Oberwolfach
Preprints

OwWP 2014 - 10
ERIK |I. VERRIEST AND ANATOLI F. IVANOV

Observability of Systems with Delay Convoluted
Observation

Mathematisches Forschungsinstitut Oberwolfach gGmbH
Oberwolfach Preprints (OWP) ISSN 1864-7596



Oberwolfach Preprints (OWP)

Starting in 2007, the MFO publishes a preprint series which mainly contains research results
related to a longer stay in Oberwolfach. In particular, this concerns the Research in Pairs-
Programme (RiP) and the Oberwolfach-Leibniz-Fellows (OWLF), but this can also include an
Oberwolfach Lecture, for example.

A preprint can have a size from 1 - 200 pages, and the MFO will publish it on its website as well as
by hard copy. Every RiP group or Oberwolfach-Leibniz-Fellow may receive on request 30 free hard
copies (DIN A4, black and white copy) by surface mail.

Of course, the full copy right is left to the authors. The MFO only needs the right to publish it on its
website www.mfo.de as a documentation of the research work done at the MFO, which you are
accepting by sending us your file.

In case of interest, please send a pdf file of your preprint by email to rip@mfo.de or owlf@mfo.de,
respectively. The file should be sent to the MFO within 12 months after your stay as RiP or OWLF at
the MFO.

There are no requirements for the format of the preprint, except that the introduction should
contain a short appreciation and that the paper size (respectively format) should be DIN A4,
"letter" or "article".

On the front page of the hard copies, which contains the logo of the MFO, title and authors, we
shall add a running number (20XX - XX).

We cordially invite the researchers within the RiP or OWLF programme to make use of this offer
and would like to thank you in advance for your cooperation.

Imprint:

Mathematisches Forschungsinstitut Oberwolfach gGmbH (MFO)
Schwarzwaldstrasse 9-11

77709 Oberwolfach-Walke

Germany

Tel +49 7834 979 50
Fax +49 7834 979 55
Email admin@mfo.de
URL www.mfo.de

The Oberwolfach Preprints (OWP, ISSN 1864-7596) are published by the MFO.
Copyright of the content is held by the authors.



OBSERVABILITY OF SYSTEMS WITH
DELAY CONVOLUTED OBSERVATION

Erik I. Verriest' and Anatoli F. Ivanov?

1School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0250, USA
Corresponding author email: erik.verriest@ece.gatech.edu

2Department of Mathematics, Pennsylvania State University
P.O. Box PSU, Lehman, PA 18627, USA
Email: afil@psu.edu

Abstract. This paper analyzes finite dimensional linear time-invariant sys-
tems with observation of a delay, where that delay satisfies a particular im-
plicit relation with the state variables, rendering the entire problem nonlin-
ear. The objective is to retrieve the state variables from the measured delay.
The first contribution involves the direct inversion of the delay, the second
is the design of a finite dimensional state observer, and the third involves
the derivation of certain properties of the delay - state relation. Realistic

examples treat vehicles with ultrasonic position sensors.

Keywords. Systems with convoluted delay; Observability; Soft landing
problem; Functional differential equations with state-dependent delay; State

observability from delay; Representation of solutions near singular points.
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1 Introduction

This paper revisits the "soft landing” problem, posed in [9]. The
problem is one where the dynamics is linear and finite dimen-
sional, but the observed quantity (either directly or indirectly) is
a delay, which is itself dependent on the present and the delayed
state. In the simple version of the soft landing problem, the dy-
namics are given by a second order system with state variables
position, y and velocity v. The position is indirectly measured by
the return of a radar or sonar signal, which only provides informa-
tion of the delay between transmission and reception time. This
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leads to an implicit functional relation between output, y, and the
delay, 7. The objective is to obtain an estimate of the full sys-
tem state from these delay observations (the “delay-inversion”).
For instance if a robot is to avoid hitting a wall, y would be the
distance to this wall (considering a one-dimensional configuration
space for simplicity), and v the rate of change. The state vector
€ = [x,v]" satisfies in this case simple Newtonian dynamics

T=v (1a)
= u. (1b)

If the problem is one of soft landing, say on the ocean floor, equa-
tion (1b) should be replaced by the relevant viscous friction

0= —kv+u. (2)

In both cases, a sound wave is used to detect the position. As
the speed of sound is finite, this means that only some past po-
sition can be measured. Precisely how far in the past depends
again on the state itself. That is where the convoluted implicit
relation between output and delay appears. Moreover, the delay
depends on the state, rendering the problem very difficult (e.g.,
see [3]), even for simple ‘toy’-systems ([7, 8]). In turn this may
lead to inconsistencies if the rate of change of the delay exceeds
1, as explained in [5, 6].

In [1] the Newtonian system with observation model y7(t) =
z(t) + x(t — 7(t)), where ~y is the speed of sound, was studied.
An asymptotic estimate was provided by a new type of observer
(using ”delay-injection”). This observer is itself a system with
time-varying delay, for which only sufficient conditions for conver-
gence are easily obtained. In this paper we will show that direct
inversion of the delay (i.e., the map from delay 7 to output (po-
sition x) is possible in a certain subinterval. We also provide an
observer which does not involve delayed dynamics, hence is finite
dimensional and more practical to implement. In case the system
input is known, the observation error converges to 0, whereas for
the system with unknown input, only upper bounds on the ob-
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servation error can be derived. Thus motivated, a general version
of this problem is posed and solved.

2 The general problem

Let the dynamics be given by the finite dimensional system
§=At+bu, y=ck, (3)

where ¢ € R” is the state and u and y are respectively a scalar
input and output signal. Such a realization, (A, b, c), will be de-
noted by X. However, the output is not directly measured. Only
an indirect observation of y, given by the convolution

N-1
T(t) =) ay(t —k7(1)), (4)

k=0
and parameterized by the vector a = [a,...,ay]" is available.

Rewritten in a more compact form: 7(t) = a'Y(t,7(t)), where
V(£ 7(5)T = [y(t), y(t — 7).yt — (N — 1)7)].

The observability question is now: Can one retrieve the state £(¢)
from knowledge of the past history of the delay 7(¢) and the ap-
plied input, u(¢)? If so, we will say that the system 3 = (A, b, c)
is state-observable from the delay.

3 Inversion of the delay

Similar to the derivation of the observer for a linear system as for
instance described in [4], apply successive differentiation of the
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observed delay, 7:

N-1

> arct(t — kr(t))

T
Dt

(]

ag [cAE(t — kT(t)) + cbu(t — k7(t))] (1 — k7(t))

o
o

=

(]

ay [cA*E(t — kT) + cAbu(t — k7(t))+
+_cb7jc(t — k()] (1 = k7(t)* +

= ar[cAL(t = kT(t)) + cbu(t — kr(t))] k7 (t)

These equations can be streamlined in matrix form. Let 7 denote
the vector of successive derivatives of 7, and define for each k =
0,1,..., N — 1, the vector U(t — kT) by

[ 7 [ u(t — k)

T u(t — k)

TW=| 7T |, Ut—kr)=| ult—kT)
I T(”:_l) | i u(”_l)(;f —kT) |

Let the matrix of powers and derivatives of (1 — k7) be denoted

by Tk(T)7

Tk(T)

1
0 1—k7
o —kr (1—kF)?)

0 —kr(n=D . (1 — k)t

Then in compact format:

T(t) =

N-1

> ar[Tu(r)O(X)E(t — k) + T(SU(E — k7)),
k=0
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where O(X) and T(X) are respectively the observability and Toeplitz
matrix of the system ¥ = (A, b, ¢).

- - _
cA cb 0
ox)=| c¢A |, T(x)=| cAb < 0
I cAM 1 | I cA"2b ... b 0 |

But the explicit solution of the system state equation implies

E(t—kr) = e Mgt) — / t eAFT=0bu(0) df
t—kt

= e Me(t) — J({u}i_,),

where Jy is the integral in the second term of the r.h.s. expressed
as a functional on {u}. Hence

T(r)+ D ax [TO(X) I (fu}iyr) — T(EU(E — k)]

— [Z_ akaO(E)eAkT] &(). (5)

It follows from (5) that the state, £(t), can be retrieved from the
input and delay history if the matrix

N—1
0.(%,a,7(t)) & [Z ak']I‘kO(Z)e_AkT(t)]
k=0

is nonsingular for ¢.
Denoting the sum which depends on u simply by A({u}, 7)), we
get

£(t) = 07 (B, a,7) [T(7) + A({u}, )],

and thus the inversion is

y(t) = cO1 (2, a,7) [T(7) + A{u}, 7)].
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Theorem 3.1 Observability of the realization ¥ (see [4]) with
output y is a necessary condition for state-observability from T.

Proof: By contradiction. If O(X) does not have full rank, then by
the Popov-Belevitch-Hautus (PBH) - test (see [4]), there exists an
eigenvector v of A which is orthogonal to the rows of ¢. But then,
letting A be the corresponding eigenvalue, Av = v, it follows
that

O(XN)e ™y = 0O(X)e ™M v = e MO (Z)w
cv

cAv
= e T . = 0.

cAM 1y

Hence for all ¢,
Oy(3,a,7(t)v =0,

which contradicts observability from 7. [J
The above then proves:

Theorem 3.2 The realization X is state observable from the de-
lay 7 if the matriz O1(3, a, 7(t)) is nonsingular for all t.

In the next two sections, we reconsider the soft-landing prob-
lem in the one-dimensional configuration space (which corresponds
to a second order system) for two realistic observation models.

4 Example 1: Passive echo-location

Consider a mobile unit (MU) of mass m, moving in a viscous fluid
with friction coefficient «. Let the mass emit a continuous time-
stamped signal s(¢). By the latter it is meant that if the signal
s(t) is transmitted at time ¢,, and observed at a later time ¢, after
propagating with a speed « for a time ¢t — t,, the transmission
time ¢, can be detected. Consider now the following (passive)
problem: Suppose that the signal s(¢,) is emitted by the MU,
when it is at position z(t,) and detected by a stationary observer
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located at the origin at time ¢. Since the signal has traveled for a
distance y(t —t,) = x(t,), it reveals an earlier position of the MU
to this stationary observer. In this example we assume that the
receiver sits at an impenetrable wall so that we may assume that
z(+) > 0. This could model the (one-dimensional) vertical motion
of a submersible, with the detector at the bottom of the ocean.
Letting t — t,, = 7(t), this gives

2t =7(1) =7(1),

which corresponds with a’ = [0, ﬂ in the general model.

4.1 Exact inversions

It is fairly simple to derive 7(-) from knowledge of z(+). See Figure
1. Let z(t) be given in [to, t1], with z(ty) = x(t1) = 0. Consider
the point A with coordinates (¢,z(t)/y) on the graph of x/7.
Construct the line with slope —1 through A, which intersects
the time axis in B, which has coordinates (¢t + z(¢)/v,0). The
horizontal line through A and the vertical line through B intersect
in C, which has the coordinates (¢ + x(t)/v,z(t)/7v) and lies on
the graph of 7. In fact, if t' = ¢t + x(t)/7, then 7(t') = x(t)/~,

x(t)
025
0.20 A v T(t)
0.15
0.10 \ |
o.og | | \ JB | | | t
0 0.2 04 0.6 0.8 1

Figure 1: Constructing 7(-) from z(-)
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0.5
0.4
0.3 X
0.2

0.1+

0

0 0.2 0.4 0.6 0.8 1

Figure 2: Non-unique 7(-) if £ < —1.

which gives a parameterized form of the graph of 7. Moreover,
if x is differentiable, then two neighboring points on the graph
of x/v, say (t,x(t)/y) and (t + d¢, (z(t) + @(¢)dt)/vy), map to
(t+2(8) /7, 2(t)/7) = (', 7(t')) and (t+dt+ (2(t) + (t) dt) /) =
(t'+dt’,7(t') + 7(¢')dt'), from which it follows that

He) = 20 )
v+ a(t)

Imposing the causality constraint 7 < 1, see [6], implies then a

constraint on the feasible functions x, namely @ > —~. Indeed,

it can be seen that when this constraint is violated, a unique 7

cannot be constructed. See Figure 2. For ¢ > 1, two compatible

delay values occur.

The observation problem is actually the reverse of the above. It is
desired to reconstruct x from observations of the delay 7. For this
the previous graphical construction can be inverted. Let the delay
7(-) be specified and strictly positive in the interval (to, 1), and
assume it satisfies the causality constraint. Then for ¢y <t < ¢4,
the parameterized point (¢—7(t),y7(t)) lies on the graph of = (Fig-
ure 3). Point A has coordinates (¢,7(¢)). The line AB has slope
1, so that B has coordinates (t — 7(¢),0). The vertical through
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124 D
1]
0.8 x
0.6
0.4 |
0.2 |
0 Bl

0 1

|
|
|
;
2

3

Figure 3: Construction of x from 7 (for v = 1.2).

B intersects the horizontal through A to give C with coordinates
(t — 7(t),7(t)). The length of BD is 7 times the length of BC,
thus D has coordinates (¢t — 7(t),v7(t)) and therefore lies on the
graph of z. Finally, note that z(-) can only be determined in the
interval (tg — 7(to), 1 — 7(t1)).

4.2 Analyticity
Consider the implicit output - delay equation z(t — 7(t)) = y7(¢).

Theorem 4.1 z is analytic < 7 is analytic.

Proof:

1. If 7(-) is analytic, then ¢ — 7(¢) is analytic. Suppose now that
x were not analytic, then x(t — 7(¢)) would also not be analytic,
which contradicts the analyticity of y7(t).

2. If z() is analytic, then let
z(t)y=71@1), t'=t—71(t). (7)

Thus t =t + %x(t’ ), so that ¢ is an analytic function of ¢'. Since
T(t(t) = %x(t’ ) is an analytic function of ¢/, and ¢(¢) is analytic it
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must follow that 7(+) is analytic. The latter follows by contradic-
tion: Suppose that 7(-) were not analytic, then 7(¢(t')) = %x(t/)
is not analytic, which is a contradiction. O

Note that x is generated by a finite dimensional linear time
invariant ODE. Hence if the driving force u is an analytic function
of time, so is z, and by the theorem therefore also the delay 7.

4.3 State observability from the delay

Let’s temporarily leave this delay signal model, and see how the
state equations connect to the observations. With the state de-
fined as ¢ = [z, v]", where x is position and v the velocity, we get
the state space model

Azlg _104}’ b:{l/om}, c=[1,0].

Let’s first look at the dynamics without the delay, assuming that
the position is directly observed: y(t) = z(t).
The observability matrix O(A, ¢) = I, and thus

wrrespective the applied force u. In fact, by taking a second deriva-
tive of the observation, the unknown input can be found by dif-
ferentiation:

u(t) =m (§(t) + ay(t)) -

Thus the state as well as the input are observable from y. Note
that this delay-free case corresponds to the limit of a model where
the speed of the MU is much smaller than the propagation speed
of the signal (v = ¢). Indeed,

z(t —7(t)) =~ z(t) — z(t)7(¢),

and thus
o(t) ~ ¢ (1 + @) () ~ cr(t).

C
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With the delay incorporated in the model, it is easily seen from

(3) and (4) that
wt—7(t) = ~7(1)

v(t=7(t) = 7

1—7(t)

Hence, only past values of the state can be detected. Since 7(¢)
is detected it is known precisely at which past time these state
values are known. The dynamical equations also yield the input
value from

u(t —7(t) =m0t —7(t)) + av(t — 7(t))) .

The chain rule gives

d _ i
3 V= 7)) =0t —7(t) (1 - 7(2)). (8)
But the left hand side of (8) is
d q7(t) _f vt oF
dt1— (1) -7 (1-72 (1—7)7
So: o
U<t - T(t)> = (1 _ 7_)3
and
u(t—7(t)) = m (%x(t —7(t)) — az(t — T(t)))
. YT YTT B maoyT
B (1—T'+(1—T')2) 1—7
B 7(t) — at(t)
- "I R

If the input force, u(t), is known for ¢ > 0, but not the initial
state, then at time ¢ > 0, the state [z(t — 7(¢)),v(t — 7(¢)]" is
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detected. This can be integrated forward to get

t

1
x(t) = z(t—71())+ — t—s)e =9y(s)ds
(t) (t—7t) + 5 H(t)( ) (s)
= ~7(t) + L t (t — s)e t=9)y(s) ds
2m S
1 t
v(t) = v(t—7()+— ey (s) ds
M Ji—r(1)
7(t) 1 /t —a(t—s)
= Yy——=+— e u(s) ds.
L=7(1)  mJi )

Again we emphasize that since 7(t) is measured without error,
7(t) is a known quantity, and the above integrals are computable
at time ¢.

4.4 A Finite dimensional asymptotic observer

In practical situations, measurements cannot be perfect. Hence
the observed 7(t) may be imbedded in a wildly fluctuating per-
turbation w(t), which may be deterministically or stochastically
modeled. In either case differentiation is impractical. The way
out is then to use a dynamic state observer. In [1] an infinite-
dimensional observer was proposed which followed the dynamics
of the delay. This adds a lot more complexity to the system. We
show below that this is not necessary, and a finite dimensional
observer suffices for this system.

Indeed, since the dynamic model is finite dimensional, the
basic simulator with output error injection over gains ¢, and /¢, is

) = nlt) + Llr(t) —#(0) )
i) = —an(t) + —ult = (0) + (1) ~ 7(1), (10

where

7(t) = ;5(15). (11)



Observability of Systems with Delay Convoluted Observation 13

Note however that it is necessary to drive this observer with the
delayed input. Subtracting these equations from the delayed dy-
namical model, evaluated at ¢t — 7(¢), and setting

we get the error model

evaluated at t — 7(¢). Hence if the observer gain ¢ = [(,,(,]" is
chosen so that the error system dynamic matrix

_%z 1
—a—% 0|’

P

which has characteristic polynomial, s* + s 4+ o + %“, is Hur-
witz, the error will converge to zero. Consequently, the observer
(9,10,11) is an asymptotic observer of the past state, (t —7(t)) =
[Z(t —7(t)),0(t — 7(t))]" = [€(t),n(t)]T. A prediction step then
completes the observer for the present state

1 t
() = &)+ — t—s)e =)y (s) ds
0 = €0+ 5 [ @l
1 t
o) = nt)+— e =9y (s) ds.
m Ji—r(t)

The error goes also asymptotically to zero if u(:) is perfectly
known. In the other case, bounds are easily obtained for the
integrals in the above expression.

If the input is not at all known a priori to the observer, then
this input needs to be estimated as well.
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5 Example 2: Active echo location

Consider now the system from Example 1, but with the sonar de-
vice (transmitter and receiver) located on the mobile unit (MU).

This corresponds to the special case a' = [%, ﬂ . Consider thus
x(t) +z(t — 7(t)) = vy7(t). (12)

Without any knowledge of the dynamics involved, what can be
inferred from the observation model (12)?

5.1 Causality

First consider the simple limiting case: 7(t) = t — to, for some
t € (t1,t2) with t; > ¢ in order to maintain causality.
Substitution in equation (12) leads to

.T(t) = —x(t0)+’)/<t—t0>, t e (tl,tg).
Note that if tg = ¢y, i.e., 7(to) = 0, it follows from the above that
also z(ty) = 0.

The limit case can thus only occur when x(-) is a straight line
with slope +. This is equivalent to 7 = 1, this truly being the
limit case for causal behavior.

Let 7(t) > 0 be given in (#o,?;) and assume it satisfies the
causality constraint 7(¢) < 1. Differentiating (12) yields

z(t)+ 2t —7()(1 —7(t)) = ~y7(t). (13)
The causality constraint gives

i)+ it — 7))
= =)

For v+ @(t — 7(t)) > 0, this inequality yields

<L (14)

() < 7. (15)
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Hence & < 7 implies consistent (causal) behavior. The physical
meaning of (15) is that the MU should not move faster than the
speed of sound.

5.2 Obtaining 7 from z.

Consider the forward problem: obtaining 7(¢), satisfying (12),
from full knowledge of x(t) in the interval (¢1, t3). We shall assume
that u is also perfectly known in this case.

From time t] on, where ¢} — t; = 7(t}), the delay 7(-) is well
defined. Reorganize the equation as

z(0") =—x(0)+~v0" —0), 7(0)=6—86.

The construction is as follows. From a point (6, —z(#)) draw the
line with slope . This line intersects the curve z(t) in a point with
horizontal coordinate 6’. The delay at 6 is then 7(0') = 6’ — 6.
See Figure 4.

C
x(t) /IE T(t)
0.6 ST F
vt C\
- |
0.4 /
/) | \
/ | \
0.2 / | \
1, | \
0 A T /IA T D|| ‘ 1
07 | 04 06 08 D"
/|
0.2 - /|
/]
/]
-044 / |
B
-0.6 |
B' -X(t)

Figure 4: Construction of 7 from = (for v = 2).
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0.5 x(t) —vyt
A
0 T
|
-0.5 |
|
|
_1_
B
1.5
-x(t) —vyt

-2.5-

Figure 5: Alternative construction of 7 from z (for v = 2).

Point B’ has coordinates (¢, —xz(t)). The line B'C’ has slope
7, and intersects the curve z(-) in C’, so that C’ has coordinates
(t',z(t")). The vertical through C’ intersects the time axis in D’.
The delay at ¢’ is then the length A’D’=E'D’. This creates the
point E' with coordinates (', 7(t')). Likewise, ABCDE gives the
construction for the first time for which 7 can be derived.
An alternative construction (Figure 5) of the same follows from

Plot the graphs of +xz(t) — vt. Let point B have coordinates
(t, —x(t) — ~t). The horizontal through B intersects z(s) — s in
C with coordinates (', z(t') — vt'). The delay at t’ is therefore
rt) =t —t.
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5.3 Obtaining r from 7

Finally, consider the converse construction of x(t) from 7(t).

Assume that 7(-) is known in the interval (tg,¢;), with 7(¢to) =
7(t1) = 0. As discussed, this implies that z(ty) = z(t1) = 0, and
if 7(t) > 0, for some t € (to, 1), then z(¢) > 0. Consider figure 6.

Figure 6: Construction of x from 7 (for v = 1.5).

At time ¢, the delay 7(¢) is known (point B). The line through B
with slope 1, intersects the time axis in point C, determining the
time ¢t — 7(¢). It holds that

x(t —7(t)) + x(t) = y7(t)

Hence since z(t) > 0, it holds that

x(t —7(t)) < 7(t).

Through point A construct the line with slope —v. This line in-
tersects the vertical through C in point D. Hence, it follows that
z(t — 7(t)) must be constrained to the interval CD. Since this
construction can be performed for all t € (to, 1), an upper bound
for x(t), the line xb(t), is obtained. The same construction holds
when 7(ty) and 7(¢;) are nonzero. See Figures 7 and 8, both for
v = 0.5. Notice that in these cases the interval where the up-
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xb(t)

Figure 7: Upper bound for z from 7 (y = 0.5).

per bound is known differs from the interval where the delay 7 is
known.

Can one actually obtain the exact values of x from 77 Consider
again Figure 7 or 8. In order to determine the value of x(t) at
ta, one needs to know x at time to. We only know this value is

0.8 7 B T(t)
0.7-//\
0.6 \
0.5 \
D 0.4 1 }
:\\\\0.3- xb(t)
| 0.2 \
| 0.1 \\\ \
. @ \‘JA. t.
0.5 0 0.5 1

Figure 8: Construction of upper bound for z from 7 (for v = 0.5).
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constrained to the interval CD, but otherwise we may assume it
to be ‘free’. Thus the construction defines a mapping of z in the
interval CA, to = in an interval starting at AA’, where A’ is the
time at which the parallel to CB intersects the graph of 7. This
mapping is given by

VO € (to,ta), Vo € (0,24(0)) :  (0,2) = (0, —x +~(0' — 0)),

where ¢’ is the explicit function, say 6’ = T'(#), associated with
the implicit relation 8’ — 6 = 7(¢'). By the implicit function theo-
rem, this explicit function will exist (and be unique) if 7 # 1. But
this is precisely the causality requirement we had imposed on the
problem. It follows that many initializations exist which will give
a consistent value for z(¢) over the interval. Unless we have some
side information about x, no unique solution can result. What
could such side information be? For the case of Figure 8, consider
the initialization by x(6) = 0.2 in the interval (—0.5,0). This cor-

038 T(t)
0.7 1
0.6 /

0.5 / 7

o4 / %

ﬁ xbt) 7 /
/03 -\ /
A - B // //
=021 '

> / B

J/ ~ 0.1+ ‘ v
%

I
-0.5 0 05 1
Figure 9: A discontinuous candidate for the function x(t).

responds to the segment AB in Figure 9, and it gets mapped to
A’B’. Although it satisfies the constraint x(t) < x,(t), this can-
not correspond to a solution of the problem if it is known that
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z(t) should be a continuous function, as we get a discontinuity at
zero. Even if we adjust the initial data in the interval (—0.5,0)
so that the continuation by the above mapping is continuous, dif-
ferentiability may fail at zero. But this requisite side information
is precisely what one would get from a dynamical model for z(t).
The problem is simpler if 7(¢y) = 0, and 7(¢) is differentiable.
A differentiable solution of z(t) is obtained by differentiating the
defining equation. Indeed let € > 0 be small. Then from

x(to+e€) +a(to+e—7(tg+¢€) =7(to + ¢€)
we get
x(to) + €x(to) + x(to) + (e — 7(to + €))a(to) = y7(to + €).

This yields

: 77 (to)
t = —:

#(to) 2 — 7(to)

5.4 Behavior near a common zero of z and 7.

Without loss of generality let t = 0 be the common zero. If z(t)
has dominant behavior z(t) = at* for u > 0 and a > 0, then
substitution in (12) gives

aﬁ+aﬁ(«—ﬂﬁ)u—7ﬂﬂ

t

Causality imposes 7(t) < t, hence the factor <1 — @) takes

values in the interval (0,1). It follows then that

2
Dy < 7(t) < L,
v v

Conversely, if 7(¢) has dominant behavior 7(t) = bt”, where for
causality reasons v > 1, then

x(t) + x(t — bt”) = ybt”
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from which a first order Taylor expansion gives the ODE
2x(t) — bt"x(t) = ybt”

But this is non-Lipshitz, so a unique solution may not be inferred.
Upon substituting x(t) = at", one gets

2at” — abut" ™ = ~ybt”.

If v < 2, the left hand side becomes negative and no conclusion
can be drawn from this approximation. But if v > 2, then the
second term on the left may be neglected compared to the first,
leading to the viable solution a = vb/2 and p = v, thus x(¢)
behaves as

Finally, note that a linear increase in both x and 7 is compatible.
Indeed, letting 7(¢t) = bt and z(t) = at in (12) gives

at + a(t — bt) = bt
from which the complementary relations

vb 2a
=——, b= 16
a=5—, T a (16)

are exact.

One can ask again, if as in example 1, analytic solutions exist

z(t) = i a;it’, T(t) = i bit'.
=1 =1

For instance, the second order approximations for z and 7 in the
neighborhood of a common zero (placed at t=0), x(t) = a;t + ast?
and 7(t) = byt + bot? leads again to

2a1 — a1by = by,
i.e., (16) is retrieved and

CLQ(b% — 2b1 + 2) = (’}/ + (ll)bg.
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More terms can be computed, but the procedure becomes more
convoluted as the accuracy increases. The existence of analytic
solutions implies that the delay-inversion can be computed itera-
tively as a matter of principle.

Let us assume the more general relation between delay and
output
G(r) = F(z(t),z(t — 7)). (17)
It is fairly simple to derive 7(-) from knowledge of x(-) by invoking
the implicit function theorem, of course assuming that z(t) is a
known quantity for all time.
Set R(t,7) = F(x(t),z(t — 7)) — G(r). f F € C*, G € C*
and x € C* with k = min{ky, ko, k3} > 1, then R € C* and
if the Jacobian g—f does not vanish at (¢g,7y), by the implicit
function theorem there exists a C*-function, T : R — R, such
that 7'(t) = 7 in some neighborhood about (¢, 7). Note that
OR dx dG(7)

O |y T ar

Y

(to,m0) (to—70) 70

where F(to, 7) is the partial derivative of F' with respect to the
i-th argument, evaluated at (o, 7).

If it is known that the functions F', G and y are all analytic,
much more can be invoked than just the above existence theorem.

Theorem 5.1 Given (17) with F, G and y analytic. Then if
G'(17)+Fy(x(t),z(t)) is nonzero at t, the inversion att is explicitly
given by the power series

1) = 3 (GO . o(0) { (%)H (%)k}zo

k>1

Proof: Consider the auxiliary function
f(1) = G(1) = G0) = F(a@t),x(t — 7)) + F(x(t),2(t))  (18)

as a function of 7, parameterized by ¢, and notice that f(0) = 0,
while

_ dG(r)

7/0) = S22+ Fe(t), a(0),

0
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The implicit relation between y and 7 implies that f(7) = —G(0)+
F(x(t),z(t)). If f'(0) # 0, the Lagrange-Biirmann inversion the-
orem (see [10, p.132]) may be invoked to give an explicit solution
for f(7) = z as a power series

GRS L

from which the statement follows. ]

Equation (17) can be extended to several delay variables for
which theorem 5.1 may be generalized invoking [2]. Unfortu-
nately, methods based on the implicit function theorem and the
Lagrange-Biirmann inversion are limited by the need of the ex-
plicit functional form of x(t).

Example Consider the simple case F'(a, 8) = f with G(7) =7
(Echo location for uniform motion) . The first corresponds to the
simple model for on-board echo location, with the signal speed, ~
normalized to 1. The second adds a nonlinear perturbation.

A uniform motion of the MU implies: x(t) = z¢ + vot. Apply-
ing theorem 5.1, the auxiliary function (18) is f(7) = 7 + z(t) —
x(t — 7) = 7 + vo7, and hence

(&) () oo

Since z = —G(0)+ F(xo+vot, xo+vot) = 2(xo+vot), the inversion
yields

2(560 + U0t>
=220 07
7(t) o

which is proportional to the present position z(t).
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