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Abstract

We construct closed sets S of arbitrarily small measure with the prop-
erty: given any discrete set Λ, every l∞−function on Λ can be interpo-
lated by an L∞−function with spectrum on S. This should be contrasted
against Beurling–Landau type theorems for compact spectra.

1 Introduction

1. Spaces. Let S be a closed set in R. We say that a function f
defined on (another copy of) R belongs to Bernstein space BS if

(i) f ∈ L∞(R);
(ii) f is the Fourier transform of a Schwartz distribution F (no-

tation: f = F̂ ), supported by S.

The support of F is called the spectrum of f .
In other words, a function f belongs to BS if and only if it is

bounded and we have ∫
R
f(x)ϕ̂(x) dx = 0,

for every smooth function ϕ(x) whose support is compact and dis-
joint from S. Endowed with the L∞−norm, BS is a Banach space.
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We shall also consider the Paley–Wiener spaces

PWS := {f ∈ L2(R); f = F̂ , F = 0 on R \ S},

where the spectrum S can be any measurable set.
Classical Paley–Wiener (Bernstein) spaces are defined when S is

a bounded (compact) set. The elements of these spaces are entire
functions of finite exponential type. We shall focus on the situation
when S is an unbounded closed set, and so the elements of the
corresponding spaces do not necessarily admit analytic continuation
into the complex plain.

2. Interpolation. Let Λ = {λj, j ∈ Z} ⊂ R be a uniformly discrete
(u.d.) set, that is

inf
j 6=k
|λj − λk| > 0.

Given a bounded data c = {cj, j ∈ Z}, one wishes to find a function
f ∈ BS such that

f(λj) = cj, j ∈ Z. (1)

If this is possible for every c ∈ l∞(Z), one says that the interpolation
problem is solvable, and Λ is called an interpolation set for BS.

Similarly, if for arbitrary data c ∈ l2(Z) there is a function f ∈
PWS satisfying (1), one says that Λ is a set of interpolation for
PWS.

General principles of functional analysis imply that if Λ is a in-
terpolation set for BS, then one can solve interpolation problem (1)
with an additional estimate:

‖f‖L∞ ≤ C‖c‖l∞ , (2)

where the constant C does not depend on data c. A similar result
is true for the Paley–Wiener spaces (see [11], p. 129).

3. Density. For every u.d. set Λ one can define its upper uniform
density

D+(Λ) := lim
l→∞

max
a∈R

#(Λ ∩ (a, a+ l))

l
.

A fundamental role of this quantity in the interpolation problem, in
the case when S is a single interval, was found by A. Beurling and
J-P. Kahane: Beurling proved ([2]) that Λ is an interpolation set for
BS if and only if

D+(Λ) <
1

2π
mesS.
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Even earlier, Kahane proved in [5] that for Λ to be an interpolation
set for PWS it is necessary that

D+(Λ) ≤ 1

2π
mesS, (3)

and it is sufficient that

D+(Λ) <
1

2π
mesS.

Both results are based on the theory of entire functions.

4. Disconnected spectra. The situation becomes much more
delicate for disconnected spectra, in particular when S is a union
of two intervals. For the sufficiency part, not only the size but also
the arithmetics of Λ is important in that case. On the other hand,
using a new approach Landau [6] succeeded to extend the necessity
part to the general case:

Theorem 1.1 [6] Let S be a bounded set. If a u.d. set Λ is an
interpolation set for PWS then condition (3) is fulfilled.

We shall prove some versions of this result for both Paley–Wiener
and Bernstein spaces. In fact, it already suffices to know that the
”delta-functions” on Λ admit interpolation by BS− or PWS− func-
tions (with not very fast growing norms) in order to obtain an esti-
mate from below for the measure of S (see section 2 below).

However, for unbounded spectra the situation is completely dif-
ferent. The contrast is most striking for Bernstein spaces: Not only
condition (3) is no longer necessary, but there exist ”universal” spec-
tra of arbitrary small measure which deliver positive solution to the
interpolation problem for every u.d. Λ:

Theorem 1.2 For every δ > 0 there is a closed (unbounded) set S,
mesS < δ, such that every u.d. set Λ is an interpolation set for the
space BS.

This theorem will be proved in sec. 3.
Such a result cannot hold for Paley–Wiener spaces (see Proposi-

tions 4.1 and 4.2 in sec. 4). However, we show that for a generic Λ
there are arbitrarily small spectra S such that Λ is ”almost” a set
of interpolation for PWS (Theorem 4.1).

Results of this paper concerning Paley–Wiener spaces were an-
nounced in our note [8].
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2 Compact spectra: Weak interpolation

The aim of this section is to show that even a much weaker inter-
polation property of Λ ensures Beurling–Landau type estimates on
the measure of S.

In what follows we shall denote by ‖f‖2 and ‖f‖∞ the L2− and
L∞−norm of f , respectively.

2.1. Concentration.

Definition: Given a number c, 0 < c < 1, we say that a linear
subspace W of PWS is c-concentrated on a set Q if∫

Q

|f(x)|2 dx ≥ c‖f‖2
2, f ∈ W.

Following Landau we estimate the dimension of a concentrated
subspace.

Lemma 2.1 Given sets S,Q ⊂ R and a number 0 < c < 1, let W
be a linear subspace of PWS which is c-concentrated on Q. Then

dimW ≤ (mesQ) (mesS)

2πc
.

Proof ([6], see (iii) and (iv) on p. 41). Let Q,S ⊂ R be two sets
of finite positive measure. Let AQ and BS denote the orthogonal
projections of L2(R) onto L2(Q) and PWS, respectively:

AQf = 1Qf, BSf = F 1S F−1f,

where 1Q denotes the characteristic function of Q, and Ff is the
Fourier transform of f :

Ff(x) = f̂(x) :=
1√
2π

∫
R
eitxf(t) dt.
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The operator C := AQBSAQ acts from L2(R) into itself. Clearly, C
is self-adjoint and positive. It can be written explicitly as

Cf(y) =
1√
2π

∫
R

1Q(x)1Q(y)1̂S(y − x)f(x) dx.

Since the kernel is square-integrable, C is a compact operator. De-
note by lj its eigenvalues arranged in non-increasing order (counting
multiplicities). The trace TrC is equal to the integral of kernel along
the ”diagonal”:

TrC :=
∑
j

lj =
(mesQ) (mesS)

2π
. (4)

2. One can easily show that the spectrum of operator D := BSAQBS

is identical to the spectrum of operator C.
LetW be a linear subspace of PWS of dimension k. The quadratic

form (Df, f) on W is given by (AQf, f) = ‖1Qf‖2
2. If W is c− con-

centrated on Q, then

inf
f∈W,‖f‖2=1

(Df, f) ≥ c.

It is well-known that, among all subspaces of dimension k, the great-
est value of inf(Df, f) on the unit sphere is achieved on a sub-
space spanned by the first k eigenvectors of D. This means that
c ≤ lk ≤TrD/k=TrC/k. This and (4) prove the lemma. One can
show that a similar result holds in several dimensions, too.

Remark. The uncertainty principle in Fourier analysis is a state-
ment that a function and its Fourier transform cannot both be
concentrated on small sets. A simple corollary of Lemma 2.1 is
the following variant of uncertainty principle due to Amrein and
Berthier [1]: Let S and Q be any sets of finite measure. There
exists C = C(S,Q) such that∫

R
|f(x)|2 dx ≤ C

(∫
R\S
|f(x)|2 dx+

∫
R\Q
|f̂(t)|2 dt

)
, f ∈ L2(R).

2.2. Interpolation of delta–functions. We start with the follow-
ing
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Theorem 2.1 Let S be a compact set and Λ = {λj, j ∈ Z} be a
u.d. set. Suppose that for every j ∈ Z there is a function fj ∈ PWS

such that

fj(λk) =

{
1, k = j
0, k 6= j

, k ∈ Z; (5)

sup
j∈Z
‖fj‖2 <∞. (6)

Then (3) holds.

Proof. 1. Recall that if S is a compact set, then the corresponding
Paley–Wiener space consists of entire functions of exponential type.
The following lemma is well known (see [11], p. 82):

Lemma 2.2 Suppose Λ = {λj, j ∈ Z} is a u. d. set, and S ⊂ R is
a compact set. Then there exists C > 0 such that

‖f‖2
2 ≥ C

∑
j∈Z

|f(λj)|2, for every f ∈ PWS.

2. Fix a number δ > 0, and set

S(δ) := S + [−δ, δ]. (7)

Take functions fj ∈ PWS satisfying (5) and (6), and set

gj(x) := fj(x)

(
sin δ(x− λj)
δ(x− λj)

)2

, j ∈ Z.

Clearly, functions gj satisfy (5), (6) and belong to PWS(2δ).

3. Fix any number R, and denote by #(Λ ∩ (R − r, R + r)) the
number of λj ∈ Λ in the interval (R− r, R + r). Since Λ is u.d. we
have:

# (Λ ∩ (R− r, R + r)) ≤ Cr, for all r > 1, (8)

where C > 0 is a constant which does not depend on R.
Let us introduce a linear space of functions

Wr :=

g(x) =
∑

k:|λk−R|<r

ckgk(x), ck ∈ C

 .

Clearly, dimWr = #(Λ ∩ (R− r, R + r)).
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4. We would like to estimate the concentration of Wr on the interval
(R − r − rδ, R + r + rδ). Choose any function g =

∑
j cjgj ∈ Wr.

Then g(λj) = cj when |λj−R| < r, and g(λj) = 0 when |λj−R| ≥ r.
By Lemma 2.2, there is a constant C = C(S,Λ) > 0 such that

‖g‖2
2 ≥ C

∑
λj∈Λ

|g(λj)|2 = C
∑

|λj−R|<r

|cj|2. (9)

On the other hand, by Parseval’s identity and (6), we have

|fj(x)|2 ≤
(

1√
2π

∫
S

|f̂j(t)| dt
)2

≤ mesS

2π
‖f̂j‖2

2 ≤ C, j ∈ Z,

for some C > 0.
Observe that |x − λj| ≥ δr whenever λj ∈ (R − r, R + r) and

|x−R| ≥ r + δr. Hence, the last inequality and (8) give∫
|x−R|≥r+δr

|g(x)|2 dx =

∫
|x−R|≥r+δr

∣∣∣∣∣∣
∑

|λj−R|<r

cjfj(x)

(
sin δ(x− λj)
δ(x− λj)

)2

∣∣∣∣∣∣
2

dx ≤

Cr

 ∑
|λj−R|<r

|cj|2
∫

|x|>δr

(
1

δx

)4

dx ≤ C

δ7r2

 ∑
|λj−R|<r

|cj|2
 .

This and (9) show that for every ε > 0 there exists rε such that g is
(1− ε)−concentrated on (R− r − δr, R + r + δr) for all r ≥ rε.

4. It now follows from Lemma 2.1, that

# (Λ ∩ (R− r, R + r)) ≤ (mesS(2δ))(mes (R− r − δr, R + r + δr))

2π(1− ε)
,

whenever r ≥ rε. Since this is true for every R, we obtain:

D+(Λ) ≤ 1 + δ

1− ε
mesS(2δ)

2π
.

Letting δ → 0 and ε→ 0, we conclude that D+(Λ) ≤ (2π)−1 mesS.

Remark. The assumptions of Theorem 2.1 admit a geometric in-
terpretation: Set

E(Λ) := {eiλt, λ ∈ Λ}.
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Conditions (5) and (6) are equivalent to the property that the ex-
ponential system E(Λ) is uniformly minimal in L2(S), that is the
L2−distance from any element of the system to the span of other
elements is greater then some positive constant.

Observe that assumptions (5) and (6) are less restrictive then
the requirement for Λ to be an interpolation set for PWS. Indeed,
consider a classical example: S = [−π, π] and Λ = {λj, j ∈ Z},

λj :=

 j + 1
4
, j = 1, 2, ...

0, j = 0
j − 1

4
, j = −1,−2, ...

The corresponding exponential system E(Λ) is uniformly minimal in
L2(−π, π) (see [7], Theorem 5). However, Λ is not an interpolation
set for L2(−π, π) (see the remark following Theorem 5 in [7]).

An analog of Theorem 2.1 for Bernstein spaces is also true:

Theorem 2.2 Let S be a compact set, and Λ = {λj} a u.d. set.
Suppose that for every j ∈ Z there is a function fj ∈ BS satisfying
(5) and

sup
j∈Z
‖fj‖∞ <∞. (10)

Then (3) holds.

Indeed, suppose functions fj ∈ BS satisfy assumptions of Theo-
rem 2.2. Take any positive number δ, and set

gj(x) := fj(x)
sin δ(x− λj)
δ(x− λj)

.

Then the functions gj belong to PWS(δ), j ∈ Z, where S(δ) is defined
in (7), and satisfy assumptions of Theorem 2.1. Hence, D+(Λ) ≤
(2π)−1mesS(δ). Letting δ → 0, we obtain Theorem 2.2.

An immediate corollary of Theorem 2.2 is a variant of Landau’s
Theorem 1.1 for Bernstein spaces:

Corollary Let S be a compact set. If a u.d. set Λ is an interpolation
set for BS, then condition (3) is fulfilled.

2.3. Growth of ‖fj‖2 and upper density.

An estimate similar to (3) holds even if the norms of functions
satisfying (5) grow, but not very fast:

‖fj‖2 ≤ Ce|λj |
α

, j ∈ Z, (11)
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where C > 0 and 0 < α < 1. We shall show that this and (5) imply
estimate (3) in which D+ is replaced by the upper density D∗.

Definition: Let Λ be a u.d. set. The upper density of Λ is defined
as follows:

D∗(Λ) := lim sup
a→∞

#(Λ ∩ (−a, a))

2a
.

Clearly, we have D∗(Λ) ≤ D+(Λ). Observe that for regularly dis-
tributed Λ, for example if Λ = {j+O(1), j ∈ Z}, these two densities
are equal.

Theorem 2.3 Let S ⊂ R be a compact set, and Λ = {λj, j ∈ Z} a
u.d. set. Suppose there exist functions fj ∈ PWS, j ∈ Z, satisfying
(5) and (11) with some C > 0 and 0 < α < 1. Then D∗(Λ) ≤
(2π)−1 mesS.

Proof. 1. We shall need

Lemma 2.3 Set

ϕ(z) :=
∏
k≥k0

sin(k−1−βz)

k−1−βz
,

where k0 ∈ N and 0 < β < 1 are some numbers. Then ϕ ∈ PW[−σ,σ],
where σ =

∑
k≥k0 k

−1−β, and

|ϕ(x+ iy)| ≤ C exp

(
− 1

C
|x|

1
1+β

)
, x ∈ R, |y| ≤ 1, (12)

where C is a constant.

Proof. For every a > 0, the function sin az/az is the Fourier
transform of a positive constant function on [−a, a]. Hence, ϕ(z)
is the Fourier transform of the convolution of such functions. This
convolution is concentrated on [−σ, σ], σ =

∑
k≥k0 k

−1−γ, and so
ϕ ∈ PW[−σ,σ].

Let us denote by δ1 and δ2 positive constants such that

e−δ1|z|
2 ≤

∣∣∣∣sin zz
∣∣∣∣ ≤ e

1
δ2
y2−δ2x2

, z = x+ iy ∈ C, |z| ≤ 1. (13)

Since | sin(a+ ib)| ≤ exp |b|, for a, b real, we have:∏
k0≤k<|z|

1
1+β

∣∣∣∣sin(k−1−βz)

k−1−βz

∣∣∣∣ ≤ ∏
k0≤k<|z|

1
1+β

∣∣sin(k−1−βz)
∣∣ ≤

9



exp

|y| ∑
k0≤k<|z|

1
1+β

1

k1+β

 ≤ eC|y|, z = x+ iy,

where C is a constant. Now, using the right-hand inequality in (13),

we get for every z ∈ C, |z| ≥ 1 + k1+β
0 , that

∏
k≥|z|

1
1+β

∣∣∣∣sin(k−1−γz)

k−1−βz

∣∣∣∣ ≤ C exp

−δ2x
2
∑

k≥|z|
1

1+β

1

k2+2β


≤ C exp

(
− 1

C
|x|

1
1+β

)
, |y| ≤ 1,

where C is a constant. This and the previous inequality give (12).

2. Fix a small number δ > 0 and pick up k0 in Lemma 2.3 so large
that σ ≤ δ, i.e. the function ϕ ∈ PW[−δ,δ]. Also, assume that β < 1
satisfies α < 1/(1 + β).

The rest of the proof is pretty similar to the proof of Theorem 2.1.
Without loss of generality, we may assume that λ0 = 0. Take

functions fj ∈ PWS satisfying (5) and (11), and set

gj(x) := fj(x)ϕ(x− λj), j ∈ Z,

where ϕ is a function from Lemma 2.3. It is clear that gj ∈ PWS(δ),
where S(δ) is defined in (7), and that (5) is true for every j ∈ Z.
3. Since Λ is u.d., we have

# (Λ ∩ (−r, r)) ≤ Cr, (14)

for some C > 0 and all r > 1. Set

Wr :=

g(x) =
∑
|λk|<r

ckgk(x) : ck ∈ C

 .

Clearly, dimWr = #(Λ ∩ (−r, r)).
4. Let us estimate the concentration of Wr on the interval (−r −
rδ, r + rδ). Take any function g ∈ Wr. Since g(λj) = 0 when
|λj| ≥ r, by Lemma 2.2, we have:

‖g‖2
2 ≥ C

∑
|λj |<r

|cj|2. (15)
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Further, by (11) and Parseval’s identity, we have

|fj(x)|2 ≤
(

1√
2π

∫
S

|f̂j(t)| dt
)2

≤ mesS

2π
‖f̂j‖2

2 ≤ Cer
α

,

for some C > 0 and all j, |λj| < r. Observe also that |x − λj| ≥ δr
whenever |λj| < r and |x| ≥ r+δr. This, (14) and the last inequality
give

∫
|x|≥r+δr

|g(x)|2 dx =

∫
|x|≥r+δr

∣∣∣∣∣∣
∑
|λj |<r

cjfj(x)ϕ(x− λj)

∣∣∣∣∣∣
2

dx ≤

Crer
α

∑
|λj |<r

|cj|2
∫

|x|>δr
|ϕ(x)|2 dx.

Recall that α < 1/(1 + β), so that (12) gives:

rer
α

∫
|x|>δr

|ϕ(x)|2 dx→ 0, r →∞.

Hence, by (15), we see that for every ε > 0 there exists rε such that
g is (1− ε)−concentrated on (−r − δr, r + δr) for all r ≥ rε.

4. It now follows from Lemma 2.1, that

# (Λ ∩ (−r, r)) ≤ (mesS(δ))(mes (−r − δr, r + δr))

2π(1− ε)
, r ≥ rε.

This gives:

D∗(Λ) = lim sup
r→∞

# (Λ ∩ (−r, r))
2r

≤ 1 + δ

2π(1− ε)
mesS(δ).

Letting δ → 0 and ε→ 0, we conclude that D∗(Λ) ≤ (2π)−1 mesS.

By using the same argument which deduces Theorem 2.2 from
Theorem 2.1, one can easily extend Theorem 2.3 to Bernstein spaces:

Theorem 2.4 Let S ⊂ R be a compact set, and Λ = {λj, j ∈ Z}
a u.d. set. Suppose that there exist functions fj ∈ BS, j ∈ Z,
satisfying (5) and

‖fj‖∞ ≤ Ce|λj |
α

, j ∈ Z, (16)
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for some C > 0 and 0 < α < 1. Then D∗(Λ) ≤ (2π)−1 mesS.

Remark. The ”growth restrictions” (11) and (16) can be replaced
by any ”non quasi-analytic growth”. However, we do not know if
they can be omitted at all.

2.4. A counterexample. The results of last subsection are not
true for the density D+. We shall show this only for the Paley–
Wiener case.

Theorem 2.5 For every ρ > 1 there exist a u.d. set Λ, D+(Λ) ≥ ρ,
and functions fj ∈ PW[−π,π], j ∈ Z, which satisfy (5) and (11) with
some C > 0, 0 < α < 1.

Proof. 1. Fix any numbers k0 ∈ N and 0 < β < 1, and let ϕ be the
function in Lemma 2.3. Let us show that for every r 6= 0 we have

|ϕ(x+ ri)| ≥ C exp

(
− 1

C
|x|

1
1+β log(1 + |x|)

)
, x ∈ R, (17)

where C > 0 depends only on r. For simplicity, we shall assume
that r = 1.

From the left-hand inequality of (13), we obtain:

∏
k≥|x+i|

1
1+β

∣∣∣∣sin(k−1−β(x+ i))

k−1−β(x+ i)

∣∣∣∣ ≥ exp

−δ1|x+ i|2
∑

k≥|x+i|
1

1+β

1

k2+2β


≥ exp

(
−C|x+ i|

1
1+β

)
,

where C is a constant. Further, since

| sin(a+ ib)| ≥ eb − e−b

2
≥ b, a ∈ R, b > 0,

we have ∏
k0≤k<|x+i|

1
1+β

∣∣∣∣sin(k−1−β(x+ i))

k−1−β(x+ i)

∣∣∣∣ ≥
∏

k0≥k<|x+i|
1

1+β

exp
(

1
k1+β

)
− exp

(
− 1
k1+β

)
2|x+ i|k−1−β ≥

(
1

|x+ i|

)|x+i|1/(1+β)

.

This and the previous estimate prove (17).
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2. Set

ψ(z) := η(z)η(−z), η(z) :=
∞∏
j=1

j−1∏
k=0

(
1− z

4j + k

)
.

Observe that

j−1∏
k=0

∣∣∣∣1− z

4j + k

∣∣∣∣ ≤ exp

(
|z|

j−1∑
k=0

1

4j + k

)
≤ exp

(
|z|j
4j

)
< ej2

−j
,

whenever 2j > |z|. This gives:

|η(z)| ≤
∏

2j>|z|

ej2
−j ∏

2j≤|z|

(1 + |z|)j ≤ C (1 + |z|)
log |z|
log 2 ≤ CeC log2(1+|z|),

from which is follows that

|ψ(z)| ≤ CeC log2(1+|z|), (18)

where C is a constant.
We also need to estimate from below the derivative ψ′ at the zero

points ±(4j + k) of ψ. Pick up numbers J ∈ N and K, 0 ≤ K < J.
We have∏
0≤k<J,k 6=K

∣∣∣∣1− 4J +K

4J + k

∣∣∣∣ =
∏

0≤k<J,k 6=K

|K − k|
4J + k

≥
(

1

4J + J

)J
≥ e−CJ

2

.

Further, since

4J

4j + k
≥ 2, 1 ≤ j < J,

4J + j

4j
≤ 1, j > J, 0 ≤ k < j,

we get: ∏
j≥1,j 6=J

j−1∏
k=0

∣∣∣∣1− 4J +K

4j + k

∣∣∣∣ ≥∏
j>J

(
1− 4J + J

4j

)j
≥ C.

This and the previous estimate show that

|η′(4J +K)| ≥ Ce−CJ
2

, J ∈ N, 0 ≤ K < J,

where C is a constant. Since η(−x) ≥ 1 for x ≥ 0, the same estimate
holds for ψ′(4J +K). Since ψ is even, we obtain:

|ψ′(λ)| ≥ Ce−C log2 |λ|, for all λ, ψ(λ) = 0.

13



Now, choose a number ρ > 1 and set

f(z) := ψ(ρz)ϕ(
π

σ
(z + i)),

where ϕ is a function from Lemma 2.3, and σ is its type. The last
inequality and and (17) imply:

|f ′(λ)| ≥ Ce−
1
C
|λ|

1
1+β log(1+|λ|), for all λ, ψ(ρλ) = 0. (19)

Moreover, from (18) and (12), we see the type of f is equal to π
and that f ∈ L2(R). Hence, f ∈ PW[−π,π], by the Paley–Wiener
theorem.

Let Λ be the zero set of ψ(ρx) :

Λ := Γ
⋃

(−Γ), Γ :=
∞⋃
j=1

{4j

ρ
, ...,

4j + j − 1

ρ
}.

It is clear that D+(Λ) = ρ. Set λ0 = 4, and numerate the elements
of Λ = {λj, j ∈ Z} in increasing order. Set

fj(z) :=
f(z)

f ′(λj)(z − λj)
, j ∈ Z.

Then functions fj ∈ PW[−π,π] and satisfy (5).
We have:

‖fj‖2
2 ≤

‖f‖2
2

|f ′(λj)|2
+

∫ λj+1

λj−1

∣∣∣∣ f(x)

f ′(λj)(x− λj)

∣∣∣∣2 dx.
Using the Cauchy integral formula, one can estimate from above the
integral in the right hand-side by

2|f ′(λj)|−2

(
sup

|z−λj |=1

|f(z)|

)2

.

We conclude that

‖fj‖2
2 ≤

C

|f ′(λj)|2
,

where C depends only on f . Now, by (19), we see that assumption
(11) is also fulfilled for each α < 1 satisfying α > 1/(1 + β).

14



3 Unbounded spectra: interpolation in Bern-
stein spaces

The goal of this section is to construct universal interpolation spec-
tra S of arbitrarily small measure:

Theorem 3.1 For every δ > 0 there is a closed (unbounded) set S,
mesS < δ, such that every set Λ which has no finite limit points is
an interpolation set for the space BS.

This result is a refinement of Theorem 1.2 in which we relax as-
sumption of uniform discreteness of Λ.

3.1. Lemmas.

Lemmas 3.1 For every N ≥ 2 there exists a set S(N) ⊂ (−N,N),
mesS(N) = 2

N
, such that∣∣∣∣N2
∫
S(N)

eitx dt− sinNx

Nx

∣∣∣∣ ≤ C

N
, x ∈ R, (20)

where C > 0 is an absolute constant independent on N .

Proof. 1. Fix an integer N ≥ 2, and let Mj, j = 1, ..., N, be any
even numbers satisfying

M1 ≥ N4,Mj+1 ≥ N2Mj, j = 1, ..., N − 1. (21)

Set

Ω(j, k) := j − 1 +
2k − 1

Mj

+
1

Mj

(−1, 1], Ω(−j, k) := −Ω(j, k),

S(j, k) := j − 1 +
2k − 1

Mj

+
1

N2Mj

(−1, 1], S(−j, k) := −S(j, k),

where j = 1, ..., N and k = 1, ...,Mj/2. Set

S(N) :=
N⋃
|j|=1

Mj/2⋃
k=1

S(j, k).

One can check that

Mj/2⋃
k=1

Ω(j, k) = (j − 1, j], j = 1, ..., N,

15



and that

mesS(N) =
2

N
.

2. For simplicity, throughout the proof we denote by C different
positive constants.

Since
sinNx

Nx
=

1

2N

∫ N

−N
eitx dt,

to prove (20) it suffices to show that∣∣∣∣∫ N

−N
eitx dt−N2

∫
S(N)

eitx dt

∣∣∣∣ < C, x ∈ R. (22)

3. Assume first that |x| ≤ Ml, for some 1 ≤ l ≤ N. Using (21), we
have for j ≥ l, j ≤ N , that∣∣∣∣∫

Ω(j,k)

eitx dt−N2

∫
S(j,k)

eitx dt

∣∣∣∣ =

2

∣∣∣∣sin(x/Mj)

x
− N2 sin(x/N2Mj)

x

∣∣∣∣ ≤ Cx2

M3
j

≤ CM2
l

M3
j

, k = 1, ...,
Mj

2
.

This and (21) give:∣∣∣∣∫
{l−1≤|t|≤N}

eitx dt−N2

∫
{l−1≤|t|≤N}∩S(N)

eitx dt

∣∣∣∣
≤

N∑
|j|=l

Mj/2∑
k=1

CM2
l

M3
j

≤ C. (23)

Clearly, this proves (22) for |x| ≤M1.

4. Assume now that |x| > Ml−1, for some 2 ≤ l ≤ N. Then, clearly,
we have ∣∣∣∣∫

{|t|≤l−1}
eitx dt

∣∣∣∣ = 2

∣∣∣∣sin(l − 1)x

x

∣∣∣∣ ≤ 2

Ml−1

. (24)

Also, ∣∣∣∣N2

∫
{l−2≤|t|≤l−1}∩S(N)

eitx dt

∣∣∣∣
16



≤ N2 mes ({l − 2 ≤ |t| ≤ l − 1} ∩ S) = 2. (25)

These estimates and (23) prove (22) for M1 < |x| ≤M2.
Assume that |x| > Ml−1, for some l ≥ 3. Since∣∣∣∣N2

∫
S(j,k)

eitx dt

∣∣∣∣ = 2N2

∣∣∣∣sinx/(N2Mj)

x

∣∣∣∣ ≤ 2N2

Ml−1

, |x| > Ml−1,

by (21), we obtain:∣∣∣∣N2

∫
{|t|≤l−2}∩S(N)

eitx dt

∣∣∣∣ ≤ l−2∑
j=1

Mj/2∑
k=1

2N2

Ml−1

≤ 2N2Ml−2

Ml−1

≤ C.

From this, (24) and (25) we get∣∣∣∣∫
{|t|≤l−1}

eitx dt−N2

∫
{|t|≤l−1}∩S

eitx dt

∣∣∣∣ ≤ C, |x| > Ml−1, l ≥ 3.

Now, this and (23) imply (22) for |x| > Ml−1, l ≥ 3, which completes
the proof of Lemma 3.1.

Lemma 3.2 For every ε > 0 there is a compact S = Sε and a
function g = gε ∈ BS such that:

(i) mesS ≤ ε;
(ii) ‖g‖∞ = g(0) = 1;
(iii) |g(x)| < ε for |x| > ε.

In addition, S can be chosen disjoint from any given segment.

This follows from Lemma 3.1. Indeed, fix an ε > 0, and choose N
in Lemma 3.1 so large that mesS(N) < ε, | sinNx/Nx| < ε/2 when
|x| > ε and C/N < ε/2, where C is the constant in (20). Given a
segment I, set S := R + S(N), where R is any number such that
R + S(N) ∩ I = ∅. Set

g(x) :=
N

2

∫
S

eitx dt =
N

2
eiRx

∫
S(N)

eitx dt.

Conditions (ii) and (iii) follow immediately from Lemma 3.1.

3.2. Proof of Theorem 3.1. Suppose 0 < δ < 1, and take any
sequence ε(j) > 0, j ∈ Z, such that∑

j∈Z

ε(j) < δ. (26)

17



Fix a sequence of disjoint compacts Sε(j), mesSε(j) < ε(j), tending
to infinity and satisfying the conditions of Lemma 3.2, such that the
set

S :=
⋃
j∈Z

Sε(j).

is closed. Let Λ = {λj, j ∈ Z} be a set without finite limit points.
Taking if necessary a subsequence of ε(j), we may assume that

dj := inf
k:k 6=j

|λk − λj| > ε(j), j ∈ Z. (27)

Conditions (ii) and (iii) of Lemma 3.2 allow one to define a se-
quence of functions fj ∈ BS such that each function fj has a compact
support,

1 = ‖fj‖∞ = fj(lj),

and
|fj(x)| < ε(j), for |x− lj| ≥ dj. (28)

By (27), we see that

|fj(λk)| < ε(j), j 6= k. (29)

Consider a linear operator A : l∞ → l∞ defined as

A := (a(j, k))j,k∈Z, a(j, k) =

{
fj(λk), j 6= k
fj(λj)− 1, j = k

From (26) and (29) one can see that

‖A‖ = supk
∑
j

|a(j, k)| = supk
∑
j 6=k

|fj(λk)| < 1,

so that the operator A + I, I is the identity operator, is invertible
in l∞. Take an arbitrary ”data” c = {cj} ∈ l∞, and denote by
b = {bj} ∈ l∞ the solution of the equation

(A+ I)b = c.

Set
f(x) :=

∑
j∈Z

bjfj(x).

18



By (26), (27) and (28), we see that the series converges uniformly
on every finite interval, and

sup
x∈R
|f(x)| ≤ (1 + δ)‖b‖l∞ <∞.

Also, it is clear that f satisfies the interpolation condition f(lj) =
c(j), j ∈ Z.

Now let ϕ be any smooth test–function supported by a segment
disjoint from S. Let ε(R)→ 0 and N(R)→∞ as R→∞, be some
functions satisfying∣∣∣∣∣∣f(x)−

∑
|j|≤N(R)

bjfj(x)

∣∣∣∣∣∣ < ε(R), |x| ≤ R.

Since each fj has a compact support which lies in S, then (ϕ̂, fj) =
0, j ∈ Z, and so we have

|(ϕ̂, f)| = |(ϕ̂, f −
∑

|j|≤N(R)

bjfj)| ≤ ε(R)

∫
|x|≤R

|ϕ(x)| dx+

(1 + δ)‖b‖l∞
∫
|x|>R

|ϕ̂(x)| dx→ 0, R→∞.

Hence, (ϕ̂, f) = 0, which shows that f ∈ BS.

3.3. Remark on sampling sets. We finish this section by the
following remark.

Definition. A set Λ is called a sampling set for BS if there is a
constant C > 0 such that

‖f‖∞ ≤ C sup
λ∈Λ
|f(λ)|,

for every f ∈ BS.

Similarly, one may define sampling set for PWS−spaces.
When S is a single interval, the sampling sets for BS were com-

pletely characterized by Beurling in terms of so-called ”lower uni-
form density” D−(L) (see [3]), by the following condition:

D−(L) >
1

2π
mesS.
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For the disconnected compacts S no such metrical characterization
may exist. However, one can construct a set of critical density which
serves as BS−sampling set for every compact of given measure.
More precisely, the following is true:

Theorem 3.2 There is a set Λ = {j + O(1), j ∈ Z}, which is a
sampling set for the Bernstein space BS, for every compact S of
measure < 2π.

This is a consequence of Theorem 3 in [9] (see details in [10]), where
such a ”universal” sampling set was constructed for Paley–Wiener
spaces. In order to deduce the proposition above from Theorem 3
in [9], one needs

Lemma 3.3 Suppose there exists δ0 > 0 such that a u.d. set Λ is
a sampling set for PWS(δ), 0 < δ ≤ δ0, where S(δ) is defined in (7).
Then Λ is a sampling set for BS.

Indeed, assume that the conclusion of Lemma 3.3 does not hold:
for every ε > 0 there exists f ∈ BS such that supx |f(x)| = 1, and
|f(λ)| < ε for every λ ∈ Λ. Pick up a point x0 such that |f(x0)| ≥
1/2, and set

g(x) := f(x)
sin δ(x− x0)

δ(x− x0)
∈ PWS(δ),

where δ ≤ δ0. Let σ > 0 be such that S(δ) ⊆ [−σ, σ]. Since
|g(x)| ≤ 1 for all x, the Bernstein inequality says that sup |f ′(x)| ≤
σ. Using this and inequality |g(x0)| ≥ 1/2, one can easily deduce
that ‖g‖2

2 ≥ C, where C depends only on σ. On the other hand,
since Λ is u.d., we have∑

λ∈Λ

|g(λ)|2 ≤ ε2
∑
λ∈Λ

∣∣∣∣sin δ(λ− x0)

δ(λ− x0)

∣∣∣∣2 ≤ Cε2,

where C depends only on the infimum of distances between elements
of Λ. However, since this can be done for every ε > 0, we see that
Λ is not a sampling set for PWS(δ), which is a contradiction.

In a sharp contrast to Theorem 3.2, the following claim is true:

Corollary 3.1 A sampling set for the closed (unbounded) spectrum
S, constructed in the proof of Theorem 3.1, must be dense in R.
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Indeed, suppose a set Λ satisfies Λ ∩ (a, b) = ∅, for some a < b.
By the construction in the proof of Theorem 3.1, for every ε > 0
and c ∈ R there exists f ∈ BS such that f(c) = 1 and |f(x)| < ε
for |x − c| > ε. By choosing c = (a + b)/2 and ε < (b − a)/2, we
see that for every ε > 0 there exists a function f ∈ BS satisfying
‖f‖∞ > (1/ε)‖f‖l∞(Λ), so that Λ is not a sampling set for BS.

4 Unbounded spectra: interpolation in Paley–
Wiener spaces

In the previous section we have seen that there exist universal closed
sets S of arbitrarily small measure such that for arbitrary Λ and c
the interpolation problem (1) can be solved by functions f ∈ BS.
In this section we obtain somewhat similar results for the Paley–
Wiener spaces. Observe, however, that the ”universality” is not
possible to achieve in this case:

Proposition 4.1 No set of measure < 2π admits interpolation of
any δ−function on Z by f ∈ PWS.

Proof. Given a set S ⊂ R of finite measure, set

Sπ :=

(⋃
j∈Z

(S + 2πj)

)⋂
[−π, π].

Now, suppose there exists f ∈ PWS such that f(0) = 1 and f(j) =
0, j ∈ Z \ {0}. Denote by F ∈ L2(S) the inverse Fourier transform
of f , and set

Fπ(t) :=
∑
j∈Z

F (t+ 2πj).

Observe that∫ π

−π
|Fπ(t)| dt =

∫
R
|F (t)| dt ≤

√
mesS ‖F‖2 <∞,

so that the function Fπ is a.e. finite. Also, we see that∫ π

−π
eijtFπ(t) dt =

∫
R
eijtF (t) dt = f(j) =

{
1, j = 0
0, j 6= 0
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This implies Fπ(t) = 2π for a.e. t ∈ [−π, π], and so suppFπ=
[−π, π]. However, clearly, suppFπ ⊆ Sπ. We conclude that mesS ≥
2π.

Proposition 4.1 shows that some restrictions on Λ are necessary
in order to get interpolation by PW−functions with small spectra.
We consider a generic situation: elements of Λ are supposed to be
rationally-independent. In this case, we construct closed spectra
which admit interpolation of any function on Λ with a certain weak
decay condition.

Theorem 4.1 Let a u.d. set Λ = {λj, j ∈ Z} be linearly indepen-
dent over rationales (mod π). Then for every δ > 0 there is is a set
S, a union of some of intervals centered at integers, such that:

(i) mesS < δ;
(ii) for every sequence c = {cj} satisfying∑

j∈Z

|cj|2(1 + |j|β) <∞

with some β > 1, there is a function f ∈ PWS satisfying (1).

Remark. One can see from the proof below that the assumption
(ii) can be relaxed by replacing it with∑

j∈Z

|cj|2

wj
<∞,

where the {wj} ∈ l1(Z) is a fixed positive sequence.
However, assumption (ii) cannot be replaced by c ∈ l2. Indeed,

consider a random sequence of interpolation knots:

Λ := {n+ ξ(n)}, (30)

where ξj, j ∈ Z, are independent random variables uniformly dis-
tributed on (−a, a), 0 < a < 1/2. Clearly, Theorem 4.1 is applicable
in this case: Almost surely, there is a closed set S of arbitrary small
measure which admits interpolation in PWS of every sequence c
satisfying (ii). On the other hand, we have

Proposition 4.2 Let Λ be a random set in (30). With probability
1, there is no set S of measure < 2π such that Λ is an interpolation
set for PWS.
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Observe that we don’t know if there exists Λ = {j + O(1), j ∈ Z}
which is a set of interpolation for PWS for some (unbounded) S,
mesS < 2π. Proposition 4.1 shows that if such a set Λ does exist
then it should be an exception.

Proof of Proposition 4.2. It is well-known that the interpolation
property in a Hilbert space is equivalent to certain inequalities (see
[11], p.129). In our case, a set Λ = {λj, j ∈ Z} is a set of inter-
polation for PWS if and only if there is a positive constant A such
that ∫

S

∣∣∣∣∣∑
j

cje
iλjt

∣∣∣∣∣
2

dt ≥ A
∑
j

|cj|2, (31)

for every finite sequence {cj}.
Let ξj be random sequence defined above. Fix an integer N.

Clearly, we have with probability one that for every ε > 0 there
exists k = k(ε,N) such that

|ξk+j − ξk| < ε, for all j, |j| ≤ N.

Fix an element of the underlying probability space such that the
latter is true, and assume that S ⊂ R is such that the set Λ in
(30) is a set of interpolation for PWS. By (31), we have for every
c−N , ..., cN that∫
S

∣∣∣∣∣
N∑

j=−N

cje
ijt

∣∣∣∣∣
2

dt = lim
ε→0

∫
S

∣∣∣∣∣
N∑

j=−N

cje
i(k+j+ξk+j)t

∣∣∣∣∣
2

dt ≥ A
N∑

j=−N

|cj|2.

Since this is true for every N , we see that Z is also a set of interpo-
lation for PWS. By Proposition 2, we conclude that mesS ≥ 2π.

Proof of Theorem 4.1. Throughout the proof we shall denote by
C different positive constants.

1. Without loss of generality we may assume that β < 2. Set

S :=
⋃
j∈Z

Sj, Sj := (−Mj − 4βj,−Mj + 4βj)
⋃

(Mj − 4βj,Mj + 4βj) ,

where
βj :=

γ

1 + |j|β
,
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the sequence Mj will be specified in step 4, and γ is any small
positive number such that mesS < δ. In what follows we also assume
that γ is so small that Sj ∩ Sk = ∅, for j 6= k.

2. Set
Λk := (Λ− λk) \ {0}, k ∈ Z.

The independence condition on Λ implies, by Kronecker’s theorem,
that for every N > 0 the subgroup

{mλ (mod π), λ ∈ Λk ∩ [−N,N ],m ∈ Z}

is dense in the l−dimensional torus, l being the number of elements
in Λk∩[−N,N ]. Hence, the l numbers | cos(Mx)|, x ∈ Λk∩[−N,N ],
can be made as small as we like by choosing appropriate M ∈ N.

3. Set

gj(x) := cos (Mj(x− λj))
(

sin γj(x− λj)
γj(x− λj)

)4

.

Clearly, the spectrum of gj belongs to Sj, and we have

gj(λj) = 1, (32)

and

‖gj‖2
2 ≤

C

γj
≤ C

(
1 + |j|β

)
, j ∈ Z. (33)

4. Since Λ is uniformly discrete, there is a constant C > 0 such that(
sin γj(λk − λj)
γj(λk − λj)

)4

≤ C

γ4
j (k − j)4

, k 6= j, k, j ∈ Z.

Take any small number ε > 0, and let Nj be so large that we have(
sin γj(λk − λj)
γj(λk − λj)

)4

≤ ε

(1 + j2)(k − j)2
, |λk − λj| ≥ Nj, k 6= j.

By Step 2, the first factor in the definition of gj can be made arbi-
trarily small for 0 6= |λk − λj| < Nj. We shall choose Mj ∈ N such
that

|cosMj(λk − λj)| ≤
ε

(1 + j2) max{(k − j)2, |λk − λj| < Nj}
,
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for all k 6= j such that |λk−λj| < Nj. This and the previous estimate
give

|gj(λk)| ≤
ε

(1 + j2)(j − k)2
, k 6= j, k, j ∈ Z.

One may check that this estimate implies∑
j∈Z,j 6=k

|gj(λk)|2 ≤
Cε2

1 + |k|3
. (34)

5. Given a sequence c = {cj, j ∈ Z}, set

‖c‖2
β :=

∞∑
j=−∞

|cj|2
(
1 + |j|β

)
.

Let l2β denote the weighted space of all sequences c, ‖c‖β < ∞.
Define a linear operator R : l2β → l2β as follows:

Rej :=
∞∑

k=−∞

gj(λk)ek − ej, j ∈ Z.

Using (32), we have

‖R
∑
j∈Z

cjej‖2
β = ‖

∑
k∈Z

( ∑
j∈Z,j 6=k

cjgj(λk)

)
ek‖2

β =

∑
k∈Z

∣∣∣∣∣ ∑
j∈Z,j 6=k

cjgj(λk)

∣∣∣∣∣
2

(1 + |k|β) ≤

‖c‖2
β

∑
k∈Z

( ∑
j∈Z,j 6=k

|gj(λk)|2

1 + |j|2β

)
(1 + |k|β).

Since β < 2, we see from (34) that

‖R
∑
j∈Z

cjej‖2
β ≤ Cε2‖c‖2

β,

for some constant C > 0. Choose ε so small that the norm of
operator R in l2β is less than 1. It follows that the operator T := I+R

is invertible in l2γ, where I is the identity operator. We conclude that
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for every c ∈ l2β the interpolation problem (1) has a solution f given
by

f(x) :=
∑
j∈Z

bjgj(x), {bj} = T−1c ∈ l2β.

Recall, that the spectrum of gj belongs to the set Sj defined in step
1. Since Sj and Sk are disjoint for j 6= k, it follows that the functions
gj and gk are orthogonal in L2(R). Using this and (33), we see that

‖f‖2
2 =

∑
j∈Z

|bj|2‖gj‖2
2 ≤ C‖b‖2

β <∞.

Recall again that gj ∈ PWSj ⊂ PWS, j ∈ Z. We conclude that
f ∈ PWS.
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