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Discrete Translates in Lp(R)

Alexander Olevskii and Alexander Ulanovskii

Abstract

A set Λ is called p−spectral if there is a function g ∈ Lp(R) such that
all Λ−translates {g(t − λ), λ ∈ Λ} span Lp(R). We prove that exponen-
tially small non-zero perturbations of the integers are p−spectral for all
p > 1.

1 Introduction

1. Spectral sets. In what follows we will use the standard form of
Fourier transform

f(x) = F̂ (x) :=

∫
R
e−2πitxF (t) dt, F ∈ L2(R).

Classical Wiener’s Tauberian theorems provide necessary and suf-
ficient condition on a function g = Ĝ whose translates {g(t− s), s ∈
R} span the space L1(R) or L2(R):

(i) The translates of g ∈ L1(R) span L1(R) if and only if G does
not vanish;

(ii) The translates of g ∈ L2(R) span L2(R) if and only if G is
non-zero almost everywhere on R.

There is no similar result for 1 < p < 2, since the spanning
property of the translates of g ∈ Lp(R) cannot be expressed in terms
of the zero set of G, see [LO11].

It is well–known that sometimes even discrete set of translates
may span Lp(R).

Definition. We say that a discrete set Λ ⊂ R is p−spectral if there
is a function g ∈ Lp(R) such that the family of translates

{g(t− λ), λ ∈ Λ}
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spans Lp(R). Such a function g is called a Λ−generator.
A natural question is Which discrete sets Λ are p−spectral?
We will present a brief account of known results in the area.
A simple result ([Bl06]) shows that if Λ is p−spectral, then it

is p′−spectral, for every p′ > p. As we will now demonstrate, the
results are indeed very different for different values of p.

2. The case p = 2. Recall that the Fourier transform is a unitary
operator in L2(R). So, one may see that Λ is 2−spectral if and only
if there exists G ∈ L2(R) such that the system {G(t)eiλt, λ ∈ Λ}
spans the whole space L2(R). Using this, one may easily check that
the set of integers Λ = Z is not 2−spectral.

On the other hand, small perturbations of Z are 2−spectral.
More precisely, we call a set

Λ = {λn := n+ an, n ∈ Z} (1)

an almost integer set, if the ”perturbations” an satisfy

an 6= 0, for all n ∈ Z; an → 0, |n| → ∞.

Theorem 1 ([O97]) Every almost integer set Λ is 2−spectral.

Observe that to obtain a completeness spectrum for p = 2, one
does not need to perturb all integers. Even a sparse subset is suffice,
see details in [NO07].

Let us say that Λ in (1) is an exponentially small perturbation of
the integers, if an tend to zero exponentially fast:

0 < |an| < Cr|n|, n ∈ Z; for some C > 0, 0 < r < 1. (2)

Such sets appeared in [Ul01] in connection with completeness prop-
erty of exponential systems on large sets. In [OU04] we show that
each exponentially small perturbation of the integers admits a ”nice”
Λ−generator in L2(R), that is a Schwartz function, g ∈ S(R). We
observe that not every almost integer set admits one, see [OU04]
(This result may seem surprising, since when (2) holds, we are
”closer” to the limiting case Λ = Z when no generator exists).

3. The case p = 1. This is the only case where a complete de-
scription of spectral sets is known. The L1 case is ”easier” because
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every Λ−generator g is integrable, and G is a non-vanishing con-
tinuous function. This makes it possible to reduce the problem to
the classical problem of completeness of the exponential system on
intervals.

Given a discrete set Λ, let R(Λ) denote the completeness radius
of the exponential system {eiλt, λ ∈ Λ}, i.e. the supremum over all
R > 0 such that the system is complete in L2(−R,R), where one
sets R(Λ) = 0 if no such R exists. In particular, condition R(Λ) =
∞ means that the exponential system {eiλt, λ ∈ Λ} is complete in
L2(−R,R), for every R > 0.

Theorem 2 ([BOU06]) Λ is 1−spectral if and only if R(Λ) =∞.

We remark that the classical results of Beurling and Malliavin
[BM67] states that the value R(Λ) can be expressed in terms of a
certain density of Λ.

Let us say that a set Λ ⊂ R is uniformly discrete (u.d.), if

inf
λ,λ′∈Λ,λ 6=λ′

|λ− λ′| > 0.

It is well-known that R(Λ) <∞, for every u.d. set Λ. In particular,
R(Z) = 1. Theorem 2 shows that no u.d. set Λ is p−spectral for
p = 1.

4. The case p > 2. The Fourier transform of functions from Lp(R)
for p > 2 are in general temperate distributions. Almost integer
sets Λ remain to be p−spectral for all p > 2. However, in a sharp
difference with the case p = 2 we have

Theorem 3 ([AO96]) The set of integers Z is p−spectral, for every
p > 2.

5. The case 1 < p < 2. This case is less investigated. In par-
ticular, it has been an open question if there exist u.d. spectral
sets. The main result of this paper shows that exponentially small
perturbations of the integers are p−spectral for p > 1:

Theorem 4. Every set Λ satisfying (1) and (2) is p−spectral, for
every p > 1.

Our proof of Theorem 4 is based on a uniqueness theorem for
tempered distributions.
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2 Tempered Distributions with Deep Zeros

1. Notations. Set ea(x) := exp(−2πiax). Let ‖f‖p denote the
Lp−norm of a function f and

(g ∗ f)(x) :=

∫
R
g(x− s)f(s) ds

the usual convolution. Further, Sd, d > 0, denotes the subspace of
the Schwartz space S(R) of functions vanishing for |x| ≥ d. Given a
tempered distribution F ∈ S ′(R) we denote by 〈F,G〉 the action of
F on G ∈ S(R). Finally, throughout the rest of this note we denote
by C different positive absolute constants.

2. Class K. Let us say that a continuous function H defined on R
has an exponentially deep zero at a point a if

|H(t)| ≤ Ce−
C
|t−a| , t ∈ R,

and it has an exponentially deep zero at ∞ if

|H(t)| ≤ Ce−C|t|, t ∈ R,

We will consider functions H ∈ S(R) whose every derivative has an
exponentially deep zero at each integer point and at infinity:

|H(k)(t)| ≤ Ce−C|t|−
C

ρ(t,Z) , t ∈ R, k = 0, 1, 2, ..., (3)

where ρ(t,Z) = minn∈Z |t− n| is the distance from t to Z.
Denote by K the class of all distributions HF , where H satisfies

(3) and F ∈ S ′(R) is a tempered distribution. We also assume that

H satisfies H(−t) = H̄(t), t ≥ 0, so that the function h(x) = Ĥ(x) is

real for x ∈ R. Let K̂ denote the class of Fourier transforms g = Ĝ,
G ∈ K.

Recall that every tempered distribution F ∈ S ′(R) is the dis-
tributional derivative of finite order, F = D(k)H, of a continuous
function H(t) having at most polynomial growth on the real axis
(see [FJ98], Theorem 8.3.1). Using this fact and (3), one may easily
get the following

Lemma 1. (i) For every G ∈ K there exists k ≥ 0 such that the
inequality

|〈G,Φ(t− n)〉| ≤ C‖Φ(k)‖∞e−C|n|−
C
d , n ∈ Z. (4)
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holds for every Φ ∈ Sd.
(ii) Every g ∈ K̂ admits analytic continuation into some strip

{x+ iy : |y| < C}, and there exits k = k(g) ≥ 0 such that

|g(x)| ≤ C(1 + |x|k), x ∈ R.

(iii) If g(x) ∈ K̂, then <g(x),=g(x) ∈ K̂ and g′ ∈ K̂.

3 A Uniqueness Theorem for Distributions

We say that Λ is a uniqueness set for a space M of continuous
functions, if

ϕ, ψ ∈M,ϕ(λ) = ψ(λ), λ ∈ Λ⇒ ϕ = ψ.

Theorem 5. Every set Λ satisfying (1) and (2) is a uniqueness set

for K̂.

1. The proof is based on

Main Lemma. Assume G ∈ K and Λ satisfies (1) and (2). If g = 0
on Λ, then g(n) = 0, n ∈ Z.

Proof. Take any function g ∈ K̂ and consider the function

R(t) :=
∑
n∈Z

g(n)e2πint, t ∈ R.

To prove the lemma, it suffices to show that R(t) has the prop-
erties:

(A) R(t) admits analytic continuation to the strip

{|=z| < C log(1/r)}, z ∈ C,

where 0 < r < 1 is the number in (2);
(B) R(t) has a zero of infinite order at the origin.

By Lemma 1, g′ has at most polynomial growth. So, since g
vanishes on Λ, it follows from (1) and (2) that

|g(n)| < C|n|Cr|n|, n ∈ Z.

This proves (A).
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Fix any function Φ ∈ Sd, d < 1. Choose a large even integer N
so that the function gε := ghε is integrable on the real axis, where

hε(x) :=

(
sin(2πεx)

2πεx

)N
.

It is easy to see that its inverse Fourier transform is

Hε(t) =

(
1

2ε
1ε(t)

)N∗
,

where 1ε is the indicator function of [−ε, ε]. Hence, H(t) ≥ 0, t ∈ R,
and so

‖Hε‖1 = hε(0) = 1.

This gives

‖(Φ ∗Hε)
(k)‖∞ ≤ ‖Φ(k)‖∞‖Hε‖1 = ‖Φ(k)‖∞.

It is also easy to see that Hε ∗ Φ ∈ Sd+Nε. Therefore, by (4),

|〈Gε,Φ(t− n)〉| = |〈gε, enϕ〉| = |〈g, enϕhε〉| = |〈G, (Φ ∗Hε)(t− n)〉|

≤ C‖Φ(k)‖∞e−C|n|−
C

Nε+d , n ∈ Z. (5)

Set
Rε(t) :=

∑
n∈Z

gε(n)e2πint.

Let us calculate the product 〈R,Φ〉. By the Poisson formula, we
have

Rε(t) =
∑
n∈Z

gε(n)e2πint =
∑
n∈Z

Gε(t+ n).

Therefore, by (5),

|〈Rε,Φ〉| = |〈
∑
n∈Z

Gε(t+ n),Φ(t)〉| = |〈Gε(t),
∑
n∈Z

Φ(t− n)〉|

≤ C‖Φ(k)‖∞e−
C

Nε+d .

Letting ε→ 0, we conclude that

|〈R,Φ〉| ≤ C‖Φ(k)‖∞e−
C
d , ϕ = Φ̂ ∈ Sd(R). (6)

Now, the Main Lemma follows from
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Lemma 2. Condition (6) implies property (B).

The proof of Lemma 2 is standard, and we omit it.

2. Proof of Theorem 5. Write g = gr + igi, where gr(x) := <g(x)
and gi(x) := =g(x). Then gr(x) and gi(x) are analytic, real for real

x, vanish on Λ, and by Lemma 1, gr, gi ∈ K̂. It follows from the
Main Lemma that gr and gi vanish on Z.

Let us show that gr = 0. Since gr vanishes both on Z and on
Λ = {n + rn, n ∈ Z}, rn 6= 0, we see that g′r vanishes on some set

Λ1 := {n + r
(1)
1 }, where each point r

(1)
n lies inside the open interval

between 0 and rn. Since Λ satisfies (1) and (2), so does Λ1. By

Lemma 1, we have g′r ∈ K̂. We may now apply the Main Lemma
above to this function to get g′r(n) = 0, n ∈ Z. Using this argument

j times, we prove that g
(j)
r vanishes on Z, for all j ∈ N. Since gr is

analytic, then gr = 0. Similarly, we prove that gi = 0. Hence, g = 0.

4 Proof of Theorem 4

Choose any function G ∈ S(R) satisfying (3). We may assume also
that G(−t) = G(t) > 0 for t 6∈ Z. Let Λ satisfy (1) and (2).

Suppose the set of translates {g(x − λ), λ ∈ Λ} does not span
Lp(R). In this case there is a non-trivial function f ∈ Lp′(R), 1/p+

1/p′ = 1, such that (g ∗ f)(λ) = 0, λ ∈ Λ. Clearly, f = F̂ for some

F ∈ S ′(R) and so g ∗ f = ĜF ∈ K̂. Theorem 5 yields g ∗ f = 0.
This means that all translates {g(x − s), s ∈ R} do not span the
space Lp(R). However, this contradicts to Beurling’s theorem (see

[B51]), which states that if g = Ĝ ∈ Lp(R) ∩ L1(R), 1 < p < 2, is
such that the Hausdorff measure of the zero set of G is zero, then
all translates of g span the space Lp(R). Theorem 4 is proved.
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