0

p−1/2

)
with p = e`(γ). The invariants t 7→

(it)κ+
2πin
`(γ) in (12.3) in the proof of Lemma 12.3 have a singularity at 0, unless possi-

bly for n = 0. This leads to the first two lines in the table.
Now let W = D

ω∗,smp
v,2−r or W = D

ω∗,∞
v,2−r . The component in (S0)γ of the image

f + V in S is invariant if and only if 0 ∈ BdSing f and f |v,2−r(γ − 1) ∈ V . Let
f (t) ∼

∑
n≥k cm tm be the asymptotic expansion at 0, with k = −1 for Dω∗,smp

v,2−r , and

k = 0 forDω∗,∞
v,2−r .

If k = −1 the term c−1t−1 can be non-zero if p−r/2 = v(γ). Then f (t) = t−1 leads
to a non-zero element of (S0)γ.

If m0 ≥ 0 a term with p−r/2+1+m0 = v(γ) leads to an invariant in Wγ which is
also in Vγ, so not to a non-zero element of (S0)γ. The remaining asymptotic series∑

m≥0,m,m0 cm tm for ϕ ∈ W[ξ], leads to an asymptotic series∑
m≥0,m,m0

cm
(
v(γ)−1 p−r/2+1+m − 1

)
tm

for ϕ|v,2−r(γ − 1). For an invariant in S this last series should be convergent on
a neighborhood of 0 in C. But since pm is exponentially increasing, then also∑

m≥0,m,m0 cm tm is convergent on that neighborhood, and hence is in V . �
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12.3. Mixed parabolic cohomology and parabolic cohomology. For Γ-modules
V ⊂ W as in (12.5) there is a natural map H1

pb(Γ; V,W) → H1
pb(Γ; W). We’ll show

that it is injective, and investigate its surjectivity.

Lemma 12.10. Let V = Dω
v,2−r ⊂ W, where W is one of the modules Dω∗,cond

v,2−r

in (12.5), or one of the corresponding modules Dω0,cond
v,2−r . The following sequence

is exact:

(12.7) 0→ H1
pb(Γ; V,W)→ H1

pb(Γ; W)→ H1(Γ;S) .

Proof. The exact sequence of Γ-modules 0 → V → W → S → 0 induces a long
exact sequence in mixed parabolic cohomology. This is discussed in [15] at the
end of §11. We use the following part of the long exact sequence:

(12.8) H0(Γ;S)→ H1
pb(Γ; V,W)→ H1

pb(Γ; W)→ H1(Γ;S)

Part i) of Lemma 12.9 leads to the desired sequence. �

The lemma shows that H1
pb(Γ; V,W) → H1

pb(Γ; W) is injective. It is surjective if
the image of H1

pb(Γ; W)→ H1(Γ;S) is zero.

Definition 12.11. For each Γ-orbit x ⊂ P1
R put

(12.9) S{x} :=
⊕
ξ∈x

Sξ .

For each orbit x ∈ Γ\P1
R the space S{x} is a Γ-module. Since S has separation

of singularities we have

(12.10) S =
⊕

x∈Γ\P1
R

S{x} .

To investigate the image of H1
pb(Γ; W) → H1(Γ;S) we can investigate separately

the images of H1(Γ; W) → H1(Γ;S{x}). The following statement is analogous
to [15, Proposition 13.4]:

Proposition 12.12. Let x be a Γ-orbit in P1
R. The natural map

H1
pb(Γ; W)→ H1(Γ;S{x})

is the zero map in each of the following cases:
a) the stabilizers Γξ of the elements ξ ∈ x are equal to {1,−1},
b) the orbit x consists of cusps of Γ,
c) the stabilizers Γξ of the elements ξ ∈ x contains hyperbolic elements, with

the additional condition that for all γ ∈ Γξ the space of invariants Sγξ is
zero.

Remarks. (a) This result shows an important difference between hyperbolic ele-
ments of Γ and other elements. If the Condition c) is not satisfied it opens the way
to construct cocycles that do not come from automorphic forms via the injection rωr
and the natural map from mixed parabolic cohomology to parabolic cohomology.
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(b) In Case c) we need to check that Sγξ = {0} only for one generator γ of Γξ.
(c) We do not repeat the proof, since it is completely analogous to the proof of [15,
Proposition 13.4]. We explain the main steps.

The proof uses the description of cohomology based on a tesselationT of the up-
per half-plane, as discussed in §9. We quote two lemmas from [15] before sketch-
ing the proof of Proposition 12.12.

Lemma 12.13. For each cocycle c1 ∈ Z1(FT. ; W) there is c ∈ Z1(FT. ; W) in the
same cohomology class with the properties that c(e) = 0 for all edges e ∈ XT1 that
occur in the boundary of any cuspidal triangle.

We recall that each cusp a of Γ oc-
curs as vertex of infinitely many faces
π−n
a Va ∈ XT2 , n ∈ Z, ±πa generators of

the stabilizer of a. These π−n
a Va are cus-

pidal triangles. The edges π−n
a fa form a

horocycle in H. If the cusp a is in R this
horocycle is a euclidean circle.

The lemma says that we can arrange
that c vanishes on all edges π−n

a ea and
π−n
a fa.

fa

Va
ea

Pa π−1
a Pa

a

F 21
Proof. See the proof of [15, Lemma 13.2]. �

Let x ∈ Γ\P1
R. If a cohomology class in H1

pb(Γ; W) is given by a cocycle in
Z1(FT. ; W) as in Lemma 12.13 its image c ∈ Z1(FT. ;S{x}) vanishes on all edges
in XT1 r XT ,Y1 , so it is in fact a cocycle on FT ,Y1 . Therefore c represents a class in
H1(Γ;S{x}). Anyhow, c is a cocycle that vanishes on all edges γ−1 fa and γ−1ea
with γ ∈ Γ and a ∈ Fcu (the intersection of P1

R with the closure of the fundamental
domain F underlying the tesselation T ).

For any edge e ∈ XT1 we denote by c(e)ξ the component of c(e) in Sξ in the
decomposition S{x} =

⊕
ξ∈x Sξ. We put, for the fixed cocycle c

(12.11) D(ξ) :=
{
e ∈ XT1 : c(e)ξ , 0

}
.

Lemma 12.14. For each ξ ∈ x, x ∈ Γ\P1
R, the set D(ξ) consists of finitely many

Γξ-orbits.

Proof. See the proof of [15, Lemma 13.5]. �

Sketch of the proof of Proposition 12.12. To the cocycle c ∈ Z1(FT. ;S{x}) is as-
sociated a function XT ,Y0 × XT ,Y0 → S{x}, also denoted c. The value c(P,Q) is
determined by the value of c on any path in Z[XT1 ] from P to Q.

Let a be a cusp of Γ. If we can show that c(γ−1Pa, Pa) = 0 for all γ ∈ Γ, then the
group cocycle ψγ = c(γ−1Pa, Pa) vanishes, and hence the cohomology class of c is
trivial.

The proof in [15, §13.1] considers the three cases given in Proposition 12.12
separately. In all cases it is argued for a given ξ ∈ x, that there is a path in Z[XT ,Y1 ]
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from γ−1Pa to Pa that does not contain edges in D(ξ). This gives c(γ−1Pa, Pa)ξ = 0,
and leads to [c] = 0 in H1(Γ;S{x}).

Case a) in Proposition 12.12 is easiest, since in this case S (ξ) is a finite set of
edges, which is easily avoided.

In Case b) the orbit x consists of cusps, and we take a ∈ x. Now the set D(ξ) may
be infinite. Let γ ∈ Γ be fixed. If ξ < {a, γ−1a} it is shown that there is a path from
γ−1Pa to Pa avoiding D(ξ). Then the observation that c(γ−1Pa, Pa) ∈ Sγ−1a

⊕ Sa is

the basis for an argument showing that γ 7→ c(γ−1Pa, Pa) is a coboundary.
In Case c) the set D(ξ) may be a barrier that makes it impossible to find a suitable

path between γ−1Pa and Pa if they are on opposite sides of the barrier. If this
happens the cocycle relation can be used to show that c(γ−1Pa, Pa)ξ is in Sγξ for a
generator γ of Γξ. Under the additional condition in Part c) in Proposition 12.12,
this invariant is zero. �

Theorem 12.15. Let v be a multiplier system for the weight r ∈ C on the cofinite
discrete subgroup Γ of SL2(R) with cusps. The natural map

H1
pb

(
Γ;Dω

v,2−r,W
)
→ H1

pb(Γ; W)

is an isomorphism for each of the following Γ-modules W:

i) W is one of the Γ-modulesDω0

v,2−r,D
ω0,exc
v,2−r ,Dω0,smp

v,2−r , orDω0,∞
v,2−r .

ii) W = Dω∗,∞
v,2−r .

iii) W = Dω∗,smp
v,2−r , under the additional condition that v(γ) , e−r`(γ)/2 for all

primitive hyperbolic elements γ ∈ Γ. (By `(γ) we denote the length of the
associated closed geodesic in Γ\H.)

Proof. We use Proposition 12.12 to show that H1
pb(Γ; W) → H1(Γ;S) is the zero

map. Then the exact sequence in (12.7) gives the desired bijectivity.
For the spaces W in Part i) we have W/V =

⊕
a cusp Sa, and need only Case b)

in Proposition 12.12. For Parts ii) and iii) we have to take into account all cases in
Proposition 12.12, and need the vanishing of Sγξ for all hyperbolic γ ∈ Γ that leave

fixed ξ. Part ii) of Lemma 12.9 shows that this is the case for W = Dω∗,∞
v,2−r , and also

forDω∗,smp
v,2−r provided e−r`(γ)/2 , v(γ). �

Missing case. Missing in Theorem 12.15 is the module W = Dω∗,exc
v,2−r . That case is

discussed in Proposition 13.5.

12.4. Related work. We followed closely the approach in [15, §13.1].

13. C  

There are several natural maps between cohomology groups that we did not yet
handle in the previous sections. Theorem E in §1.7 states explicitly some maps that
are not isomorphisms. In this section we prove those statements by constructing
cocycles with the appropriate properties.
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13.1. Cohomology with singularities in hyperbolic fixed points. In the excep-
tional case in Part iii) of Theorem 12.15 we want to show that the injective map

H1
pb(Γ;D

ω
v,2−r,W)→ H1

pb(Γ; W)

is not surjective for W = Dω∗,exc
v,2−r , or for W = Dω∗,smp

v,2−r under the additional condition
v(γ) = e−r`(γ)/2 for at least one primitive hyperbolic element of Γ.

We use the description of cohomology based on a tesselation T of the upper
half-plane, as discussed in §9.

Notations. We work with a hyperbolic subgroup H of Γ. So H is generated by a
primitive hyperbolic element δ, and −1. All elements of H leave fixed the repelling
fixed point ζ1 and the attracting fixed point ζ2 of δ. The elements of H leave invari-
ant the geodesic between ζ1 and ζ2. The image of this geodesic in Γ\H is a closed
geodesic, whose length we indicate by `(δ).

Lemma 13.1. Let T be a Γ-invariant tesselation of H. Let δ ∈ H and ζ1, ζ2 ∈ P
1
R

as indicated above.
There is a path p from ζ1 to ζ2 in H with the following properties:

a) p is an oriented C1-curve in H ∪ P1
R, with respect to the structure of P1

C
as

a C1-variety.
b) p has no self-intersection, and intersects P1

R only in the end-points ζ1
and ζ2.

c) p does not go through points of XT ,Y0 = XT0 ∩ H.
d) p intersects each edge e ∈ XT1 transversely, at most a finite number of

times.
e) For each edge e ∈ XT1 there are only finitely many Γ-translates γ−1 p that

intersect e.
f) δ−1 p = p.

Remark. All Γ-translates γ−1 p form C1-paths in H from γ−1ζ1 to γ−1ζ2 with prop-
erties b)–e), and (γ−1δγ)−1 γ−1 p = γ−1 p.

Proof. Intuitively, we may start with the geodesic from ζ1 to ζ2 and deform it to
satisfy the conditions.

More precisely, we take a point P0 in the interior of a face of the tesselation, and
take a C1-path p0 from P0 to δP0, taking care to arrive in δP0 with the same deriv-
ative as δp0 departs from δP0. If p0 goes through a vertex or has a non-transversal
intersection with an edge, or coincides with an edge, we deform it locally. In this
way we arrange that p0 intersects finitely many edges once, transversally. Near P0
and δP0 we have not changed p0. Taking the union

⋃
m∈Z δ

m p0 and closing it in
P1
C

, we get a C1-path p satisfying Properties a)-d), and f).
The compact path p0 intersects only finitely many Γ-translates of the fundamen-

tal domain F on which the tesselation T is built. A given edge e is contained in
the closure of one Γ-translate of F. So there are only finitely many γ ∈ Γ such that
e intersects γ−1 p0. If e intersects β−1 p0 with β ∈ Γ, then there is an m ∈ Z such
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BM x

γ−1 p

εP(x, γ−1 p) = 1 εP(x, γ−1 p) = −1
γ−1 p crosses x from right to left γ−1 p crosses x from left to right

F 22. Choice of εP(x, γ−1 p).

that β−1δm is one of these finitely many γ’s. This implies that the path satisfies
Property e) as well. �

Definition 13.2. Let p be a path as in Lemma 13.1, let γ ∈ Γ, and let x ∈ ±XT1 be
an oriented edge.

i) For each point intersection point P ∈ x ∩ p we define εP(x, γ−1 p) ∈ {±1}
depending on the orientation as indicated in Figure 22.

ii) We put

(13.1) ε(x, γ−1 p) :=
∑

P∈x∩γ−1 p

εP(x, γ−1 p) .

iii) We extend x 7→ ε(x, γ−1 p) to a C-linear map C[XT1 ]→ C.

Remarks. (a) If x and γ−1 p have no intersection, then the sum in (13.1) is empty,
hence ε(x, γ−1 p) = 0.
(b) Like in [15] we use the convention that XT1 consists of oriented edges of the
tesselation, and that if e ∈ XT1 , then the edge −e with the opposite orientation is not
in XT1 .
(c) Property d) in Lemma 13.1 implies that the total number of crossing of x and
γ−1 p is finite. So ε(x, γ−1 p) in Part ii) is well defined. It counts the number of
crossings from right to left minus the number of crossings from left to right.
(d) The definition of ε is arranged in such a way that for each oriented edge x
occurring in the boundary ∂2V of a face V ∈ XT2 the quantity ε(x, γ−1 p) counts the
number of times that γ−1 p enters the face V through the edge x minus the number
of times it leaves V through x. This gives ε(∂2V, γ−1 p) = 0 for all faces V ∈ XT2 .

(e) We have εP(−x, γ−1 p) = −εP(x, γ−1 p) and ε(−x, γ−1 p) = −ε(x, γ−1 p). Hence
the C-linear extension in Part iii) is possible.
(f) For an oriented path q ∈ Z[XT1 ] we can view ε(q, γ−1 p) as the number of times
q crosses γ−1 p where γ−1 p goes from right to left, with respect to the orientation
of q, minus the number of times q crosses γ−1 p where γ−1 p goes from left to right.
(g) The function ε is Γ-invariant:

(13.2) ε(β−1x, β−1γ−1 p) = ε(x, γ−1 p) for all β ∈ Γ .
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Proposition 13.3. Let H be a hyperbolic subgroup of Γ, and let p be a path as in
Lemma 13.1 between the fixed points ζ1 and ζ2 of H. Let W be a Γ-module.

For each a ∈ WH we put

(13.3) c(p, a; x) :=
∑
γ∈H\Γ

ε(x, γ−1 p) a|γ for x ∈ FT1 = C[XT1 ] .

a) This defines a cocycle c(p, a; ·) ∈ Z1(FT. ; W).
b) Its cohomology class in H1

pb(Γ; W) depends only on the initial and final
points ζ1 and ζ2 of p.

Remark. Without the counting function ε(·, ·) the values c(p, a; x) of the cocycle
c(p, a; ·) are hyperbolic Poincaré series. Hence we call the sums in (13.3) signed
hyperbolic Poincaré series.

Proof. The terms in the sum are invariant under γ 7→ δγ with δ ∈ H. It is a finite
sum by Property e) in Lemma 13.1. So c(p, a; x) is well-defined. In Remark (c)
after Definition 13.2 we have noted that ε(∂2V, γ−1 p) = 0 for each V ∈ XT2 . This
gives the cocycle property. With (13.2) we have for β ∈ Γ

c(p, a; β−1x) =
∑
γ∈H\Γ

ε(β−1x, γ−1 p) a|γ =
∑
γ∈H\Γ

ε(β−1x, (γβ)−1 p) a|γβ

=
∑
γ∈H\Γ

ε(x, γ−1 p) a|γβ = c(p, a; x)|β .

This gives the C[Γ]-linearity of x 7→ c(p, a; x), and ends the proof of Part i).
To prove Part b) we consider the function c(p, a; ·, ·) on XT0 × XT0 given by

c(p, a; Q1,Q2) = c(p, a; q) independent of the choice of the path q ∈ Z[XT1 ] from
Q1 to Q2. The cohomology class of the cocycle depends only on the values of
this function on A × A where A ⊂ XT0 is one Γ-orbit. So it suffices to show that
c(p, a; a, b) for cusps a and b depends only on the points ζ1 and ζ2.

The points ζ j divide P1
R into two cyclic intervals (ζ1, ζ2)cycl and (ζ2, ζ1)cycl for

the cyclic order on P1
R. See Figure 23.

q q
ζ1 ζ2

(ζ1, ζ2)cycl

(ζ2, ζ1)cycl

?

PPPPPPPi

�������1

F 23

For cusps a and b we choose a path qa,b ∈ Z[XT1 ] from a to b. By Remark (f)
after Definition 13.2, the values of ε(qa,b, γ−1 p) are zero if a and b are not separated
in P1

R by the points γ−1ζ1 and γ−1ζ2. Table 5 gives the values of ε(qa,b, γ−1 p) for
γ ∈ Γ and the cusps a and b for the fixed path p. See also Figure 24. This implies
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ε(qa,b, γ−1 p) b ∈ (γ−1ζ1, γ
−1ζ2)cycl b ∈ (γ−1ζ2, γ

−1ζ1)cycl
a ∈ (γ−1ζ1, γ

−1ζ2)cycl 0 −1
a ∈ (γ−1ζ2, γ

−1ζ1)cycl 1 0

T 5

γ−1ζ1 γ−1ζ2a b

-
γ−1 p

- q

ε=−1

F 24. Illustration of case a ∈ (γ−1ζ1, γ
−1ζ2)cycl and b ∈

(γ−1ζ2, γ
−1ζ1)cycl in Table 5. The path γ−1 p crosses q from left

to right.

that c(p, a; a, b) only depends on the position of the cusp a and b in relation to ζ1
and ζ2, not on the actual path p. �

Remarks. (a) The cocycle is Γ-equivariant in the following way:

(13.4) c(p, a; ·) = c
(
γ−1 p, a|γ; ·

)
for all γ ∈ Γ .

(b) The cocycle c(p, a; ·) depends linearly on a ∈ WH; ie, for all λ1, λ2 ∈ C

c(p, λ1a1 + λ2a2; ·) = λ1 c(p, a1; ·) + λ2 c(p, a2; ·) .

(c) The construction is canonical for a morphism of Γ-modules W → W1: If
a ∈ WH is mapped to b ∈ WH

1 , then

c(p, a; ·) 7→ c(p, b; ·) under the natural map Z1(FT. ; W)→ Z1(FT. ; W1) .

Geodesics with elliptic fixed points. The geodesic from 1
2−

1
2

√
5 to 1

2+
1
2

√
5 induces

a closed geodesic on Γ(1)\H. The corresponding hyperbolic subgroup H of Γ(1) can
be generated by D =

(
2
1

1
1

)
and −I. This geodesic passes through the point i ∈ H,

which is fixed by the elliptic element S =
(

0
1
−1

0

)
∈ Γ(1). It induces an element ±S

in Γ(1) of order two, so i is an elliptic point of Γ(1) of order 2. All points Dn i, with
n ∈ Z, are elliptic points of Γ(1) of order 2, fixed by DnS D−n ∈ Γ(1).

In general, a geodesic of Γ may go through elliptic fixed points of Γ of order 2
in Γ̄. Then there are elliptic elements of order two in σ ∈ Γ such that σγσ = γ−1

for all γ ∈ H. The action of σ interchanges the two fixed points of H. The element
σ normalizes H, but is not an element of H. Conversely, each σ ∈ Γ r H such that
σHσ−1 = H, is elliptic with a fixed point of order 2 on the geodesic.
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Lemma 13.4. Let V = Dω
v,2−r, and either W = Dω∗,smp

v,2−r or W = Dω∗,exc
v,2−r . Denote

S = W/V. For each hyperbolic subgroup H ⊂ Γ there is a linear map

(13.5) ΨH : WH → H1
pb(Γ; W)

with the following properties:

i) The image of the composition Ψ̃H : WH ΨH
→ H1

pb(Γ; W) → H1(Γ;S) is
contained in the Γ-invariant summand H1(Γ;S{Γ ζ1}+S{Γ ζ2}

)
of H1(Γ;S),

where ζ1 and ζ2 are the fixed points of H.
ii) The kernel of Ψ̃H is the space

VH +
{
a ∈ WH : a|v,2−rσ = a for some σ ∈ Γ r H normalizing H

}
.

Remarks. (a) The summands S{Γ ζ1} and S{Γ ζ2} of S either coincide or have
intersection {0}.
(b) The second term in the description of ker Ψ̃H in Part ii) is zero if there are no
elliptic elements normalizing H.

Proof. We use a path p from ζ1 to ζ2 as in Lemma 13.1. For a ∈ WH we de-
fine ΨH(a) as the cohomology class of c(p, a; ·) in Proposition 13.3. This gives a
linear map, and the construction shows that the cocycle c(p, a; ·) has values with
singularities in the Γ-orbits of BdSing a ⊂ {ζ1, ζ2}. This gives Part i).

First suppose that there exist elliptic elements σ ∈ Γ normalizing the hyperbolic
subgroup H. Such elements form one class Hσ in H\Γ. In the sum over γ ∈ H\Γ
in the definition of c(p, a; ·) in (13.3) we combine the summands γ and σγ. Since
σ−1 p is p with the opposite orientation, we have ε

(
x, (σγ)−1 p) = ε

(
γ−1(−p)

)
=

−ε(x, γ−1 p). The two corresponding terms in the sum in (13.3) give

ε(x, γ−1 p)
(
a|v,2−rγ − a|v,2−rσγ

)
= ε(x, γ−1 p) a|v,2−r(1 − σ)γ .

So if a ∈ WH satisfies a|v,2−rσ = a, then the cocycle c(p, a; ·) is zero, so a ∈
kerΨH ⊂ ker Ψ̃H.

If a ∈ VH, then c(p, a; ·) has values in V , hence the image cocycle in S vanishes.
This establishes the inclusion ⊃ in Part ii).

To show the other inclusion, suppose that a ∈ WH is in ker Ψ̃H. If there are
elliptic σ ∈ Γ r H normalizing H, then a|v,2−rσ = ±a. If a|v,2−rσ = a then a is in
the right hand side in Part ii) and and we are done. If a|v,2−rσ = −a then we will
show that a ∈ VH.

Since a is H-invariant, BdSing a ⊂ {ζ1, ζ2} by Lemma 12.2. So the image ã of a
in S is in Sζ1

⊕Sζ2
. Since the class of c(p, ã; ·) is zero, this cocycle is a coboundary,

and there exists f̃ ∈ C0(XT0 ;S{ζ1, ζ2}) such that c(p, ã; ·) = d f̃ , with the notation
S{ζ1, ζ2} = S{ζ1} + S{ζ2}.

By Γ-equivariance, f (a) = f (a)|v,2−rπa for all cusps a. So BdSing f (a) ⊂ {a}, by
Lemma 3.1. Since ζ1 and ζ2 are no cusps, we have f̃ (a) = 0 for all cusps.

Let qa,b be a path in Z[XT1 ] from a cusp a ∈ (ζ2, ζ1)cycl to a cusp b ∈ (ζ1, ζ2)cycl.
Then ε(qa,b, p) = 1, and ε(qa,b, σ−1 p) = −1 if there is σ ∈ Γ r H normalizing H.
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The contribution to c(p, a; qa,b) with singularities in {ζ1, ζ2} is given by

a or a − a|v,2−rσ .

So the components of c(p, ã; q) in Sζ1
⊕ Sζ2

is equal to the component of ã or 2ã
in Sζ1

⊕ Sζ2
. On the other hand c(p, ã; q) = f̃ (a) − f̃ (b) = 0. Since BdSing a ⊂

{ζ1, ζ2}, this implies that ã = 0, hence a ∈ V . But a ∈ WH, so a ∈ VH. �

Theorem 12.15 asserts that the canonical map H1
pb(Γ; V,W) → H1

pb(Γ; W) is an
isomorphism if V = Dω

v,2−r and W is one of a list of larger modules, each contained
in Dω∗

v,2−r. Now we focus on the following two cases, for which Theorem 12.15
does not give information:

a) V = Dω
v,2−r, W = Dω∗,exc

v,2−r .

b) V = Dω
v,2−r, W = D

ω∗,smp
v,2−r , and there are primitive hyperbolic elements

γ ∈ Γ for which v(γ) = e−r`(γ)/2.
The following result gives information concerning Case a), and partial information
concerning Case b).

Proposition 13.5. Let r ∈ C.
i) The natural map

H1
pb(Γ;D

ω
v,2−r,D

ω∗,exc
v,2−r )→ H1

pb(Γ;D
ω∗,exc
v,2−r )

1) is injective,
2) and its image in H1

pb(Γ;D
ω∗,exc
v,2−r ) has infinite codimension.

ii) Suppose that the set

P =
{
γ ∈ Γ : γ is primitive hyperbolic, and v(γ) = e−r`(γ)/2

}
is non-empty. (Recall that `(γ) is the length of the closed geodesic associ-
ated to γ.)

1) The natural map

(13.6) H1
pb(Γ;D

ω
v,2−r,D

ω∗,smp
v,2−r )→ H1

pb(Γ;D
ω∗,smp
v,2−r )

is injective.
2) It is not surjective if r ∈ Z≥0 and for some γ ∈ P one of the following

two conditions is satisfied:
a) There are no σ ∈ Γ such that σγσ−1 = γ−1.
b) r = 0, v(γ) = 1, and there exist σ ∈ Γ such that σγσ−1 = γ−1,

and v(σ) = 1.

Remark. If in Part ii)2) none of the conditions a) and b) holds, we do not know
whether the map in (13.6) is surjective.

Proof. The injectivity in Parts i)1) and ii)1) follows from the exact sequence (12.7).

Part i)2). Let H be a hyperbolic subgroup of Γ, with primitive hyperbolic genera-
tor γ. We consider two cases:
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• Elliptic elements. Suppose there is an elliptic element σ ∈ Γ such that
σγσ−1 = γ−1. Then we check that v(γ) = ±1 by a computation. The con-
jugation ζ1 7→ 0, ζ2 7→ ∞ in the proof of Lemma 12.3 can be arranged
to send the fixed point of σ to i. Then σ corresponds to ±S =

(
0
±1
∓1

0

)
.

We can check that |v,2−rσ corresponds to an involution of the exponents
in (12.3). In this case we note that there are infinitely many linearly inde-
pendent a ∈ (Dω∗,exc

v,2−r )γ for which a|v,2−rσ = a, that are almost all not in
Dω
v,2−r. So Lemma 13.4 produces an infinite dimensional space of classes

in H1
pb(Γ;D

ω∗,exc
v,2−r ) with infinite dimensional image in H1(Γ;S).

• No elliptic elements. If H is not normalized by an elliptic element, then
Part i)2) holds directly by Lemma 13.4.

Furthermore, Lemma 13.4 shows that different hyperbolic subgroups of Γ lead
to cohomology classes with values in different summands of S, which is an other
source of infinite dimensionality.

Part ii)2). We show non-surjectivity of the map by producing cocycles that
have non-zero image in H1(Γ;S). See Lemma 12.10. Lemma 13.4 provides us
with cocycles. More precisely, consider γ ∈ P. To apply Lemma 13.4 we need
a ∈ (Dω∗,smp

v,2−r )γ that is not in (Dω
v,2−r)

γ. Lemma 12.3 shows that there is a one-
dimensional space with such elements, occurring for r ∈ Z≥0 and κ ∈ {−1, r − 1},
with κ as indicated in that lemma. That gives e`(γ)(κ+1) = 1, hence κ = −1. Under
Condition a) in Part ii)2) we conclude that there is a class in H1

pb(Γ;D
ω∗,smp
v,2−r ) with

non-trivial image in H1(Γ;Sω
∗,smp

v,2−r ).
Under Condition b) we have ±1 = v(γ) = e−r`(γ)/2. Since r ∈ Z≥0 this is possible

only for r = 0 and v(γ) = 1. Conjugation as above brings us to the situation
a(t) .
= (it)−1. Hence a|v,2−0σ = −v(σ) a. So we need the value v(σ) = 1 of the two

possible values ±1 to complete the proof with Lemma 13.4. �

13.2. Mixed parabolic cohomology and condition at cusps.

Proposition 13.6. Let r ∈ C r Z≥2. The space H1
pb(Γ;D

ω
v,2−r,D

ω∗,exc
v,2−r ) has infinite

codimension in the space H1
pb(Γ;D

ω
v,2−r,D

ω∗

v,2−r).

We prepare the proof of this proposition in two lemmas, one of geometric nature,
like Proposition 13.3, the other an infinite codimension result.

In the lemma with a geometric flavor, we work with a tesselation as discussed
in §9.1, based on a fundamental domain F of Γ\H, which is split up in a compact
set FY , and cuspidal triangles Vb where b runs over a set of representatives of the
Γ-orbits of cusps. The edge fb is the intersection of the boundaries of FY and Vb.

Lemma 13.7. Let r ∈ CrZ≥2, let a be a cusp of Γ, and let δ ∈ ΓrΓa. Let a ∈ Dω
v,2−r

such that
a|v,2−r(1 − δ−1) ∈ Dω∗

v,2−r

∣∣∣
v,2−r (1 − πa) .
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a) There exists a C-linear map a 7→ c(a; ·) from Dω
v,2−r to Z1(FT ,Y. ;Dω

v,2−r)
such that c(a; fa) = a|v,2−r(1− δ−1), and if there are cusps b not in the orbit
Γ a then c(a; fb) = 0.

b) The C[Γ]-equivariant linear map c(a; ·) : FT ,Y1 → Dω
v,2−r has a C[Γ]-

equivariant linear extension c̃(a; ·) : FT1 → D
ω∗

v,2−r such that

c̃(a; ·) ∈ Z1(FT. ;Dω
v,2−r,D

ω∗

v,2−r) .

c) The cohomology class [c̃(a; ·)] ∈ H1
pb(Γ;D

ω
v,2−r,D

ω∗

v,2−r) satisfies

[c̃(a; ·)] ∈ H1
pb(Γ;D

ω
v,2−r,D

ω∗,exc
v,2−r )⇐⇒ a|v,2−r(1 − δ−1) ∈ Dω∗,exc

v,2−r

∣∣∣
v,2−r (1 − πa) .

Remark. In the simplest situation, we
apply the lemma with a choice of δ ∈ Γ
such that the fundamental domain δ−1F

is a neighbor of the fundamental do-
main F, and has common edges with it.
Since δ < Γa the edges ea and π−1

a ea in
∂2F that go to a are not edges of δ−1F.
A general choice of δ ∈ Γ r Γa leads to
fundamental domains F and δ−1F that
are far apart. We can connect them by a
finite corridor of fundamental domains
γ−1

j F such that γ−1
j−1F and γ−1

j F have a
common edge.

b δ−1a

↑ a

F 25

Proof. To construct a cocycle c(a; ·) with the desired properties we adapt the geo-
metric approach in §13.1 to the present needs.

b δ−1a

p
�

fa

fb δ−1 fa

?

F 26

We take a C1 path from a to δ−1a

not going through vertices in XT0 , ex-
cept the initial and final points a and
δ−1a, passing through the interior of
Va, leaving it through a point of fa,
then going on through the interior of
HY =

⋃
γ∈Γ γ

−1FY , crossing edges in
XT ,Y1 transversally, entering δ−1Va via
a point of δ−1 fa and going through the
interior of δ−1Va to δ−1a.

We can choose the path p in such a
way that it has many of the properties
in Lemma 13.1, namely a)–d).

In b) we replace ζ1 and ζ2 by a and δ−1a. In d) we have intersections only with
the edges fa, δ−1 fa, and a finite number of intermediate edges in XT ,Y1 . Since p
runs through finitely many translates of F, Property e) is also satisfied. Moreover,
all edges eb to cusps b do not intersect p. Property f) does not apply here.
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We define ε(x, γ−1 p) for x ∈ XT1 and γ ∈ Γ as in Definition 13.2, and next define
c0(a; ·) ∈ C1(FT. ;Dω

v,2−r) by

(13.7) c0(a; x) :=
∑

γ∈{±1}\Γ

ε(x, γ−1 p) a|γ for x ∈ FT1 .

The Γ-equivariance is clear from the equivariance of ε, however c0(a; ·) is not a
cocycle, since the path p leaves the cuspidal triangle Va via fa, but ε does not take
into account that the path enters Va at the cusp a. However, we still have

c0
(
a; ∂2γ

−1
FY

)
= 0 for all γ ∈ Γ .

So the restriction c(a; ·) of c0a; ·) to FT ,Y1 = C[XT ,Y1 ] is in Z1(FT ,Y. ;Dω
v,2−r).

The path p intersects fa with ε( fa, p) = 1 and δ−1 fa with ε(δ−1 fa, p) = −1, and
no other Γ-translates of edges fb′ with b′ a cusp of Γ. So no path γ−1 p with γ ∈ Γ
intersects fb with b , a in the closure of F in P1

C
. For fa we find

c(a; fa) = ε( fa, p) a + ε( fa, δ p) a|δ−1 = a|v,2−r(1 − δ−1) .

So c(a; ·) satisfies the requirements in Part a) of the lemma.
Part b) asks for defining c̃(a; eb) for the cusps b in the closure of F. For b , a

this is easy: We have c(a; fb) = 0, and define c̃(a; eb) = 0 to have c̃(a; ∂2Vb) = 0.
The assumptions on a in the lemma show that there exists h ∈ Dω

v,2−r[a] such
that h|v,2−r(1 − πa) = a|v,2−r(1 − δ−1) = c(a; fa). By taking c̃(a; ea) = h we
have c̃(a; ∂2Va) = 0. By Γ-equivariance we use this to define a cocycle c̃(a; ·) ∈
Z1(FT. ;Dω

v,2−r,D
ω∗

v,2−r) that coincides with c on FT ,Y1 .
The implication⇐ in Part c) is a direct consequence of the definition of c. For

the implication⇒ we suppose that there exists f ∈ C0(FT. ;Dω
v,2−r,D

ω∗

v,2−r) such that

c̃(a; ·) − (d f )(·) ∈ Z1(FT. ;Dω
v,2−r,D

ω∗,exc
v,2−r ). The Γ-equivariance of f implies that

f (a)|v,2−rπa = f (a). Denote k = c̃(a; ea) − d f (ea); so k ∈ Dω∗,exc
v,2−r . Then

k|v,2−r(1 − πa) = c̃(a; ea)|v,2−r(1 − πa) −
(
f (Pa) − f (a)

)
|v,2−r(1 − πa)

= h|v,2−r(1 − πa) − f (Pa)|v,2−r(1 − πa) + 0

∈ c(a; fa) +Dω
v,2−r |v,2−r(1 − πa) (since Pa ∈ XT ,Y0 )

= a|v,2−r(1 − δ−1) +Dω
v,2−r |v,2−r(1 − πa) .

Hence a|v,2−r(1 − δ−1) ∈ Dω∗,exc
v,2−r (1 − πa). �

Lemma 13.8. Let r ∈ CrZ≥2, λ, µ ∈ C∗, and γ =
(

a
c

b
d

)
∈ SL2(R) with c , 0. Then

the space

(13.8)
(
Dω

2−r

∣∣∣
2−r (1 − µ γ−1)

)
∩

(
D
ω∗,exc
2−r

∣∣∣
2−r (1 − λ−1T )

)
has infinite codimension in the space

(13.9)
(
Dω

2−r

∣∣∣
2−r (1 − µ γ−1)

)
∩

(
Dω∗

2−r

∣∣∣
2−r |(1 − λ

−1T )
)
.
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Proof. This may be compared with Lemma 4.13, which implies, with Lemma 3.1,
that for r ∈ C r Z≥2 the space

Dω
2−r ∩

(
Dω∗

2−r |2−r(1 − λ−1T )
)

has finite codimension in the space Dω
2−r. So we have to show that imposing the

condition “exc” and applying |2−r(1 − µγ−1) makes an infinite-dimensional differ-
ence. We do this by giving an infinite-dimensional space

R ⊂
(
Dω

2−r

∣∣∣
2−r (1 − µ γ−1)

)
∩

(
Dω∗

2−r

∣∣∣
2−r (1 − λ−1T )

)
,

for which we then show that it has zero intersection with

D
ω∗,exc
2−r |2−r(1 − λ−1T ) .

We take z0 ∈ H, on which we will impose some restrictions later on, and put

R =
{
ϕ|2−r(1 − µ γ−1) ∈ Dω

2−r : ϕ(t) = (i − t)r−2 p(t) where p is a rational

function on P1
C, such that p(∞) = p(γ∞) = 0, and

p has a singularity at t = z0, and nowhere else in P1
C

}
.

Since the order of the singularity of p at t = z0 is not prescribed, this space has
infinite dimension. There should be a zero at at least two points in P1

C
, so any non-

zero p has a singularity at t = z0 of order at least 2. The factor (i − t)r−2 may give
ϕ a boundary singularity at t = ∞. This factor has no influence on the singularities
of ϕ at t = z0 and t = γ z0.

The singularities of ϕ in P1
C

occur at
z0, from p, and on the line i[1,∞], from
the factor (i − t)r−2. The singularities
of ϕ|2rγ

−1(t) = (a − cz)r−2 ϕ(γ−1t) are
contained in the union of a/c + i[0,∞]
and γ applied to the singularities of ϕ.

We choose z0 such that the set z0 +

Z does not contain points of i[1,∞] ∪
γ(i[1,∞)] ∪ (γ∞ + i[0,∞]) ∪ {γ z0}.

qz0
i

γi

γ∞

qγz0

F 27

Let f = ϕ|2−r(1−µ γ−1) ∈ R. We have prj2−rϕ(t) = p(t), hence (prj2−rϕ)(∞) = 0;
and also

(
prj2−r(ϕ|2−rγ

−1)
)
(∞) =

(
p|prj

2−rγ
−1)(∞) = 0. (See (1.20).) Using a one-

sided average (Proposition 4.6) we find h ∈ Dω
2−r[∞] such that

(13.10) h(t) − λ−1h(t + 1) = f (t) = ϕ(t) − µ(ϕ|2−rγ
−1)(t) ,

at least for t ∈ H−. We have to show that if p , 0, then none of the solutions of
(13.10) can be inDω,exc

2−r [∞].
If a solution h of (13.10) were in Dω,exc

2−r [∞], then it extends holomorphically
to an {∞}-excised neighborhood. So h can have singularities only inside a strip
|Re z| ≤ N for some N > 0. In particular h can have singularities at z0 + n only for
a finite number of n ∈ Z.
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qz0
i

γi

γ∞

qγz0

q qq

F 28

The right hand side in Rela-
tion (13.10) has singularities at z0 + n
only if n = 0. So the maximal n ≥ 0
such that z0 + n is a singularity of h
cannot be larger than 0, since otherwise
there would be a singularity z0 + n + 1
as well. Similarly, the minimum value
of n ≤ 0 such that h is singular at z0 + n
is also 0. However, a singularity of h
only at z0 is also impossible, since f is
holomorphic at z0 ± 1.

So h cannot have a singularity at any point of z0 + Z. The choice of z0 shows
that then ϕ has no singularity at z0, in contradiction with p , 0. �

Proof of Proposition 13.6. We have to show that

dim
(
H1

pb(Γ;D
ω
v,2−r,D

ω∗

v,2−r)
/

H1
pb(Γ;D

ω
v,2−r,D

ω∗,exc
v,2−r )

)
= ∞ .

We choose a cusp a of Γ and δ ∈ Γ r Γa, and apply Parts b) and c) of Lemma 13.7.
The map a 7→ [c̃(a; ·)] induces a linear map(

Dω
v,2−r

∣∣∣
v,2−r(1 − δ

−1)
)
∩

(
Dω∗

v,2−r

∣∣∣
v,2−r (1 − πa)

)
→ H1

pb(Γ;D
ω
v,2−r,D

ω∗

v,2−r)
/

H1
pb(Γ;D

ω
v,2−r,D

ω∗,exc
v,2−r ) ,

with kernel (
Dω
v,2−r

∣∣∣
v,2−r (1 − δ−1)

)
∩

(
D
ω∗,exc
v,2−r

∣∣∣
v,2−r (1 − πa)

)
.

So it suffices to show that this kernel has infinite codimension in(
Dω
v,2−r

∣∣∣
v,2−r (1 − δ−1)

)
∩

(
Dω∗

v,2−r

∣∣∣
v,2−r (1 − πa)

)
.

Conjugating a to ∞ and δ to γ, we arrive at a statement handled in Lemma 13.8,
with λ and µ determined by v(πa) and v(δ). �

13.3. Recapitulation of the proof of Theorem E. Part i) concerns the case r ∈
C r Z≥2. We have to show

a) H1
pb(Γ;D

ω
v,2−r,D

ω0,exc
v,2−r ) = H1

pb(Γ;D
ω
v,2−r,D

ω∗,exc
v,2−r ) � H1

pb(Γ;D
ω0,exc
v,2−r ).

b) H1
pb(Γ;D

ω
v,2−r,D

ω0,exc
v,2−r ) has infinite codimension in H1(Γ;Dω

v,2−r).

c) H1
pb(Γ;D

ω0,exc
v,2−r ) → H1

pb(Γ;D
ω∗,exc
v,2−r ) is injective with an image of infinite

codimension.
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In the following diagram we indicate where we have carried out the various steps.
(To save space we suppress Γ in the notation.) For Parts i)a) and i)b) we have:

(13.11)

H1
pb(D

ω
v,2−r,D

ω0,exc
v,2−r )

Prop. 3.2

� Thm. 12.15
��

H1
pb(D

ω
v,2−r,D

ω∗,exc
v,2−r )

� _

inf. codim. Prop. 13.6

��

H1
pb(D

ω0,exc
v,2−r ) H1

pb(D
ω
v,2−r,D

ω∗

v,2−r)� _

Prop. 4.12fin. codim.

��
H1(Dω

v,2−r)

Part i)c) follows from the following commuting diagram:

(13.12)

H1
pb(D

ω
v,2−r,D

ω0,exc
v,2−r )

Prop. 3.2

� Thm. 12.15
��

H1
pb(D

ω
v,2−r,D

ω∗,exc
v,2−r )

� _

inf. cod. Prop. 13.5

��

H1
pb(D

ω0,exc
v,2−r ) // H1

pb(D
ω∗,exc
v,2−r )

Part ii) of the theorem states the following identities and isomorphisms:

H1
pb(Γ;D

ω
v,2−r,D

ω0,∞,exc
v,2−r ) = H1

pb(Γ;D
ω
v,2−r,D

ω0,∞
v,2−r ) = H1

pb(Γ;D
ω
v,2−r,D

ω∗,∞
v,2−r )

� H1
pb(Γ;D

ω0,∞
v,2−r ) � H1

pb(Γ;D
ω∗,∞
v,2−r ) .

It follows from the diagram

(13.13)

H1
pb(D

ω
v,2−r,D

ω0,∞,exc
v,2−r )

Prop. 4.11

H1
pb(D

ω
v,2−r,D

ω0,∞
v,2−r )

Prop. 3.2

Thm. 12.15�

��

H1
pb(D

ω
v,2−r,D

ω∗,∞
v,2−r )

Thm. 12.15�

��

H1
pb(D

ω0,∞
v,2−r ) H1

pb(D
ω∗,∞
v,2−r )

Only for the first equality we need r ∈ R r Z≥2. For all other steps r ∈ C r Z≥2
suffices.

Part iii) states for r ∈ R r Z≥1:

a) The image rωr Sr(Γ, v) = H1
pb(Γ;D

ω
v,2−r,D

ω0,smp,exc
v,2−r ) is equal to

H1
pb(Γ;D

ω
v,2−r,D

ω0,smp
v,2−r ) , H1

pb(Γ;D
ω
v,2−r,D

ω∗,smp
v,2−r )

and canonically isomorphic to H1
pb(Γ;D

ω0,smp
v,2−r ).
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b) The space H1
pb(Γ;D

ω
v,2−r,D

ω0,smp,exc
v,2−r ) is canonically isomorphic to the space

H1
pb(Γ;D

ω∗,smp
v,2−r ) if v(γ) , e−r`(γ)/2 for all primitive hyperbolic elements γ ∈

Γ, where `(γ) is the hyperbolic length of the closed geodesic associated
to γ

Part iii)a) follows from the diagram

(13.14)

H1
pb(D

ω
v,2−r,D

ω0,smp,exc
v,2−r )

Prop. 4.11, ii)

H1
pb(D

ω
v,2−r,D

ω0,smp
v,2−r )

Prop. 3.2

� Thm. 12.15
��

H1
pb(D

ω
v,2−r,D

ω∗,smp
v,2−r )

H1
pb(D

ω0,smp
v,2−r )

The condition that r is real is needed only for the first step. Part iii)b) follows also
from Theorem 12.15 under a condition on hyperbolic elements.

13.4. Related work. The constructions in this section arose from a generalization
of the examples in Propositions 13.7 and 14.3 in [15]. The paths p in Lemma 13.1
and in the proof of Lemma 13.7 represent cycles in homology. It is conceivable that
they can be related to the computations of Ash [1], who computes the parabolic
cohomology with values in the rational functions by computing first homology
groups. We have not succeeded in making this relation explicit.

14. Q  

Theorem E implies that rωr : Ar(Γ, v) → H1(Γ;Dω
v,2−r) is far from surjective.

Quantum automorphic forms may be put, for weights r ∈ C r Z≥1, on the place of
the question mark in the diagram

(14.1)

Ar(Γ, v)

rωr �
��

?

H1
pb(Γ;D

ω
v,2−r;D

ω0,exc
v,2−r ) � � // H1(Γ;Dω

v,2−r)

This is similar to the role of quantum Maass forms in [15, §14.4].

14.1. Quantum modular forms. Zagier [119] gives examples of quantum modu-
lar forms as functions on Q that have a modular transformation behavior modulo a
smooth function on R.

Example: Powers of the Dedekind eta-function. We attach a quantum modular
form to η2r with Re r > 0.
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The cusps of Γ(1) form one orbit, P1
Q
= Q ∪ {∞}. For each cusp a ∈ Q the

function

(14.2) ha(t) :=
∫ a

z0

ωr(η2r; t, z) =
∫ a

z0

η2r(z) (z − t)r−2 dz

is well defined for t ∈ H− and satisfies ha|v,2−r(πa−1) = ψz0
η2r ,πa

, where πa = σaTσ−1
a

generates the stabilizer Γa.
Let δ =

(
a
c

b
d

)
∈ Γ(1) such that a, δ−1a ∈ Q. Then

(14.3)
vr(δ)−1 (ct + d)r−2 hδa(δt) − ha(t) =

(∫ a

δ−1z0

−

∫ a

z0

)
ωr

(
η2r; t, z)

= ψz0
η2r ,δ

(t) ,

by Lemma 2.3. All terms in this relation are inD∞2−r, hence

(14.4) p(a) := ha(a) (a ∈ Q)

is well defined, and satisfies

(14.5) p|vr ,2−r(δ − 1) (a) = ψz0
η2r ,δ

(a) (a, δa ∈ Q) .

The function p : Q → C has no reason to have a continuous extension to R.
However, p|vr ,2−r(δ − 1) is the restriction of a real-analytic function on R. The
function p is an example of a quantum modular form.

Strong quantum modular forms. Since ha as indicated above is an element ofD∞2−r,
we have an asymptotic series ha(t) ∼ P(a, t) :=

∑
n≥0 cn(a) (t − a)n, approximating

ha(t) as t → a through H− ∪ R. For δ ∈ Γ as above we have from (14.3):

(14.6) vr(δ)−1 (ct + d)r−2 P(δa, δt) − P(a, t) ∼ ψz0
η2r ,δ

(t)

as t → a through H− ∪ R. This means that P is a strong quantum modular form in
the sense of Zagier [119].

Constant function. Now we take r = 0 , hence η0 = 1 ∈ M0
(
Γ(1), 1

)
. It seems

sensible to take now

(14.7) ha(t) =
1

t − a
.

Now we cannot substitute t = a. However, with δ as above

(14.8) v0(δ)−1 (ct + d)0−2 hδa(δt) − ha(t) =
−c

ct + d
= ψ̃δ(t) ,

with the cocycle ψ̃ ∈ Z1(Γ(1);Dω∗,exc
1,2

)
in (2.23). So P(a, t) = 1

t−a can be viewed
as a strong quantum automorphic form if we allow asymptotic series of the form∑

n≥−1 cn(a) (t − a)n.
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14.2. Quantum automorphic forms. For general cofinite discrete groups Γ we
define quantum automorphic forms as simply as possible for our purpose. The ex-
ample of the constant function shows that we need to use series starting at order −1.

It turns out that we get satisfactory results in the context of these notes if we use
expansion starting at order −1, namely, P(a, t) := c−1 (t − a)−1 + c0 · · · , and leaving
implicit the terms c1, c2, . . ..

Definition 14.1. By C we denote the set of cusps of Γ. By a system of expansions
p on C we mean a map assigning to all except finitely many points a ∈ C ∩ R an
expression

p(a, t) = c−1(a) (t − a)−1 + c0(a) + (t − a)C[[t − a]] ,

where C[[t − a]] is the ring of formal power series in t − a. Two such systems p
and p1 are equivalent if p(a, t) ≡ p1(a, t) mod (t − a)C[[t − a]] for all but finitely
many a ∈ C∩R. By R we denote the linear space of equivalence classes of systems
of expansions.

If t 7→ ϕ(t) is real-analytic on a neighborhood of a in R, then multiplication by
ϕ(t) is well defined for elements of (t − a)−1C[[t − a]] mod (t − a)C[[t − a]].

Definition 14.2. The action |v,2−r of Γ on R is induced by

(14.9) (p|v,2−rγ)(a, t) := v(γ)−1 (ct + d)r−2 p(γa, γt)

for all a ∈ C ∩ R and γ =
(
∗

c
∗

d

)
∈ Γ for which p(a, ·) and p(γa, ·) are defined. If

r < Z we define (ct + d)r−2 by the argument convention (1.2) for t ∈ H−.

Remarks. (a) The operations in both parts of the definition preserve the equivalence
between systems of expansions. We will mostly identify an equivalence class with
a representative of it.
(b) The inclusionDω

v,2−r → R given by ϕ 7→ pϕ, where

(14.10) pϕ(a, t) = ϕ(a) + (t − a)C[[t − a]] for all a ∈ C ∩ R ,

is equivariant for the actions |v,2−r of Γ onDω
v,2−r and R.

Definition 14.3. Let r ∈ C and let v be a multiplier system for the weight r.
a) By Rv,2−r we denote R provided with the action |v,2−r of Γ.
b) We define the Γ-module Qv,2−r := Rv,2−r

/
Dω
v,2−r.

c) We define the space qA2−r(Γ, v) of quantum automorphic forms of weight
2 − r with multiplier system v as a quotient of Γ-invariants:

(14.11) qA2−r(Γ, v) := QΓv,2−r
/
RΓv,2−r .

Remarks. (a) So we have an exact sequence of Γ-modules

0→ Dω
v,2−r → Rv,2−r → Qv,2−r → 0 ,

with the associated long exact sequence

0→ (Dω
v,2−r)

Γ → RΓv,2−r → Q
Γ
v,2−r → H1(Γ;Dω

v,2−r)→ · · ·
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We choose to define quantum automorphic forms as the quotient QΓv,2−r/R
Γ
v,2−r,

which can automatically mapped into H1(Γ,Dω
v,2−r) injectively.

In this way a quantum automorphic form is a function defined on almost all
of C ∩ R that has automorphic transformation behavior modulo functions that are
analytic on R minus finitely many points. Further we work modulo functions on
C ∩ R that are exactly automorphic.
(b) We leave it to the reader to explore the examples of Zagier [119]. The pur-
pose of our definition is not to cover all those examples. We are content to define
quantum automorphic forms in such a way that they fill the hole in diagram 14.1.

14.3. Quantum automorphic forms, cohomology, and automorphic forms.

Proposition 14.4. Let v be a multiplier system on Γ for the weight r ∈ C.
a) There is an injective natural map

(14.12) qC : qA2−r(Γ, v)→ H1(Γ;Dω
v,2−r) .

b) If r ∈ C r Z≥1, then qC is surjective.

Proof. Injectivity, Part a). Definition 14.3 implies that the sequence

(14.13) 0→ Dω
v,2−r → Rv,2−r → Qv,2−r → 0

is exact. The part
RΓv,2−r → Q

Γ
v,2−r → H1(Γ;Dω

v,2−r)
of the corresponding long exact sequence in group cohomology shows that the
connecting homomorphism induces an injective linear map

qA2−r(Γ, v)→ H1(Γ;Dω
v,2−r) ,

which we call qC. It sends a quantum automorphic form represented by p ∈ Rv,2−r
to the class of the cocycle γ 7→ p|v,2−r(γ − 1).

Surjectivity, Part b). Let r ∈ C r Z≥1, and let λ ∈ C∗. Proposition 4.6 shows that
for each f ∈ Dω

2−r at least one of the one-sided averages Av+T,λ f and Av−T,λ f exists in
Dω∗

2−r, and that (Av±T,λ f )|2−r(1−λ−1T ) = f . Furthermore, by Proposition 4.9, there is
an asymptotic formula (prj2−rAv±T,λ f )(t) = c−1t+ c0 +O(t−1) as t → ±∞ through R,
with coefficients c−1 and c0 determined by f , independent of ± if both averages
exist. By conjugation, we define for parabolic π = σTσ−1, with σ ∈ SL2(R),
ξ = σ∞ , ∞ and f ∈ Dω

2−r:

(14.14) Av±π,λ f :=
(
Av±T,λ( f |2−rσ)

)
|2−rσ

−1 .

It satisfies

(14.15)
(Av±π,λ f )|2−r(1 − λ−1π) = f ,

(Av±π,λ f )(t) = c−1 (t − ξ)−1 + c0 + O(t − ξ) ,

where t ↑ ξ for Av+π,λ and t ↓ ξ for Av−π,λ. The constants c−1 and c0 depend on the
expansion of f at ξ, but not on the choice of ± if both averages are defined. (They
differ from the constants at ∞.) This definition depends on the choice of σ such
that ξ = σ∞. For cusps a ∈ C ∩ R we use σa as in §1.3.
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After this preparation we consider a cohomology class in H1(Γ;Dω
v,2−r), repre-

sented by the cocycle ψ ∈ Z1(Γ;Dω
v,2−r). For a ∈ C ∩ ∩R we put

(14.16) p(a, t) := −
(
Av±πa,v(πa)ψπa

)
(t) + (t − a)C[[t − a]] ,

where we choose ± such that the average exists. If both averages exist they may
differ, but lead to the same expansion.

Let δ =
(

a
c

b
d

)
∈ Γ with a, δa ∈ R. Then

(Av±πa,v(πa)ψπa)|v,2−r(πa − 1) = −ψπa ,

πδa = δπaδ
−1 , ψπδa = ψπa |v,2−rδ

−1 + ψδ|v,2−r(πa − 1)δ−1 ,

v(δ)−1 (ca + d)r−2 (
Av±πδa,v(πδa)ψπδa

)
(δt) =

(
Av±πδa,v(πδa)ψπδa

)
|v,2−rδ (t)(

Av±πδa,v(πδa)ψπδa
)
|v,2−rδ(πa − 1) =

(
Av±πδa,v(πδa)ψπδa

)
|v,2−r(πδa − 1)δ

= −ψδa|v,2−rδ = −ψπa − ψδ|v,2−r(πa − 1) ,((
Av±πδa,v(πδa)ψπδa

)
|v,2−rδ − (Av±πa,v(πa)ψπa)

)
|v,2−r(πa − 1) = −ψδ|v,2−r(πa − 1) .

The function
(
Av±πδa,v(πδa)ψπδa

)
|v,2−rδ − (Av±πa,v(πa)ψπa) + ψδ has a one-sided asymp-

totic expansion at a starting at a multiple of (t − a)−1 and is invariant under |v,2−rπa.
Conjugating this to∞ and applying Part ii) of Lemma 3.4 we conclude that

(Av±πa,v(πa)ψπa) ∼ −ψδ
as t approaches a from one direction. We conclude that

(14.17) (p|v,2−rδ)(a, t) − p(a, t) = ψδ(t) + O(t − a)

for t ↑ a or t ↓ a. So p|v,2−r(δ − 1) = ψδ in R, and qC(p) = [ψ]. �

Remark. For weight r = 1, Part i) of Proposition 4.6 implies (after conjugating ∞
to a ∈ C∩R) that Avπa,v(πa)ψπa is defined if ψπa(a) = 0. Since there are finitely many
Γ-orbits of cusps, the construction in proof of surjectivity of qC goes through for a
subspace of H1(Γ;Dω

v,1) of finite codimension.

Proposition 14.5. Let v be a multiplier system on Γ for the weight r ∈ C r Z≥1.
There is an injective linear map Q : Ar(Γ, v) → qA2−r(Γ, v) such that the following
diagram commutes:

Ar(Γ, v)
� � rωr //

� s

Q

%%KKKKKKKKKKK
H1(Γ;Dω

v,2−r)

qA2−r(Γ, v)

qC

�
77ppppppppppp

Proof. Theorem A implies that rωr is injective. Since qC is bijective by Proposi-
tion 14.4 the map qC is invertible, so Q = qC−1 ◦ rωr . �

Remark. This result shows that for r ∈ Cr ∈ Z≥1 each class in H1(Γ;Dω
v,2−r) is the

image of an object with automorphic flavor.
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Back to the examples. We now discuss that the examples of quantum modular
forms in 14.1 come under Definition 14.3.

For the powers of the Dedekind eta-function with Re r > 0 we gave in (14.2)

(14.18) p(a) = ha(a) with ha(t) =
∫ a

z0

η2r(z) (z − t)r−2 dz .

On the other hand, if r ∈ C r Z≥1, then Q(η2r) = qC−1(rωr (η2r)
)

in Proposition 14.5
can be given by

(14.19) q(a, t) = −
(
Av±πa,vr(πa)ψ

z0
η2r ,πa

)
(t) + (t − a)C[[t − a]] ,

according to the construction in (14.16), where ± has to be chosen such that the
one-sided average exists.

First take r ∈ (0,∞)rZ≥1. Then ha ∈ D
ω,∞,exc
vr ,2−r (Lemma 2.5, conjugated from∞

to a) satisfies ha|vr ,2−r(πa − 1) = ψz0
η2r ,πa

. By Part ii) of Lemma 4.10 (also conjugated
to a) we have ha = Av±πa,vr(πa)ψ

z0
η2r ,πa

for both choices of ±. So p(a) ≡ q(a, t) mod
(t − a)C[[t − a]] in this case.

For Re r > 0, r ∈ C r R, we consider only the case that Im r > 0; the other
case goes similarly. We note that vr(πa) = vr(T ) = eπir/6 for all cusps a. We
use Av−πa,vr(πa), and the asymptotic of (Av−πa,vr(πa)ψ

z0
η2r ,πa

)(t) as t ↓ a. Since ha and
−Av−πa,vr(πa)ψ

z0
η2r ,πa

satisfy the same equation, we have ha = −Av−πa,vr(πa)ψ
z0
η2r ,πa

+ P
with avr(πa)-periodic function P. The asymptotic behavior as t ↓ a shows that P(t)
has to be O(t − a) as t ↓ a. So ha and −Av−πa,vr(πa)ψ

z0
η2r ,πa

determine the same element
of Rvr ,2−r.

For the constant function η0 = 1 we used ha(t) = (t − a)−1. It leads in (14.8)
to a cocycle with values in Dω0,exc

1,2 , not in Dω
1,2. So it does not represent Q(1) ∈

qA2
(
Γ(1), 1

)
.

For an explicit computation, we write a ∈ Q in the form σa∞, with σa =
(

a
c

b
d

)
∈

Γ(1), and hence a = a
c . Then

πn
a =

(
1 − nac
−nc2

na2

1 + nac

)
.

So we have, with π = πa = σaTσ−1
a :

Av+π,1ψ
z0
1,π (t) =

∑
n≥0

ψz0
1,π

∣∣∣
1,2 π

n (t) =
∑
n≥0

∫ z0

π−1z0

ω0(1; ·, z)|1,2πn (t)

=
∑
n≥0

∫ π−nz0

π−n−1z0

dz
(z − t)2 .

We have limn→∞ π
−n
a z0 = a/c = a. Hence

−Av+π,1ψ
z0
1,π (t) = −

∫ z0

a

dz
(z − t)2 =

1
t − a

+
1

z0 − t
.
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This modification of the function ha in (14.7) leads to the element of R given by

p(a, t) =
1

t − a
+ (z0 − a)−1 + (t − a)C[[t − a]] ,

which satisfies p|1,2(δ − 1)(a, t) ≡ ψz0
1,δ(t) mod (t − a)C[[t − a]].

Dependence on the parameters. The family of modular forms r 7→ η2r depends
holomorphically on r. This suggest to look for quantum modular forms given by

p(a, t) =
α(a, r)
t − a

+ β(a, r) + (t − a)C[[t − a]] ,

where r 7→ α(a, r) and r 7→ β(a, r) are at least continuous on [0,∞). This is
impossible (proof left to the reader). It is a phenomenon similar to the asymptotic
expansion in (4.14), where the coefficient in the leading term is discontinuous in λ.

14.4. Related work. The concept of quantum automorphic is due to Zagier. His
paper [119] gives beautiful explicit examples of quantum modular forms. Za-
gier mentioned the concept long before the appearance of [119]. The paper [11]
was written during the preparation of [15], to fill a hole in a diagram analogous
to (14.1).

15. R   

Like we mentioned in §2.5, an indication of what we now call the Eichler inte-
gral is present in a paper of Poincaré in 1905, [97]. Eichler’s definition in [41] is
based on Bol’s equality ∂r−1

τ

(
F|2−rγ

)
= F(r−1)|rγ, which appears in [6, §8]. In [30]

Cohn indicated this approach for weight 4. The paper [107] of Shimura has a
different atmosphere; it stresses cohomology with values in a Z-module. In the
following years Gunning, Knopp, Lehner and others studied the relation between
automorphic forms and cohomology: [51, 52, 42, 31, 78, 54, 79, 102, 103, 50]. Kra
[73, 74] started the study of cohomology of kleinian groups. Here the cohomology
group is not generated by Eichler integrals. We have not included in the list of
references all papers on the cohomology of kleinian groups.

Manin [84] discussed arithmetical questions. For a cuspidal Hecke eigenform
for SL2(Z) of even weight the ratio between the even periods are in the field gener-
ated by the Fourier coefficients of the cusp form; for the ratios of the odd periods
the same holds. The cocycles are present in the background, for instance in the
period relations. So apart from the Fourier coefficients there are two, possibly tran-
scendental, numbers involved in the coefficients of the period polynomials. The
arithmetic of the period polynomials, associated with values of L-functions at in-
tegral points in the critical strip, are an important area of study in connection with
the cocycles attached to automorphic forms. It goes further than the central idea
in these notes, which is establishing the relation between automorphic forms and
cohomology. Therefore we have not tried to include all papers in this area in the
list of references. We mention the concept “modular symbol”; see [84, 108]. We
mention also Haberland’s paper [53], and [60, 46, 47, 113]. In [117] Zagier de-
scribes rather explicitly how to reconstruct a cuspidal Hecke eigenform from its
period polynomial.
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The step from weights in Z≥2 to general real weights was done by Knopp in
his paper [64]. For general real weights one needs a multiplier system, which
Knopp assumes to be unitary. This definition leads to a map from cusps forms to
cohomology classes with values in the highest weight moduleD−∞v,2−r, characterized
by the condition of polynomial growth. Knopp’s cocycle integral also occurs in
the paper [91] of Niebur. In the proofs in [64] Knopp uses the construction of
“supplementary series”, from [63]. It is nice to see that with hindsight we can view
the resulting functions as mock automorphic forms. The isomorphism between the
space of cusp forms and the cohomology group was completed for all weights in
2010 by Knopp and Mawi, [69].

Knopp, [65], started the study of rational period functions and gave examples.
He showed in [66] that the singularities can occur only in the rational points 0, ∞,
and in points in real-quadratic fields (which are hyperbolic fixed points of Γ(1)),
and Choie[21] showed the existence of rational period functions with singularities
in any real quadratic irrationals. Several authors expanded the theory, [86, 71, 1,
21, 22, 23, 24, 25, 54, 92, 26, 105, 46, 39]. We expect that the approach in Sections
12 and 13 can be applied to cohomology with values in the module of rational
functions.

In [67] Knopp and Mason start the study of “generalized modular forms”, which
are vector-valued automorphic forms with at most exponential growth at the cusps
for the modular group SL2(Z) with real weight and matrix-valued multiplier sys-
tems that need not be unitary. The papers [68, 70, 100, 101] deal with the coho-
mology classes associated to these automorphic forms.

The Γ-behavior of automorphic forms can be formulated as the vanishing of
F|v,r(γ − 1) for all γ ∈ Γ. This has been generalized to the condition that

F|v,r(γ1 − 1) (γ2 − 1) · · · (γq − 1) = 0 for all γ1, . . . , γq ∈ Γ ,

leading to “higher order automorphic forms”, for which Deitmar, [34, 36], has
studied cohomological questions. See also Diamantis and O’Sullivan [38], Sim
[109]. Cohomological techniques have also been used in the context of higher-
order forms by Taylor [111]. See further [14].

In [2] Bringmann, Guerzhoy, Kane and Ono consider period polynomials for
r-harmonic modular forms with negative even weights. Bringmann, Diamantis
and Raum [4] extended the construction to account for non-critical values of L-
functions.

The condition of holomorphy can be completely removed from the definition of
automorphic forms, and replaced by a second order differential equation. Formu-
lated in terms of functions on the universal covering group G̃ this is the eigenvalue
equation for the Casimir operator. This leads to the so-called “Maass forms” and
their generalizations. For Maass forms of weight 0 the relation between automor-
phic forms and cohomology has been studied by many authors. Lewis, [80], gave
a bijection between even Maass cusp forms and spaces of holomorphic functions
on Cr (−∞, 0] that satisfy a functional equation similar to the equation satisfied by
period function for the modular group PSL2(Z). In the papers [81] and especially
[82] this is further discussed for the modular group. Mühlenbruch, [88] extended
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this to real weights. See also [89]. A relation between the period functions of
Lewis and the hyperfunctions associated to Maass forms was explored in [10], the
ideas in which were expanded in [32, 33, 35].

Another, rather unexpected, relation is with eigenfunctions of the transfer op-
erator introduced by Mayer, [85], in connection with the Selberg zeta-function.
Transfer operators are a concept from mathematical physics, applied by Mayer to
the geodesic flow on the quotient PSL2(Z)\H. The eigenfunctions of the trans-
fer operator with eigenvalue 1 are, after a simple transformation, identical with
Lewis’s period functions. So the eigenfunctions of the transfer operator are related
to cohomology classes. See [81], [82, Chap. IV, §3], and [116] for a further discus-
sion. In [12] this relation with cohomology is used to relate eigenfunctions of two
transfer operators. See also [87, 94, 95, 96]. As far as we see, the use of a transfer
operator is less suitable in the present context, since the spaceDω

2−r is not the space
of global sections of a sheaf on P1

R.
The aim of the paper [15] is to explore the relation between Maass forms of

weight zero and cohomology more completely, for all cofinite discrete group. For
cocompact discrete groups rather complete results were available, even in the con-
text of automorphic forms on more general symmetric spaces, in the work of Bunke
and Olbrich, [19, 20]. For groups with cusps a reasonably complete description was
obtained with use of three ideas: (1) use of mixed parabolic cohomology groups;
(2) work with boundary germs as coefficient module; (3) description of the mixed
parabolic cohomology groups with resolutions based on a suitable tesselation of the
upper half-plane. In the present notes we tried to apply these ideas in the context
of holomorphic automorphic forms.

A A. U    

The discussion in this appendix is not really essential for these notes, but several
definitions and arguments become more natural if we relate them to the universal
covering group of SL2(R).

A.1. Universal covering group. The universal covering group G̃ of SL2(R) is a
simply connected Lie group that is locally isomorphic to the Lie group SL2(R).

We can describe G̃ with help of the Iwasawa decomposition of SL2(R), which
writes each g ∈ SL2(R) uniquely as

g =


√
y

0

x√
y

1√
y


(

cosϑ
− sinϑ

sinϑ
cosϑ

)
,

with z = x + iy ∈ H and ϑ ∈ R mod 2πZ. As an analytic variety, SL2(R) is
isomorphic to H × (R/2πZ). A simply connected analytic variety that covers H ×
(R/2πZ) is H×R, with the natural map R→ R/2πZ. We denote its points as (z, ϑ),
with z ∈ H, ϑ ∈ R. It is possible to define a group structure on H × R such that the
projection map H × R → H × (R/2πZ) is an real-analytic group homomorphism.
The resulting group with underlying space H×R is the universal covering group G̃
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of SL2(R), with projection homomorphism

(A.1) pr : G̃ → SL2(R) .

Here we do not describe the group structure of G̃ explicitly. (See, eg., [9,
§2.2.1].) We mention that there is a group homomorphism k̃ : R → G̃, given
by k̃(ϑ) = (i, ϑ). It covers the isomorphism R/2πZ → SO(2) given by ϑ 7→(

cosϑ
− sinϑ

sinϑ
cosϑ

)
. We note that

{
k̃(2πn) : n ∈ Z

}
is the kernel of pr : G̃ → SL2(R),

and that Z̃ :=
{
k̃(πn) : n ∈ Z

}
is the center of G̃.

The most important aspect of the group structure is the lift g 7→ g̃ from SL2(R)
to G̃, given by

(A.2)
˜(a
c

b
d

)
:=

(ai + b
ci + d

,− arg(ci + d)
)

with − π < arg(cz + d) ≤ π .

It takes a preimage for the covering map pr. It satisfies

(A.3)
˜(a
c

b
d

)
(z, ϑ) =

(az + b
cz + d

, ϑ − arg(cz + d)
)
.

This map is continuous on the open dense subset G0 ⊂ SL2(R), in (1.3). We have

(A.4)

(g̃)−1 = g̃−1 for g ∈ G0 ,

g̃pg−1 = g̃p̃(g̃)−1 for g ∈ G0, p =


√
y

0

x√
y

1√
y

 , x + iy ∈ H .

All elements of G̃ can be, non-uniquely, written as a product g̃ k(πn), with g ∈ G0,
n ∈ Z.

A.1.1. Weight functions and actions by right and left translation.

Definition A.1. A function f : G̃ → C has weight r ∈ C if f (z, ϑ) = f (z, 0) eirϑ.

A function f on G̃ with weight r is determined by its values on (z, 0), with z ∈ H.
We define a corresponding function Rr f on H by

(A.5) (Rr f )(z) := y−r/2 f (z, 0) , hence f (z, ϑ) = yr/2 (Rr f )(z) eirϑ .

Left translation. The group G̃ has a right action in the space of functions G̃ → C
given by left translation

(A.6) for g ∈ G̃ : f 7→ f |g , given by ( f |g)(g1) = f (gg1) .

We also use the notation Lg f = f |g.
The action by left translation preserves the weight. Moreover, we have

(A.7)
(
Rr( f |g̃)

)
(z) = (cz + d)−r (Rr f )(z) for g =

(
a
c

b
d

)
∈ SL2(R) .

Thus, we see that the operators |rg in (1.1) correspond naturally to the represen-
tation of G̃ by left translation in the functions on G̃ of weight r. The argument
convention for arg(cz + d) for z ∈ H in (1.2) is coupled to the choice of the argu-
ment in (A.2). Then the convention for z ∈ H− is determined by the wish to have
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relation (1.7). Since g 7→ g̃ is not a group homomorphism, the operators |rg do not
form a representation of SL2(R).

Right translation. There is also the left action of G̃ on the functions on G̃ by right
translation:

(A.8) (Rg f )(g1) := f (g1g) .

It commutes with left translations. It does not preserve the weight.

A.1.2. Discrete subgroup. For a cofinite discrete subgroup Γ ⊂ PSL2(R) we de-
fine

(A.9) Γ̃ : =
{
g ∈ G̃ : pr g ∈ Γ

}
.

It is a discrete subgroup of G̃. It contains the center Z̃.
Any character χ : Γ̃ → C∗ of Γ̃ induces a central character of Z̃ which is

determined by χ
(
k̃(π)

)
, which we can write as χ

(
k̃(π)

)
= eπir with r ∈ C mod 2πZ.

The map vχ : Γ→ C∗ given by

(A.10) vχ

(
a
c

b
d

)
:= χ

( ˜(a
c

b
d

)) (
a
c

b
d

)
∈ Γ

is a multiplier system on Γ for the weight r. One can check that all multiplier
systems on Γ arise in this way.

The representation |vχ,r of Γ̄ on the functions on H, in (1.10), corresponds to the
representation χ−1 ⊗ L of Γ̃ on the functions of weight r on G̃. For these functions
the generator k̃(π) of Z̃ acts as multiplication by χ

(
k̃(π)

)−1 eπir = 1. So indeed,
χ−1 ⊗ L is a representation of Γ̃/Z̃ � Γ̄.

The invariants of the representation χ−1 ⊗ L in the functions of weight r cor-
respond to the space of all functions on H with (Γ, v)-automorphic transformation
behavior of weight r. For automorphic forms one requires also that the functions
are eigenfunctions of a differential operator. These differential operators can be
described with the Lie algebra. (See §A.1.3.)

Modular group. The modular group Γ(1) = SL2(Z) is covered by Γ̃(1) ⊂ G̃. The
generators T =

(
1
0

1
1

)
and S =

(
0
1
−1

0

)
can be lifted to give generators t = (i + 1, 0)

and s = (i,−π/2) of Γ̃(1), with relations generated by ts2 = s2t and ts ts t = s.
All characters of Γ̃(1) are of the form χr : Γ̃(1)→ C∗ with r ∈ C/12πZ given by

(A.11) χr(t) = eπi/6 , χr(s) = e−πir/2 ,

corresponding to the multiplier system vr in (2.12).

A.1.3. Lie algebra. The real Lie algebra of SL2(R) is

(A.12) gr :=
{
g ∈ M2(R) : Trace g = 0

}
.

A basis is W =
(

0
−1

1
0

)
, H =

(
1
0

0
−1

)
, V =

(
0
1

1
0

)
. For each X ∈ gr the exponential

exp X =
∑

n≥0
1
n! Xn is an element of SL2(R). For small values of t ∈ R we have
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exp(tX) ∈ G0; the lift t 7→ (exp tX)∼ extends to a group homomorphism R → G̃.
This leads to differential operators on G̃:

(A.13) (LX f )(g) :=
d
dt

f
(
(exp tX)∼g

)∣∣∣∣
t=0

, (RX f )(g) :=
d
dt

f
(
g(exp tX)∼

)∣∣∣∣
t=0

.

This can be extended to a linear map X 7→ LX from the complexified Lie algebra
g := C ⊗R gr to the first order right-invariant differential operators on G̃. Similarly
we have a linear map X 7→ RX from g to the first order left-invariant differential
operators on G̃. So the operators RX leave invariant the space of invariants for the
representation χ−1 ⊗ L in C∞(G̃), and the operators LX leave invariant the space of
differentiable functions with a given weight.

The relation with the Lie product [X,Y] = XY − YX is

(A.14) RXRY − RYRX = R[X,Y] , LXLY − LYLX = −L[X,Y] .

We also write X f instead of RX f . For the basis W, E+ = H+ iV, E− = H− iV of g
we have in the coordinates (z, ϑ) ∈ G̃:

(A.15)
W = ∂ϑ ,

E+ = e2iϑ(2iy ∂x + 2y ∂y − i∂ϑ
)
, E− = e−2iϑ(−2iy ∂x + 2y ∂y + i∂ϑ

)
.

The Lie algebra g can be embedded in the universal enveloping algebra U,
generated by all products of elements of g, with the relations XY−YX = [X,Y] for
all X,Y ∈ g. The maps X 7→ RX and X 7→ LX can be extended toU, and describe
the ring of all left-invariant, respectively right-invariant, differential operators on G̃.
The center ofU is a polynomial algebra in one variable, for which we can take

(A.16) ω := −
1
4

E−E+ +
1
4

W2 +
i
2

W = −
1
4

E+E− +
1
4

W2 −
i
2

W .

It gives rise to the following bi-invariant differential operator on G̃:

(A.17) Lω = Rω = e−2iϑ(−2iy ∂x + 2y ∂y + i∂ϑ
)
,

called the Casimir operator.

A.1.4. Automorphic forms on G̃. One may define an automorphic form on G̃ with
character χ as a function f : G̃ → C with transformation behavior f (γg) =
χ(γ) f (g) for all g ∈ G̃, γ ∈ Γ̃, that is an eigenfunction of Rω and RW. With this
definition, an automorphic form has a weight r ∈ C, determined by RW f = ir f ,
and an eigenvalue λ ∈ C, determined by Rω f = λ f .

There are several interesting sets of values for (λ, r). If one wants to do spectral
theory, it is convenient to take r ∈ R. Then square integrability of the automorphic
forms restricts λ to a subset of R containing the interval (1/4,∞).

The automorphic forms considered in [15] correspond to r = 0 and λ = s(1 − s)
with 0 < Re s < 1.

The differential operator ∆r in (1.27) corresponds under Rr in (A.6) to Rω −
r
2 (1 − r

2 ). If f has weight r, then E− f has weight r − 2. With (A.5) we have

(A.18) Rr−2(E− f ) = −4iy2 ∂z̄Rr f
(
= 2yr−2 ξrF

)
.
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So the condition of holomorphy corresponds to being in the kernel of E−. Then
(A.17) implies that λ = r

2
(
1− r

2
)
. For the same eigenvalue there are more eigenfunc-

tions of the Casimir operator than there are in the kernel of E−. They correspond
to the larger space of r-harmonic automorphic forms.

A.1.5. Polar functions. The polar r-harmonic functions Pr,µ, Mr,µ, and Hr,µ in §7.1
are specializations of functions in [9, §4.2]. Fourier terms F(µ, ·) transforming
according to F(µ, ·)|r

(
cosϑ
− sinϑ

sinϑ
cosϑ

)
= ei(r+2µ)ϑ F(µ, ·) for small values of ϑ are of the

form Rr f (µ, ·), as in (A.5), where f (µ, ·) : G̃ → C satisfies

(A.19) f
(
µ, k̃(η)gk̃(ψ)

)
= eir(η+ψ)+2iµη f (µ, g) , Rω f (µ, g) =

r
2

(
1−

r
2

)
f (µ, g) .

Such a function can be written as

(A.20) k̃(η) (it, 0) k̃(ψ) 7→ e2iµη+ir(η+ψ) ( u
u + 1

)µ/2
(u + 1)−r/2 hµ

( 1
u + 1

)
,

with t ≥ 1, u =
(
(t1/2 + t−1/2)/2

)2, where hµ satisfies the differential equation in [9,
§4.2.6]. In Table 6 we summarize the relation between the variables in [9] and

[9] here [9] here
n = r + 2µ l = r

u =
(t+1)2

4t s = r−1
2

p = 1
2 |µ| ε = Sign µ

u =
|z−i|2

4y e2iη = z−i
z+i
|z+i|
|z−i|

e2i(η+ψ) = 2i
z+i
|z+i|

2

T 6. Relations for the computation in §A.1.5

here. The solutions in [9, 4.2.6 and 4.2.9] give:

(A.21)

µ
(
n, s; (it, 0)

)
=

( u
u + 1

)µ/2
(u + 1)−r/2 ,

µ
(
n,−s; (it, 0)

)
=

( u
u + 1

)µ/2
(u + 1)r/2−1

2F1
(
1 + µ, 1 − r; 2 − r;

1
u + 1

)
,

if µ ≤ 0 :

ω
(
n, s; (it, 0)

)
=

( u
u + 1

)−µ/2
(u + 1)−r/2

2F1
(
|µ|, r; 1 + |µ|;

u
u + 1

)
.

We write (z, 0) = k̃(η) (it, 0) k̃(ψ), and have to multiply with y−r/2 eir(η+ψ)+2iηµ to get
the corresponding function F(µ, ·). Table 6 shows also that the functions in (A.21)
correspond to Pr,µ, Mr,µ, and Hr,µ, respectively. This requires some computations
and, for Mr,µ with µ ≤ 0, use of a Kummer relation (Relation (2), [43, §2.9]).
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A.1.6. Resolvent kernel. Let mr denote the function on G̃ such that Rrmr = Mr,0.
So mr

(
k̃(η)gk̃(ψ)

)
= eir(η+ψ) mr(g). The kernel function Qr in (8.11) corresponds

to the function qr(g1, g2) := mr(g−1
1 g2), which satisfies qr

(
g1k̃(ϑ1), g2k̃(ϑ2)

)
=

eir(ϑ2,ϑ1) qr(g1, g2). So it has weight −r in g1 and weight r in g2, and we should
have Qr(z1, z2) = yr/2

1 y−r/2
2 qr

(
z1, 0), (z2, 0)

)
, which is indeed the case:

yr/2
1 y−r/2

2 qr
(
z1, 0), (z2, 0)

)
= (y1/y2)r/2 mr

( y−1/2
1
0

−x1y
−1/2
1

y1/2
1


∼

(z2, 0)
)

= (y1/y2)r/2 mr
(
(z2 − x1)/y1, 0

)
= (y1/y2)r/2(y2/y1)r/2 Mr

(
z2 − x1)/y1

)
= Mr

(
z2 − x1)/y1

)
.

Since qr(gg1, gg2) = qr(g1, g2) for all g ∈ G̃, this immediately implies the invari-
ance relation (8.14).

For the differential equations we use that in weight r the Casimir operator cor-
responds to ∆r +

r
2
(
1 − r

2
)
. Since ω is left-invariant, we have

Rωqr(g1, ·) =
r
2
(
1 −

r
2
)

qr(g1, ·) .

This corresponds to (8.12).
The Casimir operator commutes with g 7→ g−1 and with right translations, so

ωqr(·, g2) = r
2
(
1− r

2
)

qr(·, g2). Since Qr has weight −r in the first variable, we have(
∆−r +

−r
2

(
1 +

r
2
))

Qr(·, z2) =
r
2

(
1 −

r
2
)

Qr(·, g2) ,

which is (8.13).

A.2. Principal series. Induced representation. The set P̃ :=
{
(z,mπ) ∈ G̃ :

z ∈ H, m ∈ Z} is a subgroup of G̃. The principal series representations of G̃ are
obtained by induction from the characters, which can be written as

(A.22) χs,r : (z,mπ) 7→ ys e−mπir ,

with s ∈ C, r ∈ C mod 2Z. This leads to the space Vω[s, r] consisting of the
real-analytic functions G̃ → C that satisfy f (gp) = χs,r(p)−1 f (g) with p ∈ P̃,
g ∈ G̃. The action of G̃ by left translation makes Vω[s, r] into a representation
of G̃. The collection

{
Vω[s, r] : s ∈ C, r ∈ R/2Z

}
is called the principal series

of representations of G̃, depending on the spectral parameter s ∈ C and the central
character k̃(mπ) 7→ e−πimr. The superscript ω indicates that, for the moment, we
consider analytic vectors.

The classes of G̃/P̃ can be parametrized as k̃(ϑ)P̃ with ϑ ∈ R mod πZ. We can
describe the elements of Vω[s, r] as functions f : R → C that satisfy f (ϑ + π) =

eπir f (ϑ). With some work one can explicitly describe f 7→ f
∣∣∣ (̃

a
c

b
d

)
in terms of

analytic functions of ϑ depending on a, b, c, and d.
This is not a practical way to work with principal series representations. We

choose p ∈ r+2Z and relate f as above to ϕ on P1
R by ϕ(− cotϑ) = e−ipϑ f (ϑ). This

leads to a realization of the principal series Vω[s, r] in the real-analytic functions
on P1

R. We denote this realization by Vω(s, p), and call it a projective model of
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Vω[s, r]. The model depends on the choice of p ≡ r mod 2. If one carries out the
computations one arrives at the following description of the action

(A.23)

ϕ|prj
s,pk̃(π) (t) = eπir ϕ(t) (independent of q ≡ r mod 2) ,

ϕ|prj
s,pg̃ (t) = (a + ic)−s−p/2 (a − ic)−s+p/2( t − i

t − g−1 i

)s−p/2 ( t + i
t − g−1(−i)

)s+p/2
ϕ
(

at+b
ct+d

)
,

for g =
(

a
c

b
d

)
∈ G0 ⊂ SL2(R), as defined in (1.3).

Remarks. (a) The description in (A.23) is complicated. The factor
( t−i

t−g−1 i

)s−p/2

is holomorphic on P1
C

minus a path in H from i to g−1i, and similarly the factor( t+i
t−g−1(−i)

)s+p/2 is holomorphic on P1
C

minus a path in H− from −i to g−1(−i). So if
ϕ is a real-analytic function on P1

R, then ϕ|prj
s,pg̃ is also real-analytic on P1

R.
(b) Any real-analytic function on P1

R is the restriction of a holomorphic function on
some neighborhood of P1

R in P1
C

. We can viewVω(s, p) as a space on holomorphic
functions on some neighborhood Uϕ of P1

R in P1
C

. The action |prj
s,p preserves this

space.
(c) We do not have one projective model of Vω[s, r], but infinitely many. Multi-
plication by the function t 7→

( t−i
t+i

)`, with ` ∈ Z, gives an isomorphism

(A.24) Vω(s, r + 2`) −→ Vω(s, r) .

(d) The action |prj
s,p leaves invariant other spaces of functions on P1

R, for instance the
C∞-functions. This leads to the spaceV∞(s, p) of smooth vectors in the principal
series representation. The discussion in [13, §2] of the space distribution vectors
and hyperfunction vectors can be applied here, leading toV−∞(s, p) andV−ω(s, p).
(e) All elements ofVω(s, p) can be represented as a sum

(A.25)
∑
µ∈Z

cµ
( t − i
t + i

)µ
,

with cµ = O(e−a|µ|) for some a > 0. For the larger spaces Vx(s, p) with x =
∞,−∞,−ω, there are similar descriptions, like in [15, (2.18)], each with a condition
on the growth of the coefficients cµ.

A.2.1. Highest weight subspaces. For general combinations of s, p ∈ C the G̃-
moduleVω(s, p) is irreducible. (Reducibility has to be understood as the existence
of a closed non-trivial invariant subspace, for the topology onVω(s, p) that in the
projective model is induced by the collection of supremum norms on the neighbor-
hoods U of P1

R in P1
C

.) Reducibility occurs if 2s ≡ p or 2s ≡ −p modulo 2. For our
purpose we consider 2s ≡ −p mod 2. In view of the isomorphism in (A.24) we can
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look at the case (s, p) =
(
1 − r

2 , r − 2
)
. In that case the action in (A.23) is given by

(A.26)
ϕ|prj

1−r/2,r−2k̃(π) (t) = eπir ϕ(t) ,

ϕ|prj

1−r/2,r−2g̃ (t) = (a − ic)r−2
( t − i
t − g−1 i

)2−r
ϕ
(

at+b
ct+d

)
.

The factor
(
(t − i)/(t − g−1i)

)2−r
has singularities only on a path in H from i to

g−1i. Hence Vω
(
1 − r

2 , r − 2
)

contains as an invariant subspace the vectors repre-
sented by a holomorphic function on a neighborhood of H− ∩P1

R in P1
C

. That is just
the projective model prj2−rD

ω
2−r. Moreover, a comparison of (A.26) with (1.20)

shows that |prj

1−r/2,r−2g̃ is the same as the operator |prj

2−rg. In this way, the space Dω
2−r

can be viewed as an invariant subspace ofVω
(
1 − r

2 , r − 2
)
.

In the representation (A.25) the subspace prj2−rD
ω
2−r ⊂ V

ω(1 − r
2 , r − 2

)
is char-

acterized by cµ = 0 for µ > 0. Then the sum represents a a holomorphic function
on a neighborhood of H− ∪ P1

R in P1
C

.

The function t 7→
(

t−i
t+i

)µ
is an eigenfunction of k̃(ϑ) with eigenvalue eπi(r+2µ).

One calls r + 2µ the weight. In prj2−rD
ω
2−r only weights r + 2µ with µ ≤ 0 occur,

hence the name highest weight subspace.
We may proceed similarly with the larger representations spacesV∞

(
1− r

2 , r−2
)
,

V−∞
(
1 − r

2 , r − 2
)
, and V−ω

(
1 − r

2 , r − 2
)
, to obtain descriptions of the projective

models ofDx
v,2−r with x = ∞,−∞,−ω.

A.3. Related work. The idea to view automorphic forms as functions on a Lie
group is well-known, and has led to wide generalizations. We have not tried to
find the first place where this idea appears in the literature. To handle automor-
phic forms of non-integral weight one has to use a central extension of the Lie
group SL2(R). For half-integral weights one needs a double cover, the metaplectic
group. See, e.g., Gelbart‘s treatment [48]. For general complex weights we need
the universal covering group G̃. See Selberg [106], and Roelcke [104, §4].

Covering groups are often described with a 2-cocycle on SL2(R) with values
in the center, Z/2Z for the metaplectic group, Z̃ � Z for G̃. This cocycle turns
up naturally in the description of multiplier systems, even if one does not use the
language of Lie groups. Petersson gives it in [93, (11)], and Roelcke in [104, (1.7)].
We feel more comfortable with the description of G̃ as the space H × R provided
with an analytic group structure. This keeps the 2-cocycle hidden in the properties
of the lift g 7→ g̃.

For all semisimple Lie groups the principal series of representations is impor-
tant. In [62, Chap II] one finds examples. For the universal covering group G̃ of
SL2(R) it was developed by Pukánski [99], since he needed it for function theory
on G̃. Chapter VII of [62] discusses the construction of principal series represen-
tations as an induced representation.
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[10] R.W. Bruggeman: Automorphic forms, hyperfunction cohomology, and period functions; J.

reine angew. Math. 492 (1997) 1–39
[11] R.W. Bruggeman: Quantum Maass forms; p. 1–15 in The Conference on L-functions,

Fukuoka, Japan 18 – 23 February 2006, ed. Lin Weng & Masanobu Kaneko; World Scientific,
2007

[12] R.W. Bruggeman, T. Mühlenbruch: Eigenfunctions of transfer operators and cohomology; J.
Number Th. 129 (2009) 158–181

[13] R. Bruggeman, J. Lewis, D. Zagier: Function theory related to the group PSL2(R); p. 107–201
in From Fourier Analysis and Number Theory to Radon Transforms and Geometry, In memory of
Leon Ehrenpreis; ed. H.M. Farkas, R.C. Gunning, M. Knopp, B.A. Taylor; Developments in
Mathematics 28, Springer-Verlag, 2013

[14] R. W. Bruggeman, N. Diamantis: Higher order Maass forms; Algebra & Number Theory 6–7
(2012) 1409–1458

[15] R. Bruggeman, J. Lewis, D. Zagier: Period Functions for Maass Wave Forms and
Cohomology; to appear in Memoirs AMS2

[16] R. Bruggeman: Harmonic lifts of modular forms; Ramanujan Journal 33 (2014) 55–82
[17] J.H. Bruinier, J. Funke: On two geometric theta lifts; Duke Math. Journal 125 (2004) 45–90
[18] J.H. Bruinier, K. Ono, R.C. Rhoades: Differential operators for harmonic weak Maass forms

and the vanishing of Hecke eigenvalues; Math. Ann. 342 (2008) 673–693
[19] U. Bunke, M. Olbrich: Gamma-cohomology and the Selberg zeta function; J. reine angew.

Math. 467 (1995) 199–219
[20] U. Bunke, M. Olbrich: Resolutions of distribution globalizations of Harish-Chandra modules

and cohomology; J. reine angew. Math. 497 (1998) 47–81
[21] Y. Choie: Rational period functions for the modular group and real quadratic fields; Illinois J.

Mathematics 33.3 (1989) 495–529
[22] Y. Choie, A. Parson: Rational period functions and indefinite binary quadratic forms I; Math.

Ann. 286 (1990) 697–707
[23] Y. Choie, A.L. Parson: Rational period functions and indefinite binary quadratic forms II;

Illinois J. Mathematics 35.3 (1991) 374–400
[24] Y. Choie: Rational period functions, class numbers and Diophantine equations; J. Number

Th. 42 (1992) 158–188

2Presently preprint on http://people.mpim-bonn.mpg.de/zagier/ and
http://www.staff.science.uu.nl/∼brugg103/algemeen/prpr.html



AUTOMORPHIC FORMS AND COHOMOLOGY 143

[25] Y. Choie, D. Zagier: Rational period functions for PSL(2,Z); in A Tribute to Emil Grosswald:
Number Theory and Related Analysis, ed. M. Knopp, M. Sheingorn; Contemp. Mathematics 143
(1993) 89–108

[26] Y. Choie: Hecke operators on rational period functions on the Hecke groups; Results in
Mathematics 25 (1994) 40–49

[27] Y. Choie, S. Lim: The heat operator and mock Jacobi forms; Ramanujan J. 22.2 (2010)
209-219

[28] Y. Choie, W. Kohnen: Mellin transforms attached to certain automorphic integrals; J.
Number Theory 132.2 (2012) 301-313

[29] Y. Choie, S. Lim: Eichler integrals, period relations and Jacobi forms; Math. Z. 271.3–4
(2012) 639-661

[30] H. Cohn: Variational property of cusp forms; Trans. AMS 82.1 (1956) 117–127
[31] H. Cohn, M. Knopp: Note on automorphic forms with real period polynomials; Duke Math.

J. 32.1 (1965) 115–120
[32] A. Deitmar, J. Hilgert: Cohomology of arithmetic groups with infinite dimensional coefficient

spaces; Documenta Math. 10 (2005) 199–216
[33] A. Deitmar, J. Hilgert: A Lewis correspondence for submodular groups; Forum Math. 19.6

(2007) 1075–1099
[34] A. Deitmar: Higher order group cohomology and the Eichler-Shimura map; J. reine angew.

Math. 629, (2009) 221–235
[35] A. Deitmar: Lewis-Zagier correspondence for higher-order forms; Pac. J. Math. 249.1 (2011)

11–21
[36] A. Deitmar: Invariants, cohomology, and automorphic forms of higher order; Sel. Math. New

Ser. 18.5 (2012) 855–883
[37] N. Diamantis: Special values of higher derivatives of L-functions; Forum Mathematica 11.2

(1999) 229–252
[38] N. Diamantis, C. O’Sullivan: The dimensions of spaces of holomorphic second-order

automorphic forms and their cohomology; Trans. Amer. Math. Soc. 360.11 (2008) 5629–5666
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[40] W. Duke, Ö. Imamoḡlu, Á. Tóth: Regularized inner products of modular functions;

Ramanujan Journal, online 2014, DOI 10.1007/s11139-013-9544-5
[41] M. Eichler: Eine Verallgemeinerung der Abelsche Integrale; Math. Z. 67 (1957) 267–298
[42] M. Eichler: Grenzkreisgruppen und kettenbruchartige Algorithmen; Acta Arithm. 11.2 (1965)

169–180
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η2r 25

ι involution 9

κ = κv,2−r,γ 107

ξr 19, 46

ρr 54
ρprj

r 52, 56

πa 10

σa 10

χr 136

ΨH, Ψ̃H 118
ψ

z0
F 5, 21

ψaF 22
ψF 81

ψ : γ 7→ ψγ cocycle

ω 137
Lω = Rω 137
ωr(F; t, z) 20
ωprj

r (F; t, z) 20

VΓ, Vγ (invariants) 101, 106
W[ξ] 109
f 7→ f |r 9
f 7→ f |v,p 10, 128
f 7→ f |g 135
f 7→ f |prj

s,pg 140, 141
(x)|γ 79
X f = RX f 137
ϕprj 7→ ϕprj|

prj
2−rg 13

[·, ·]r 72
[·, ·] 137
(ξ, η)cycl cyclic interval in P1

R

116
(a)m 57
∼ 15, 29
.
= 109
g 7→ g̃ : SL2(R)→ G̃ 135
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