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ABSTRACT

We construct graph-valued analogues of the Kuperberg sl(3) and G2 invariants for
virtual knots. The restriction of the sl(3) and G2 invariants for classical knots coincides
with the usual Homflypt sl(3) invariant and G2 invariants. For virtual knots and graphs
these invariants provide new graphical information that allows one to prove minimality
theorems and to construct new invariants for free knots (unoriented and unlabeled Gauss
codes taken up to abstract Reidemeister moves). A novel feature of this approach is that
some knots are of sufficient complexity that they evaluate themselves in the sense that
the invariant is the knot itself seen as a combinatorial structure. The paper generalizes
these structures to virtual braids and discusses the relationship with the original Penrose
bracket for graph colorings.

Keywords: Knot; link; virtual knot; graph; invariant; Kuperberg sl(3) bracket; Kuperberg
C2 bracket; Kuperberg G2 bracket; quantum invariant.

Mathematics Subject Classification 2010: 57M25, 57M27

1. Introduction

This paper studies a generalization of virtual knot theory of the Kuperberg sl(3)
bracket invariant and the Kuperberg G2 invariant. Kuperberg discovered bracket
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state sums that depend upon a reductive graphical procedure similar to the Kauff-
man bracket. The present paper contains new results and reviews results in [17, 28]
putting these results in the more general contexts of minimality, parity, virtual
braids and graph coloring. The invariants that we study apply to virtual knots and
links, flat virtual knots and links, and free knots and links. Free knots and links
are unlabeled Gauss diagrams, taken up to abstract Reidemeister moves, and are
fundamental to all aspects of virtual knot theory.

This paper is partially expository, intended to describe both our new work and
its background. In particular, we review virtual knot theory and the variants of
virtual knot theory that are relevant to our study. Virtual knot theory, at the com-
binatorial level, is the study of Gauss codes or Gauss diagrams up to Reidemeister
moves without the planarity restriction on the codes that gives classical knot the-
ory. Gauss codes are to classical knots as arbitrary graphs are to planar graphs. It
is important, in understanding virtual knot theory, to take this analogy to heart.
In graph theory it is natural to consider the genus of a graph, the least genus of
an orientable surface in which the graph can be embedded. Just so, in virtual knot
theory, one can ask for the least genus surface in which a particular Gauss code can
be embedded as a knot or link diagram. However, since for topological purposes
one studies the Gauss code up to Reidemeister moves, the genus of a given diagram
may not be the least genus among all possible Reidemeister equivalent codes. The
genus of a virtual knot is the least genus surface that can support the embedding
of some representative code for that knot. Classical knots have genus zero in this
sense, and there are virtual knots of all possible values of the genus. Kuperberg
[20] proved that for standard virtual knots (corresponding to oriented Gauss codes)
the embedding type of the virtual knot in its minimal genus surface is unique up
to Reidemeister moves in the surface and orientation preserving homeomorphisms
of the surface to itself. In fact one can reformulate the theory of virtual knots and
links in terms of stabilized embeddings of collections of circles in orientable surfaces
crossed with the unit interval. See Sec. 2 for more details about this reformulation.
Nevertheless, the key to virtual knot theory is, from our point of view, to regard
it as a generalization of knot theory to a topological theory of Gauss codes. This
means that there are a number of variants of the theory, depending upon what
structure of Gauss codes one uses. The simplest structure is to regard the code as
a finite sequence of symbols, each symbol repeated twice, taken up to cyclic order
and using the flat (no over- or under-crossings) version of the Reidemeister moves.
This virtual theory is called by us free knots and is the combinatorial underpinning
of all variants of virtual knot theory. Note that in working with the combination of
combinatorics and topology, features of combinatorial representations can become
topological invariants if one asks for their minimal appearance in some form. For
example, every Gauss code has a least genus surface in which it can be embed-
ded. The least genus among all codes that represents the same topological type
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is an invariant of the topological type. Thus each free knot has a minimal genus
in this sense. The methods of this paper allow the determination or estimation
of this genus by giving irreducible graphs that are part of any representative for
the given free knot. One can determine the genus of such irreducible graphs and
thereby obtain a lower bound on the genus of the free knot or virtual knot in
question.

In this paper we show that the Kuperberg bracket invariants can be uniquely
defined and generalized to virtual knot theory. This is accomplished via reductive
graphical equations. These equations reduce to scalars only for the planar graphs
from classical knots. Thus our new invariants take values in linear combinations of
graphs with polynomial coefficients. We will call these “graph polynomials”. The
ideal case, sometimes realized, is when the topological object is itself the invariant,
due to irreducibility. When this happens one can point to combinatorial features
of a topological object that must occur in all of its representatives. This was first
pointed out by Manturov in the context of parity. These new invariants specialize
to invariants of free knots and allow us to prove that many free knots are non-trivial
without using the parity restrictions we had used before.

In [17, 28] we extended the Kuperberg combinatorial construction of the quan-
tum sl(3) invariant for the case of virtual knots. In [18] the sl(3) invariant is applied
to classical knots using virtuality. In this paper, we shall review this construction,
the C2 construction, and we shall analyze the corresponding construction for the
G2 invariant. In the case of the G2 construction, we find that this kind of exten-
sion works best for free knots. This will be explained in the body of the paper. In
speaking of knots in this paper we refer to both knots and links.

In many figures we adopt the usual convention that whenever we give a picture
of a relation, we draw only the changing part of it; outside the figure drawn, the
diagrams are identical. In Fig. 1 we illustrate the basic expansion relations for
the sl(3) bracket. Note that two sided faces and quadrilaterals are expanded. The
oriented graphs that can appear must, due to the orientations imposed, have an
even number of edges per face. Planar graphs with only cubic vertices are seen by
the Euler formula to have regions with two, three, four or five faces. Since here
three and five sided faces are ruled out, we see that in the plane the expansion
of the sl(3) bracket reduces to scalar. We show that for virtual knots, with their
underlying non-planar graph structure, this is no longer the case. The invariant
generalizes to virtual knots, but takes values in graphs with Laurent polynomial
coefficients.

For the case of the sl(3) knot invariant, one uses the relation shown in Fig. 1,
see [19]. This means that the left (respectively, right) picture of Fig. 1 is resolved
to a combination of the upper and lower pictures with coefficients indicated on the
arrows. The advantage of Kuperberg’s approach is that graphs of this sort which
can be drawn on the plane can be easily simplified, by using further linear relations,
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A
2 -1

-2 1

A

A A

+

(A    + A    )3 -3

D (A   + 1 + A     )
6 -6

D

-

-

=   - =   -

Fig. 1. Kuperberg bracket for sl(3).

= -4 = 0

-4

=0

- = -

= -[1/2] -[1/2] -

Flip: (Flip is a transformation, 
not an equivalence.)

Fig. 2. Kuperberg’s relation for C2.
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to collections of Jordan curves, which in turn, evaluate to elements from Z[A, A−1].
For planar graphs, these reductions continue all the way to scalars. In the case of
non-planar graphs, some states in the expansion may not contain quadrilaterals or
bigons. Such states are irreducible and will receive a possibly non-zero polynomial
coefficient in the new invariant. Non-planar resolutions can leave irreducible graphs
whose properties reflect the topology of virtual knots and links. The presence of a
single such irreducible graph can guarantee the non-triviality and non-classicality
of a virtual knot or a free knot. The oriented structure of the states of the sl(3)
invariant makes it possible to sometimes reconstruct the knot from one of its states,
but such reconstruction is not guaranteed.

A triangle is bad if it has a vertex with two outgoing edges; a quadrilateral is
bad if it has two vertices each having two outgoing edges. The sl(3) invariant yields
the minimality of those oriented framed 4-regular graphs that have no bad triangles
and no bad quadrilaterals.

See Fig. 2 for the expansion patterns for the C2 invariant. Here there are single
and double lines in the unoriented graphs, and a graph with a maximal number of
double lines can be sometimes used to decode the original knot. In the case of this
expansion, one obtains an invariant of free knots.

The main subject of this paper is an extension of the Kuperberg G2 invariant
to an invariant of free knots. See Fig. 3 for the expansion formula for this invariant,
Fig. 4 for the loop, triangle and square relations, and Fig. 5 for the pentagon
relation. Once again, this invariant can detect free knots when there are irreducible
states.

This paper is organized as follows. Section 2 introduces the basics of virtual knot
theory including definitions of flat knots and free knots. Section 3 discusses parity
and the parity bracket. Section 4 contains the construction of the sl(3) invariant
for virtual knots, flat knots and free knots and the construction of the G2 invariant
for flat knots and free knots. Section 5 discusses minimality theorems and modes
of detection of knottedness using these invariants. Section 6 gives a small collec-
tion of specific examples. Section 7 is a discussion of the Penrose coloring bracket,
showing that it is a specialization of the sl(3) invariant. It is worth putting the
Penrose bracket in this context since it can be regarded as the precursor of all these

a c= + b + d+

d = 1/(1 +1/q)
a = q/(1+1/q)
b = (1/q)/(1+q)

c = 1/(1+q)

q=1: a=b=c=d =1/2

Fig. 3. G2 crossing expansion.
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= λ =0

= α

= β

= γ ( + ) + δ ( + )

=   -

λ =
α = -q^{3} - q^{2} - q - q^{-1} - q^{-2} - q^{-3} 
β = q^{2} + 1 +q^{-2}

 γ =  -q - q^{-1}

 δ =

-(q^{1/2} + q^{-1/2})

q +1+ q^{-1}

q=1: λ =
α = - 6 
β =  3

 γ =  -2
 δ =

- 2

3

Fig. 4. Loop, triangle and square relations for the G2 bracket.

=

+ + + +

+ + + +

µ (

+ ν ( )

)

Fig. 5. Pentagon relation for the G2 bracket.
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invariants, and because it is a significant state sum for counting colorings of planar
trivalent graphs. Section 8 contains closing remarks.

2. Basics of Virtual Knot Theory, Flat Knots and Free Knots

This section contains a summary of definitions and concepts in virtual knot theory
that will be used in the rest of the paper.

In classical knot theory, one studies the (isotopy classes of) embeddings of dis-
joint collections of oriented circles into the three-dimensional sphere or into a chosen
three-dimensional manifold. Thus classical knot theory is concerned with the place-
ment problem for circles in three-manifolds. For knots and links in the three-sphere
or Euclidean three-space, one can project the knot generically to the surface of a
two-dimensional sphere so that the only singularities are transverse double points.
This projection, with extra information at the double points to indicate the rela-
tive height of the projection, is called the link diagram. It is a locally four-valent
graph in the two-sphere with the above extra structure at the nodes (crossings).
The Gauss code of a diagram is obtained by walking along a component of the dia-
gram and recording at each crossing i whether the walk takes you over or under the
crossing and what is the sign of the crossing. Thus Oi+ records that the crossing i

is traversed over and that the crossing itself is positive. See Fig. 8 for an illustra-
tion of the trefoil knot with Gauss code T = O1 + U2 + O3 + U1 + O2 + U3 +.
The convention for crossing signs should be apparent from the figure: a crossing is
positive if a counterclockwise turn of the overdressing segment brings it into coin-
cidence with the orientation of the under-crossing segment. Otherwise the crossing
is negative. Note that each crossing appears twice in the Gauss code. A knot code
such as T above is taken up to cyclic order for a given diagram. For links one needs
one such cyclic code for each component of the link. Along with the Gauss code it
is convenient to have Gauss diagrams. In Fig. 8, we illustrate the Gauss diagram
for the trefoil. The Gauss diagram is a combinatorial representation of the Gauss
code. It consists in a circle with 2n points for a knot diagram with n crossings.
Each point on the circle appears twice in the order in which it appears in the Gauss
code. Points representing the same crossing in the knot diagram are connected by
an edge interior to the circle that we refer to as a chord. The chords are not neces-
sarily chords of the circle in the classical geometric sense, but one often draws them
in that fashion. Then an arrow is placed on each chord to indicate the over/under
information for the corresponding crossing. The convention is that as you walk
along the circle of the Gauss diagram you will encounter an arrow pointing away
from you if you are going over the crossing and an arrow pointing toward you if you
are going under the crossing. Each chord is labeled plus (+) or minus (−) according
as the corresponding crossing is positive or negative. The Gauss diagram is very
useful for handling combinatorial and computational issues about knot diagrams.
Again the generalization of links involves more circles and chords between different
circles.
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A

B

C

RI

RII

RIII

vRI

vRII

vRIII

mixed
  RIII

planar
isotopy

Fig. 6. Moves.

Classical knot theory can be formulated entirely in terms of the knot and link
diagrams via the Reidemeister moves [33] depicted in the left-hand half of Fig. 6.
These are local replacement moves on the diagrams that each correspond to (ele-
mentary) ambient isotopies of the corresponding embedding in three-dimensional
space. Two circles embedded in three-dimensional space with corresponding knot
diagrams K and K ′ are ambient isotopic in three dimensions if and only if the
diagrams K and K ′ can be transformed one to the other by planar isotopy coupled
with a finite sequence of the moves RI, RII, RIII of Fig. 6. Furthermore, one can
translate the Reidemeister moves to combinatorial moves on the Gauss diagrams.
We omit the details for this translation and simply state that classical knot theory
is equivalent to the theory of planar Gauss codes (or Gauss diagrams) taken up to
Reidemeister moves on these codes. In Fig. 10 we show the Gauss diagram versions
of the Reidemeister moves where no restrictions are made for the crossing structure
or the orientations. This is the minimal abstract combinatorial structure for the
Reidemeister moves and we will return to this structure below. The reader who
wants to see the exact Reidemeister moves for Gauss diagrams of classical knots
can take on the exercise of adding the correct signs and arrows to the diagrams in
this figure.

Definition 1. Virtual Knot Theory (VKT ) is the study of arbitrary oriented Gauss
codes (Gauss diagrams) taken up to the equivalence relation generated by the Rei-
demeister moves on these codes. Two virtual knots or links, represented as such
codes, are said to be virtually isotopic if one can be obtained from the other by a
sequence of Reidemeister moves.

Virtual knots and links can be represented by planar diagrams with extra
virtual crossings just as non-planar graphs can be drawn in the plane by using
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extra crossings. In the diagrammatic theory of virtual knots one adds a virtual
crossing (see Fig. 6) that is neither an over-crossing nor an under-crossing. A vir-
tual crossing is represented by two crossing segments with a small circle placed
around the crossing point. In Fig. 9 we illustrate a virtual knot with Gauss code
g = O1 + U2 + O3 − U1 + O2 + U3−. Note that this Gauss code differs from the
code for the trefoil knot only in the sign of the third crossing. The figure shows the
virtual diagram with two virtual crossings, the Gauss code and the Gauss diagram.
Planar diagrams with virtual crossings are a convenient way to represent virtual
knots and links. By adding to the Reidemeister moves the extra moves shown in
Fig. 6 we obtain a complete description of virtual knot theory in terms of these
planar diagrams. The extra moves in Fig. 6 are moves that involve the virtual
crossings. These moves ((B) and (C)) are designed to generate exactly the same
relation as the single nonlocal detour move of Fig. 7. The detour move allows one

Fig. 7. The detour move.

1

2

3

T = O1+U2+O3+U1+O2+U3+ 

1

2

31

2

3

+

+

Classical Trefoil 
Diagram

Oriented Gauss Code

Gauss Diagram+

Fig. 8. Gauss code and Gauss diagram for classical trefoil.
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1

2

3

g = O1+U2+O3-U1+O2+U3- 

1

2

31

2

3

-

+

+

Virtual Diagram

Oriented Gauss Code

Gauss Diagram

Fig. 9. Gauss code and Gauss diagram for a virtual knot.

to cut away a segment consisting only virtual crossings and to reconnect it in any
way on the diagram, again through virtual crossings. Thus the detour move insures
that the diagrammatic equivalence relation for virtual knots and links is the same
as that given in diagram-free Gauss code definition.

Virtual diagrams can be regarded as representatives for oriented Gauss codes
[3, 9, 10] (Gauss diagrams). Such codes do not always have planar realizations.
Virtual isotopy is the same as the equivalence relation generated on the collection
of oriented Gauss codes by abstract Reidemeister moves on these codes. The reader
can see this approach in Refs. 3, 13 and 29. It is of interest to know the least number
of virtual crossings that can occur in a diagram of a virtual knot or link. If this
virtual crossing number is zero, then the link is classical. For some results about
estimating virtual crossing number see [2, 14, 26] and see the results of Corollaries
3 and 4. In Sec. 3 we not only count virtual crossings, we count combinatorial
substructures of the diagram that may be unavoidable for a given invariant (in
a sense that we specify later in the paper). The virtual crossing estimates first
achieved in [29] use graphical invariants.

In fact, virtual knot theory studies the embeddings of curves in thickened sur-
faces of arbitrary genus, up to the addition and removal of empty handles from the
surface. See [9, 11]. This is a very fruitful interpretation of virtual knot theory, but
we shall not use it in the present paper except in terms of searching for the minimal
genus surface in which a virtual knot may be represented.

Flat Knots and Links. Every classical knot diagram can be regarded as a 4-
regular plane graph with extra structure at the nodes. Let a flat virtual diagram
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be a diagram with virtual crossings as we have described them and flat crossings
consisting in undecorated nodes of the 4-regular plane graph, retaining the cyclic
order at a node. Two flat virtual diagrams are equivalent if there is a sequence
of generalized flat Reidemeister moves (as illustrated in Fig. 6) taking one to the
other. A generalized flat Reidemeister move is any move as shown in Fig. 6 where
one ignores the over- or under-crossing structure. The moves for flat virtual knots
are obtained by taking Fig. 6 and replacing all the classical crossings by flat (but not
virtual) crossings. In studying flat virtuals the rules for transforming only virtual
crossings among themselves and the rules for transforming only flat crossings among
themselves are identical. Detour moves as in part (C) of Fig. 6 are available for
virtual crossings with respect to flat crossings and not the other way around.

To each virtual diagram K there is an associated flat diagram F (K), obtained
by forgetting the extra structure at the classical crossings in K. We say that a
virtual diagram overlies a flat diagram if the virtual diagram is obtained from the
flat diagram by choosing a crossing type for each flat crossing in the virtual diagram.
If K and K ′ are isotopic as virtual diagrams, then F (K) and F (K ′) are isotopic as
flat virtual diagrams. Thus, if we can show that F (K) is not reducible to a disjoint
union of circles, then it will follow that K is a non-trivial and non-classical virtual
link.

Definition 2. A virtual graph is a 4-regular graph that is immersed in the plane
giving a choice of cyclic orders at its nodes. The edges at the nodes are connected
according to the abstract definition of the graph and are embedded into the plane
so that they intersect transversely. These intersections are taken as virtual crossings
and are subject to the detour move just as in virtual link diagrams. We allow circles
along with the graphs of any kind in our work with graph theory.

Framed Nodes and Framed Graphs. We use the concept of a framed four-
valent node where we only specify the pairings of opposite edges at the node. In the
cyclic order, two edges are said to be opposite if they are paired by skipping one
edge as one goes around. If the cyclic order of a node is [a, b, c, d] where these letters
label the edges incident to the node, then we say that edges a and c are opposite,
and that edges b and d are opposite. We can change the cyclic order and keep
the opposite relation. For example, in [c, b, a, d] it is still the case that the opposite
pairs are a, c and b, d. A framed four-valent graph is a four-valent graph where every
node is framed. When we represent a framed four-valent graph as an immersion in
the plane, we use virtual crossings for the edge-crossings that are artifacts of the
immersion and we regard the graph as a virtual graph. For an abstract framed
four-valent graph, there are neither classical crossings nor virtual crossings, only
the framed nodes and their interconnections.

Definition 3. A component of a framed graph is obtained by taking a walk on
the graph so that the walk contains pairs of opposite edges from every node that
is met during the walk. That is, in walking, if you enter a node along a given edge,
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then you exit the node along its opposite edge. Such a walk produces a cycle in the
graph and such cycles are called the components of the framed graph. Since a link
diagram or a flat link diagram is a framed graph, we see that the components of
this framed graph are identical with the components of the link as identified by the
topologist. A framed graph with one component is said to be unicursal. A circle
with no nodes is considered as a graph; it is a single component.

2.1. Free knots

Definition 4. Free knots are equivalence classes of unoriented, unlabeled Gauss
codes with the equivalence relation generated by the abstract Reidemeister moves
for Gauss codes, as illustrated in Fig. 10. Figure 12 illustrates a non-trivial free
knot and its corresponding virtual diagram. Diagrams for free knots are formed
just as we form diagrams for virtual knots and flat virtual knots. However, since
we do not make assumptions about cyclic orientation at nodes for the free knot,
the virtual diagrams are defined only up to the framing of the classical flat nodes

a
b

c
d

e f

a

b

a

b

c

d

a
b

c
d

a
b

c
d

ef

I.

IIA.

IIB.

III.

In all cases there can be many more chords, but no chords
intervene between nearby letters in the above diagrams. For
example, no chords touch the circle between a and b in I,
no chords are between c and d or between a and b in II, and
no chords are between a,b or c,d or e, f in III.

Fig. 10. Reidemeister moves on Gauss diagrams.
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in the diagram in the sense of the discussion above. This means that the free knots
can be modified by interchanging a classical flat crossing with an adjacent virtual
crossing as shown in Fig. 11. This interchange is called the Z-move. Thus free knots
are the same as framed four-valent graphs taken up to the flat Reidemeister moves,
and this is the same as flat virtual knots modulo the Z-move.

In the Z-move one can interchange a crossing with an adjacent virtual crossing
even in the category of virtual knots and links. We call virtual knots and links
modulo the Z-move, Z-knots. At this writing we do not know if classical knots and
links embed in Z-knots.

Free knots are the most fundamental combinatorial structure underlying virtual
knot theory. If we forget all the structure about a virtual knot except its underlying

~
Z

~ ~ ~

~ ~

~
Z ~ ~ ~ ~ ~

~ ~

Z

Z

Z Z

Z

Standard Z-Move

Flat Z-Move

Consequence1 Consequence2

Flat
Consequence1

Flat
Consequence2

Graphical Z-Move

~
Z

Graphical Consequence

Fig. 11. The Z-move.

a b

c

d

e
f

a

b

c

d

e

f

a b

c d

e

f

K

Fig. 12. The free knot K — Gauss diagram and virtual diagram.
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free knot, then the non-triviality of the free knot (if it is non-trivial) will imply that
the virtual knot is also non-trivial.

Free knots, implicit as they are in the concept of flat virtuals and Gauss codes,
were defined by Turaev [34, 35] sometime after the concepts of virtual knots and
flat virtual knots had been articulated. It was not at first obvious that free knots
could be non-trivial. In fact, Turaev had conjectured that all free knots were trivial
in [35]. A nice breakthrough in understanding this subject was made by Manturov
when he discovered the role of parity in identifying non-trivial free knots. View
again Fig. 12 and note that every chord has an odd number of intersections with
the other chords. As we shall see in the next section, this can be used to show that
this is a non-trivial free knot.

Flat knots occupy an intermediate position between virtual knots and free knots.
It turns out, however, that flat knots admit a reasonably simple classification and in
most of the cases they have a unique minimal (with respect to flat crossing number)
diagram, and in most of the cases there is a descending sequence to the minimal
diagram. For more details, see [4]. The reason for this simplicity for flat knots is
that minimal representatives of flat knots are homotopy classes of curves in a given
2-surface. Virtual knots represent to isotopy of curves in three-manifolds (thickened
surfaces) which is more complicated than homotopy. We believe that free knots are
close to being classified; in the present paper we give yet another invariant which
fills some classification gaps. Thus, we draw attention mostly to virtual knots and
free knots. Flat and free knots play a very important role for understanding parities
and other graphical properties of virtual knots.

3. Parity in Knot Theory and Virtual Knot Theory

This section discusses the use of parity in knot theory, virtual knot theory and
particularly in the theory of free knots. See [5, 23, 24, 27, 29] for recent work
in this area. In this section we discuss the odd writhe of a virtual knot and the
Manturov Parity Bracket. The reason for reviewing this material is to recall the
parity framework and to illustrate how invariants can sometimes locate irreducible
features in diagrams or Gauss codes.

3.1. The odd writhe

The Odd Writhe J(K). In Fig. 13 we show that the virtual knot K is not trivial,
not classical and not equivalent to its mirror image by computing its odd writhe
[12]. The odd writhe, J(K), is the sum of the signs of the odd crossings. A crossing
in a knot diagram is odd if it flanks an odd number of symbols in the Gauss code of
the diagram. We call this Gaussian parity to distinguish it from other parities that
can be defined for virtual diagrams. All crossings in a classical knot diagram are
even. Hence classical diagrams have zero odd writhe. In the figure, the flat Gauss
code for K is 1212 with both crossings odd. Thus we see that J(K) = 2 for the
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1
2

1212
Bare Gauss Code

K

J(K) = 1 + 1 = 2.
Both crossings odd.

Fig. 13. Example of odd writhe, J(K).

knot in the figure. One proves that

(1) J(K) is an isotopy invariant of virtual knots,
(2) J(K∗) = −J(K) when K∗ is the mirror image of K (obtained by switching all

the crossings),
(3) J(K) = 0 when K is isotopic to a classical knot.

The odd writhe is the simplest application of parity in virtual knot theory.
Figure 14 shows why the odd writhe is an invariant of virtual knots by focusing

on the third Reidemeister move and the parity of the three crossings involved in
that move. We have indicated three crossings by the lowercase letters i, j, k and
have used the capital letters I, J, K to indicate the number of symbols in the Gauss
code between two appearances of the corresponding lowercase letter. The diagram
in the figure shows that I + J + K is necessarily an even number. Thus, either
two of the crossings at the third move are odd, or all of the crossings are even.

1

2 3

i j

k

... i j A i k B j k ...

1

2 3

ij

k

... j i A k i B k j ...

I

J

K

I = 1 +A
K = 1 +B
J = A + B +2

I + J + K    0 (mod 2)

Either two odd crossings or
all three crossings are even.

Fig. 14. Gaussian parities at the third Reidemeister move.
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Furthermore it follows from the figure that the crossings labeled i, j, k in the before
and after figures for the Reidemeister move have the same parity. It is then easy
to see, using this information, that J(K) is invariant under virtual isotopy. We will
refer to this figure again in the next subsection where we discuss the parity bracket.

3.2. The parity bracket

In this section we introduce the Manturov Parity Bracket [23, 24]. This is a form
of the bracket polynomial defined for virtual knots and for free knots that uses
the parity of the crossings. To compute the parity bracket, we first make all the
odd crossings into graphical vertices. Then we expand the resulting diagram on the
remaining even crossings. The result is a sum of graphs with polynomial coefficients.

More precisely, let K be a virtual knot diagram. Let E(K) denote the result
of making all the odd crossings in K into graphical nodes as illustrated in Fig. 15.
Let SE(K) denote the set of all bracket states of E(K) obtained by smoothing
each classical crossing in E(K) in one of the two possible ways. Then we define the
parity bracket

〈K〉P = (1/d)ΣS∈SE(K)A
i(S)[S],

where d = −A2−A−2, Ai(S) denotes the product of A or A−1 from each smoothing
site according to the conventions of Fig. 15, and [S] denotes the reduced class of
the virtual graph S. The graphs are subject to a reduction move that eliminates
bigons as in the second Reidemeister move on a knot diagram as shown in Fig. 15.
Thus [S] represents the unique minimal representative for the virtual graph S under
virtual graph isotopy coupled with the bigon reduction move. A graph that reduces
to a circle (the circle is a graph for our purposes) is replaced by the value d above.

=
e

o

+

=

=

P P P

P P

P P

P

= d = - A   - A
2 -2

A A
-1

A = 1 and d = -2 for free knots.
(Modulo 2 for Free Knots, the loop value is 0.)

Fig. 15. Parity bracket expansion.
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Thus 〈K〉P is an element of a module generated by reduced graphs with coefficients
Laurent polynomials in A.

With the usual bracket polynomial variable A, the parity bracket is an invariant
of standard virtual knots. With A = ±1 it is an invariant of flat virtual knots. Even
more simply, with A = 1 and taken modulo two, we have an invariant of flat
knots with loop value zero. See Fig. 16 for an illustration of the application of the
parity bracket to the Kishino diagram illustrated there. The Kishino diagram is
notorious for being hard to detect by the usual polynomial invariants such as the
Jones polynomial. It is a perfect example of the power of the parity bracket. All
the crossings of the Kishino diagram are odd. Thus there is exactly one term in
the evaluation of the Kishino diagram by the parity bracket, and this term is the
Kishino diagram itself, with its crossings made into graphical nodes. The resulting
graph is irreducible and so the Kishino diagram becomes its own invariant. We
conclude that this diagram will be found from any isotopic version of the Kishino
diagram. This allows strong conclusions about many properties of the diagram. For
example, it is easy to check that the least surface on which this diagram can be
represented with the given planar cyclic orders at the nodes is genus two. Thus we
conclude that the least genus for a surface representation of the Kishino diagram
as a flat knot or virtual knot is two.

Two virtual knots or links that are related by a Z-move have the same standard
bracket polynomial. This is proved in [9, 10] as a direct consequence of the bracket
expansion formula. We would like to analyze the structure of Z-moves using the
parity bracket. In order to do this we need a version of the parity bracket that is
invariant under the Z-move. In order to accomplish this, we need to add a corre-
sponding Z-move in the graphical reduction process for the parity bracket. This
extra graphical reduction is indicated in Fig. 11 where we show a graphical Z-
move along with flat and standard Z-moves and elementary consequences of these
moves. The reader will note that graphs that are irreducible without the graphical
Z-move can become reducible if we allow graphical Z-moves in the reduction pro-
cess. For example, the graph associated with the Kishino knot is reducible under
graphical Z-moves. However, there are examples of graphs that are not reducible

K FK

<K>   =  <FK>    = PP

Fig. 16. Parity bracket detects the Kishino diagram.
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under graphical Z-moves and Reidemeister two moves. To obtain invariants of free
knots using the parity bracket, we adopt the graphical Z-move, since we need this
invariance for free knots.

3.3. The parity bracket for free knots

This section explains the theory of the parity bracket for free knots. This section is
written more formally than the previous section and provides a systematic example
of the use of parity in handling a state sum invariant of free knots. Much of this
material appears in [22, 23] and some of it in [17]. We include it here, both for
the sake of completeness and because the newer invariants discussed in this paper
can be used to go beyond what this approach can accomplish. See Sec. 5 for this
discussion. Some terminology will be useful: We refer to the graph of a free knot as
the intersection graph of its Gauss diagram. That is, the nodes of the graph are in
one-to-one correspondence with the chords of the Gauss diagram, and two nodes are
joined by an edge when the two chords intersect in the Gauss diagram. If a graph
Γ is the intersection graph for the Gauss diagram of a free knot, we say that the
free knot is generated by Γ. The reader should note that intersection graphs have
neither loops nor bigons. In Fig. 17 we illustrate the relationship of an intersection
graph and its Gauss diagram.

Definition 5. We call a free knot diagram odd if all of the nodes in its intersection
graph have odd degree. (This is the same as saying that every crossing has odd
Gaussian parity). We call a simple (no more than one edge between any two nodes)
graph irreducibly odd if it is odd and for every pair of nodes u and v there is a third
node w that is adjacent to exactly one of u and v.

The simplest example of an irreducibly odd graph is depicted in Fig. 17. Assume
an irreducibly odd graph G generates a free knot K. It turns out that the repre-
sentative G of the knot K is indeed minimal: any other representative of K has
at least as many vertices as G. To this end, we shall describe a powerful invariant
[23, 24] that captures graphical information about the free knot; but first we should
introduce some notation.

Let G be the set of all equivalence classes of framed graphs with one unicursal
component modulo second Reidemeister moves. Note that we do not ask for any

Fig. 17. An irreducibly odd graph and its chord diagram.
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other types of Reidemeister moves for these graphs. When speaking of Reidemeister
moves on such graphs, we shall usually indicate the move by saying an “R-2” move.
We hope that the differences will be otherwise clear from the context. (Recall that
framed locally four-valent graphs generalize the concept of a link diagram where
every edge has an edge paired with it by skipping one edge in the cyclic order of
edges at the node. We can then trace a path on a framed graph just as one traces a
link component on a link diagram. A graph is unicursal when it can be completely
traced by one such path that crosses each node twice.) Consider the linear space
Z2G. Let G be a framed graph, let v be a vertex of G with four incident half-edges
a, b, c, d, such that a is opposite to c and b is opposite to d at v. By smoothing of G

at v we mean any of the two framed 4-regular graphs obtained by removing v and
repasting the edges as a − b, c − d or as a − d, b − c, see Fig. 18.

Herewith, the rest of the graph (together with all framings at vertices except
v) remains unchanged. We may then consider further smoothings of G at several
vertices. Consider the following sum

[G] =
∑

s even,1 comp

Gs, (3.1)

which is taken over all smoothings in all even vertices, and only those summands are
taken into account where Gs has one unicursal component. This is the mod-2 parity
bracket, where the loop value for more than one loop in state is zero. Note that we
do not make non-virtual odd nodes in the diagram into specially indicated graphical
vertices. We just do not smooth them, but they are still subject to the Z-move and
to reduction in the form of a second R-2 move. Thus in this state summation the
remaining nodes take the role of the graphical vertices we previously described for
the parity bracket.

Thus, if G has k even vertices, then [G] will contain at most 2k summands, and
if all vertices of G are odd, then we shall have exactly one summand, the graph G

itself. Consider [G] as an element of Z2G. In this case it is evident that if all vertices
of G are odd then [G] = G (here G is taken as a single graph to be reduced by R-2
moves).

Fig. 18. Two smoothings of a vertex of for a framed graph.
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Theorem 1. If G and G′ represent the same free knot then in Z2G the following
equality holds : [G] = [G′].

Theorem 1 yields the following.

Corollary 1. Let G be an irreducibly odd framed 4-graph with one unicursal com-
ponent. Then any representative G′ of the free knot KG, generated by G, has a
smoothing G̃ having the same number of vertices as G. In particular, G is a mini-
mal representative of the free knot KG with respect to the number of vertices.

It turns out that elements from Z2G are easily encoded by their minimal repre-
sentatives. More precisely, the following lemma holds.

Lemma 1. Every four-valent framed graph G with one unicursal component con-
sidered as an element of Z2G has a unique irreducible representative, which can be
obtained from G by consecutive application of second decreasing R-2 moves.

This allows one to recognize elements Z2G easily, which makes the invariants
constructed in the previous subsection digestable. In particular, the minimality of a
framed 4-regular graph in Z2G is easily detectable: one should just check all pairs of
vertices and see whether any of them can be cancelled by a second R-2 move (or in
Z2G one should also look for free loops). Create all minimal representatives in this
way, and then compare them. Indeed, we see that two graphs are R-2-equivalent if
their minimal representatives coincide.

Proof of Corollary 1. By definition of [G] we have [G] = G. Thus if G′ generates
the same free knot as G we have [G′] = G in Z2G. Consequently, the sum repre-
senting [G′] in G contains at least one summand which is a-equivalent (a-equivalent
means equivalent by R-2 moves only) to G. Thus G′ has at least as many vertices
as G does. Moreover, the corresponding smoothing of G′ is a diagram, which is a-
equivalent to G. One can show that under some (quite natural) “rigidity” condition
this will yield that one of smoothings of G′ coincides with G.

The use of parity gives this bracket considerable power. For example, consider
the diagram in Fig. 12. We see that all the crossings in this free knot are odd.
Thus the parity bracket is just the diagram itself seen as a graph and reduced by
2-moves. The reader can check that this graph is in fact irreducible in the free
sense (see definition above) and the invariant of this free knot is the diagram itself
as an irreducible graph. This not only means that this free knot is non-trivial, it
also means that any diagram of this free knot will have states that reduce to the
diagram in Fig. 12.

Parity is clearly an important theme in virtual knot theory and will figure in
many future investigations of this subject. The type of construction that we have
indicated for the bracket polynomial in this section can be varied and applied to
other invariants. Furthermore the notion of describing a parity for crossings in a
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diagram is also susceptible to generalization. For more on this theme the reader
should consult [5, 12, 23, 24, 26, 27] for a use of parity for another variant of the
bracket polynomial.

4. Construction of the Main Invariants

In this section we shall describe the details of the construction of the sl(3) and G2

invariants. The C2 invariant has been treated in [28] and we will not repeat the
construction details here. In all cases of these invariants, the work of verification
involves checking consistency of the graphical expansions in situations where two
polygons that are subject to expansion share an edge or edges. We shall call such
a sharing of edges by polygons a concurrence. In our combinatorial approach, such
concurrences must be calculated in detail. In some cases we show these detailed
calculations in the paper. In other cases we give the reader instructions for doing
the calculation. The purpose of this section is to organize these matters for the
reader. It is clear to us that a less calculational approach to the theory of these
invariants would be preferable, and we will explore that theory in a separate paper.

4.1. The Kuperberg sl(3) bracket

View Fig. 1. This figure gives the reduction relations for the Kuperberg sl(3)
bracket. The invariant is originally defined for oriented classical links expressed
as planar link diagrams. The expansion formulas at the top of the figure can be
regarded as indicating an expansion of the link diagram into a state sum of spe-
cially oriented graphs with trivalent vertices. Note that each trivalent vertex has
either three edges oriented into the vertex (a sink) or three edges oriented away
from the vertex. The further relations in this figure can be used to eliminate all the
graphs for planar link diagrams, resulting in a Laurent polynomial evaluation for
the Kuperberg bracket. We shall generalize this invariant to virtual diagrams and
find that there can be irreducible graphs in the expansion for virtual link. We begin
by formalizing these graphical notions.

Let S be the collection of all trivalent bipartite graphs with edges oriented from
vertices of the first part to vertices of the second part of the bipartite division of
the graph. Let T = {t1, t2, . . .} be the (infinite) subset of connected graphs from S
having neither bigons nor quadrilaterals. Let M be the module Z[A, A−1][t1, t2, . . .]
of formal commutative products of graphs from T with coefficients that are Laurent
polynomials in one variable A. Disjoint unions of graphs are treated as products in
M. Our main invariant will be valued in M.

Statement 1. Figure 1 shows the reduction moves for the Kuperberg sl(3) bracket.
The last three lines of the figure will be called the relations in that figure. There
exists a unique map f : S → M which satisfies the relations in Fig. 1. The resulting
evaluation yields a topological invariant of virtual links when the first two lines of
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Fig. 1 are used to expand the link into a sum of elements of S. We shall often
identify the image of a graph with its image under the map f : S → M in the
module M.

Proof. The relations we are going to use to prove the statement are as shown in
Fig. 1. Note that for the case of planar tangles this map to diagrams modulo rela-
tions was constructed explicitly by Kuperberg [19], and the image was in Z[A, A−1].
We are going to follow [19], however, in the non-planar case, the graphs cannot be
reduced just to collections of closed curves (in the case of the plane, Jordan curves)
and so later evaluate to polynomials. In fact, irreducible graphs will appear in the
non-planar case. First, we treat every 1-complex with all components being graphs
from S and circles: We treat that 1-complex as the formal product of these graphs,
where each circle evaluates to the factor (A6 +A−6 + 1). We note that if a graph Γ
from S has a bigon or a quadrilateral, then we can use the relations shown in Fig. 1
(resolution of quadrilaterals, resolution of bigons, loop evaluation) to reduce it to a
smaller graph (or two graphs, then we consider it as a product). So, we can proceed
with resolving bigons and quadrilaterals until we are left with a collection of graphs
tj and circles; this gives us an element from M; once we prove the uniqueness of
the resolution, we set the stage for proving the existence of the invariant. We must
carefully check well-definedness and topological invariance.

In what follows, we shall often omit the letter f by identifying graphs with their
images or intermediate graphs which appear after some concrete resolutions.

Our goal is to show that this map f : S → M is well-defined. We shall prove it
by induction on the number of graph edges. The induction base is obvious and we
leave its articulation to the reader. To perform the induction step, notice that all of
Kuperberg’s relations are reductive: from a graph we get to a collection of simpler
graphs.

Assume for all graphs with at most 2n vertices that the statement holds. Now, let
us take a graph Γ from S with 2n+2 vertices. Without loss of generality, we assume
this graph is connected. If it has neither bigon nor quadrilateral, we just take the
graph itself to be its image. Otherwise we use the relations resolution of bigons or
resolution of quadrilaterals as in Fig. 1 to reduce it to a linear combination of simpler
graphs; we proceed until we have a sum (with Laurent polynomial coefficients) of
(products of) graphs without bigons and quadrilaterals.

According to the induction hypothesis, for all simpler graphs, there is a unique
map to M. However, we can apply the relations in different ways by starting from
a given quadrilateral or a bigon. We will show that the final result does not depend
on the bigon or quadrilateral we start with. To this end, it suffices to prove that if Γ
can be resolved to αΓ1 +βΓ2 from one bigon (quadrilateral) and also to α′Γ′

1+β′Γ′
2

from the other one, then both linear combinations can be resolved further, and will
lead to the same element of M. This will show that final reductions are unique.

Whenever two nodes of a quadrilateral coincide, then two edges coincide and
it is no longer subject to the quadrilateral reduction relation. Thus we assume
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that quadrilaterals under discussion have distinct nodes. Note that if two poly-
gons (bigons or quadrilaterals) share no common vertex then the corresponding
two resolutions can be performed independently and, hence, the result of apply-
ing them in any order is the same. So, in this case, αΓ1 + βΓ2 and α′Γ′

1 + β′Γ′
2

can be resolved to the same linear combination in one step. By the hypothesis,
f(Γ1), f(Γ2), f(Γ′

1), f(Γ′
2) are all well defined, so, we can simplify the common res-

olution for αΓ1 + βΓ2 and α′Γ′
1 + β′Γ′

2 to obtain the correct value for f of any of
these two linear combinations, which means that they coincide.

If two polygons (bigons or quadrilaterals) share a vertex, then they share an
edge because the graph is trivalent. If a connected trivalent graph has two different
bigons sharing an edge then the total number of edges of this graph is three, and
the evaluation of this graph in T follows from an easy calculation. Therefore, let
us assume we have a graph Γ with an edge shared by a bigon and a quadrilateral.
We can resolve the quadrilateral first, or we can resolve the bigon first. The calcu-
lation in Fig. 19 shows that after a two-step resolution we get to the same linear
combination.

A similar situation happens when we deal with two quadrilaterals sharing an
edge, see Fig. 20. Here we have shown just one particular resolution, but the picture
is symmetric, so the result of the resolution when we start with the right quadri-
lateral, will lead us to the same result. See also Figs. 21–23. These figures illustrate
two other ways in which the edge can be shared. Note that Figs. 21 and 22 illustrate

+ A   + A
3 -3( )

6 -6
A   + A( )1+ +1 = ( A   + A

3 -3) 2

Fig. 19. Two ways of reducing a quadrilateral and a bigon.
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+=

= +( A    + A    )3 -3

Fig. 20. Resolving two adjacent squares.

Fig. 21. Resolving two different adjacent squares.
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+

= - =  0.

Fig. 22. Resolving two different adjacent squares with virtual crossing.

3 -3 6 -6

+

X = (A    + A    ) Y = (A   + 1 + A     )

Y   + Y

X 2X 2X Y

2X = (Y + 1)Y =

2

Y Y   + Y2

Fig. 23. Resolving two annular squares.

a possibly non-planar case and a virtual case, and that we use the abstract graph
structure (with a signed choice of relative order at the trivalent vertex as in Fig. 1)
in the course of the evaluation. These cases cover all the ways that shared edges
can occur, as the reader can easily verify.

Thus, we have performed the induction step and proved the well-definiteness of
the mapping. Note that the ideas of the proof are the same as in the classical case;
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however, we never assumed any planarity of the graph; we just drew graphs planar
whenever possible. Note that the situation in Fig. 21 is principally non-planar.
The invariance under the Z-move follows from this definition because the graphical
pieces into which we expand a crossing, as in Fig. 1, are, as graphs, symmetric
under the interchange produced by the Z-move.

Remark. We can, in the case of flat knots or standard virtual knots represented
on surfaces, enhance the invariant by keeping track of the embedding of the graph
in the surface and only expanding on bigons and quadrilaterals that bound in the
surface. We will not pursue this version of the invariant here. In undertaking this
program we will produce evaluations that are not invariant under the Z-move for
flats or for virtual knots.

Now we give a formal description of our main invariant. This evaluation is
invariant under the Z-move. It is defined for virtual knots and links and it specializes
to an invariant of free knots. Let K be an oriented virtual link diagram. With every
classical crossing of K, we associate two local states: the oriented one and the
unoriented one: the oriented one shown as an oriented smoothing in Fig. 1, and the
unoriented one shown as a connection of two trivalent nodes in Fig. 1. A state of
the diagram is a choice of local state for each crossing in the diagram.

We define the bracket [[·]] (generalized Kuperberg sl(3) bracket) as follows. Let
K be an oriented virtual link diagram. For a state s of a virtual knot diagram
K, we define the weight of the state as the coefficient of the corresponding graph
according to the Kuperberg relations (Fig. 1). More precisely, the weight of a state
is the product of weights of all crossings, where a weight of a positive crossing is
A2wr for the oriented resolution and −A−wr for the unoriented resolution, wr stands
for the writhe number (the oriented sign) of the crossing.

Set

[[K]] =
∑

s

w(Ks) · f(Ks) ∈ M, (4.1)

where w(s) is the weight of the state.

Theorem 2. For a given virtual diagram K, the normalized bracket
(A−8wr(K))[[K]] is invariant under all Reidemeister moves and the Z-move. Recall
that wr(K) denotes the writhe obtained by summing the signs of all the classical
crossings in the corresponding diagram.

Proof. The invariance proof under Reidemeister moves repeats that of Kuperberg.
Note that the writhe behavior is a consequence of the relations in Fig. 1. The only
thing we require is that the Kuperberg relations (summarized in Fig. 1) can be
applied to yield unique reduced graph polynomials. The discussion preceding the
proof, proving Statement 1, handles this issue.

From the definition of [[K]] we have the following.
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Corollary 2. If [[K]] does not belong to Z[[A, A−1]] ⊂ M then the knot [[K]] is
not classical. That is, if non-trivial graphs appear in the evaluation, then the knot
is not classical.

Recalling that a free link is an equivalence of virtual knots modulo Z-moves and
crossing switches and taking into account that the skein relations of Fig. 1 for [[·]]
for and are the same when specifying A = 1, we get the following.

Corollary 3. [[K]]A=1 and [[K]]A=−1 are invariants of free links.

By the unoriented state Kus of virtual knot diagram (respectively, free knot dia-
gram) K we mean the state of K where all crossings are resolved in the unoriented
fashion where the crossing is replaced by two connected trivalent nodes.

Notation. Kus. Note that Kus is treated as a graph.

Corollary 4. Assume for a virtual knot (or free knot) K with n classical crossings
the graph Kus has neither bigons nor quadrilaterals. Then every knot K ′ equivalent
to K has a state s such that K ′

s contains Kus as a subgraph. This state can be
treated as an element of M. In particular, K is minimal.

Note that the coincidence of Kus and K ′
us does not guarantee the coincidence

of K and K ′. For example, if K and K ′ differ by a third unoriented Reidemeister
move, then, of course, [[K]] = [[K ′]]. The corresponding resolutions Kus and K ′

us

will coincide (they will have a hexagon inside).

Corollary 5. Let K be a four-valent framed graph with n crossings and girth
number at least five. Then the hypothesis of Corollary 4 holds.

So, this proves the minimality of a large class of framed four-valent graphs
regarded as free knots: all graphs having girth ≥ 5 and many other knots. For
example, consider the free knot Kn whose Gauss diagram is the n-gon, n > 6: it
consists of n chords where ith chord is linked with exactly two chords, those having
numbers i − 1 and i + 1 (the numbers are taken modulo n). Then Kn satisfies the
condition of Corollary 4 and, hence, is minimal in a strong sense.

Note that the triviality of such n-gons as free knots was proven only for n ≤ 6.

Remark 1. The above argument works for links and tangles as well as knots.

From the construction of [[·]] we get the following corollary.

Corollary 6. Let K be a virtual (respectively, flat) knot, and let Γ1 · · ·Γk be a
product of irreducible graphs which appear as a summand in [[K]] (respectively,
[[K]]|A=1) with a non-zero coefficient. Then the minimal virtual crossing number of
K is greater than or equal to the sum of crossing numbers of graphs: cr(Γ1)+ · · ·+
cr(Γk) and the underlying genus of K is less than or equal to the sum of genera
g(Γ1) + · · · + g(Γk) (in virtual or free knot category).
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The above corollary easily allows one to reprove the theorem first proved in
[26], that the number of virtual crossings of a virtual knot grows quadratically with
respect to the number of classical knots for some families of graphs. In [26], it was
done by using the parity bracket. Now, we can do the same by using

Free[[K]] = [[K]]|A=1.

With this invariant one can easily construct infinite series of trivalent bipartite
graphs which serve as Kus for some sequence of knots Kn and such that the minimal
crossing number for these graphs grows quadratically with respect to the num-
ber of crossings. Recalling that the number of vertices comes from the number
of classical crossings of Kn, we get the desired result.

4.2. The generalized Kuperberg G2 bracket

The analysis for the Kuperberg G2 invariant follows the same lines as our analysis
for the sl(3) invariant. The expansion rules for this invariant are given in Figs. 3–5. It
is implicit in Kuperberg’s work that concurrences of bigons, triangles, quadrilaterals
and pentagons that do not involve virtual crossings lead to consistent results for
the q variable indicated in these figures. We do not repeat these verifications here.
However, when we make the analysis with concurrences involving virtual crossings
we find that it is in fact necessary to restrict to the case of flat virtual knots or free
knots in order to obtain consistency. Thus we take q = 1 for our G2 invariant. The
reasons for restricting to q = 1 becomes apparent from the verifications but we will
not show the details here.

Along with restricting to q = 1 we have to explain how to handle the reduction
calculus for virtual graph diagrams in the plane. A graph diagram in the plane may
have (flat) 4-regular crossings and trivalent crossings. Each such crossing is endowed
with a cyclic order by its embedding in the plane. For flat virtual knots we do not
allow the cyclic order at a crossing to change. This means that for flat knots, we do
not consider the reduction of concurrences of polygons that involve virtual crossings
that cannot be isotoped away from the polygon. For example, view Fig. 31 where
we have a four-sided region that can be reduced and a five-sided region that has
a virtual intersecting arc. We can for free knots perform the reduction of the four-
sided region, but there is no way to reduce the five-sided region. Consequently there
is no need for the free-knot G2 invariant to examine, as is shown in the figure, what
will happen when we change a local cyclic order and reduce the five-sided region.
For the invariant of free knots that we are about to describe, we need that the
results of expansion from the two local drawings in Fig. 31 give the same results.
We will discuss that below.

The reader should now see that the G2 invariant has two distinct flavors, one for
flat virtual knots and links and one for free knots and links. The free knot version
involves more checking for concurrences than the flat knot version. One can verify
that for those that do not involve virtual crossings such as illustrated in Figs. 27–29
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the expansions are independent of which polygon is first expanded. This provide
the proof of validity for the flat knot invariant. The flat knot invariant is of interest,
but it should be pointed out that flat virtual knots and links are fully classified via
[4, 6].

The G2 invariant for free knots. For free knots, we allow the Z-move as part of
the equivalence relation, and hence allow the corresponding change in cyclic order
at a trivalent vertex. For the trivalent vertices we use the rule indicated in Fig. 4
that shows a change of sign if there is a transposition applied to the cyclic order at
a trivalent vertex. That is, the invariant will be valued in an algebra of graphs with
integer coefficients where there is an equivalence relation on the graphs generated
by the reduction and transformation rules indicated in the figures such as the above
and the ones we now discuss. We can formalize this just as we have already done
for sl(3). Furthermore, we only allow reductions on bigons, triangles, quadrilaterals
and pentagons that have an interior that is clear of any other aspects of the graph.
This principle is illustrated in Fig. 24 where we start with a quadrilateral that has
an arc crossing it virtually. We change a cyclic order at one of its trivalent vertices,
move the arc by a detour move, and then expand the quadrilateral.

Definition 6. We let {{K}}Free and {{K}}Flat denote the G2 invariants for K

free and flat respectively.

Definition 7. By a leading state of a framed 4-regular graph G on n vertices
(considered as a representative of a free link or a flat link) we mean a state where
each of the n vertices is resolved with an additional edge.

Thus, every 4-regular graph G has 4n states in the expansion of {{G}}Free or
{{G}}Flat, 2n of which are leading. Note that all these graphs Gs corresponding

-3 -3 +2 +2

-3 -3 -2 +2

= =

=

-

Fig. 24. Evaluating a virtual quad.
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= + + +[ ](1/2)

=

[ ](1/2) + + +

=- = -

=Therefore

[ + + + ]= (1/2)

=

and,

.

Fig. 25. G2 evaluation is invariant under the Z-move.

[ ](1/2) + + +

[ ](1/2) + - -

[ ](1/2) + - -(-2) (-2) (-6)(-2) (-6)(-2)

=

=

= -14.

(-2)(-2) = 4.

Fig. 26. G2 evaluation of simplest free link.

1550031-30

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
01

5.
24

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
A

T
H

E
M

A
T

IS
C

H
E

S 
FO

R
SC

H
U

N
G

SI
N

ST
IT

U
T

 O
B

E
R

W
O

L
FA

C
H

 o
n 

06
/2

4/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



June 13, 2015 9:6 WSPC/S0218-2165 134-JKTR 1550031

Graphical constructions for the sl(3), C2 and G2 invariants

to various leading states S, appear in the expansion of {{G}}Free (respectively,
{{G}}Flat) with the coefficient 1/2n.

In Fig. 25 we show that the resulting flat virtual evaluation is invariant under
the Z-move. Hence our G2 evaluation is defined on free knots. Note that we use
crucially the sign changes from the reordering of cyclic vertices in this derivation.
In both Figs. 24 and 25, we are using the q = 1 value for the expansions. We leave
it to the reader to see that this invariant will not work except at q = 1. Figure 26
shows the expansion and evaluation of the G2 invariant for the simplest free link.
Figures 27–29 illustrate the consistency of polygon concurrences where there are no

Fig. 27. Five and five direct.

Fig. 28. Five and four direct.
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Fig. 29. End result of five and four.

local virtual crossings. Figures 30–34 illustrate aspects of concurrence consistency
for four and five sided polygons. We have not given all details, but we have specified
in this section how to make these expansions and compare them. For example, in
Fig. 31 we point out that due to the change of cyclic order there should be a sign
change when expanding on four versus five in this configuration. We assert that
this does indeed happen and leave out the long details. In Fig. 32 we indicate a sign
change due to cyclic order and that the right-hand side of the first equality can be
transformed by a 180◦ rotation (keeping tangle ends fixed) to the left-hand side.

=   -=

δ + δ

+ γ + γ

δ − δ

− γ − γ

δ − δ + γβ − γβ  = 0.

0 = −0

q=1: β =  3
 γ =  -2
 δ = 3

Fig. 30. Four interacting virtually with four.
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= -

Fig. 31. Four interacting virtually with five.

= -

= -

Fig. 32. Five interacting virtually with five twist identity.

This means that if we expand on just the left-hand side, the resulting expansion
should go into the negative of itself under this tangle rotation. Figure 33 shows
explicitly how certain free trivalent virtual tangles are transformed under the 180◦

rotation. The arrows on the tangle-boxes at the top of the figure are placed to
remind the reader that the tangle-box turns through 180◦, with the ends of the
tangle (at its four corners) remaining fixed. Finally Fig. 34 shows the end-result of
the expansion of the left-hand side of Fig. 32. It is then easy for the reader to check
that this expansion does have the requisite property under the 180◦ rotation. This
completes our sketch of the proof of the validity of the G2 invariant for free knots
and links.

Discussion. For the sl(3) invariant, we have the advantage of using the orientation
on the original free knot, which leads to the oriented states of the invariant and the
restrictions to even numbers of sides to small polygons appearing in the expansion
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T

T

T

T

T
=  -

Fig. 33. Five interacting virtually with five insertions.

-

+ 5 -5 +2 -2

+ 2 - 2
+ -

-

Fig. 34. Five interacting with five virtually — the expansion.
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of the knot to the states. The sl(3) invariant can be sometimes used to show non-
invertibility of free knots. See [17].

We are now in possession of the G2 invariant for free knots and links. We shall
refer to it as the free G2 invariant if necessary. If a diagram has no bigons, triangles,
quadrilaterals or pentagons, then no reduction is possible and the resulting free knot
is non-trivial via this invariant.

Remark on the C2 invariant. See Fig. 2 for the expansion and reduction rules
for the C2 invariant. The main advantage of the C2 invariant is that if there are
no triangles in the expansion to graphs of the free knot, then one can reconstruct
the free knot from that expansion. Examine Fig. 2 and note that the sl(3) invariant
can, if there are no triangles in the skein expansion, give us enough information
to reconstruct a free knot. We refer to [28] for the theory of the C2 invariant. Its
verification for free knots goes by the same lines as the verifications we have done
here for sl(3) and G2.

If there are triangles, then we can hope to use the G2 invariant to make a finer
discrimination. We can combine the information already known from the sl(3) and
C2 invariants to narrow down the possibilities for applying the G2 invariant. Thus
we can assume that we have a diagram that has triangles in its skein expansion. Such
an unoriented diagram slips through the discrimination of both the sl(3) and C2

invariants and can be tested with the G2 invariant. We will discuss the construction
of such examples in Sec. 6.

5. Minimality Theorems and Uniqueness of Minimal Diagrams

The existence of non-trivial free knots was first proved in 2009 (see arXiv version
of [22]. See also [23].). The proof relied upon the notion of parity: the way of
discriminating between even and odd crossings of the knot diagram (respectively,
chords of the Gauss diagram). The simplest example of parity is the Gaussian parity
as described in Sec. 3. In Sec. 3, we have discussed Corollary 1 showing that an
irreducible odd diagram of a free knot K is minimal in the strong sense that every
diagram K ′ equivalent to K has a smoothing identical with K.

Corollary 1 of Sec. 3.3 is a strong statement. For example, it follows from it
that the minimal diagram is unique: if K is an n-crossing diagram, then no other
n-crossing diagram K ′ can have K as a smoothing since non-trivial smoothing
leads to a smaller number of classical crossings. This result partially solves the
recognition problem for free knots, but it is solved for a very small class of them.
Indeed, there are lots of minimal diagrams of free knots which are minimal and
have even crossings.

The result stated in Corollaries 4 and 5 does not claim the uniqueness of the
minimal diagram. The main reason is that we cannot restore the initial knot (or
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link) K from Kus in a unique way. Indeed, given a trivalent graph, in order to get
a framed four-valent graph, we have to contract some edges (those corresponding
to unoriented smoothings of vertices). This means that we have to find a matching
for the set of vertices of the whole trivalent graph Kus. But there might be many
matchings of this sort. After performing such a matching, we still do not have a
free knot diagram (framed four-valent diagram), because we do not know which
incoming edge is opposite to which emanating edge. Thus, there may be many
diagrams K having the same Kus. Of course, in some cases, the whole invariant
{{K}}Free itself does distinguish between them, nevertheless, sometimes it is not
the case. View Fig. 35. The bracket {{K}}Flat is certainly invariant under any
Reidemeister moves; so is Kus in the case of Corollary 4.

Now, we see that in Fig. 35, two diagrams which differ by a third Reidemeister
move, lead to the same Kus. However, we do not know whether there are differ-
ent minimal knot diagrams of different knot types sharing Kus (or, even, sharing
{{K}}Free). If the unoriented third Reidemeister move were the only case when
{{K}}Free does not change then we would have not only a criterion for minimality
of a large class of diagrams, but also a recognition algorithm for a large class of free
knots.

A free knot diagram (a framed four-valent graph) cannot contain loops or bigons.
If a free knot diagram K contains a triangle, then it is equivalent to a diagram K ′

obtained from K by a third Reidemeister move. If K has girth greater than or equal
to four, then no decreasing Reidemeister move can be applied to K and no third
Reidemeister move can be applied to K. Thus we arrive at the following natural
conjecture about free knots.

Conjecture 1. If a framed four-valent graph K has girth greater than or equal to
4 then this diagram is the unique minimal diagram for the knot class of K.

Fig. 35. The third move does not change the bracket.
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A

B

C

D

A

B

C

D

Fig. 36. Quadrilaterals of a special sort in K yield quadrilaterals in Kus.

In fact, the “minimality” part partially follows from Corollary 5. Indeed, all
diagrams of girth 5 and many diagrams of girth 4 satisfy the conjecture. For a
diagram of girth 4 to satisfy the conjecture, one should forbid the quadrilaterals of
the following sort (see Fig. 36) which lead to quadrilaterals in Kus.

For such a quadrilateral, there are two opposite vertices (say, A and C) such that
all the four edges of the quadrilateral emanate from A and C (and come into the
other two vertices, B and D). Concerning the uniqueness of such minimal diagram,
a very little is known because of the “matching ambiguity” discussed above.

5.1. Minimality related to G2

Definition 8. Let G be a flat (respectively, free) trivalent graph. We shall say that
G contains a graph G′ if G′ can be obtained from G by a sequence of the Kuperberg
reduction rules for the flat (respectively, free) G2 invariant.

Let K be a flat (respectively, free) link diagram. Note that all those graphs
Ks corresponding to various leading states s of K, appear in the expansion of
{{K}}Free (respectively, {{K}}Flat) with the coefficient 1/2n. Some of these graphs
are reducible, and some of them are not. However, no irreducible leading states will
cancel in the state sum. This leads to the following.

Theorem 3. Assume K be a flat (respectively, free) 4-regular graph, and let S be a
leading state of K such that Ks is irreducible in the flat (respectively, free) category.
Then every graph K ′ equivalent to K as a flat (respectively, free) link has a state
that contains Ks.

In particular, G is minimal, non-classical and non-trivial.

Note that one can construct free knot diagrams satisfying the conditions of The-
orem 3 with all even crossings, having some triangles and not satisfying minimality
conditions for sl(3) and sl(3) graphical invariants for free knots. For example, this
can be achieved by using Gauss diagrams.
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6. Examples

This section gives examples related to the discussions in the paper. The first example
we consider is given in Fig. 37. Here we have an example of a flat virtual link diagram
L. In Fig. 38 we illustrate a state of this link in the expansion of the flat sl(3) bracket
{{L}}Flat. We call this the “octahedral state” of K. In Fig. 39 we show how the
state (and hence the corresponding link) embeds in a surface with boundary. We
now analyze this state graph G and show that it is irreducible in the sl(3) bracket
expansion of K, thus proving that K is a non-trivial flat link.

Examine the surface S in Fig. 39 and it is apparent that it has four boundary
components with the following numbers of edges from the graph for the corre-
sponding faces: 8, 8, 16, 16. Thus there are no small faces in this graph and so it
is not possible to make any reductions of the graph in the setting of the sl(3)
invariant. It is not hard to see that this state receives a non-zero coefficient in
the invariant, and hence the link L is a non-trivial flat link. Incidentally, if F is
the surface obtained from S by adding a disk to each boundary component, and
g is the genus of F, then we have v = 16, e = 24, f = 4 where v, e, f denote the
number of vertices, edges and faces of the corresponding decomposition of F. Then
2 − 2g = v − e + f = 16 − 24 + 4 = −4 and hence g = 3. The surface F has genus
equal to three. Note that this means that the link L cannot be represented on any
surface of genus smaller than 3 since the irreducible state graph G must appear in
every such representation. Since L can be represented in genus three, this proves
that L has surface genus three as a flat link.

Fig. 37. The flat link L.
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Fig. 38. A state of the flat link L.

The example shown in Fig. 40 may be a non-trivial free knot, but it is not
detected by the invariants discussed in this paper.

The next example, depends on Figs. 41 and 42. In Fig. 42 we show a free
knot G where the dark nodes are the classical vertices of this free knot and the
simple crossings are the virtual crossings (since there are many virtual crossings
we deemed this change of convention necessary). We show that the G2 bracket
detects the non-triviality of G by exhibiting a state that survives in the invariant
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Fig. 39. A surface for the state of the flat link L.

Fig. 40. Possibly irreducible but undetectable by G2 invariant.
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Diagram

State

Diagram State

Fig. 41. Diagram and state.

i

i + 6

(mod 17)

G

Fig. 42. A non-trivial free knot G.
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and is irreducible. The state is constructed in analogy with the state construction
shown in Fig. 41. In Fig. 41 a typical pair of adjacent classical vertices and the
corresponding G2 state. We illustrate this in Fig. 41 for a circle of three vertices
and ask the reader to consider the same pattern for the 17 vertices of G in Fig. 42. It
is then apparent to inspect that G has no cycles (just as a graph with no restrictions
on framing at crossings) of small length (2, 3, 4 or 5) and that the same is true for
the corresponding state S of G. Thus S is irreducible and it is easy to see that S

appears with non-zero coefficient in the G2 invariant of G, since any irreducible sate
with a maximal number of paired trivalent replacements has positive coefficient in
the invariant. This completes the proof that G is non-trivial.

We should further remark that there is a special state that can be constructed
from a free knot L. This state is the one where crossings are replaced by pairs of
trivalent vertices such that the resulting state graph is bipartite. Call this state
B(L). The reader will be interested to find examples of free knots that are distin-
guished by their bipartite state.

7. On the Penrose Coloring Bracket

A proper edge 3-coloring of a trivalent graph is an assignment of three colors (say
from the set {0, 1, 2}) to the edges of the graph such that three distinct colors
appear at every vertex. In [32] Penrose gives a bracket that counts the proper edge
3-colorings of a trivalent plane graph.

The Penrose bracket [32] is defined as shown in Fig. 43. Penrose devised this
bracket and other combinatorial expansions based on abstract tensors. In the case

+

D D

-

3

2

=  -

Fig. 43. Penrose bracket and identities.
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of this Penrose bracket, we will show that it is a special case of the Kuperberg sl(3)
bracket and explain how flat virtual knots are related to classical graph coloring
problems.

The Penrose bracket is an evaluation of trivalent graphs immersed in the plane
so that cyclic orders at the nodes are given. It can be defined independently of the
planar immersion as long as the cyclic orders at the nodes are specified, but counts
colorings correctly only for planar embeddings. Thus the Penrose bracket is well-
defined for virtual graphs (see Definition 2) as we have defined them earlier in the
paper. Note that in the expansion formula for the Penrose bracket we have one term
with crossed lines and a virtual crossing. In completely expanding a graph by this
formula one has many curves with virtual self-crossings. Each curve is evaluated
as the number 3 and thus the evaluation of the Penrose bracket is a signed sum of
powers of 3.

Note in Fig. 43 the identities that we have listed. These follow from the expan-
sion formulas above the line. It is then apparent that the evaluation of the Kuper-
berg sl(3) bracket at A = 1 on an oriented trivalent plane graph is equal to the
value of the Penrose bracket for this graph. The Kuperberg bracket is calculated
by the same reduction formulas as the Penrose bracket, and for the oriented graph,
we only need the bigon and quadrilateral reductions. This observation is the main
reason we mention the Penrose bracket in this context.

In Fig. 44 we show the other reduction identities for the Penrose bracket (for
triangles, pendant loops and five-sided regions). These identities can be used to
evaluate the Penrose bracket for unoriented plane graphs, since an Euler character-
istic argument tells us that any trivalent graph in the plane with no isthmus must
have a region with less than six sides. We can take the reduction formalism of the
Penrose bracket and attempt to use it to create new invariants of free knots. This
will be the subject of a separate paper.

0

++

-

Fig. 44. Further Penrose bracket identities.

1550031-43

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
01

5.
24

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
A

T
H

E
M

A
T

IS
C

H
E

S 
FO

R
SC

H
U

N
G

SI
N

ST
IT

U
T

 O
B

E
R

W
O

L
FA

C
H

 o
n 

06
/2

4/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



June 13, 2015 9:6 WSPC/S0218-2165 134-JKTR 1550031

L. H. Kauffman & V. O. Manturov

W

W

B R

P

r

r

r
p

p

b

pb

b

r
p

b

r

b

r
p

b r

b

r

bb

r

r

b r

b

b
r

r

b
r

r

b

r

b

b

Fig. 45. Coloring graphs and free knots.

Finally, we point out a relationship between coloring maps, graphs and free
knots and links. Examine Fig. 45. At the top left of the figure we show a trivalent
graph in the plane with a 4-coloring of its regions by the colors {W, R, B, P}.
Two regions that share an edge are colored with different colors. This graph is a
simplest example of a plane graph that requires four colors. Adjacent to the coloring
of the regions of this graph we have illustrated a coloring of its edges by the three
colors {r, b, p} so that every node of the graph has three distinct colored edges
incident to it. The edge coloring can be obtained from the face coloring by regarding
{W, R, B, P} as isomorphic to the group Z2 ×Z2 with W the identity element and
R2 = B2 = P 2 = W and RB = BR = P, RP = PR = B, BP = PB = R. Then
the edge coloring is obtained by coloring each edge with the product of the region
colors on either side of it.

Definition 9. Call a component in a free link diagram (represented as a planar
diagram) even if there are an even number of virtual crossings on this component
that occur between the given component and other components of the link. (See
Sec. 2.3 for definitions related to framed and free knots and links.) Call a free link
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diagram componentwise even if every component of the link is even. Note that a
single component free knot diagram is componentwise even since there are zero
virtual crossings between the one component and any other component.

In the right-hand side of Fig. 45 we illustrate a free link diagram that is obtained
from the edge-colored graph above it by using the translations illustrated below the
free link diagram. In these translations we use two colors for the edges of a free link.
Opposite edges are colored by different colors from the binary set {r, b}.

Definition 10. We call a free link diagram 2-colored if it is colored in {r, b} so
that opposite edges have different colors. It is clear from the definition that a free
link diagram can be 2-colored if and only if it is componentwise even.

By using the translations in the figure we see that an edge-colored trivalent graph
immersed in the plane corresponds uniquely to a colored free link diagram. In the
figure we see that a colored planar graph may correspond to a free link diagram
that has virtual crossings. The relationship between planar colorings and properties
of free links needs further study.

8. Remarks

This paper arose through our discussions of new possibilities in virtual knot the-
ory and in relation to advances of Manturov using parity in virtual knot theory,
particularly in the area of free knots. In the paper [30], there is a model for the
sl(n)-version of the Homflypt polynomial for classical knots. This model is based
on patterns of smoothings as shown in Fig. 46.

These patterns suggested to us the techniques we use in this paper with the
Kuperberg brackets, and we expect to generalize them further. In this method, the
value of the polynomial for a knot is equal to the linear combination of the values
for two graphs obtained from the knot by resolving the two crossings as shown in
Fig. 46.

Fig. 46. Murakami–Ohtsuki–Yamada relation for sl(n).
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Note. The following references [1, 7, 8, 15, 16, 21, 25, 31] will, along with the other
references cited in the text of the paper, be useful to the reader for background
matters.
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