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ABUNDANCE OF 3-PLANES ON

REAL PROJECTIVE HYPERSURFACES

S. Finashin, V. Kharlamov

Abstract. We show that a generic real projective n-dimensional hypersurface of

odd degree d, such that 4(n − 2) =
(d+3

3

)
, contains ”many” real 3-planes, namely,

in the logarithmic scale their number has the same rate of growth, d3 log d, as the
number of complex 3-planes. This estimate is based on the interpretation of a suitable

signed count of the 3-planes as the Euler number of an appropriate bundle.

Everything you can imagine is real.
Pablo Picasso

1. Introduction

1.1. Phenomenon of abundance. Up to our knowledge, the phenomenon of
abundance of real solutions in certain real enumerative problems was observed
for the first time in [IKS], where it was shown that the number of real rational
curves of degree d interpolating a generic collection of 3d− 1 real points in the real
projective plane grows, in the logarithmic scale, as fast as the number of complex
curves. Since then, similar abundance phenomena were observed in various other
real enumerative problems (cf., [IKS2], [GZ], [KR]). In particular, in our previous
paper [FK] we proved that a generic real projective n-dimensional hypersurface of
degree 2n−1 contains at least (2n−1)!! real lines, which is approximately the square
root of the number of complex lines (the same bound was obtained by C. Okonek
and A. Teleman [OT]). This estimate was based on the signed counting of the real
lines by means of the Euler number of an appropriate vector bundle, and as a result
gave the following relations

nC
d > nR

d > nR,min
d > ne

d, logne
d ∼

1

2
lognC

d ,

where nC
d and nR

d denote respectively the numbers of complex and real lines on

a generic real hypersurface, nR,min
d is the minimum of nR

d taken over all generic

hypersurfaces of the given degree d and dimension d+1
2 , and ne

d stands for the

above mentioned signed count of real lines. (Here, the number nR
d depends on the

choice of such a hypersurface, while ne
d, n

R,min
d , and nC

d depend only on d.)
The aim of the present paper is to show that a similar abundance phenome-

non holds also as soon as we count the real 3-planes on generic real projective
n-dimensional hypersurfaces of odd degree d.
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To achieve this goal we follow the same approach as in [FK]. Namely, the variety
of (complex or real) 3-planes on a hypersurface in Pn+1 defined by a homogeneous
polynomial f of degree d is viewed as the zero locus {sf = 0} in the Grassmannian
(G4(Cn+2) or G4(Rn+2), respectively), where sf is the determined by f section

of the symmetric power Symd τ∗4,n+2 of the dual to the tautological (complex or
real) 4-dimensional vector bundle τ4,n+2 on the corresponding Grassmannian. It is
well-known (see, for example, [DM, Theorem 1.2]) that the section sf is transversal

for a generic choice of f . Thus, if dim{sf = 0} = 4(n − 2) −
(
d+3
3

)
is zero, then,

in the complex setting, the Chern number c4(n−2)(Sym
d τ∗4,n+2)[G4(Cn+2)] is equal

to the number of complex 3-planes, while in the real setting, the Euler number of
Symd τ∗4,n+2 on G4(Rn+2) counts the real 3-planes with signs.

The main feature of such a signed count is its invariance: dependence only on d
and not on the choice of a hypersurface (in particular, independence of the topology
of the hypersurface). It is well defined, if d is odd (see Proposition 3.1.3), which is
the only interesting case for invariant counting and lower bounds, since in the case
of even d the real locus of the hypersurface can be empty. Note also that the count
of 3-planes makes sense only if n = 2 + 1

4

(
d+3
3

)
(in higher dimension the 3-planes

come in families, and in lower dimension their number is zero).
In order to state the results, let us introduce the following notation: denote by

NC
d , NR

d and NR,min
d the number of complex 3-planes, the number of real 3-planes,

and the minimum of NR
d taken over all generic hypersurfaces of a given degree d

and the dimension n = 2 + 1
4

(
d+3
3

)
. To avoid cumbersome discussions of explicit

orientation conventions needed to fix the sign of the Euler number in question, we
take into account only its absolute value and denote the latter by N e

d . Note that
these numbers are linked by the following trivial relations

(1.1.1) NC
d > NR

d > NR,min
d > N e

d > 0.

1.1.2. Theorem. The invariants NC
d ,N e

d are positive for each odd d and satisfy
the following asymptotic relations as (odd) d→∞:

logN e
d =

1

12
d3 log d+O(d3) 6 logNC

d 6 1

6
d3 log d+O(d3).

Our conjecture is that, in fact, logNC
d ∼ 2 logN e

d which would imply that
logNC

d ∼ 1
6d

3 log d. It seems to us that even the positivity of NR
d (which follows

from N e
d ̸= 0) was not acknowledged in the literature before.

Amazingly, the answers that we obtain in the real settings look more simple than
those in the complex setting. Similar phenomena are observed in other enumerative
problems, see [FK] and Section 5.

1.1.3. Corollary. As odd degree d increases, the invariants NC
d and NR,min

d have
equivalent rates of growth in the logarithmic scale. More precisely,

1

12
d3 log d+O(d3) 6 logNR,min

d 6 logNC
d 6 1

6
d3 log d+O(d3).
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1.2. Examples, applications, and related results. In the case of even d, we
still have NC

d > 0 (see, for example, [DM, Theorem 2.1]) as well as logNC
d 6

1
6d

3 log d + O(d3) (see Proposition 2.5.1). By contrary, if d is even, then N e
d ei-

ther vanishes or is defined only modulo 2, see the explanation in Remark 1 after
Proposition 3.1.3.

Note that the positivity NR
d > N e

d > 0 implies that a generic real projective n-

dimensional hypersurface of odd degree d with 4(n−2) >
(
d+3
3

)
contains an infinite

number of real 3-planes, and then due to [DM, Theorem 2.1] the variety of these

real 3-planes is of (pure) dimension 4(n− 2)−
(
d+3
3

)
if n > 6. (In fact, O. Debarre

and L. Manivel have proved in [DM2] such positivity and pure dimension results
for the variety of real r-planes on odd degree real complete intersections, but only
under the assumption that the dimension of the ambient projective space is large
enough. Apparently, for hypersurfaces, due to this dimension assumption their
result applies only to d 6 3.)

The approach that we develop in this paper can be applied to counting real
(2k − 1)-planes on real projective n-dimensional hypersurfaces of any odd degree

d, under an appropriate dimension condition, that is 2k(n − 2k + 2) =
(
d+2k−1
2k−1

)
.

(Counting of even dimensional planes gives a trivial result, since the dimension of
the corresponding vector bundle is odd, and the Euler count, whenever it gives an
integer rather than a modulo 2 residue, would give zero.) The result of such counting
still gives an invariant, and hence provides, like in the cases k = 1 (considered in
[FK]) and k = 2 (considered in this paper), an effective universal lower bound for
the number of real (2k − 1)-planes on a hypersurface. We restricted ourselves here
to the case of 3-planes, since for the moment in the higher dimensional cases we
can not suggest an explicit answer, but only an upper bound in Subsection 2.5, an
implicit formula in the form of multivariate Cauchy integral (see Theorem 5.3.1),
and Conjecture 2.6.

1.3. The content. In Section 2, we recall some facts from the complex Schubert
Calculus that are related to counting the number of projective subspaces in hy-
persurfaces. In Section 3, we discuss real Schur polynomials and the modifications
required to make similar counting in the real setting. The techniques developed in
these sections are applied in Section 4 to prove the main results. In Section 5 we
discuss a few other real enumerative problems that can be solved by using the same
methods.

1.4. Conventions. If in a homology or cohomology notation the coefficients are
not specified, then they are supposed to be integer. The notation pi for the Pon-
tryagin classes may refer to pi(τk,∞) ∈ H∗(Gk(R∞)) as well as for their pull-backs

in H∗(Gk(Rk+n)), in H∗(G̃k(R∞)), and in H∗(G̃k(Rk+n)) (this ambiguity should
be resolved by the context). Our decision not to fix explicit orientations results in
a number of identities valid up to sign, and we write x = ± y, which means that
x = y, or x = −y. The symbol � marks the end of a proof, or signifies that
the corresponding statement is either a citation or an immediate consequence of
previous claims.

1.5. Acknowledgements. We thank V. Fock, who helped us to derive the for-
mula for the Schur coefficients (see Lemma 2.3.1) that is crucial for our calcula-
tions. We thank David Eisenbud for showing how to use the program Macaulay2
to calculate NC

d and Ne
d for small values of d (see Example 4.2.4). We thank also
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S. Fomin, who suggested us some probabilistic heuristic arguments in the favor of
the asymptotics in the problem of counting complex 3-planes through given collec-
tion of 3-planes (see Proposition 5.2.4), the asymptotics that we finally justified by
applying Laplace’s method.

This work was started during visits of the first author to Strasbourg university,
continued during visits of the both authors to the MPIM in Bonn and to the CIB
in Lausanne, and finished during their RIP stay at the MFO in Oberwolfach; we
thank all these institutions for providing excellent working conditions.

2. Elements of Complex Schubert Calculus

2.1. Schubert basis. By a k-partition of n ∈ Z>0 we mean a decreasing integer
sequence α = (α1, . . . , αk), α1 > · · · > αk > 0, |α| = α1+ · · ·+αk = n. Graphically
α is presented as a Young-Ferrers diagram of size n. For example, the constant
k-partition m = (m, . . . ,m) is presented by the k×m rectangle. In what follows we
assume that some k > 0 is fixed throughout the whole section, and omit sometimes
the vanishing components of α.

A filtration 0 ⊂ C1 ⊂ C2 ⊂ . . . of C∞ yields a CW-decomposition of Grassman-
nian Gk(C∞) into open Schubert cells Cα indexed with k-partitions, namely, a k-
subspace L ⊂ C∞ belongs to Cα if and only if αk+1−s = min{j | dim(L∩Cj+s) = s},
for each 1 6 s 6 k.

With any k-partition α we associate a homology and cohomology classes of
Grassmannians as follows. The closure Cl(Cα) is the so-called Schubert variety;
being equipped with the complex orientation it yields the Schubert class [Cα] ∈
H2n(Gk(C∞)), where n = |α|. The cohomology class σα ∈ H2n(Gk(C∞)) associ-
ated to α is characterized by

σα([Cβ ]) =

{
1 if α = β,

0 if α ̸= β.

In other words, the classes σα taken over all k-partitions of size n form an additive
basis in H2n(Gk(C∞)) such that h =

∑
α(h([Cα])σα for any h ∈ H∗(Gk(C∞)).

Note that the Schubert cell Cα ⊂ Gk(C∞) is contained in a finite dimensional
Grassmannian Gk(Ck+m) if and only if a1 6 m, that is if the Young-Ferrers diagram
of α lies inside the (k ×m)-rectangle diagram. It follows that the additive bases
of H∗(Gk(Ck+m)) and H∗(Gk(Ck+m)) are given respectively by [Cα] and σα such
that α1 6 m (here and below, to simplify notation, we denote by σα not only the
class in H∗(Gk(C∞)) but also its pull-back in H∗(Gk(Ck+m))).

We say that k-partitions α and β are m-complementary to each other if αi +
βk+1−i = m for i = 1, . . . , k (so that, in particular, α1, β1 6 m). It is well-known
(and easy to check) that the Schubert cycles of m-complementary k-partitions are
Poincare-dual in Gk(Ck+m).

2.1.1. Proposition. Schubert classes [Cα] and [Cβ ] have intersection index 1 in
Gk(Ck+m) if k-partitions α and β are m-complementary, and index 0 if not. �
2.2. Schur polynomials. Denote by Uk the unitary group and by Uk

1 its maximal
torus formed by the diagonal matrices. The inclusion map Uk

1 ⊂ Uk induces a map
of the classifying spaces

BUk
1 = (CP∞)k

ϕ−−−−→ Gk(C∞) = BUk,
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and the induced cohomology map ϕ∗ : H∗(Gk(C∞)) → H∗(CP∞)k ∼= Z[z1, . . . , zk]
is independent of the choice of the maximal torus, since such tori form a single
conjugacy class.

For the unitary groups, the so called splitting principle can be expressed formally
as follows.

2.2.1. Theorem. [ E.g., [BT] ] The ring homomorphism ϕ∗ is monomorphic and
its image coincides with the subring ZS [z] ⊂ Z[z] formed by the symmetric polyno-
mials. The Chern classes cr(τ

∗
k ) ∈ H∗(Gk(C∞)), 1 6 r 6 k, of the dual tautological

vector bundle τ∗k over Gk(C∞) are sent to the elementary symmetric polynomials

ϕ∗(cr) = εr(z1, . . . , zk) =
∑

i1<···<ik

zi1 . . . zik .

These classes cr = cr(τ
∗
k ) are multiplicative generators of the ring H∗(Gk(C∞)). �

We call zi, 1 6 i 6 k, the Chern roots as they are the formal roots of tk −
c1t

k−1 + · · · + (−1)kck. For each h ∈ H∗(Gk(C∞)), we say that ϕ∗(h) ∈ ZS [z] is
the root polynomial representing class h.

The root polynomials sα ∈ ZS [z] that represent classes σα ∈ H2n(Gk(C∞)),
n = |α|, are called Schur polynomials. The relation h =

∑
α(h([Cα])σα implies

ϕ∗(h) =
∑
α

λα(h)sα,

where λα(h) = h[Cα] ∈ Z will be called the Schur coefficients for h (or for ϕ∗(h)).
Recall that the Schur polynomials can be calculated using the following gener-

alized Vandermonde polynomial

Vα+δ(z) =
∑
τ∈Sk

sign(τ)zα1+k−1
τ(1) zα2+k−2

τ(2) . . . zαk

τ(k)

where sign(τ) is the sign of a permutation τ ∈ Sk, and δ = (k − 1, k − 2, . . . , 1, 0).
Recall that the usual Vandermonde polynomial is

Vδ(z) =
∑
τ∈Sk

sign(τ)zk−1
τ(1)z

k−2
τ(2) . . . zτ(k−1) =

∏
16i<j6k

(zi − zj).

2.2.2. Proposition. [ E.g., [St], Theorem 7.15.1 ] For any k-partition α we have

sα =
Vα+δ

Vδ
. �

Example.

(1) s1,...,1 with r 6 k components “1” is the elementary symmetric polynomial

εr(z1, . . . , zk) =
∑

i1<···<ik

zi1 . . . zik = ϕ∗(cr),

it is the root polynomial of cr = σ1,...,1 (cf. Theorem 2.2.1).
(2) sm,...,m with k components “m” equals (z1 . . . zk)

m, it is the root polynomial
of cmk .
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2.3. Multivariate Cauchy integral formula for the coefficients λα.

2.3.1. Lemma. For any f ∈ ZS [z], z = (z1, . . . , zk), and any k-partition α, we
have

λα(f) =
1

k!(2πi)k

∫
Tk

f(z)sα(z)Vδ(z)Vδ(z)
dz

z
,

where T k = {z ∈ Ck | |z1| = · · · = |zk| = 1} and dz
z = dz1

z1
. . . dzk

zk
.

Proof. The monomials zα with α = (α1, . . . , αk), αi > 0, form an orthonormal
basis in C[z] with respect to the inner product

⟨f1, f2⟩ =
1

(2πi)k

∫
Tk

f1(z)f2(z)
dz

z
.

It follows that for each pair of k-partitions α and β, ⟨Vα+δ, Vβ+δ⟩ = k!⟨zα+δ, zβ+δ⟩.
Thus, according to Proposition 2.2.2, the Schur polynomials sα form an orthonormal
basis in the vector space ZS [z]⊗ C, with respect to the modified inner product

(2.3.2) ⟨f1, f2⟩Sym =
1

k!(2πi)k

∫
Tk

f1(z)f2(z)Vδ(z)Vδ(z)
dz

z
,

namely,

⟨sα, sβ⟩Sym = ⟨Vα+δ

Vδ
,
Vβ+δ

Vδ
⟩Sym =

1

k!(2πi)k

∫
Tk

Vα+δ(z)Vα+δ(z)
dz

z

=
1

k!
⟨Vα+δ, Vβ+δ⟩ = ⟨zα+δ, zβ+δ⟩.

The claim of the Lemma follows now from λα(f) = ⟨f, sα⟩Sym and (2.3.2). �
2.3.3. Corollary. For each h ∈ H2km(Gk(C∞)) its value h([Gk(Ck+m)]) on the
fundamental class [Gk(Ck+m)] ∈ H2km(Gk(C∞)) is given by

h([Gk(Ck+m)]) = λm,...,m(ϕ∗(h)) =
1

k!(2πi)k

∫
Tk

ϕ∗(h)(z)

zm
Vδ(z)Vδ(z)

dz

z
,

where ϕ∗(h) ∈ ZS [z] is the root polynomial of h and zm in the denominator stands
for (z1 . . . zk)

m.

Proof. We apply Lemma 2.3.1 to α = (m, . . . ,m) and use Example 2.2.2(2). �
2.4. Counting (k − 1)-planes on projective hypersurfaces. We denote by

ctop ∈ H∗(Gk(Ck+m)) the top Chern class of the symmetric power Symd(τ∗k,m) of

the dual to the tautological bundle τ∗k,m on Gk(Ck+m), and by fd(z) = ϕ∗(ctop) ∈
ZS [z] the root polynomial of ctop. The number of (k − 1)-planes in a projective
hypersurface can be evaluated as the following Chern number.

2.4.1. Proposition. [ E.g., [DM] ] Assume that X ⊂ Pm+k−1 is a generic hy-

persurface of degree d > 1, and that mk =
(
d+k−1
k−1

)
. Then, X contains a finite

number of projective (k − 1)-planes and this number is equal to ctop evaluated on
the fundamental class [Gk(Ck+m)]. �

Let us denote the above Chern number ctop([Gk(Ck+m)]) by NC
d,k. Proposition

2.4.1 together with Corollary 2.3.3 provides the following integral formula.
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2.4.2. Corollary. NC
d,k = λm,...,m(fd) =

1
k!(2πi)k

∫
Tk

fd(z)
zm Vδ(z)Vδ(z)

dz
z . �

To estimate this integral, we need the following well-known root factorization
formula for fd.

2.4.3. Proposition. [ E.g., [DM] ] For any d > 1,

(2.4.4) fd(z) =
∏

ℓ1+···+ℓk=d

(ℓ1z1 + · · ·+ ℓkzk). �

We call the factors in the right hand side of (2.4.4) the root factors.

2.5. An upper bound. In this section we study the growth rate of the sequence
NC

d,k in the logarithmic scale.

2.5.1. Proposition. For any k, d > 1, and m = 1
k

(
d+k−1
k−1

)
, the invariant NC

d,k

defined in Subsection 2.4 has the following asymptotics as d→∞:

log(NC
d,k) 6

1

(k − 1)!
dk−1 log d+O(dk−2 log d).

Proof. Since |l1x1 + · · ·+ lkxk| 6 ℓ1 + · · ·+ ℓk = d at each point of T k, the integral
formula given in Corollary 2.4.2 implies that there exists a constant C such that
NC

d,k 6 Cdb(d), where b(d) =
(
d+k−1
k−1

)
= 1

(k−1)!d
k−1 +O(dk−2). �

2.6. Conjecture. Some heuristic arguments make plausible to conjecture that
the sequence NC

d has the following logarithmic asymptotics:

log(NC
d,k) ∼

1

(k − 1)!
dk−1 log d.

3. Elements of Real Schubert Calculus

3.1. Orientability and the Euler class for the symmetric powers. We de-
note the tangent bundle of a real Grassmannian Gk(Rk+m) by Tk,m and the tau-
tological k-dimensional vector bundle over Gk(Rk+m) by τk,m.

3.1.1. Lemma. For any k,m > 0, we have

w1(Tk,m) = (k +m)w1(τk,m).

In particular, Gk(Rk+m) is orientable if and only if k +m is even.

Proof. Note that Tk,m = Hom(τk,m, τ⊥k,m), where τ⊥k,m is the m-dimensional vector

bundle orthogonal to τk,m, so that τk,m + τ⊥k,m is a trivial bundle and, in partic-

ular, w1(τk,m) = w1(τ
⊥
k,m). Following the splitting principle, we write w1(τk,m) =∑k

i=1 ai and w1(τ
⊥
k,m) =

∑m
j=1 bj , where ai, bj ∈ H1(Gk(Rk+m;Z/2)), which gives

w1(Tk,m) =
∑
i,j

(ai + bj) = mw1(τk,m) + kw1(τ
⊥
k,m) = (k +m)w1(τk,m). �
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3.1.2. Lemma.

(1) The vector bundle Symd(τ∗k,m) is orientable if and only if
(
d+k−1

k

)
is even.

(2) w1(Sym
d(τ∗k,m)) = dmw1(τk,m) if dimSymd(τ∗k,m) = dimGk(Rk+m). In

particular, under the assumption that dimSymd(τ∗k,m) = dimGk(Rk+m) the

bundle Symd(τ∗k,m) is orientable if and only if dm is even.

Proof. For proving (1), we use the splitting principle and obtain the following ex-

pression for the total Stiefel-Whitney class,W∗, of the symmetric power Symd(τk,m):

W∗(Sym
d(τk,m)) = Πℓ1+···+ℓk=d(1 + ℓ1a1 + · · ·+ ℓkak)

with respect to w1(τk,m) =
∑k

i=1 ai. Hence,

w1(Sym
d(τk,m)) =

∑
ℓ1+···+ℓk=d

(ℓ1a1 + · · ·+ ℓkak) = n(a1 + · · ·+ ak)

where

n =
d

k

(
d+ k − 1

k − 1

)
=

(
d+ k − 1

k

)
,

from where w1(Sym
d(τk,m)) = 0 if and only if n =

(
d+k−1

k

)
is even.

To deduce (2), note that
(
d+k−1
k−1

)
= dimSymd(τk,m) = dimGk(Rk+m) = km

implies n = d
kkm = dm. �

As an immediate consequence we obtain the following result.

3.1.3. Proposition. Assume that the dimension of the vector bundle Symd(τ∗k,m),

that is
(
d+k−1
k−1

)
, is equal to the dimension km of the Grassmannian Gk(Rk+m). As-

sume also that k+m = dm mod 2. Then, the Euler number e(Symd(τ∗k,m))[Gk(Rk+m)]

with respect to the local coefficient system twisted by w1(Gk(Rk+m)) is an integer
well-defined up to sign. �
Remarks.

(1) The first assumption of Proposition 3.1.3 is always satisfied in what follows,
since it simply signifies that the virtual dimension of the variety Fk−1(X)
of (k − 1)-planes contained in a hypersurface X ⊂ P k+m−1 of degree d is
0. Note that for even d there exist real hypersurfaces X with X(R) = ∅,
for instance, the Fermat hypersurface, and thus, a signed count of the real
(k− 1)-planes on such hypersurfaces (if invariant) gives 0. Note also that if
km is odd, then even when the Euler number is well defined, it is equal to
zero, as it happens for any real odd dimensional vector bundle.

For odd d the second assumption just means that k is even, so, the case
of even k and odd d is the only one which makes sense to study. As the
case k = 2 was analyzed in [FK], we are concerned in what follows with the
case k = 4.

(2) Calculation of the Euler number e(Symd(τ∗k,m))[Gk(Rk+m)] can (and will)

be done by passing to the Grassmannian G̃k(Rk+m) of orientable k-planes
and its (orientable) dual tautological bundle τ̃∗k,m, because of the relation

(3.1.4) e(Symd(τ∗k,m))[Gk(Rk+m)] = ±
1

2
e(Symd(τ̃∗k,m))[G̃k(Rk+m)].
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3.2. Pontryagin classes and the real root polynomials. Let G̃2k(R∞) be the
Grassmannian of oriented 2k-planes in R∞, and G2k(R∞) be that of non oriented

2k-planes. Denote by ϑ̃ : G̃2k(R∞) → G2k(C∞) the composition of the double

covering π : G̃2k(R∞) → G2k(R∞) and of the inclusion ϑ : G2k(R∞) ⊂ G2k(C∞).

The following description of the integer cohomology ring H∗(G̃2k(R∞))/Tors is
classical.

3.2.1. Theorem. [ E.g., Brown [Br] ] (1) The ring H∗(G2k(R∞))/Tors is freely
generated by the Pontryagin classes pi = (−1)iϑ∗(c2i) ∈ H4i(G2k(R∞)), 1 6 i 6 k.

(2) The ring H∗(G̃2k(R∞))/Tors is generated by the Pontryagin classes

p̃i = π∗(pi) = (−1)iϑ̃∗(c2i) ∈ H4i(G̃2k(R∞)), 1 6 i 6 k

and the Euler class e2k ∈ H2k(G̃2k(R∞)), the only defining relation in these gen-
erators is p̃k = e22k. �

In the rest of the paper, we allow ambiguity and keep traditional notation pi
for the classes p̃i, and moreover, use the same notation for the Pontryagin classes

induced in the Grassmannians H∗(G2k(Rn))/Tors and H∗(G̃2k(Rn))/Tors.

The embedding SOk
2 ⊂ SO2k given by 2×2 special orthogonal matrices along the

diagonal, gives a maximal torus in SO2k and induces a map between the classifying
spaces

(CP∞)k = (BSO2)
k ϕR−−−−→ BSO2k = G̃2k(R∞).

This map associates to a k-tuple (ξ1, . . . , ξk) of SO2-bundles their Whitney sum
ξ1 ⊕ · · · ⊕ ξk. We denote by x1, . . . , xk the standard (Euler class) generators of

H∗((BSO2)
k) and, for a given a class h ∈ H∗(G̃2k(R∞)), by a real root polynomial

of h we mean the polynomial ϕ∗
R(h) ∈ Z[x1, . . . , xk] = H∗((BSO2)

k).

3.2.2. Lemma. Consider any class h ∈ H∗(G2k(C∞)) and let hR = ϑ̃∗(h) ∈
H∗(G̃2k(R∞)) denote its pull-back. Then the real root polynomial ϕ∗

R(hR)(x) is
obtained from the complex one, ϕ∗(h)(z), by letting z2k−1 = −z2k = xk, that is

ϕ∗
R(hR)(x1, . . . , xk) = ϕ∗(h)(x1,−x1, . . . , xk,−xk).

Proof. The tautological embedding SO2 → SU2 ⊂ U2 is conjugate to the embedding
SO2 → SU2 ⊂ U2 defined as the composition of the antidiagonal homomorphism
SO2 → SO2 × SO2, g 7→ (g, g−1), the isomorphism SO2 × SO2

∼= U1 × U1 and
the maximal torus inclusion U1 × U1 ⊂ U2. This leads to a commutative up to
conjugation diagram

(SO2)
k −−−−→ (U1)

2ky y
SO2k −−−−→ U2k

with the “vertical” block-diagonal inclusion maps, the k-th power of the antidiago-
nal homomorphism SO2 → SO2×SO2

∼= U1×U1 at the “top”, and the tautological
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homomorphism at the “bottom”. Passing to the corresponding classifying spaces
we obtain a commutative up to homotopy diagram

(BSO2)
k = (CP∞)k

(∆a)
k

−−−−→ (CP∞)2k= (BU1)
2k

ϕR

y yϕC

BSO2k = G̃2k(R∞)
ϑ̃−−−−→ G2k(C∞) = BU2k

where ∆a : CP∞ → (CP∞)2 is the antidiagonal map z 7→ (z, z̄). The induced map
in cohomology yields a commutative diagram

H∗(CP∞)k = Z[x1, . . . , xk]
(∆∗

a)
k

←−−−− Z[z1, . . . , z2k] = H∗(CP∞)2k

ϕ∗
R

x xϕ∗
C

H∗(G̃2k(R∞)) ←−−−−
ϑ̃∗

H∗(G2k(C∞))

where z2i−1 7→ xi, z2i 7→ −xi, i = 1, . . . , k. �
We consider two subrings of the ring Z[x], x = (x1, . . . , xk). The Pontryagin ring

ZP [x] = Z[x2
1, . . . , x

2
k]∩ZS [x] is formed by the symmetric polynomials in x2

i , 1 6 i 6
k, and the Euler-Pontryagin ring ZEP [x] = Z[x2

1, . . . , x
2
k, x1 . . . xk] ∩ ZS [x], where

Z[x2
1, . . . , x

2
k, x1 . . . xk] is generated by the squares x2

i and the product x1 . . . xk.

3.2.3. Proposition. For any k > 1 and x = (x1, . . . , xk):

(1) the map ϕ∗
R yields a monomorphism H∗(G̃2k(R∞))/Tors→ Z[x];

(2) the image of ϕ∗
R is ZEP [x];

(3) the image of ϕ∗
R ◦ ϑ̃∗ is the image of ϕ∗

R ◦ π∗ and is ZP [x];
(4) ϕ∗

R(pi) = εi(x
2
1, . . . , x

2
k) and ϕ∗

R(e2k) = x1 . . . xk.

Proof. Follows immediately from Lemma 3.2.2, Theorem 3.2.1 and Theorem 2.2.1. �
3.2.4. Corollary. The maps ϕ∗

R◦π∗ and ϕ∗
R identify the rings H∗(G2k(R∞))/Tors

and H∗(G̃2k(R∞))/Tors with ZP [x] and ZEP [x], respectively. The map

π∗ : H∗(G2k(R∞))/Tors→ H∗(G̃2k(R∞))/Tors

induced by the projection π : G̃2k(R∞) → G2k(R∞) is identified then with the in-
clusion homomorphism ZP [x]→ ZEP [x]. �
3.3. Integral Schubert cycles of infinite order in G2k(R∞). As in the com-
plex case, the k-partitions α determine a CW-decomposition of Gk(R∞) into real
Schubert cells Cα,R = Ca ∩ Gk(R∞) with the property Cα,R ⊂ Gk(Rk+m) if and
only if α1 6 m. The cells Cα,R lead in general only to Z/2-homology classes

[Cα,R]2 ∈ H|α|(Gk(Rk+m);Z/2)→ H|α|(Gk(R∞);Z/2), α1 6 m 6∞

(here and further on, the same notation is used for the classes in Grassmannians
for different m, including m =∞).
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For a k-partition β = (β1, . . . , βk), denote by 2β the k-partition (2β1, . . . , 2βk)
and by β(2) the 2k-partition (β1, β1, . . . , βk, βk), where each of the βi is repeated
twice. We say that 2k-partition α is an even partition if it can be presented as
α = 2β(2), and that α is an odd partition if it has form α = 2β(2) + 1 = (2β1 +
1, . . . , 2βk + 1) for some k-partition β.

If α is an even 2k-partition, then the real Schubert cell Cα,R defines an integral
homology class, which we denote

[Cα,R] ∈ H|α|(G2k(R2k+m))/Tors, α1 6 m 6∞

(concerning the sign of [Cα,R], in what follows we do not need to make any specific
choice of the orientation).

3.3.1. Theorem. [ Pontryagin [P] ] Assume that m > 0 is even and r or 2km− r
is less than m. Then the Schubert classes [Cα,R] for all even 2k-partitions α of
dimension |α| = r form a basis in the group Hr(G2k(R2k+m))/Tors. �

Remark. Pontryagin’s claim (see [P], Theorem 1) concerns the orientable Grass-
mannians, which is stronger than what we stated here. On the other hand, his
claim covers only the case of 2km − r < m. The case r < m can be derived from
that one via Poincare duality, since the Poincare-dual Schubert cycles are repre-
sented by m-complementary even 2k-partitions (for even m). Indeed, for even m
(in which case Grassmannian G2k(R2k+m) is orientable by Lemma 3.1.1), the in-
tersection index of Schubert cycles [Cα,R] ◦ [Cβ,R] in G2k(R2k+m) is ±1 if α and β
are complementary even 2k-partitions, and otherwise that index is 0.

3.4. Real Schur polynomials. Letting m → ∞ in Theorem 3.3.1, we can con-
clude that the classes [Cα,R] for all even 2k-partitions α form an additive basis
in H∗(Gk(R∞))/Tors. Let us introduce the dual additive basis, {σα,R}even α, in
H∗(Gk(R∞))/Tors; namely, let σα,R be the integral cohomology class taking value
1 on [Cα,R] and vanishing on the other integral Schubert classes. Then, we take

the pull-back of σα,R by the double covering π : G̃2k(R∞) → G2k(R∞), that is

σ̃α,R = π∗(σα,R) ∈ H∗(G̃k(R∞)), and define the real Schur polynomial of an even
2k-partition α as the root polynomial

sα,R = ϕ∗
R(σ̃α,R) ∈ ZP [x] ⊂ ZEP [x],

(cf., Corollary 3.2.4).
The relation between the real and the complex Schur polynomials can be de-

scribed as follows. Consider the ring isomorphism T between the Chern ring

ZS [z1, . . . , zk] ∼= H∗(Gk(C∞))

and the Pontryagin ring

ZP [x1, . . . , xk] ∼= H∗(G2k(R∞))/Tors

sending zi to x2
i , in terms of polynomial rings, and equivalently, the Chern classes

ci to the Pontryagin classes pi, i = 1, . . . , k, in terms of cohomology rings.
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3.4.1. Proposition. [ E.g., Fuks [F], Section 2.3.E ] Let β be a k-partition and α =
2β(2). Then, cγ1

1 . . . cγk

k [Cβ ] = pγ1

1 . . . pγk

k [Cα,R] for any Chern class cγ1

1 . . . cγk

k , and
the isomorphism T : ZS [z1, . . . , zk]→ ZP [x1, . . . , xk] sends the Schur polynomial sβ
to the real Schur polynomial sα,R. �

Now we extend the definition of the real root polynomials to odd 2k-partitions,
α′ = α+1 (where α is an even partition) by letting σ̃α′,R be the product of σ̃α,R by

the Euler class e2k ∈ H2k(G̃2k(R∞)) and define similarly the real Schur polynomial
of α′ as the root polynomial

sα′,R = ϕ∗
R(σ̃α′,R) ∈ ZEP [z].

3.4.2. Corollary. For any even 2k-partition α = 2β(2), and the odd partition
α′ = α+ 1 we have

(1) sα,R(x1, . . . , xk) = sβ(x
2
1, . . . , x

2
k);

(2) s̃α′,R(x1, . . . , xk) = sβ(x
2
1, . . . , x

2
k)(x1 . . . xk);

(3) if σβ ∈ H2n(Gk(C∞)) is expressed as a polynomial σβ = f(c1, . . . , ck), then

σ̃α,R =f(p1, . . . , pk),

σ̃α′,R =f(p1, . . . , pk)e2k.

Proof. A straightforward consequence of Proposition 3.4.1 and Proposition 3.2.3. �

3.4.3. Corollary. Assume that α = β(2), β = 2γ + r, where γ is any k-partition
and r = (r, . . . , r) is a k-partition with r equal to either 0 or 1. Then,

sα,R(x) =
Vβ+2δ

V2δ
=

∣∣∣∣∣∣
x
β1+2(k−1)
1 x

β2+2(k−2)
1 . . . xβk

1

. . .
x
β1+2(k−1)
k x

β2+2(k−2)
k . . . xβk

k

∣∣∣∣∣∣∣∣∣∣∣∣
x
2(k−1)
1 x

2(k−2)
1 . . . 1
. . .

x
2(k−1)
k x

2(k−2)
k . . . 1

∣∣∣∣∣∣
.

Proof. It follows from Corollary 3.4.2 and 2.2.2, since V2γ(x) = Vγ(x
2) and V2γ+r(x) =

Vγ(x
2)(x1 . . . xk)

r for any k-partition γ. �

3.4.4. Lemma. The classes σ̃α,R for all even and odd 2k-partitions α form an

additive basis of the group H∗(G̃2k(R∞))/Tors. The corresponding real Schur poly-
nomials σα,R form an additive basis in ZEP [x].

Proof. Classes σ̃α,R for all even 2k-partitions α, being dual to a basis inH∗(G2k(R∞),

give an additive basis in π∗(H∗(G2k(R∞)/Tors)) ⊂ H∗(G̃2k(R∞))/Tors). This sub-
group is generated by products of the Pontryagin classes pi, by Theorem 3.2.1. By

the same theorem, H∗(G̃2k(R∞))/Tors is generated by 1 and the Euler class e2k as
a module over H∗(G2k(R∞)/Tors), so, the classes σ̃α,R for all odd 2k-partitions α,

together with σ̃α,R for even 2k-partitions α form a basis inH∗(G̃2k(R∞))/Tors). �
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3.5. The duality between the classes [C̃α,R] and σ̃α,R in G̃2k(R∞). In G̃2k(R∞),
we have a pair of cells, C±

α,R, that form the pull-back of Cα,R with respect to the dou-

ble covering π : G̃2k(R∞)→ G2k(R∞). The closure of the union C̃α,R = C+
α,R∪C

−
α,R

yields an integral class of infinite order [C̃α,R] ∈ H|α|(G̃2k(R∞))/Tors if α is an

even or an odd 2k-partition. Here, the orientations of C±
α,R are chosen to be

respected by the covering π (and, therefore, by the deck transformation), and
for even 2k-partitions α we just take the sum of cells C±

α,R, that is the pull-

back [C̃α,R] = π!([Cα,R]), while for odd 2k-partitions α we take the difference

[C̃α,R] = [C+
α,R − C−

α,R], where the sign “−” signifies reversion of the orientation

of C−
α,R.

Remark. These classes [C̃α,R] form a basis in H∗(G̃2k(R∞);Q). Furthermore, they
are divisible by 2 in the integral homology, and their halves form an additive basis

in H∗(G̃2k(R∞))/Tors. This can be derived from Theorem 1 in [P], which treats

indeed a more subtle case of finite Grassmannians G̃k(Rk+m).

3.5.1. Lemma. Consider a Schubert class [C̃α,R] ∈ H|α|(G̃2k(R∞))/Tors, where

α = (α1, . . . , α2k) is an even or an odd 2k-partition. Then the class [C̃α,R] ∩ e2k ∈
H|α|−2k(G̃2k(R∞)) is represented, up to sign and torsion homology elements, by

the Schubert class C̃α′,R, where α′ = α − 1 = (α1 − 1, . . . , α2k − 1), if α2k > 1. If

α2k = 0, then [C̃α,R] ∩ e2k = 0.

Proof. The Euler class e2k restricted to G̃2k(R2k+m) is known to be dual to a fun-

damental class [G̃2k(R2k+m−1)] of G̃2k(R2k+m−1). Therefore, the cap product with

e2k is realized by the intersection of [C̃α,R] with [G̃2k(R2k+m−1)] for m sufficiently
big with respect to |α|, which corresponds to subtraction 1 from α. �
3.5.2. Proposition. Assume that α and β are 2k-partitions, each one is either

even or odd, and |α| = |β| = n. Then [C̃α,R] ∩ σ̃β,R is equal to ±2 if α = β, and 0
if α ̸= β.

Proof. For even α, both [C̃α,R] and σ̃α,R are in the invariant subspaces of the cov-
ering involution, acting in the integral homology and cohomology, respectively. For
odd α these classes are both in the skew-invariant subspaces. This implies that

[C̃α,R] ∩ σ̃β,R = 0 if α and β have different pairity.

If both α and β are even, then [C̃α,R] = π![Cα,R] and σ̃β,R = π!σβ,R. Thus,

[C̃α,R] ∩ σ̃β,R = 2([Cα,R] ∩ σβ,R) = 2, since σα,R was defined as the dual to [Cα,R].
If both α and β are odd, then α = α′ + 1, β = β′ + 1, where α′ and β′ are even.

It follows that

[C̃α,R] ∩ σ̃β,R = [C̃α,R] ∩ (e2k ∪ σ̃β′,R) = ([C̃α,R] ∩ e2k) ∩ σ̃β′,R = C̃α′,R ∩ σ̃β′,R

where the last identity is due to Lemma 3.5.1. So, this case is reduced to the
previous one. �
3.6. Calculation of the real Schur coefficients. By Lemma 3.4.4, each class

h ∈ H∗(G̃2k(R∞))/Tors can be decomposed into an integer linear combination

h =
∑

even and odd 2k-partitions α

λασ̃α,R.
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This gives the corresponding decomposition of the root polynomial f = ϕ∗
Rh ∈

ZEP [z]:

f(x) =
∑

even and odd 2k-partitions α

λαsα,R.

The coefficients λα = λa(h) ∈ Z will be called real Schur coefficients of h, and of

its root polynomial f . If h ∈ H∗(G̃2k(R∞)), we put λα(h) = λα(h/Tors).

3.6.1. Lemma. Assume that α is an even or odd 2k-partition, and h ∈ Hn(G̃2k(R∞)).

Then λα(h) = ± 1
2 [C̃α,R] ∩ h (and in particular, λα(h) = 0 if |α| ̸= n).

Proof. By Proposition 3.5.2, {σ̃α,R} and { 12 [C̃α,R]} form dual, up to sign, basses in

H∗(G̃2k(R∞);Q). �

3.6.2. Corollary. For any class h ∈ H∗(G̃2k(R∞)), we have

1

2
h[G̃2k(Rm+2k)] ∈ Z = ± λm,

where m is the constant 2k-partition (m, . . . ,m).

Proof. We apply Lemma 3.6.1 to the Grassmannian G̃2k(Rm+2k), which is a Schu-
bert variety for 2k-partition m. �

Like in Lemma 2.3.1, we can find the coefficients λα using a residue formula.

3.6.3. Lemma. For any f ∈ ZEP [x], x = (x1, . . . , xk), and an even or odd 2k-
partition α, we have

λα(f) = ±
1

k!(2πi)k

∫
Tk

f(x)sα,R(x)V2δ(x)V2δ(x)
dx

x

where T k = {x ∈ Ck | |x1| = · · · = |xk| = 1}.

Proof. The proof is the same as that of Lemma 2.3.1, except that we use an expres-
sion of the real Schur polynomials in Corollary 3.4.3 instead of the complex one,
which was given in Proposition 2.2.2. �

In the case of λm that we are interested in, we obtain a formula analogous to
the one in Corollary 2.3.3.

3.6.4. Corollary. For any class h ∈ H2km(G̃2k(R∞)) its value on the fundamen-

tal class [G̃2k(Rm+2k)] ∈ H2km(G̃2k(R∞)) is determined by the following integral

1

2
h ∩ [G̃2k(Rm+2k)] = ± λm(ϕ∗

R(h)) =
1

k!(2πi)k

∫
Tk

ϕ∗
R(h)(x)

xm
V2δ(x)V2δ(x)

dx

x
,

where ϕ∗
R(h) ∈ ZEP [x] is the real root polynomial of h. �

4. Proof of Theorem 1.1.2

4.1. Multivariate integral formula for the number of real 3-planes on
hypersurfaces. Throughout this section d > 1 is odd, as it is in Theorem 1.1.2.
We start with a real analogue of the root factorization formula (2.4.4) that takes
the following form, in which we call it the real root factorization formula.
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4.1.1. Proposition. Let fd(x) denote the real root polynomial of the Euler class

eN = eN (Symd(τ̃∗2k,∞)) ∈ HN (G̃2k(R∞)), N =
(
d+2k−1
2k−1

)
. Then

f2
d (x) =

∏
ℓ1+ℓ1̄+···+ℓk+ℓk̄=d,ℓi,ℓī>0

((ℓ1 − ℓ1̄)x1 + · · ·+ (ℓk − ℓk̄)xk).

The factors in the above product formula will be called real root factors.

Remark. Since we did not fix an orientation of Symd(τ̃∗2k,∞), the polynomial fd is

well-defined only up to sign. In what follows (see formula (4.2.6)) we will determine
the sign so that the corresponding Euler number becomes positive.

Proof. The operation of taking d-th symmetric power defines the maps ϕR
d : G̃2k(R∞)→

G̃N (R∞) and ϕC
d : G2k(C∞) → GN (C∞) commuting (up to homotopy) with the

tautological embedding maps ϑ̃2k and ϑ̃N

G̃2k(R∞)
ϕR
d−−−−→ G̃N (R∞)

ϑ̃2k

y yϑ̃N

G2k(C∞)
ϕC
d−−−−→ GN (C∞).

Then, the result follows from Lemma 3.2.2 and Proposition 2.4.3, since e2N = pN =

ϑ̃∗(c2N ). �

Theorem 1.1.2 concerns the case k = 2, and in this case Proposition 4.1.1 reads
as follows

(4.1.2) f2
d (x) =

∏
ℓ1+ℓ1̄+ℓ2+ℓ2̄=d,ℓi,ℓī>0

((ℓ1 − ℓ1̄)x1 + (ℓ2 − ℓ2̄)x2).

4.1.3. Theorem. Assume that X ⊂ Pm+3 is a generic real hypersurface of odd
degree d, where

(
d+3
3

)
= 4m. Then the number of real 3-planes in X is finite and

bounded from below by

N e
d = ±

1

2(2πi)2

∫
T 2

fd(x)

xm
V2δ(x)V2δ(x)

dx

x
,

where fd(x) is the polynomial determined by the formula ( 4.1.2).

Proof. It follows from Corollary 3.6.4 and Proposition 4.1.1. �

4.2. Factorization of fd in the case of 3-planes. The polynomial gd(x) =
fd(x)

2 ∈ ZEP [x] can be written as

gd = gd,0gd,1 . . . gd, d−1
2
,

where gd,i, 0 6 i 6 d−1
2 , is the product of those real root factors that give |ℓ1 −

ℓ1̄|+ |ℓ2 − ℓ2̄| = d− 2i (or, equivalently, min(ℓ1, ℓ1̄) + min(ℓ2, ℓ2̄) = i).
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4.2.1. Lemma. We have gd,i = gi+1
d−2i,0, and thus gd = gd,0g

2
d−2,0g

3
d−4,0 . . . .

Proof. The real root factors in gd,i are the same as in gd−2i,0, but appear as many
times as there are partitions i = s1 + s2, with sj = min{ℓj , ℓj̄} > 0, j = 1, 2. �

It is convenient to group the real root factors of gd by letting

hd(x1, x2) =
∏

ℓ1,ℓ2>1,ℓ1+ℓ2=d

(ℓ1x1 + ℓ2x2)

and

h̃d(x1, x2) =
∏

ℓ1,ℓ2>0,ℓ1+ℓ2=d

(ℓ1x1 + ℓ2x2) = d2 x1x2 hd(x1, x2).

4.2.2. Lemma. The following identity holds for any odd d > 1:

gd,0 = [d2 x1x2 hd(x1, x2)hd(x1,−x2)]
2 = [

1

d2 x1x2
h̃d(x1, x2)h̃d(x1,−x2)]

2.

Proof. The real root factors of gd,0 that are taken from hd(±x1,±x2) go in groups of
four elements, respectively to the four combinations of signs before the coefficients,
if the both coefficients do not vanish (which corresponds in (4.1.2) to the cases
when both |ℓ1 − ℓ1̄| and |ℓ2 − ℓ2̄| are non-zero and ℓ1 + ℓ1̄ + ℓ2 + ℓ2̄ = d). Their
product converts then to [hd(x1, x2)hd(x1,−x2)]

2. The additional term d2 x1x2 is
involved because if just one of the coefficients l1, l̄1, l2, l̄2 is non-zero (and hence, is
equal to d), then only two combinations of the signs give root factors contributing
to gd,0. �

4.2.3. Corollary. The polynomial gd is a complete square of the polynomial

fd(x) = ± [d2 x1x2 hd(x1, x2)hd(x1,−x2)][(d− 2)2 x1x2 hd−2(x1, x2)hd−2(x1,−x2)]
2 . . .

=[d!!(d− 2)!! . . . ]2(x1x2)
d2−1

8

d−1
2∏

i=0

[hd−2i(x1, x2)hd−2i(x1,−x2)]
i+1 �

4.2.4. Example. If d = 1, then h1 = 1 (there are no suitable real root factors)
and g1 = g1,0 = x2

1x
2
2. In the first nontrivial case, d = 3, we have

h3(x1,±x2) =(2x1 ± x2)(x1 ± 2x2) = (±5x1x2 + 2(x2
1 + x2

2)),

g3,0(x1, x2) =[(9x1x2)(5x1x2 + 2(x2
1 + x2

2))(−5x1x2 + 2(x2
1 + x2

2))]
2,

g3(x1, x2) =g3,0g
2
1,0 = [9x3

1x
3
2(4(x

2
1 + x2

2)
2 − 25x2

1x
2
2)]

2,

±f3(x1, x2) =9x3
1x

3
2(4(x

2
1 + x2

2)
2 − 25x2

1x
2
2).

Applying Theorem 4.1.3 and using that V2δV̄2δ = − (x2
1−x2

2)
2

x2
1x

2
2

, we conclude that it

is the coefficient at (x1x2)
7 in − 1

2f3(x
2
1 − x2

2)
2, that is −1

2 (9 × 42) = −189, that
gives us the signed count of real 3-planes on a generic real 7-dimensional cubic
hypersurface, that is N e

3 = 189. An alternative way to get this coefficient is to
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apply Corollary 3.4.3 to get the following expressions for the real Schur polynomials,
s(5,5,5,5),R = (x1x2)

5 and

s(7,7,3,3),R =
V(7,3)+(2,0)

V(2,0)
=

∣∣∣∣x9
1 x3

1

x9
2 x3

2

∣∣∣∣∣∣∣∣x2
1 1

x2
2 1

∣∣∣∣ = (x1x2)
3(x4

1 + x2
1x

2
2 + x4

2),

which allows us to get the decomposition f3(x1, x2) = 9[4s(7,7,3,3),R − 21s(5,5,5,5),R]
with λ5,5,5,5 = −189 and gives us the same result N e

3 = 189.

Finally, we can write NR
3 > NR,min

3 > N e
3 = 189, which implies that a real

7-dimensional cubic has generically at least 189 real 3-planes. (See also [FK], Sub-
section 6.2, for one more method to find N e

3 = 189 by a direct calculation of the

characteristic number e20[G̃4(R9)], where e20 = e34(4p
2
1 − 25e24) is represented by

the root polynomial f3(x)). To compare with, one can find NC
3 = 321489.

Further computations (using the programMacoley2) show thatN e
5 = 37655727525,

whereas NC
5 = 64127725294951805931404297113125.

As in Lemma 4.2.2, the root factors (ℓ1x1+ℓ2x2)(ℓ2x1+ℓ1x2) in hd−2i(x1, x2) can
be grouped together with the factors (ℓ1x1 − ℓ2x2)(ℓ2x1 − ℓ1x2) in hd−2i(x1,−x2)
to give us the product

(ℓ21x
2
1 − ℓ22x

2
2)(ℓ

2
2x

2
1 − ℓ21x

2
2) =ℓ21ℓ

2
2(x

2
1 + x2

2)
2 − (ℓ21 + ℓ22)

2x2
1x

2
2

=(ℓ1ℓ2x1x2)
2[(

x1

x2
+

x2

x1
)2 − (

ℓ1
ℓ2

+
ℓ2
ℓ1
)2](4.2.5)

This product enters in fd in the power (i+ 1). Therefore, we can write
(4.2.6)

fd(x) = [d!!(d− 2)!! . . . ]2(x1x2)
d2−1

8

∏
ℓ∈Ld

[ℓ21ℓ
2
2x

2
1x

2
2(−

(x2
1 + x2

2)
2

x2
1x

2
2

+
(ℓ21 + ℓ22)

2

ℓ21ℓ
2
2

)]i+1

where Ld = {(ℓ1, ℓ2, i) | ℓ1 + ℓ2 = d− 2i, ℓ1, ℓ2 > 1, 0 6 i 6 d−1
2 }.

Note that in the initial definition of fd it was defined only up to sign (see Remark
4.1.1), and from now on we eliminate this ambiguity by prescribing to fd the sign
given by formula (4.2.6).

We can also summarize the above formulae as follows:

hd(x1, x2)hd(x1,−x2) = ±
∏

ℓ1+ℓ2=d,ℓ1,ℓ2>1

(x1x2)
2(ℓ1ℓ2)

2[− (x2
1 + x2

2)
2

x2
1x

2
2

+
(ℓ21 + ℓ22)

2

ℓ21ℓ
2
2

],

fd(x) = Cdx
N
1 xN

2

∏
(ℓ1,ℓ2,i)∈Ld

(ℓ1ℓ2)
2(i+1)[− (x2

1 + x2
2)

2

x2
1x

2
2

+
(ℓ21 + ℓ22)

2

ℓ21ℓ
2
2

]i+1,

(4.2.7)

where Cd = [d!!(d− 2)!! . . . ]2 and N = 1
2

(
d+3
3

)
.

4.3. Positivity and the maximum.
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4.3.1. Proposition. The function Fd(x) =
fd(x)

(x1x2)m
, where m = 1

4

(
d+3
3

)
(cf. The-

orem 4.1.3) takes positive real values (and, in particular, does not vanish) at each
point of T 2. The maximal value of Fd(x) on T 2 is achieved along the two-component
curve x2 = ±ix1, and this value equals

(4.3.2) Md = Cd

∏
(ℓ1,ℓ2,i)∈Ld

(ℓ21 + ℓ22)
2(i+1) =

d−1
2∏

i=0

d−1
2 −i∏
ℓ=0

(ℓ2 + (d− 2i− ℓ)2)2(i+1)

Proof. According to (4.2.7), the factors of (x1x2)
2(1−d)hd(x1, x2)hd(x1,−x2) are

equal to

ℓ21ℓ
2
2[−(t+ t−1)2 + (k + k−1)2], where t =

x1

x2
, |t| = 1, and k =

ℓ1
ℓ2
, k > 0.

Since t + t−1 is real for |t| = 1, these factors are real, and thus, Fd(x) is real for
all x ∈ T 2. Since 0 6 (t + t−1)2 6 4 6 (k + k−1)2, Fd(x) can only vanish for
k + k−1 = 2, that is ℓ1 = ℓ2, which is impossible under our assumption that d is
odd. The maximal value (k+ k−1)2 of the factor ℓ21ℓ

2
2| − (t+ t−1)2 + (k+ k−1)2| is

achieved as (t+ t−1)2 takes its minimal value (equal to 0), that is along the circles
x2 = ±ix1.

Since these circles are common for all the partitions (ℓ1, ℓ2) involved in the
formula for Fd, the product of all the factors achieves its maximum value along the
same circles, and this value is as indicated in the lemma. �
4.3.3. Proposition. The sequence Md given by (4.3.2) has the following asymp-
totic grows in the log-scale:

logMd =
1

12
d3 log d+O(d3).

Proof. According to the first order Euler-Maclaurin formula, the following relations
hold for any function f ∈ C1[0, d], r ∈ N,

r∑
ℓ=0

f(ℓ) =

∫ r

0

f(t) dt+
1

2
[f(0) + f(r)] + ρ1(r),

where ρ1(r) =
∫ r

0
(x− [x]− 1

2 )|f
′(t)| dt and, hence,

|ρ1(r)| 6
1

2

∫ r

0

|f ′(t)|dt.

We apply the latter bound to f(t) = log(t2+(d− t)2) and r = d−1
2 . Since f ′ < 0 on

[0, r], this gives |ρ1(d)| 6 1
2 (f(0) − f(d−1

2 )) < log d. The logarithm of the product

Jd = log(
∏ d−1

2

ℓ=0 (ℓ
2 + (d− ℓ)2)) can be written then in the form

Jd =

d−1
2∑

ℓ=0

log(ℓ2 + (d− ℓ)2) =

∫ d−1
2

0

log(t2 + (d− t)2) dt

+ log d+
1

2
log(

d2 + 1

2
) + ρ1(d)
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where∫ d−1
2

0

log(t2 + (d− t)2) dt = t log(t2 + (d− t)2)|
d−1
2

0 −
∫ d−1

2

0

t
2t+ 2(t− d)

t2 + (d− t)2
dt

=
d− 1

2
log(

d2 + 1

2
)− τ(d).

By τ(d) we denoted here the integral that can be evaluated as follows:

τ(d) =

∫ d−1
2

0

t
2t+ 2(t− d)

t2 + (d− t)2
dt =

∫ d−1
2

0

[2 +
d
2 (4t− 2d)

2t2 − 2dt+ d2
− d2

2t2 − 2dt+ d2
] dt

=(d− 1) +
d

2
log(t2 + (d− t)2)|

d−1
2

0 − d arctan(
2t

d
− 1)|

d−1
2

0

=(d− 1) +
d

2
[log(

d2 + 1

2
)− 2 log d]− (arctan(d2 − d− 1) +

π

4
).

This implies a uniform estimate |τ2(d)| 6 md+M with the constants m, M inde-
pendent of d. Thus, we can write Jd = (d) log(d) + O(d), O(d) 6 md + M , and
estimate

Jd−2i = (d− 2i) log(d− 2i) +O(d− 2i), O(d− 2i) 6 md+M.

Then

2(i+1)Jd−2i = log(

d−1
2 −i∏
ℓ=0

(ℓ2+(d−2i−ℓ)2)2(i+1)) = 2(i+1)(d−2i) log(d−2i)+(i+1)O(d),

and a bound (i+ 1)O(d) 6 O(d2) gives

logMd =2

d−1
2∑

i=0

[(i+ 1)(d− 2i) log(d− 2i) +O(d2)] = 2

∫ d−1
2

0

(t+ 1)(d− 2t) log(d− 2t) dt

+O(d3) = 2[−2

3
t3 +

1

2
(d− 2)t2 + dt] log(d− 2t)|

d−1
2

0 +Kd +O(d3) = Kd +O(d3)

where

Kd =4

∫ d−1
2

0

2
3 t

3 − 1
2 (d− 2)t2 − dt

2t− d
dt =

2

3

∫ d−1
2

0

(2t2 − d− 6

2
t− d(d+ 6)

4
) dt

−2

3

d2(d+ 6)

4

∫ d−1
2

0

dt

2t− d
= O(d3)− 1

12
d2(d+ 6) log(d− 2t)|

d−1
2

0

and finally

logMd =
1

12
d3 log d+O(d3). �
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4.4. Asymptotics. Consider a sequence of functions

Fd(x) =
∏

(ℓ,r)∈Ld

ϕℓ,r(x), x ∈ T 2, where d ∈ N.

Assume that ϕℓ,r(x) > 0 for all x ∈ T 2, d and (ℓ, r), and that the maximum of
ϕℓ,r over T 2 is equal to Mℓ,r and is achieved on a submanifold L ⊂ T 2, which is
common for all d and ℓ. This is the case in our setting, where ℓ = (ℓ1, ℓ2) and

ϕℓ,r(x1, x2) =[(ℓ21 + ℓ22)
2 − ℓ21ℓ

2
2

(x2
1 + x2

2)
2

x2
1x

2
2

]r+1

=(ℓ21 + ℓ22)
2(r+1)[1− 4ℓ21ℓ

2
2

(ℓ21 + ℓ22)
2
sin2 ϕ]r+1

and Mℓ,r = (ℓ21 + ℓ22)
r+1. Namely, if xj = eiϕj , ϕj ∈ [0, 2π], j = 1, 2, then

(x2
1 + x2

2)
2

x2
1x

2
2

= (
x1

x2
+

x1

x2
)2 = (ei(ϕ1−ϕ2) + e−i(ϕ1−ϕ2))2 = 4 cos2(ϕ1 − ϕ2) = 4 sin2 ϕ

where ϕ = π
2 − ϕ1 + ϕ2. Thus, (x1, x2) = (eiϕ1 , eiϕ2) is a point of maximum if

and only if ϕ = 0 or ϕ = π, so that in our case L consists of two disjoint circles
ϕ1 − ϕ2 = ±π

2 .

We are concerned about the asymptotics, in the logarithmic scale, of the integral

Id =
1

8(πi)2

∫
T 2

Fd(x)W (x)
dx

x

for a certain function W (x) > 0 on T 2, namely, for W (x) = V2δ(x
2)V 2δ(x

2)

W (x) =

∣∣∣∣ 1 x2
1

1 x2
2

∣∣∣∣ ∣∣∣∣ 1 x−2
1

1 x−2
2

∣∣∣∣ = − (x2
1 − x2

2)
2

x2
1x

2
2

= −[e2i(ϕ1−ϕ2) + e−2i(ϕ1−ϕ2) − 2]

= 2(1− cos 2(ϕ1 − ϕ2)) = 2(1− sin 2ϕ), ϕ =
π

2
− ϕ1 + ϕ2.

4.4.1. Proposition. Under the above choice of functions Fd the following log-
scale asymptotic development holds:

log Id =
1

12
d3 log d+O(d3).

Proof. An upper bound

log Id 6 1

12
d3 log d+O(d3)

follows from logMd = 1
12d

3 log d+O(d3) (see Proposition 4.3.3).
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By the localization principle, the lower bound follows from positivity of Fd and
W . Indeed, let us consider the tubular neighborhood U of L defined by | sin 2ϕ| 6 1

2 ,
that is |ϕ| 6 ϕ0 = π

12 . Then 1 6 W (x) 6 3 for x ∈ U , and

log Id + log 8π2 > log

∫
U

Fd(x)W (x)
dx

x
> log[Area(U)min

U
Fd(x)min

U
W (x)]

> log(
4

3
π2) + log(

∏
(ℓ1,ℓ2,r)∈Ld

(ℓ21 + ℓ22)
2r[1− 4ℓ21ℓ

2
2

(ℓ21 + ℓ22)
2
sin2 ϕ0]

r)

= log(
4

3
π2) + logMd +R

where

R = log
∏

[1− 4ℓ21ℓ
2
2

(ℓ21 + ℓ22)
2
sin2 ϕ0]

r.

Finally, note that

|R| 6 c
∑

(ℓ1,ℓ2,r)∈Ld

r
4ℓ21ℓ

2
2

(ℓ21 + ℓ22)
2
sin2 ϕ0 6 cd|Ld| = O(d3),

where |Ld| =
(
d+2
2

)
= O(d2) is the cardinality of Ld and c > 0 is a constant

independent of d. �
4.5. Proof of Theorem 1.1.2. The asymptotic upper bound for NC

d is estab-
lished in Proposition 2.5.1. The positivity of N e

d follows from Theorem 4.1.3 and
the positivity of Fd (see Proposition 4.3.1). The asymptotic expression for N e

d

follows from Theorem 4.1.3 and Proposition 4.4.1.

5. Concluding remarks

5.1. Counting 3-planes in the complete intersections. The above approach
can be also applied to counting 3-planes in the complete intersections, except that
the formulas become more cumbersome and the asymptotics is difficult to disclose.
For simplicity, let us restrict ourselves to the intersections of cubic hypersurfaces.
Recall that for one cubic hypersurface (see Example 4.2.4) the Euler class is given
by

e20 = e(Sym3(τ̃∗4,∞)) = ± 9e3(25e2 − 4p21) ∈ H20(G̃4(R∞)).

An intersection X of r generic real cubic hypersurfaces in Pm+3 contains a finite

number of 3-planes if the dimension 20r of er20 is equal to 4m = dim G̃4(Rm+4)
(see, for example, [DM2]), that is if m = 5r. The signed count of real 3-planes in
X gives a number N e

3,...,3, which is the half of the corresponding count of oriented

3-planes that is er20[G̃4(Rm+4)], so we obtain

2N e
3,...,3 = ± 9re3r(25e2 − 4p21)

r[G̃4(Rm+4)].

Due to the multiplicative structure of the Euler-Pontryagin ring, the right-hand
side is equal to the result of substitution of the Catalan numbers Ck instead of tk

in the polynomial 9r(25 − 4t)r. Standard manipulation with generating functions
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and radii of convergence shows that the rate of growth of this sequence is linear in
the logarithmic scale:

logN e
3,...,3 ∼ 4r log 3.

To count the numberNC
3,...,3 of complex 3-planes on a generic intersection of cubic

hypersurfaces we can use the multivariate integral Cauchy formula (cf., Corollary
2.4.2):

1

4!(2πi)4

∫
T 4

∏
ℓ1+···+ℓ4=3(ℓ1z1 + · · ·+ ℓ4z4)

r

zm
Vδ(z)Vδ(z)

dz

z
.

Applying to this integral the saddle point version of the Laplace method, namely, by
deforming the integration cycle locally keeping the points of the maximal absolute
value of the product (this value is equal to 320) but making the values of the product
real at each point of a small neighborhood of the locus of maxima, we obtain

logNC
3,...,3 ∼ 20r log 3 ∼ 5 logN e

3,...,3.

5.2. Another enumerative problem with the 3-planes. Note that the Schu-
bert cell C2,2 ⊂ G4(C2n+4) is formed by the projective 3-planes in P 2n+3 which
intersect P 2n−1 ⊂ P 2n+3 along a line. Therefore, if we choose a generic set S =
{S1, . . . , S2n} of projective (2n − 1)-dimensional subspaces Si ⊂ P 2n+3, then the
number NC

�n of 3-planes L ⊂ P 2n+3 such that the intersections L∩ Si, 1 6 i 6 2n,
are lines, can be found by evaluation of the power of the Schubert class σ2,2:

NC
�n = σ2n

2,2[G4(C2n+4)].

In the real setting, we define the number NR
�n similarly, by counting the real

3-planes intersecting a generic set S of real subspaces Si ⊂ P 2n+3 along lines.
This number depends on the choice of a generic set S, and we denote by Nmin

�n

the minimum of NR
�n with respect to all generic choices of such S. The number

σ2n
2,2,R[G4(R2n+4)] can be interpreted as the signed count of the real 3-planes, and

thus its absolute value, which we denote by N e
�n , provides an estimate

N e
�n 6 Nmin

�n 6 NR
�n 6 NC

�n .

Here, σ2,2,R ∈ H4(G4(R2n+4)) is nothing but the Pontryagin class p1. The following
result shows that for this enumerative problem we get once more a fixed proportion
in the logarithmic scale between the number of real solutions and the number of
complex ones.

5.2.1. Theorem. Numbers NC
�n and N e

�n have the logarithmic asymptotics

logNC
�n =2n log 20 + o(n),

logN e
�n =2n log 2 + o(n).

In particular,

logN e
�n ∼

1

log2 20
logNC

�n .
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5.2.2. Proposition. The signed count of the real 3-planes intersecting each of the
given 2n generic (2n−1)-planes in RP2n+3 along a line gives the following answer:

p2n1 (τ∗4,2n)[G4(R2n+4)] =
1

n+ 1

(
2n

n

)
.

Proof. In the Pontryagin ring H∗(G4(R2n+4))/Tors we have (cf., Proposition 3.4.1)

pn2 (τ
∗
4,2n)[G4(R2n+4)] = σn

2,2,2,2,R[G4(R2n+4)] = σ2n,2n,2n,2n,R[G4(R2n+4)] = 1.

Therefore, out statement would follow from p2n1 = 1
n+1

(
2n
n

)
pn2 .

On the other hand, there is a similar well known identity c2n1 = 1
n+1

(
2n
n

)
cn2

in H∗(G2(Cn+2)) which follows easily from the Pieri rule. So, it is left to refer to
Proposition 3.4.1, or just to use the ring isomorphism betweenH∗(G4(R2n+4))/Tors
and

H∗(G2(Cn+2)) = Z[c1, c2, c̃1, . . . , c̃n]/{(1 + c1 + c2)(1 + c̃1 + · · ·+ c̃n) = 1}

that puts in correspondence ci and pi, i = 1, 2. �
5.2.3. Corollary. Given a generic set {S1, . . . , S2n} of (2n−1)-planes in RP2n+3,
there exist at least 1

n+1

(
2n
n

)
real 3-planes that intersect each of the Si’s along a line.

Now, let us look for the asymptotical behavior of the number of complex solutions
in the same Schubert problem as that in Proposition 5.2.2.

5.2.4. Proposition. log σ2n
2,2[G4(C2n+4)] = 2n log 20 + o(n).

Proof. Applying corollary 2.3.3 to h = σ2n
2,2 we obtain

σ2n
2,2[G4(C2n+4)] =

1

24(2πi)4

∫
T 4

s2n2,2
x2n

V 2(x)

x3

dx

x
=

1

24(2πi)4

∫
T 4

f(x)gn(x)
dx

x

where f(x) = V 2(x)
x3 = V (x)V (x) is real and non-negative, as well as

g(x) =
s22,2
x2

= s2,2s2,2 = |s2,2|2.

Thus, we deal with a kind of Laplace integrals and can use the following result,
which follows for instance from [MF], Theorem 2.1 (where the asymptotic is given
under the conditions much weaker than the analyticity that we require below).

5.2.5. Lemma. Assume that f and g are real analytic functions taking non-
negative values on a compact domain R ⊂ Rd. Let M be the maximal value of
g on R. Assume in addition that f and g do not vanish identically. Then,

F (n) =

∫
R

f(x)gn(x)dx

has the following logarithmic asymptotics

lim
n→∞

logF (n)

n
= logM. �
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Passing to the polar coordinates, x = exp(iθ), we obtain

1

24(2πi)4

∫
R

f(exp(iθ))g(exp(iθ))n dθ,

where R = [0, 2π]4, and the maximal value of g(x) = |s2,2(x)|2 is 202, since the sum
of the coefficients of s2,2 = x2

1x
2
2 + · · ·+ x2

1x3x4 + · · ·+ 2x1x2x3x4 is 20. �

Proof of Theorem 5.2.1. It follows from Proposition 5.2.4 combined with Stirling
formula applied to Proposition 5.2.2. �

5.3. Multivariate integral formula for the number of real (2k-1)-planes
on hypersurfaces. Theorem 4.1.3 and its proof extends easily to the case of
counting 2k − 1-planes with any k ∈ N.

5.3.1. Theorem. Assume that X ⊂ Pm+3 is a generic real hypersurface of odd
degree d and that

(
d+2k−1
2k−1

)
= 4m. Then the number, NR

d , of real (2k−1)-subspaces
in X is finite and bounded from below by the number N e

d > 0 that is given by the
multivariate integral formula

N e
d = ±

1

k!(2πi)k

∫
Tk

fd(x)

xm
V2δ(x)V2δ(x)

dx

x
,

where fd(x) is the polynomial satisfying the formula of Proposition 4.1.1.

Thus, we can conclude that the number N e
d is non zero for each odd d, and

certain heuristic arguments make plausible the following conjecture (cf. Conjecture
2.6)

logN e
d ∼

1

2(2k − 1)!
d2k−1 log d.
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