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NONCOMMUTATIVE MARKED SURFACES

ARKADY BERENSTEIN AND VLADIMIR RETAKH

To the memory of Andrei Zelevinsky

Svetlo$i pam�ti Andre� Vladlenoviqa Zelevinskogo posv�waets�

Abstract. The aim of the paper is to attach a noncommutative cluster-like structure to each marked surface
Σ. This is a noncommutative algebra AΣ generated by “noncommutative geodesics” between marked points
subject to certain triangle relations and noncommutative analogues of Ptolemy-Plücker relations. It turns
out that the algebra AΣ exhibits a noncommutative Laurent Phenomenon with respect to any triangulation
of Σ, which confirms its “cluster nature”. As a surprising byproduct, we obtain a new topological invariant
of Σ, which is a free or a 1-relator group easily computable in terms of any triangulation of Σ. Another
application is the proof of Laurentness and positivity of certain discrete noncommutative integrable systems.
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1. Introduction

The goal of the paper is to introduce and study noncommutative algebras attached to surfaces (with marked
boundary points and punctures) and their triangulations. This provides an instance of the noncommutative
cluster theory (which is the main theme of the forthcoming paper [7]).

Since each surface can be obtained by gluing edges of a polygon (actually, in many ways), the most
important object of study are noncommutative polygons and their noncommutative triangulations.

In the commutative case, cluster structure (of type An−3) on an n-gon is based on the Ptolemy relations:

(1.1) xikxjℓ = xijxkℓ + xiℓxjk

for all quadrilaterals (i, j, k, ℓ) inscribed in a circle, 1 ≤ i, j, k, ℓ ≤ n, so that the chords (i, k) and (j, ℓ) are
diagonals of the quadrilateral, and xij = xji, i 6= j is the Euclidean length of the chord (ij). The Ptolemy
relations (1.1) can also be interpreted as Pl ucker identities for 2× n matrices.

In the noncommutative version we do not assume that xij = xji and we think of xij as a measurement of a
directed chord from i to j. We suggest the following noncommutative generalization of the Ptolemy identity
based on the theory of noncommutative quasi-Plücker coordinates developed in [29]:

(1.2) xikx
−1
jk xjℓ = xiℓ + xijx

−1
kj xkℓ.

for every quadrilateral (i, j, k, ℓ), in which (i, k) and (j, ℓ) are the diagonals.
Note that since elements xij correspond to directed arrows, the products of the form xijx

−1
kℓ , x

−1
ℓk xji make

sense only when ℓ = j.
It turns out that in order to establish the noncommutative Laurent Phenomenon and thus obtain a non-

commutative cluster structure on the n-gon, it is crucial to impose additional triangle relations (also suggested
by properties of quasi-Plücker coordinates):

(1.3) xijx
−1
kj xki = xikx

−1
jk xji

for all distinct i, j, k (of course, (1.3) is redundant in the commutative case).
The triangle relations (1.3) are of fundamental importance because they allow to introduce noncommu-

tative angles T j,k
i := x−1

ji xjkx
−1
ik in each triangle (i, j, k) so that T j,k

i = T k,j
i due to (1.3). That is, the

noncommutative angle at a vertex of a triangle does not depend on the order of the remaining two vertices.
The ”commutative” angles were introduced by Penner in [36, Section 3] (where they were called “h-lengths”)
and each xij = xji was viewed as the λ-length of the side (i, j) of an ideal triangle (i, j, k) (see also [21,
Lemma 7.9], [19, Section 12], and [26, Section 1.2], in the latter paper the term “angle” was used, apparently,
for the first time) and thus noncommutative angles together with the ”noncommutative λ-lengths” xij can be
thought of as a totally noncommutative metric on the Lobachevsky plane. The term “angle” is justified by
the following observation. The noncommutative Ptolemy relations (1.2) together with the triangle relations
(1.3) are equivalent to:

T ik
j = T iℓ

j + T kℓ
j

for every quadrilateral (i, j, k, ℓ), in which (i, k) and (j, ℓ) are the diagonals. In other words, the (both
commutative and noncommutative) angles are additive, which justifies the name. Using additivity of non-
commutative angles, we establish the first instance of the noncommutative Laurent Phenomenon for the n-gon
with vertices 1, . . . , n:

xij =

j−1∑

k=i

xi,1T
k,k+1
1 x1,j

for all 2 ≤ i < j ≤ n− 1, e.g., each xij is a noncommutative Laurent polynomial in x1,k, xk,1, k = 2, . . . , n− 1
and all xi,i±1. In fact, the latter elements correspond to a triangulation of the n-gon where each triangle has
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a vertex at 1. We generalize this to any triangulation of the n-gon in Theorem 2.10, and, as expected, the
commutative “limit” of this result (with all xij = xji) specializes to the Schiffler formula ([37, Theorem 1.2]).

These arguments extend verbatim if we replace a polygon with a surface Σ with marked points. That is, for
each such Σ one defines a Z-algebra AΣ generated by x±1

γ , where γ runs over homotopy classes of curves on Σ
between marked points subject to the triangle and noncommutative Ptolemy relations. The Noncommutative
Laurent Phenomenon (Theorem 3.30) asserts that for a given triangulation ∆ of Σ each xγ belongs to the

subalgebra generated by all x±1
γ′ , γ′ ∈ ∆. In any case, the assignments Σ 7→ AΣ and Σ 7→ TΣ define functors

from the category of surfaces with marked points to respectively the category of algebras and the category of
groups (Theorem 3.16).

A surprising byproduct of our approach is that the corresponding triangle group T∆ (generated by all tγ ,
γ ∈ ∆ subject to the triangle relations) does not depend on the triangulation of Σ, therefore, is a topological
invariant of Σ (Theorem 3.24). Moreover, each T∆ either free or a one-relator group which looks like the
fundamental group of Σ, however it is different from π1(Σ). For instance, if Σn is the sphere with n punctures,
then T∆ is a free group in 5 generators if n = 3 and it is a 1-relator torsion-free group in 4n− 7 generators if
n ≥ 4.1 It turns out that each group T∆ has a “universal cover” TΣ which is a group generated by tγ , as γ
runs over all isotopy classes of directed curves on Σ between marked point, subject to the triangle relations
(see Sections 2.5 and 3.5 for details). This group, which we refer to as big triangle group is of interest as

well: if Σ is the n-gon, we prove (Proposition 2.27) that TΣ has a presentation with (n−1)(n+2)
2 generators

and (n− 3)2 relations and expect that the multiplicative group of AΣ is isomorphic to TΣ.
For each marked point i on Σ and each triangulation ∆ we also introduce a total (noncommutative) angle

T∆
i ∈ AΣ in Section 3.9 to be the sum of noncommutative angles of all of all adjacent triangles. Similarly

to the commutative case, we establish (Theorem 3.40) that the total angles do not depend on the choice
of a triangulation ∆. Thus the collection of the total angles {Ti} can be thought of as a noncommutative
version of a (hyperbolic) Riemann structure on Σ. Using them we define in Section 3.9 the algebra UΣ to
be the subalgebra of AΣ generated by all noncommutative edges xγ , the inverses of the boundary edges and
all noncommutative angles Ti and argue that UΣ is a totally noncommutative analogue of the upper cluster
algebra corresponding to Σ (see e.g., [2]).

As an application of our noncommutative Laurent phenomenon, taking Σ to be an annulus with no punc-
tures, one marked point on the inner boundary and k marked points on the outer boundary, we prove
Laurentness of the following noncommutative recursion for each k ∈ 1 + 2Z>0:

(1.4)

{
Un−kDUn = Cn + Un−1DUn+1−k if n is even

UnDUn−k = Cn + Un+1−kDUn−1 if n is odd

for all n ≥ k + 1, where D,D, all Ci, and belong to a noncommutative ground ring (with the convention
Cn+k−1 = Ck−1 for n ∈ Z>0).

We prove (Theorem 4.5) that for odd k > 0 this recursion has a (unique) solution the group algebra QTr

of the free group Tr freely generated by D,D,C1, . . . , Ck−1, U1, . . . , Uk, more precisely, each Un is a sum of
elements of Tr. We also prove (Theorem 4.5) that the element Hn in the skew field of fraction of QTr, n ≥ k,
given by

(1.5) Hn :=

{
DUn+1−kU

−1
n +DUn+k−1U

−1
n if n is even

U−1
n Un+1−kD + U−1

n Un+k−1D if n is odd

belongs to ZTr and does not depend on n hence is a “noncommutative conserved quantity.”
Setting D = D = Ci = 1 for all i, we recover the Laurentness of the noncommutative discrete dynamical

system established by Di Francesco and Kedem in [30, Theorem 6.2] (conjectured by M. Kontsevich in [31,
Section 3]).

We finish the introduction with establishing Laurentness of the following noncommutative recursion (which
specializes to the discrete integrable system recently studied by P. Di Francesco in [17], see Section 4 for details)
in the skew filed F freely generated by A,Ai, Bi, Bi, Ui,i, Vi,i, Ui,i+1, i ∈ Z:

(1.6) Ui+1,jAjVj+1,i = B−1
i+1 + Ui+1,j+1AjVji, Vi+1,jBjUj+1,i = A−1

i+1 + Vi+1,j+1BjUji ,

1Misha Kapovich explained to us that T∆ is related to the fundamental group of a ramified two-fold cover of Σ.
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(1.7) UijAjVj+1,i = Ui,j+1AjVij , VijBjUj+1,i = Vi,j+1BjUij .

We prove (Theorem 4.12) that this recursion has a (unique) solution in the group algebra QT∞ of the free
group T∞ freely generated by Ai, Ai, Bi, Bi, Ui,i, Vi,i, Ui,i+1, i ∈ Z, more precisely, each Uij and Vij is a sum
of elements of the group. We also prove (Theorem 4.12) that the elements H±

ij ∈ Frac(ZT∞), i ∈ Z, given by

(1.8) H+
ij := U−1

ji (Uj,i−1Ai−1 + Uj,i+1Ai), H
−
ij := V −1

ji (Vj,i−1Bi−1 + Vj,i+1B
−1

i )

belong to ZT∞ and do not depend on j.
These examples and their treatment in Section 4 suggest the following general approach to construct-

ing noncommutative discrete integrable systems. That is, such a system consists of a marked surface Σ,
its automorphism τ : Σ :→ Σ permuting marked points, and a triangulation ∆ so that the collection
T = {xγ ∈ AΣ, γ ∈ ∪k∈Zτ

k(∆)} evolves in “discrete time” k ∈ Z and for each marked point p of Σ,
the total noncommutative angle Tp is a (noncommutative) conserved quantity. The noncommutative Laurent
Phenomenon (Theorems 3.30 and 3.36) then guarantees that each T belongs to the algebra isomorphic to the
group algebra T∆.

Acknowledgments. This work was partly done during our visits to Mathematisches Forschungsinstitut
Oberwolfach, Max-Planck-Institut für Mathematik, Institut des Hautes Études Scientifiques, and Centre de
Recerca Matemàtica, Barcelona. We gratefully acknowledge the support of these institutions. We are very
grateful to Alexander Goncharov and especially to Maxim Kontsevich for their encouragement and support.
Thanks are due to George Bergman, Dolors Herbera, and Alexander Lichtman for stimulating discussions
of noncommutative localizations and unique factorizations, and to Misha Kapovich, Feng Luo, and Misha
Shapiro for explaining important aspects of low dimensional topology and hyperbolic geometry.

2. Noncommutative polygons

2.1. Definition and main results. For each n ≥ 3 consider a cyclic order i 7→ i+ on [n] = {1, 2, . . . , n} by

i+ =

{
i+ 1 if i < n

1 if i = n

(and i 7→ i− to be the inverse of i 7→ i+). We will view [n] with this cyclic order as n points on a circle (or
vertices of a convex n-gon) and each pair (i, j) as a chord from i to j (or as an edge or diagonal of the n-gon).

We also say that a sequence i = (i1, . . . , iℓ) of distinct elements in [n] is cyclic if a cyclic permutation
i 7→ (ik, . . . , iℓ, i1, . . . , ik−1) is strictly increasing. In particular, the sequence (k, k + 1, . . . , n, 1, . . . , k − 1) is
cyclic for each k.

Definition 2.1. Denote by An the Q-algebra generated by xij and x−1
ij , i, j ∈ [n], i 6= j subject to the

relations:
(i) (Triangle relations) For any distinct indices i, j, k ∈ [n]:

(2.1) xijx
−1
kj xki = xikx

−1
jk xji .

(ii) (Exchange relations) For any cyclic (i, j, k, ℓ) in [n]:

(2.2) xjℓ = xjkx
−1
ik xiℓ + xjix

−1
ki xkℓ .

=

Triangle and exchange relations
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Remark 2.2. It is easy to see that the exchange relations (2.2) are equivalent to noncommutative Ptolemy
relations (1.1) provided the triangle relations (2.1) hold.

At the first glance the number of relations of An greatly exceeds the number of generators, moreover, we
expect that the subalgebra of An generated by all xij is free a algebra in n2 − n generators.

However, we will demonstrate below that the algebra An is “rationally” generated only by 3n − 4 free
generators.

Denote by Fm the free group onm generators, so that its group algebra QFm is the free Laurent polynomial
algebra Q〈c±1

1 , . . . , c±1
m 〉. Following Amitsur and Cohn (see e.g., [13] or Section 5 below) denote by Fm the

free skew filed on m generators, which the “largest” skew field of fractions of QFm. The following is our first
main result, in which we freely use notation of Section 5.

Theorem 2.3. For each n ≥ 2 the algebra An contains a subalgebra A′
n isomorphic to the free group algebra

QF3n−4 such that An is a universal localization of A′
n by a certain multiplicative submonoid of A′

n \ {0}.

We prove the theorem in Section 2.14. In fact, it will follow from a more precise assertion (Theorem 2.8).
In view of universality of the localization (Lemma 5.1), Theorem 2.3 implies that following immediate

corollary.

Corollary 2.4. The canonical monomorphism of algebras ϕ′ : A′
n →֒ F3n−4 uniquely extends to a homomor-

phism of algebras

(2.3) ϕ : An → F3n−4

In fact, we expect that (2.3) is injective, so far we can deduce this from another, “innocent looking”
conjectural property of the group algebras QFm (Conjecture 5.18, see also Section 2.15).

Remark 2.5. Injectivity of (2.3) would imply, in particular, that An has no zero divisors, which is a rather
non-trivial assertion because of the following “counter-example” which was communicated to us by George
Bergman. The universal localizationQ〈x, y〉[(xy)−1] of the free algebraQ〈x, y〉 has a zero-divisor y(xy)−1x−1.

Remark 2.6. Given n′ ≥ n and an injective map j : [n] →֒ [n′] for some n′ > n, clearly, the assignment
xij 7→ xj(i),j(j) defines a homomorphisms of algebras j⋆ : An → An′ . One can conjecture that each j⋆ is
injective. In fact, this would directly follow from the injectivity of each (2.3).

Now we explore the “cluster” structure of An. We say that a pair (i, k) crosses (j, ℓ) if (i, j, k, ℓ) is cyclic.
A triangulation ∆ of [n] is a maximal crossing-free subset of [n] × [n] \ {(i, i)|i ∈ [n]}. Clearly, each

triangulation of [n] has cardinality 4n− 6.
For each triangulation ∆ of [n] define:
• The subalgebra A∆ of An generated by xij , i, j ∈ [n] and x−1

ij , (i, j) ∈ ∆.

• The triangle group T∆ generated by all tij , (i, j) ∈ ∆ subject to the relations:

tijt
−1
kj tki = tikt

−1
jk tji

for all i, j, k ∈ [n] such that (i, j), (j, k), (k, i) ∈ ∆.

Theorem 2.7. Each T∆ is a free group in 3n− 4 generators.

We prove Theorem 2.7 in Section 2.11. We generalized it in Theorem 3.24 to all surfaces.
Clearly, the assignment tij 7→ xij , (i, j) ∈ ∆ defines a homomorphism of algebras:

(2.4) i∆ : QT∆ → A∆ ,

where QT∆ is the group algebra of T∆.
Recall (see, e.g., (5.1)) that for a given algebra A with no zero divisors and a submonoid S ⊂ A \ {0} one

has a universal localization A[S−1] of A by S.

Theorem 2.8. For each triangulation ∆ of [n] one has:
(a) The homomorphism i∆ given by (2.4) is an isomorphism of algebras.
(b) An = A∆[S

−1], where S is the multiplicative submonoid of A∆ generated by all xij .

We will prove Theorem 2.8 in Section 2.14. In fact, Theorem 2.8(a) establishes a noncommutative cluster
structure on An and Theorem 2.8(b) – a noncommutative Laurent Phenomenon (see also Section 2.2).
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2.2. Noncommutative Laurent Phenomenon. For each even sequence i = (i1, . . . , i2m) ∈ [n]2m such
that adjacent indices are distinct define the monomial xi ∈ An by:

xi := xi1,i2x
−1
i3,i2

xi3,i4 · · ·x
−1
i2m−1,i2m−2

xi2m−1,i2m .

Definition 2.9. For a directed chord (i, j) and a triangulation ∆ of [n], we say that a sequence i =
(i1, . . . , i2m) ∈ [n]2m is (i, j,∆)-admissible if:
(i) i1 = i, i2m = j and (is, is+1) ∈ ∆ for s = 1, . . . , 2m− 1;
(ii) each chord (i2s, i2s+1), s = 1, . . . ,m− 1 intersects (i, j);
(iii) If p := (ik, ik+1) ∩ (i, j) 6= ∅ and q := (iℓ, iℓ+1) ∩ (i, j) 6= ∅ for some k < ℓ, then the point p of (i, j) is
closer to i than the point q.

We denote by Adm∆(i, j) the set of all (i, j,∆)-admissible sequences i.

Theorem 2.10. (Noncommutative Laurent Phenomenon) Let ∆ be a triangulation of [n]. Then for any i 6= j
each element xij of An belongs to A∆, more precisely,

(2.5) xij =
∑

i∈Adm∆(i,j)

xi .

We prove Theorem 2.10 in Section 2.13.

Remark 2.11. This is a noncommutative generalization of Schiffler’s formula ([37]).

Now we illustrate Theorem 2.10 for each starlike triangulation

(2.6) ∆i = {(i, j), (j, i)|j ∈ [n] \ {i}} ∪ {(k, k±), k ∈ [n]}, i ∈ [n] .

Lemma 2.12. Fix i ∈ [n]. Then for each k, ℓ ∈ [n] \ {i} such that (i, k, ℓ) is cyclic, the following relation
holds in An:

xkℓ =
∑

s

xkix
−1
si xs,s+x

−1
i,s+x

−1
iℓ

where summation is over all s = k, k+, . . . , ℓ− in cyclic order. Hence xkℓ = i∆i
(
∑
s
tkit

−1
si ts,s+t

−1
i,s+t

−1
iℓ ).

Example 2.13. (a) If n = 5 and ∆ = {(1, 3), (1, 4); (12), (23), (34), (45), (51)}, then

x25 = x21x
−1
41 x45 + x23x

−1
13 x15 + x21x

−1
31 x34x

−1
14 x15.

(b) If n = 6 and ∆ = {(13), (36), (46); (12), (23), (34), (45), (56), (61)}, then

x25 = x23x
−1
63 x65 + x21x

−1
31 x36x

−1
46 x45 + x21x

−1
31 x34x

−1
64 x65 + x23x

−1
13 x16x

−1
46 x45 + x23x

−1
13 x16x

−1
36 x34x

−1
64 x65.

A triangulation of a hexagon and all (2, 5)-admissible sequences

In fact, we will streamline the formula for xij by introducing new coordinates ykij ∈ An for distinct

i, j, k ∈ [n] by:

ykij := x−1
ki xkj .

We refer to ykij as noncommutative sectors and denote by Qn the subalgebra of An generated by all ykij (with

the convention ykii = 1).
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Theorem 2.14. The algebra Qn is generated by all ykij subject to the relations:

(i) (triangle relations):

(2.7) ykijy
k
ji = 1, ykijy

i
jky

j
ki = 1

for distinct i, j, k ∈ [n] and

(2.8) yℓijy
ℓ
jky

ℓ
ki = 1

for distinct i, j, k, ℓ ∈ [n].
(ii) (exchange relations) For all cyclic (i, j, k, ℓ) in [n]:

(2.9) yjiℓ = ykijy
i
jℓ + ykiℓ .

We prove Theorem 2.14 in Section 2.10.
For each sequence j = (i0, i1, . . . , i2m) ∈ [n]2m such that adjacent indices are distinct define the monomial

yi ∈ Qn by:

yj := yi1i0i2y
i3
i2i4

· · · y
i2m−1

i2m−2i2m
.

The following is a “polynomial equivalent” in Qn of Theorem 2.10.

Theorem 2.15. (Noncommutative polynomial phenomenon) Let ∆ be a triangulation of [n]. Then for any
triple (i, j, k) of distinct indices such that (i, k) ∈ ∆ one has:

(2.10) yikj =
∑

i∈Adm∆(i,j)

y(k,i) .

We prove Theorem 2.15 in Section 2.13.

Example 2.16. (a) If n = 5 and ∆ = {(1, 3), (3, 1), (1, 4), (4, 1); (i, i±)|i ∈ [5]}, then

y215 = y415 + y213y
1
35 + y314y

1
45 .

(b) If n = 6 and ∆ = {(13), (36), (46); (12), (23), (34), (45), (56), (61)}, then

y215 = y316y
4
65 + y213y

6
35 + y314y

5
46 + y213y

1
36y

4
65 + y213y

1
36y

3
64y

6
45 .

Similarly to Section 2.1, for each triangulation ∆ of [n] define:
• The subalgebra Q∆ of Qn generated by all ykij , i, j, k ∈ [n] such that (i, k), (k, j) ∈ ∆.
• the subgroup U∆ of T∆ generated by

ukij := t−1
ki tkj ,

for i, j, k ∈ [n] such that (i, k), (kj) ∈ ∆.
Clearly, the restriction of the homomorphism i∆ given by (2.4) to QU∆ ⊂ QT∆ is a homomorphism of

algebras:

(2.11) i′∆ : QU∆ → Q∆ .

The following is an immediate corollary of Theorems 2.3 and 2.8.

Corollary 2.17. For each triangulation ∆ one has:
(a) The homomorphism i′∆ given by (2.11) is an isomorphism.

(b) Qn = Q∆[S
′−1

] for some multiplicative submonoid S′ ⊂ Q∆ \ {0}.
(c) i′∆ extends to a monomorphism of algebras QQn →֒ Frac(Q∆) = F2n−4.

2.3. Regular elements in noncommutative polygons. We start with a more economical presentation of
An. Denote by Un the subalgebra of An generated by all xij , i 6= j and x−1

i,i± . The following result is obvious.

Lemma 2.18. The algebra Un satisfies the following relations
(a) (reduced triangle relations) for all i, j ∈ [n], i /∈ {j−, j}:

(2.12) xi,j−x
−1
j,j+xji = xijx

−1
j− ,jxj− ,i .

(b) (reduced exchange relations) for all cyclic (i, j, k) in [n] such that i− /∈ {j, k}:

(2.13) xijx
−1
j−,jxj−,k = xik + xi,j−x

−1
j,j−xjk, xk,j−x

−1
j,j−xji = xkj + xkjx

−1
j−,jxj−,i .

Remark 2.19. We expect that these relations are defining for the algebra Un.



8 ARKADY BERENSTEIN AND VLADIMIR RETAKH

Noncommutative Laurent phenomenon (2.10) guarantees that Un belongs to each subalgebra A∆. The
following conjecture implies, in particular, that Un is a totally noncommutative analogue of the upper cluster
algebra of type An−3.

Conjecture 2.20. For each n ≥ 2 one has:

(2.14) Un =
⋂

∆

A∆ ,

where the intersection is over all triangulations ∆ of [n].

We say that an element x ∈ An is regular if it belongs to each subalgebra A∆ as ∆ runs over all trian-
gulations ∆ of [n]. Thus, Conjecture 2.20 asserts that each regular element of An belongs to Un, i.e., is a
noncommutative polynomial in xij and x−1

i,i± .

2.4. Noncommutative angles. Now we take advantage of the “invariant” algebra Qn and will view the
ambient algebra An as some “Galois extension” of Qn (in fact, Proposition 2.61 below guarantees that An is
freely generated by xi,i− , i ∈ [n] and Qn).

However, we want a more symmetric and “geometric” presentation ofAn overQn. Recall that y
k
ij = x−1

ki xkj
and set

T jk
i = x−1

ji xjkx
−1
ik .

The following result provides such a presentation of An.

Proposition 2.21. The algebra An is generated by Qn and (T jk
i )±1 for all distinct i, j, k ∈ [n] subject to:

(i) (triangle relations) T jk
i = T kj

i for all distinct (i, j, k) in [n]:

(ii) (modified exchange relations) T jℓ
i = T jk

i + T kℓ
i for any cyclic (i, j, k, ℓ) in [n]:

(iii) (consistency relations) for all i, j, k, ℓ,m ∈ [n] such that the triples (i, j, k) and (i, ℓ,m) are distinct:

(2.15) T jk
i = ykijy

i
jℓy

m
ℓiT

ℓm
i

(with the convention yjii = 1 for all i, j).

Proof. Denote by A′
n the algebra whose presentation is given in the proposition. Clearly, the assignments

ykij 7→ x−1
ki xkj , T

jk
i = x−1

ji xjkx
−1
ik

define an epimorphism of algebras A′
n → An.

On the other hand, it is easy to see that the assignments xij 7→ (T jk
i )−1ykij define an epimorphism of

algebras An → A′
n.

Therefore, these epimorphisms are inverse to each other and hence are isomorphisms. The proposition is
proved. �

We refer to T jk
i for all distinct i, j, k ∈ [n] as noncommutative angles by a number of reasons. First, because

of the triangle relations in Proposition 2.21 (so that we can attach T jk
i to the angle in the triangle (i, j, k) at

the vertex i) and, second, because of the modified exchange relations (ii) of Proposition 2.21 can be viewed as
an “addition law” of angles in a quadrilateral. In fact, such an addition law holds in more general situation.

Corollary 2.22. For any cyclic (i0, i1, i2, . . . , iℓ) one has: T
i1,ik
i0

= T i1,i2
i0

+T i2,i3
i0

+· · ·+T
iℓ−1,iℓ
i0

. In particular,

T 2,n
1 = T 23

1 + T 34
1 + · · ·+ T n−1,n

1 .

Moreover, this view is supported by the following observation. For each triangulation ∆ of n and each
i ∈ [n] define the total angle T∆

i around the vertex i to be the sum of all noncommutative angles in ∆ at the
vertex i. For instance, we have in Example 2.16:

T∆
1 = T 23

1 + T 34
1 + T 45

1 , T∆
2 = T 13

2 , T∆
3 = T 12

3 + T 14
3 , T∆

4 = T 13
4 + T 15

4 , T∆
5 = T 14

5 .

Corollary 2.23. T∆
i = T i−,i+

i for any triangulation ∆ of [n] and any i ∈ [n]. In particular, T∆
i does not

depend on a choice of ∆.
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Remark 2.24. Based on Corollary 2.23, we can view Ti := T i−,i+

i as the total angle of the noncommutative
n-gon at the vertex i. The sum of all total angles T := T1 + T2 + · · ·+ Tn also does not depend on a choice
of triangulations and, in particular, can be specialized to any constant value (e.g., to π · (n− 2)).

Remark 2.25. The independence of Ti of a choice of ∆ means that Ti is invariant under noncommutative
mutations. We will encounter the noncommutative angles again in Section 3.

2.5. Big triangle group of noncommutative polygons. For each n ≥ 2 let Tn be a group generated by
tij , i, j ∈ [n], i 6= j subject to the triangle relations

tijt
−1
kj tki = tikt

−1
jk tji

for all distinct i, j, k ∈ [n]l; and refer to this group as the big triangle group of the n-gon.
The following is obvious.

Lemma 2.26. For any n ≥ 3 one has:

(a) the assignment tij 7→





t1j if i = n

ti1 if j = n

tij otherwise

for i, j ∈ [n], i 6= j (with the convention t11 = 1) defines an

epimorphism of groups π+
n : Tn ։ Tn−1.

(b) The assignment tij 7→ tij for i, j ∈ [n − 1], i 6= j defines an injective homomorphism of groups
Tn−1 →֒ Tn which splits π+

n .

The following result gives a presentation of Tn.

Proposition 2.27. For each n ≥ 3 the group Tn is generated by tij , 1 ≤ i < j ≤ n and ti1, i = 2, . . . , n,
subject to:

ti1t
−1
j1 tjkt

−1
1k t1jt

−1
ij tik = tikt

−1
1k t1jt

−1
ij ti1t

−1
j1 tjk

for all 2 ≤ i < j < k ≤ n.

Proof. Clearly, if n = 3, then T3 is free in t12, t13, t23, t21, t31. Furthermore, let n ≥ 4. Then we can group
the defining relations for Tn into the following quadruples for 2 ≤ i < j < k ≤ n:

(2.16) T ij
1 = T ji

1 , T
ik
1 = T ki

1 , T jk
1 = T kj

1 , T ik
j = T ki

j .

It is easy to see that each such quadruple (2.16) is equivalent to the following quadruple of relations
(here (i′, j′) ∈ {(i, j), (i, k), (j, k)}): tj′,i′ = tj′,1t

−1
i′,1ti′,j′t

−1
1,j′ t1,i′ , ti1t

−1
j1 tjkt

−1
1k t1jt

−1
ij tik = tikt

−1
1k t1jt

−1
ij ti1t

−1
j1 tjk.

Thus, eliminating the redundant generators tj′,i′ , we finish the proof of the proposition. �

The following is obvious.

Lemma 2.28. For each n one has:
(a) The assignment tij 7→ xij defines a ring epimorphism πn : ZTn ։ An.

(b) For each triangulation ∆ of [n] the assignment tij 7→ tij defines a group homomorphism ĵ∆ : T∆ → Tn.
(c) The symmetric group Sn acts on Tn by automorphisms: σ(tij) := tσ(i),σ(j) for σ ∈ Sn, i, j ∈ [n], i 6= j.

Conjecture 2.29. The restriction of πn to Tn is an isomorphism of monoids Tn→̃A×
n .

Theorem 2.30. For any triangulation ∆ of [n] there exists an epimorphism π∆ : Tn ։ T∆ such that

ĵ∆ ◦ π∆ = IdT∆ .

In particular, ĵ∆ is an injective homomorphism T∆ →֒ Tn.

The following is obvious.

Corollary 2.31. For any triangulations ∆,∆′ of n the composition τ∆,∆′ := π∆′ ◦ ĵ∆ is an isomorphism
T∆ → T∆′ such that τ∆,∆ = IdT∆ and τ∆,∆′′ = τ∆′,∆′′ ◦ τ∆,∆′ for any triangulation ∆′′ of [n].
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2.6. Representation of An and Qn by noncommutative 2×nmatrices. In what follows, we identify the
free skew field generated by by all a1i, a2i, i ∈ [n] with F2n and view it as the set of totally noncommutative
rational functions on the space Mat2×n of 2× n matrices.

Following [29] define 2 × 2-quasiminors by

∣∣∣∣∣
a1i a1j

a2i a2j

∣∣∣∣∣ = a1j − a1ia
−1
2i a2j ,

∣∣∣∣∣
a1i a1j
a2i a2j

∣∣∣∣∣ = a2j − a2ia
−1
1i a1j

for i, j ∈ [n] and the quasi-Plücker coordinates qkij for distinct i, j, k ∈ [n] by:

(2.17) qkij =

∣∣∣∣
a1k a1i
a2k a2i

∣∣∣∣
−1

·

∣∣∣∣∣
a1k a1j

a2k a2j

∣∣∣∣∣ =
∣∣∣∣∣
a1k a1j
a2k a2j

∣∣∣∣∣

−1

·

∣∣∣∣∣
a1k a1j
a2k a2j

∣∣∣∣∣

(the latter identity is proved in Proposition 4.2.1 and Section 4.3 of [29]).

Proposition 2.32. For each n ≥ 2 the assignment

ykij 7→ sgn(i − k) sgn(j − k)qkij

defines a monomorphism of algebras

(2.18) ϕ : Qn → F2n .

Proof. First, we establish a new presentation of An (and Qn) by using generators x̃±1
ij := sgn(j − i)x±1

ij ,

i 6= j and the elements T̃ jk
i ∈ A given by:

(2.19) T̃ jk
i = x̃−1

ji x̃jkx̃
−1
ik = sgn(i− j) sgn(k − j) sgn(k − i)x−1

ji x̃jk x̃
−1
ik

(see also Section 2.4). Similarly, we define

(2.20) ỹkij = x̃−1
ki x̃kj = sgn(i − k) sgn(j − k)ykij

for distinct i, j, k ∈ [n].
We need the following useful fact.

Lemma 2.33. For each n ≥ 2 one has:
(a) The algebra An is generated by x̃ij for distinct i, j ∈ [n] subject to the relations:

(2.21) T̃ jk
i = −T̃ kj

i

for any distinct i, j, k ∈ [n]:

(2.22) T̃ jk
i + T̃ kℓ

i + T̃ ℓj
i = 0

for any distinct i, j, k, ℓ ∈ [n].
(b) The algebra Qn is generated by all ỹkij subject to the relations:

(2.23) ỹkij ỹ
k
ji = 1, ỹkij ỹ

i
jkỹ

j
ki = −1

for distinct i, j, k ∈ [n],

(2.24) ỹℓij ỹ
ℓ
jkỹ

ℓ
ki = 1, ỹjikỹ

ℓ
ki + ỹjiℓỹ

k
ℓi = 1

for distinct i, j, k, ℓ ∈ [n].

Proof. Prove (a). Denote by A′′
n the algebra freely generated by all x̃±1

ij , i 6= j. That is, A′′
n is the group

algebra of a free group in n2 − n generators. Define r̃ijk = T̃ kj
i (T̃ jk

i )−1. for all distinct i, j, k ∈ [n]. Clearly,

r̃ijk = x̃−1
ki x̃kj x̃

−1
ij x̃ikx̃

−1
jk x̃ji = −x−1

ki xkjx
−1
ij xikx

−1
jk xji = ỹkij ỹ

i
jkỹ

j
ki = −ykijy

i
jky

j
ki

for all distinct i, j, k ∈ [n]. Denote by I ′ the ideal in A′′ generated by all r̃ijk + 1. Then the quotient
A′

n := A′′
n/I

′ is an algebra generated by xij , i, j ∈ [n], i 6= j subject to the triangle relations (2.1).

Furthermore, for any distinct i, j, k, ℓ ∈ [n] define r̃i;j,k,ℓ ∈ A′
n by r̃i;j,k,ℓ = T̃ jk

i + T̃ kℓ
i + T̃ ℓj

i .
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Clearly, r̃i;j,k,ℓ = −ri;k,j,ℓ = −ri;j,ℓ,k for all i, j, k, ℓ, i.e., ri;j,k,ℓ is skew-symmetric in j, k, ℓ because of
(2.21). Note also that

r̃i;j,k,ℓ = x̃−1
ji (x̃jkx̃

−1
ik x̃iℓ + x̃jix̃

−1
ki x̃kℓ − x̃jℓ)x̃

−1
iℓ = (ỹjikỹ

i
kℓ + ỹkiℓ − ỹjiℓ)x̃

−1
iℓ = (−ỹjikỹ

ℓ
ki + 1− ỹjiℓỹ

k
ℓi)x̃

−1
iℓ

for all distinct i, j, k, ℓ. Moreover, if (i, j, k, ℓ) is cyclic, i.e., (i, k) crosses (j, ℓ), this gives:

r̃i;j,k,ℓ = ±x−1
ji (xjkx

−1
ik xiℓ + xjix

−1
ki xkℓ − xjℓ)x

−1
iℓ .

Therefore, if we denote by I the ideal in A′
n generated by all r̃i;j,k,ℓ, then, obviously, A′

n/I
∼= An.

This proves (a).
Part (b) also follows because the relations (2.23) and (2.24) are equivalent to (2.7), (2.8), and (2.9). The

lemma is proved. �

Finally, note that quasi-Plücker coordinates also satisfy (2.23) and (2.24) by the results of [29, Section 4.4].
This proves that the assignment

ỹkij 7→ qkij
is a homomorphism of algebras. Taking into account (2.20), this finishes the proof of Proposition 2.32. �

The following is an immediate corollary of Propositions 2.32 and 2.61.

Corollary 2.34. For each n ≥ 2 the assignments

xij 7→ sgn(i − j)

∣∣∣∣∣
a1i a1j

a2i a2j

∣∣∣∣∣ , xij 7→ sgn(j − i)

∣∣∣∣∣
a1i a1j
a2i a2j

∣∣∣∣∣
for all i 6= j define homomorphisms of algebras

(2.25) ϕ+ : An → F2n, ϕ− : An → F2n .

Furthermore, denote by F ′
2n−4 the skew sub-field of F2n generated by ϕ(Qn), i.e., by all qkij .

Proposition 2.35. F ′
2n−4 is isomorphic to F2n−4.

Proof. Denote:

(2.26) A =

(
a11 · · · a1n
a21 · · · a2n

)
, B =

(
a13 · · · a1n
a23 · · · a2n

)
, C =

(
a11 a12
a21 a22

)

so that A = [C |B].

Lemma 2.36. ([29, Theorem 4.4.4]) The matrix C−1B equals:

(
q213 · · · q21n
q123 · · · q12n

)
, where qkij = qkij(A) are

quasi-Plücker coordinates on A given by (2.17).

It was proved in [29, Section 4] that qkij(A) = qkij(DA) for all distinct i, j, j ∈ [n] and any invertible 2 × 2

matrix D over F2n. In particular, taking D = C−1, we see that qkij = qkij([C |B]) = qkij([I2 |C
−1B]), therefore,

each qkij belongs to the sub-field of F2n generated by the matrix coefficients of C (here I2 is the 2× 2 identity

matrix). This proves that F ′
2n−4 is a sub-field of F2n generated by the entries of C, i.e., by all q21j , q

1
2j ,

j = 3, . . . , n.
It remains to show that matrix coefficients of C−1B (freely) generate a free subfield of F2n. We need the

following obvious fact.

Lemma 2.37. Let F be a skew field, C ∈ GLm(F) and B ∈ Matm,n−m(F) such that matrix coefficients of
the partitioned matrix A = [C |B] generate F . Then the matrix coefficients of [C |C−1B] also generate F .

Now we take m = 2 and B,C as in (2.26), F = F2n, the free field freely generated by matrix coefficients
of A = [C |B]. Then, clearly, C ∈ GL2(F2n) and B ∈ Mat2,n−2(F). Then, by Lemma 2.37, the matrix
coefficients A′ = [C |C−1B] also generate F2n. Since A

′ is 2×n, then Proposition 5.8 implies that the matrix
coefficients of A′ are free generators of F2n. In particular, the matrix coefficients of the 2 × (n − 2) matrix
C−1B are free generators of the free skew sub-field of F2n. That is, F ′

2n−2 is freely generated by the matrix
coefficients q21j , q

1
2j , j = 3, . . . , n of C−1B.

The proposition is proved. �
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Remark 2.38. Proposition 2.35 and its proof generalize verbatim to m× n matrices.

Theorem 2.39. For each triangulation ∆ of [n] the homomorphism

(2.27) ϕ ◦ i′∆ : QU∆ → F ′
2n−4

is injective.

Proof. We need the following result, which is a particular case of [38, Theorem 10.10].

Proposition 2.40. Let m ≥ 1 and assume that m elements t1, . . . , tm of Fm generate Fm. Then t1, . . . , tm
are free generators, in particular, the assignment ci 7→ ti, i = 1, . . . ,m defines an injective homomorphism of
algebras QFm →֒ Fm.

Taking m = 2n − 4 and any free generating set u1, . . . , u2n−4 of the free group U∆
∼= F2n−4, we see that

ti := ϕ(i′∆(ui)), i = 1, . . . , 2n− 4 generate F ′
2n−4 due to the following fact.

Lemma 2.41. For each triangulation ∆ of [n] the image ϕ(Q∆) generates the skew field F ′
2n−4.

Proof. Denote by F ′′
2n−4 the skew subfield of F2n generated by image ϕ(Q∆). Since image Q∆ ⊂ Qn, we

have an obvious inclusion F ′′
2n−4 ⊆ F ′

2n−4. �

Therefore using Proposition 5.8 with ℓ = 2n− 4, we see that t1, . . . , t2n−4 are free generators of F ′
2n−4 and

hence the homomorphism (2.27) is injective.
Theorem 2.39 is proved. �

2.7. Some symmetries of noncommutative polygons. In the notation of Lemma 2.33 define the action
of the symmetric group Sn on the set X̃ = {x̃ij |i, j ∈ [n], i 6= j} by the formula

w(x̃ij) = x̃w(i),w(j)

for all w ∈ Sn, i, j ∈ [n], i 6= j.

Proposition 2.42. For each n ≥ 2 one has:
(a) The above action uniquely extends to an action of Sn on An by algebra automorphisms.
(b) The action commutes with homomorphisms ϕ+, ϕ− : An → F2n given by (2.25), where the action of

Sn on F2n is given by w(as,i) = as,w(i) for s = 1, 2, i ∈ [n], w ∈ Sn.

(c) The subalgebra Qn is invariant under the Sn-action, i.e., w(ỹ
k
ij) = ỹ

w(k)
w(i),w(j) for all i, j, k ∈ [n], w ∈ Sn.

Proof. Prove (a). In what follows, we borrow all notation from the proof of Proposition 2.32. The following
fact is obvious.

Lemma 2.43. The Sn action on X̃ uniquely extends to that on A′′
n = Q〈X̃〉 by algebra automorphisms.

Thus, it suffices to prove that the Sn-action on A′′
n preserves the ideal of triangle relations (2.21) and

exchange relations (2.22).
Let us prove that the ideal I ′ of A′′ generated by all rijk is invariant under the Sn-action. Indeed, for

distinct i, j, k ∈ [n] and w ∈ Sn one has

w(r̃ijk) = w(x̃ij)w(x̃kj)
−1w(x̃ki)w(x̃ji)

−1w(x̃jk)w(x̃ik)
−1 = r̃w(i),w(j),w(k) .

This proves that Sn(I ′) = I ′ hence Sn acts on A′
n by algebra automorphisms.

It remains to prove that the ideal of exchange relations (2.22) in A′
n is invariant under the Sn-action. Now

we show that the ideal I of A′
n = A′′

n/I
′
n generated by all r̃i;j,k,ℓ is invariant under the Sn-action. Indeed,

w(r̃i;j,k,ℓ) = w(T̃ jk
i ) + w(T̃ kℓ

i ) + w(T̃ ℓj
i ) = T̃

w(j),w(k)
w(i) + T̃

w(k),w(ℓ)
w(i) + T̃

w(ℓ),w(j)
w(i) = r̃w(i);w(j),w(k),w(ℓ)

for all distinct i, j, k, ℓ ∈ [n] (where T̃ jk
i are defined in (2.19)). This proves that Sn(I) = I.

Part (a) is proved.
Part (b) follows from the fact that the homomorphisms ϕ+, ϕ− : An → F2n are determined respectively

by the assignments: x̃ij 7→

∣∣∣∣∣
a1i a1j

a2i a2j

∣∣∣∣∣ , x̃ij 7→
∣∣∣∣∣
a1i a1j
a2i a2j

∣∣∣∣∣ which, clearly, commute with the Sn-action.
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Part (c) is obvious.
The proposition is proved. �

The Lie algebra gln(Q) (viewed as Matn×n) naturally acts on the skew space Mat2×n by right multipli-
cations, i.e.,

Eij(as,t) = δt,jas,i

for s ∈ {1, 2}, i, j, t ∈ [n]), where Eij ∈ glN (Q) are the matrix units.
This action uniquely extends to F2n by the Leibniz rule: E(fg) = E(f)g+fE(g), E(h−1) = −h−1E(h)h−1

for any E ∈ gln(Q), f, g ∈ F2n, h ∈ F2n \ {0}.

Proposition 2.44. For each n ≥ 2 there exists a unique action of gln(Q) on Qn by derivations such that
the homomorphism ϕ : Qn → F2n given by (2.18) is gln(Q)-equivariant. The action is given by:

(2.28) Ei′,j′(ỹ
k
i,j) =





0 if j′ /∈ {i, j, k}

ỹki,i′ if j′ = j

−ỹki,i′ ỹ
k
ij if j′ = i

−ỹki,i′ ỹ
i
kj if j′ = k

for any distinct indices i, j, k ∈ [n].

Proof. Indeed, in view of Theorem 2.39, it suffices to prove (2.28) for qkij = ϕ(ỹkij). Indeed, if we abbreviate

xij =

∣∣∣∣∣
a1i a1j

a2i a2j

∣∣∣∣∣ for distinct i, j ∈ [n], then

Ei′j′(xij) = Ei′,j′(a1j − a1ia
−1
2i a2j) =





0 if j′ /∈ {i, j}

a1,i′ − a1ia
−1
2i a2,i′ if j′ = j

−Ei′,i(a1ia
−1
2i )a2j if j′ = i

=





0 if j′ /∈ {i, j}

xi,i′ if j′ = j

xi,i′x
−1
ji xij if j′ = i

because −Ei′,i(a1ia
−1
2i ) = −a1,i′a

−1
2i +a1ia

−1
2i a2,i′a

−1
2i = −xi,i′a

−1
2i and a−1

2i a2j = −x−1
ji xij for i 6= j. Therefore,

Ei′j′(q
k
ij) = Ei′j′ (x

−1
ki xkj) = Ei′j′(x

−1
ki )xkj + x−1

ki Ei′j′(xkj) =





x−1
ki Ei′j(xkj) if j′ = j

Ei′i(x
−1
ki )xkj if j′ = i

Ei′,k(x
−1
ki )xkj + x−1

ki Ei′k(xkj) if j′ = k

0 otherwise

.

Note that

Ei′,k(x
−1
ki )xkj + x−1

ki Ei′k(xkj) = −x−1
ki (xk,i′x

−1
ik xki)x

−1
ki xkj + x−1

ki (xk,i′x
−1
jk xkj)

= x−1
ki xk,i′ (−x

−1
ik + x−1

jk )xkj = x−1
ki xk,i′x

−1
ik (xik − xjk)x

−1
jk xkj = x−1

ki xk,i′x
−1
ik xij

because

(xik − xjk)x
−1
jk xkj = ((a1k − a1ia

−1
2i a2k)− (a1k − a1ja

−1
2j a2k))(−a

−1
2k a2j) = −(−a1ia

−1
2i a2j + a1j) = −xij

Therefore,

Ei′j′(q
k
ij) =





0 if j′ /∈ {i, j, k}

x−1
ki xk,i′ if j′ = j

−x−1
ki xk,i′x

−1
ki xkj if j′ = i

−x−1
ki xk,i′x

−1
ik xij if j′ = k

=





0 if j′ /∈ {i, j, k}

qki,i′ if j′ = j

−qki,i′q
k
ij if j′ = i

−qki,i′q
i
kj if j′ = k

.

The proposition is proved. �

For i, j ∈ [n] define the elements yij ∈ Fn by:

ỹij = ỹii−,j = x̃−1
i,i− x̃ij

(with the convention that yii = 0). Clearly, ỹi,i− = 1 and ỹi,i+ = x̃−1
i,i− x̃i,i+ .
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Denote by A
′

n the subalgebra of Qn generated by all ỹij and ỹ
−1
i,i+ . The following is an immediate corollary

of Proposition 2.44.

Corollary 2.45. For each i, j, i′, j′ ∈ [n] one has: Ei′,j′(ỹij) =





0 if j′ /∈ {i−, i, k}

ỹi,i′ if j′ = j

−ỹi,i′ ỹij if j′ = i−

ỹi,i′(ỹi−,i)
−1 ỹi−,j if j′ = i

. In

particular, A
′

n is invariant under the gln(Q)-action.

Remark 2.46. Note, however, that the subalgebra Un of An defined in Section 2.3 is not gln(Q)-invariant.

2.8. Extended noncommutative n-gons. In this section we define a larger algebra Ãn which is an exten-
sion of Qn and can be viewed as a carrier of double noncommutative triangulations of the n-gon.

Definition 2.47. Let A±
n be the algebra generated by generated by xεij and (xεij)

−1, i, j ∈ [n], i 6= j,

ε ∈ {−,+} subject to the relations:
(i) (triangle relations) For any triple (i, j, k) of distinct indices in [n]:

(2.29) x+ij(x
−
kj)

−1x+ki = x−ik(x
+
jk)

−1x−ji .

(ii) (exchange relations) For all cyclic (i, j, k, ℓ) in [n]:

(2.30) x−jℓ = x+jk(x
+
ik)

−1x−iℓ + x−ji(x
+
ki)

−1x+kℓ, x
+
jℓ = x+jk(x

−
ik)

−1x−iℓ + x−ji(x
−
ki)

−1x+kℓ .

The following result is obvious.

Lemma 2.48. The assignment x±
ij 7→ xij defines an epimorphism of algebras πn : Ãn → An.

In what follows, we adopt a convention for all distinct i, j, k ∈ [n]:
xkij := x+ij if the triangle (i, j, k) is to the right of the chord (i, j) when one goes from i to j;

xkij := x−ij if the triangle (i, j, k) is to the left of the chord (i, j) when one goes from i to j.
In particular, we have

xkij = xℓij
whenever (i, k) crosses (j, ℓ).

The following result is a generalization of Proposition 2.21. Let

ỹkij = (xjki)
−1xijk, T̃

jk
i = (xkji)

−1xijk(x
i
ik)

−1

(so that xkij = (T̃ jk
i )−1ỹkij for any k /∈ {i, j}).

Theorem 2.49. The algebra Ãn is generated by Qn and (T̃ jk
i )±1 for all distinct triples (i, j, k) subject to:

(i) triangle relations:

T̃ jk
i = T̃ kj

i

for all distinct (i, j, k);
(ii) modified exchange relations:

T̃ jℓ
i = T̃ jk

i + T̃ kℓ
i

whenever (i, k) crosses (j, ℓ);
(iii) consistency relations:

(T̃ jk
i )−1ỹkij = (T̃ jℓ

i )−1ỹℓij
for all distinct quadruples (i, j, k, ℓ) such that (i, k) crosses (j, ℓ).

For each triangulation ∆ of [n] denote by Ã∆ the subalgebra of Ãn generated by x±kℓ for all distinct k, ℓ ∈ [n]

and by (x±ij)
−1 for all (i, j) ∈ ∆.

Theorem 2.50. (Laurent Phenomenon for extended noncommutative polygons) Fix a triangulation ∆ of [n].

Then each x±kℓ belongs to Ã∆.

Similarly to Section 2.1, denote by T̃∆ the group generated by all t±ij subject to the triangle relations (2.29).

Clearly, T̃∆ is a free group on 5(n− 2) generators.
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Corollary 2.51. For each triangulation ∆ of [n] the assignment tij 7→ xij , (i, j) ∈ ∆ defines an epimorphism
of algebras

ĩ∆ : ZT̃∆ ։ Ã∆ .

Proposition 2.52. For each triangulation ∆ of [n] the kernel of ĩ∆ contains the elements

(2.31) (∂i4,i1 − ∂i3,i1)T
i4,i5
i1

+ T i1,i3
i2

(∂−1
i1,i4

− ∂−1
i1,i3

) + (t−i3,i1)
−1t+i3,i4(t

+
i1,i4

)−1 − (t+i3,i1)
−1t+i3,i4(t

−
i1,i4

)−1

for each 5-tuple (i1, i2, i3, i4, i5) in the cyclic order such that (ik, iℓ) ∈ ∆ for all distinct (k, ℓ) ∈ [5]× [5] except
for (k, ℓ) = (2, 4), (4, 2), (2, 5), (5, 2), where we abbreviated ∂ij = (t+ij)

−1t−ji.

Proof. Without loss of generality, we assume that ik = k for k = 1, 2, 3, 4, 5. Then

x−25 = x−21(x
+
41)

−1x+45 + x+24(x
+
14)

−1x−15

hence

x−25 = x−21(x
+
41)

−1x+45 + x+23(x
−
13)

−1x−14(x
+
14)

−1x−15 + x−21(x
−
31)

−1x+34(x
+
14)

−1x−15 .

On the other hand,

x−25 = x−21(x
+
31)

−1x+35 + x+23(x
+
13)

−1x−15
hence

x−25 = x−21(x
+
31)

−1x−31(x
−
41)

−1x+45 + x+23(x
+
13)

−1x−15 + x−21(x
+
31)

−1x+34(x
−
14)

−1x−15 .

Comparing the expressions for x−25, we obtain a relation in Ã∆ which gives the appropriate element in the

kernel of ĩ∆. The proposition is proved. �

Remark 2.53. It is natural to conjecture that the kernel of ĩ∆ is generated (as a two-sided ideal in ZT̃∆)
by the elements (2.31).

2.9. Further generalizations and specializations.

Definition 2.54. Let Ân be the algebra generated by all xkij , (x
k
ij)

−1, where i, j, k are distinct indices in [1, n]
subject to the relations:

(i) (triangle relations) T̂ jk
i = T̂ kj

i for all distinct i, j, k, where T̂ jk
i = (xkji)

−1xijk(x
j
ik)

−1.

(ii) (exchange relations) T̂ jℓ
i = T̂ jk

i + T̂ kℓ
i whenever (i, k) crosses (j, ℓ).

The following result is obvious.

Lemma 2.55. (a) The assignment xkij 7→ xij defines an epimorphism of algebras Ân → An.

(b) The assignment xkij 7→ xkij defines an epimorphism of algebras Ân → Ãn (as in Section 2.8).

We refer to each T̂ jk
i as the generalized noncommutative angle and view it as a certain measure of the

angle at the vertex i in the triangle (ijk). For any triangulation ∆ of the n-gon and i ∈ [n], define the total

angle T̂∆
i to be the sum of all noncommutative angles of all triangles of ∆ at the vertex i.

Theorem 2.56. For any triangulations ∆ and ∆′ of the n-gon, we have T̂∆ = T̂∆′ .

Furthermore, let A′
n be the algebra generated by xij , c

jk
i = ckji , djki = dkji and their inverses subject to the

relations:
(i) (triangle relations) T jk

i = T kj
i for all distinct i, j, k, where

T jk
i = x−1

ji xjkx
−1
ik ;

(ii) (exchange relations) (djℓi )−1T jℓ
i (cjℓi )−1 = (djki )−1T jk

i (cjki )−1+(dkℓi )−1T kℓ
i (ckℓi )−1 whenever (i, k) crosses

(j, ℓ).

Proposition 2.57. The assignment xkij 7→ cjki xijd
ik
j defines a homomorphism of algebras:

(2.32) ϕ̂ : Ân →֒ A′
n .
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Proof. Denote by Â′
n the algebra freely generated by all xkij . Then, clearly, the assignment xkij 7→ cjki xijd

ik
j

defines an algebra homomorphism

Â′
n → A′

n .

Denote T̂
′jk
i := (xkji)

−1xijk(x
j
ik)

−1. We need the following fact.

Lemma 2.58.

ϕ̂′(T̂
′jk
i ) = (djki )−1T jk

i (cjki )−1 .

Proof. Indeed,

ϕ̂′(T̂
′jk
i ) = ϕ̂′((xkji)

−1xijk(x
j
ik)

−1) = (cikj xjid
jk
i )−1cikj xjkd

ij
k (c

jk
i xikd

ij
k )

−1

= (djki )−1xjixjkxik(c
jk
i )−1 = (djki )−1T jk

i (cjki )−1 .

The lemma is proved. �

The lemma implies that ϕ̂′(T̂
′jk
i ) = ϕ̂′(T̂

′kj
i ) and:

ϕ̂′(T̂
′jℓ
i − T̂

′jk
i − T̂

′kℓ
i ) = (djℓi )−1T jℓ

i (cjℓi )−1 − (djki )−1T jk
i (cjki )−1 − (dkℓi )−1T kℓ

i (ckℓi )−1 = 0 .

This proves the proposition. �

Corollary 2.59. For each collection of integers a = {ajki = akji |i, j, k ∈ [n] are distinct}, the assignment

xkij 7→ (T jk
i )a

jk
i xij(T

ik
j )−ajk

i

defines an algebra homomorphism

ϕa : Ân → An

(the latter algebra is defined in Definition 2.1).

Proof. Clearly, ϕ = ψ ◦ ϕ̂, where ϕ̂ is given by (2.32) and ψ : A′
n → An is an epimorphism given by

xij 7→ xij , c
jk
i 7→ (T jk

i )a, djki 7→ (T jk
i )−a .

�

Remark 2.60. Note that if ajki = 1, then ϕa(x
k
ij) = x−1

ki xkjxjkx
−1
ik xij .

2.10. Free factorizations of An and proof of Theorem 2.14. For any Q-algebras A and B denote by
A ∗ B their free product, i.e., the universal algebra generated by A and B as subalgebras (with no relations
between them). The most fundamental property of the free product is that any algebra homomorphisms
f1 : A → C, f2 : B → C canonically lift to an algebra homomorphism f1 ∗ f2 : A ∗ B → C.

Denote by Fm the free group generated by c±1
i , i = 1, . . . ,m.

By definition, the group algebra QFm, is free Laurent polynomial algebra Q < c±1
1 , . . . , c±1

m >.

Proposition 2.61. For each n ≥ 2 the assignment xij 7→ ci ∗ yii−,j, i, j ∈ [n], i 6= j defines an isomorphism

of algebras

(2.33) f : An→̃(QFn) ∗ Qn .

Proof. Let us prove that the homomorphism (2.33) is well-defined. We need the following obvious fact.

Lemma 2.62. Let B be a Q-algebra and let c1, . . . , cn be invertible elements of B. Then the assignment

(2.34) xij 7→ ci ∗ xij

for i, j ∈ [n], i 6= j defines a homomorphism of algebras An → B ∗ An.
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By the above Lemma B := QFn generated by c±1
i , i ∈ [n], the assignment (2.34) defines a homomorphism

of algebras

(2.35) An → (QFn) ∗ An .

Furthermore, the assignment ci 7→ ci ∗ x
−1
i,i− , i ∈ [n] defines an algebra homomorphism f1 : QFn →

(QFn)∗An and the identity map An → An defines a homomorphism of algebras f2 : An → (QFn)∗An. This
gives an algebra homomorphism f1 ∗ f2 : (QFn) ∗ An → (QFn) ∗ An determined by ci 7→ ci ∗ x

−1
i,i− , xij 7→ xij .

Then the composition of the homomorphism (2.35) with f1 ∗ f2 : (QFn) ∗ An is a homomorphism of algebras

An → (QFn) ∗ An

given by
xij 7→ ci ∗ xij 7→ ci ∗ x

−1
i,i−xij = ci ∗ y

i
i−,j

for all i, j ∈ [n], i 6= j. Since the image of the latter homomorphism belongs to (QFn) ∗ Qn, we see that the
algebra homomorphism f : An → (QFn) ∗ Qn given by (2.33) is well-defined.

It remains to show that f is invertible. Indeed, denote by f ′
1 : QFn → An the homomorphism of algebras

given by ci 7→ xi,i− , i ∈ [n] and denote by f ′
2 the natural inclusion Qn →֒ An. This defines a homomorphism

of algebras g = f ′
1 ∗ f

′
2 : (QFn) ∗ Qn → An which is determined by ci 7→ xi,i− , yij 7→ yij . This immediately

implies that
(g ◦ f)(xij) = g(ci ∗ y

i
i−,j) = xi,i−y

i
i−,j = xij

for all i 6= j. Therefore, g ◦ f = Id. Similarly,

(f ◦ g)(ci) = f(xi,i−) = ci ∗ y
i
i−,i− = ci ∗ 1 = ci, (f ◦ g)(yii−,j) = f(yii−,j)

= f(x−1
i,i−xij) = f(xi,i−)

−1f(xij) = (ci ∗ xi,i−)
−1ci ∗ xij = x−1

i,i−xij = yij .

Therefore, f ◦ g = Id as well.
The proposition is proved. �

Remark 2.63. Proposition 2.61 is a noncommutative algebraic analogue of the following assertion: if a group
G acts freely on a set X , then there a bijection X→̃G×X/G.

For any groups G and H denote by G ∗ H their free product. It is well-known (see, e.g., [13]) that
Q(G ∗H) = (QG) ∗ (QH).

Proposition 2.64. For each triangulation ∆ of [n] the assignment

tij → ci ∗ u
i
i−,j

for all (i, j) ∈ ∆ (in the notation of (2.11)) defines an isomorphism of groups

(2.36) T∆→̃Fn ∗ U∆ .

Proof. We essentially copy the proof of Proposition 2.61. Indeed, the following fact is obvious.

Lemma 2.65. Let G be any group and let c1, . . . , cn ∈ G. Then for any triangulation ∆ of [n] the assignment

(2.37) tij 7→ ci ∗ tij

for i, j ∈ ∆, defines a homomorphism of groups T∆ → G ∗ U∆.

Clearly, the assignment
ci 7→ ci ∗ t

−1
i,i−

for i ∈ [n] defines a group homomorphism Fn → Fn ∗ T∆. Composing this with (2.37), we obtain a group
homomorphism: T∆ → Fn ∗ T∆ given by tij 7→ ci ∗ ui−,j for all i, j ∈ ∆. Clearly, the image of this

homomorphism contains all ci and ukij , (i, j), (jk) ∈ ∆, hence this gives a group homomorphism (2.36).
Clearly, the homomorphism Fn ∗ U∆ → T∆ given by

ci 7→ ti,i− , u
k
ij 7→ ukij

is inverse of (2.36).
The proposition is proved. �

Taking into account that Fn ∗ Fm
∼= Fm+n, we obtain an obvious corollary from Theorem 2.7.
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Corollary 2.66. For each triangulation ∆ of n the group U∆ is isomorphic to F2n−4, the free group in 2n−4
generators.

Now we are ready to prove Theorem 2.14.
Proof of Theorem 2.14. First, we verify that the relations (2.7), (2.8), and (2.9) hold. The left hand side
of the first relation (2.7) is:

ykijy
k
ji = (x−1

ki xkj)(x
−1
kj xki) = 1 .

Furthermore, the left hand side of the second relation (2.7) is:

ykijy
i
jky

j
ki = (x−1

ki xkj)(x
−1
ij xik)(x

−1
jk xji) = (x−1

ki xkjx
−1
ij )(xikx

−1
jk xji) = 1

for all distinct i, j, k ∈ [n] by the triangle relations (2.1). Similarly, the left hand side of (2.8) is:

yℓijy
ℓ
jky

ℓ
ki = (x−1

ℓi xℓj)(x
−1
ℓj xℓk)(x

−1
ℓk xℓi) = 1

for all distinct quadruples (i, j, k, ℓ).
Finally, the difference between the right and left hand sides of (2.9) is:

ykijy
i
jℓ + ykiℓ − yjiℓ = (x−1

ki xkj)(x
−1
ij xiℓ) + x−1

ki xkℓ − x−1
ji xjℓ = (x−1

ji xjkx
−1
kj )xiℓ + x−1

ki xkℓ − x−1
ji xjℓ

= x−1
ji (xjkx

−1
kj xiℓ + xjix

−1
ki xkℓ − xjℓ) = 0

for all cyclic (i, j, k, ℓ) by the exchange relations (2.2).
Now let us show that the relations (2.7), (2.8), (2.9) are defining. Indeed, Proposition 2.61 implies that

there is an epimorphism of algebras An ։ Qn given by

xij 7→ yii−,j .

Therefore, we obtain the following obvious result.

Lemma 2.67. The algebra Qn is generated by all yij := yii−,j and y−1
ij , i, j ∈ [n], i 6= j, subject to yi,i− = 1,

i ∈ [i] and the relations (2.1), (2.2), i.e.,

(2.38) yijy
−1
kj yki = yiky

−1
jk yji

for any distinct indices i, j, k ∈ [n];

(2.39) yjℓ = yjky
−1
ik yiℓ + yjiy

−1
ki ykℓ

for all cyclic (l, k, j, i) in [n].

Since ykij = y−1
ki ykj , the relations (2.7) directly follow from (2.38) and the relations (2.9) directly follow

from (2.39) (this is obvious if we “reverse engineer” the fist part of the proof and replace all xij by yij there).
Therefore, Theorem 2.14 is proved. �

The following obvious corollary from the proof of Theorem 2.14 will be instrumental in Section 3.

Corollary 2.68. For each triangulation ∆ of [n] the U∆ is generated by ukij, (i, k), (jk) ∈ ∆ subject to the

relations (2.7) and (2.8), i.e., for all distinct i, j, k, ℓ ∈ [n] such that (i, j), (jk) ∈ ∆ one has:

ukii = 1, ukiju
k
ji = ukiju

i
jku

j
ki, u

ℓ
iju

ℓ
jku

ℓ
ki = 1 .

2.11. Freeness of T∆ and proof of Theorems 2.7. Let ∆ be a triangulation of [n]. Fix a directed
triangulation ∆ ⊂ ∆ so for each (i, j) ∈ ∆ with j /∈ {i+, i−} exactly one out of (i, j) and (j, i) belongs to ∆
and ∆ contains all (i, i±), i ∈ [n]. By definition, any such ∆ has cardinality 3n− 3.

Proposition 2.69. Given i0 ∈ [n]. Then for any triangulation ∆ and any ∆ as above, the group T∆ is freely
generated by tij, (i, j) ∈ ∆ \ {(i0, i

+
0 )}.

Proof. We proceed by induction on n. The assertion is obvious for n ≤ 3. Suppose that n ≥ 4. Then it is
easy to see that there exists distinct j0, j

′
0 ∈ [n] such that (j−0 , j

+
0 ), (j′

−
0 , j

′+
0 ) ∈ ∆.

Without loss of generality we may assume that j′0 = n and j0 6= i (hence j0 /∈ {i, n− 1, n, 1}). Then ∆̂ =

∆\{(1, n), (n, 1), (n−1, n), (n, n−1)} is a triangulation of [n−1] and ∆̂ = ∆\{(1, n), (n, 1), (n−1, n), (n, n−1)}
is the corresponding directed triangulation.

The following result is obvious.
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Lemma 2.70. (a) The assignment tij 7→ tij, (i, j) ∈ ∆̂, tn−1,n 7→ 1, tn,n−1 7→ 1, t1,n 7→ 1, tn,1 7→ t−1
n−1,1t1,n−1

defines an epimorphism of groups ϕ : T∆ ։ T∆̂.

(b) ι ◦ ϕ = IdT∆̂
, where ι : T∆̂ → T∆ is a homomorphism given by ι(tij) = tij for (i, j) ∈ ∆̂.

(c) The homomorphism ι : T∆̂ → T∆ is injective.

Denote by ∆0 the triangulation of the triangle with the vertices 1, n − 1, n. Clearly, T∆ is generated by
T∆̂ (via the embedding ι) and T∆0 , more precisely,

T∆ = T∆̂ ∗ T∆0/〈(tn−1,1 ∗ 1)(1 ∗ tn−1,1)
−1, (t1,n−1 ∗ 1)(1 ∗ t1,n−1)

−1〉 .

This and the inductive hypothesis (asserting that T∆̂ is freely generated by tij , (i, j) ∈ ∆̂ \ {(j0, j
+
0 )}) imply

(by eliminating tn−1,1 and t1,n−1 and setting tkℓ := 1 ∗ tk,ℓ for (k, ℓ) = (1, n), (n, 1), (1, n− 1), (n− 1, 1)) that

T∆ is freely generated by all tij , (i, j) ∈ ∆ \ {(j0, j
+
0 )}. �

The theorem is proved. �

2.12. Retraction of Tn onto T∆ and proof of Theorem 2.30. It suffices to construct an element τij ∈ T∆

for each pair (i, j) ∈ [n]× [n], i 6= j such that τij = tij whenever (i, j) ∈ ∆ and for any distinct i, j, k ∈ n one
has the triangle relation:

(2.40) T̂ jk
i = T̂ kj

i

where T̂ j,k
i := τ−1

ji τjkτ
−1
ik .

We construct such τij by induction on n. Retain notation from the proof of Theorem 2.7 and assume,
without loss of generality, that (n− 1, n+ 1) ∈ ∆. If n /∈ {i, j}, then, by deleting the vertex n and using the
natural inclusion T∆̂ ⊂ T∆ given by Lemma 2.70(c), we set τij to be that one which belongs to T∆̂. Finally,
we set τ1,n := t1,n, τn,1 := tn,1 and:

τi,n := τi,n−1τ
−1
1,n−1τ1,n, τn,i := τn,1τ

−1
n−1,1τn−1,i

for 1 < i < n.
Now verify that so constructed elements satisfy (2.40). Indeed, if i, j, k ∈ [n− 1], we have nothing to prove

because (2.40) holds by the inductive hypothesis. Otherwise, it suffices to consider the case when k = n and
verify:

(2.41) T n,j
i = T j,n

i

for all i, j ∈ [n− 1], i 6= j. Indeed,

T̂ n,j
i = τ−1

ni τnjτ
−1
ij = τ−1

n−1,iτn−1,jτ
−1
ij = T̂ n−1,j

i , T̂ j,n
i = τ−1

ji τjnτ
−1
in = τ−1

ji τj,n−1τ
−1
i,n−1 = T̂ j,n−1

i

which, together with the inductive hypothesis, proves (2.41).
Therefore, the assignment tij 7→ τij for all i 6= j defines a group epimorphisms Tn → T∆.
Theorem 2.30 is proved. �

2.13. Noncommutative Laurent Phenomenon and proof of Theorems 2.10 and 2.15. Clearly, The-
orem 2.10 is a direct corollary of Theorem 2.15, so we will only prove the latter one. We proceed by induction
on n. In fact, due to the relations (2.8) in the form yikj = yik,i+y

i
i+,j (hence y(k,i) = yik,i+y(i+,i)), it suffices to

prove (2.10) only with k = i+ (however, we will use the inductive hypothesis without this restriction).
Indeed, if n ≤ 3, the assertion is immediate. Now suppose that n ≥ 4. In what follows we retain some

notation of Section 2.11, that is, we fix a triangulation ∆ and suppose that (n − 1, 1) ∈ ∆ and (j0, j
+
0 ) ∈ ∆

for some j0 /∈ {i, 1, n − 1, n}. If 1 /∈ {i, j}, then the assertion (2.10) for ∆ coincides with that for ∆̂ =
∆ \ {(1, n), (n, 1), (n− 1, n), (n, n− 1)} and we have nothing to prove. Now suppose that n ∈ {i, j}. Without
loss of generality we may assume that i = n (the case j = n is obtained by reversing all chords in [n]). Then,

we will use the inductive hypothesis (2.10) for ∆̂ in the form:

yn−1
1,j =

∑

i′

y(1,i′), y
1
n−1,j =

∑

i′′

y(n−1,i′′) ,

where the first (resp. the second) summation is over all (n− 1, j, ∆̂) (resp. (1, j, ∆̂))-admissible sequences.



20 ARKADY BERENSTEIN AND VLADIMIR RETAKH

Using these and the relation (2.9) in the form yn1,j = yn−1
1,j + yn1,n−1y

1
n−1,j, we obtain:

yn1,j =
∑

i′

y(1,i′) +
∑

i′′

yn1,n−1y(n−1,i′′) =
∑

i′

y(1,n,1,i′) +
∑

i′′

y(1,n−1,n,i′′) .

Clearly, this gives (2.10) because each (n, j,∆)-admissible sequence is either of the form (n, 1, i′), where i′ is

(n, j, ∆̂)-admissible or is of the form (n, n− 1, i′′), where i′′ is (1, j, ∆̂)-admissible (and vice versa).
Theorem 2.15 is proved. �

Therefore, Theorem 2.10 is proved. �

2.14. Noncommutative cluster variables and proof of Theorems 2.3 and 2.8. For each triangulation
∆ of [n] and (p, q) ∈ [n]× [n], p 6= q define an element t∆pq ∈ QT∆ (in the notation of Theorem 2.10) by

(2.42) t∆pq =
∑

i∈Adm∆(p,q)

ti ,

where ti ∈ T∆ is given by: ti := ti1,i2t
−1
i3,i2

ti3,i4 · · · t
−1
i2m−1,i2m−2

ti2m−1,i2m for any i ∈ [n]2m (with the convention

tii = 1 for i ∈ [n]).
We need the following result.

Theorem 2.71. For any triangulations ∆ and ∆′ of [n] the assignment t∆
′

ij 7→ t∆ij for (i, j) ∈ [n]× [n], i 6= j
defines an isomorphism of algebras

(2.43) ψ∆,∆′ : QT∆′ [S−1
∆′ ]→̃QT∆[S

−1
∆ ] ,

where S∆ (resp. S′
∆) is a submonoid in QT∆ generated by all t∆ij. These isomorphisms satisfy:

(2.44) ψ∆,∆′ = ψ∆,∆′′ ◦ ψ∆′′,∆′

for any triangulations ∆,∆′,∆′′ of [n].

Proof. First, prove the assertion for neighboring triangulations ∆,∆′ of Σ, i.e., such that ∆ \ ∆′ =
{(i, k), (k, i)}, ∆ \∆′ = {(j, ℓ), (ℓ, j)}, where (i, j, k, ℓ) is a cyclic quadruple.

By definition,

(2.45) t∆jℓ = tjkt
−1
ik tiℓ + tjit

−1
ki tkℓ, t

∆
ℓj = tℓit

−1
ki tkj + tℓkt

−1
ik tij .

We need the following result.

Lemma 2.72. For any neighboring triangulations ∆,∆′ of [n] with ∆ \ ∆′ = {(i, k), (k, i)}, ∆ \ ∆′ =
{(j, ℓ), (ℓ, j)} there is a unique homomorphism of algebras ϕ∆′,∆ : QT∆′ → QT∆[(t

∆
jℓ)

−1] such that

ϕ∆,∆′(ti′,j′ ) =





ti′,j′ if {i′, j′} 6= {j, ℓ}

t∆jℓ if (i′, j′) = (j, ℓ)

t∆ℓj if (i′, j′) = (ℓ, j)

for all (i′, j′) ∈ ∆′.

Proof. Indeed, it suffices only to prove that ϕ∆,∆′ respects the triangle relations

T j′,k′

i′ = T k′,j′

i′

for all triangles (i′, j′, k′) in ∆′. Clearly, if (i′, j′, k′) belongs to ∆ ∩∆′, then we have nothing to prove. It
suffices only to consider the case when (j′, k′) = (j, ℓ), i.e., we have to prove that

ϕ∆,∆′(T jℓ
i′ ) = ϕ∆,∆′(T ℓj

i′ )

for i′ ∈ {i, k}. Taking into account that both (i′j) and (i′ℓ) belong to ∆ ∩∆′, we have only to prove that in
QT∆ one has:

t−1
ji′ t

∆
jℓt

−1
i′ℓ = t−1

ℓi′ t
∆
ℓjt

−1
i′j .

In view of (2.45), this is equivalent to:

(2.46) t−1
ji′ (tjkt

−1
ik tiℓ + tjit

−1
ki tkℓ)t

−1
i′ℓ = t−1

ℓi′ (tℓit
−1
ki tkj + tℓkt

−1
ik tij)t

−1
i′j .
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If i′ = i, then both sides of (2.46) are, clearly, equal to T jk
i + T kℓ

i , and if i′ = k, then both sides of (2.46)

are equal to T ij
k + T iℓ

k .
This proves that ϕ∆,∆′ is well-defined homomorphism of algebras. �

Furthermore, we prove that in the assumptions of Lemma 2.72 one has

(2.47) ϕ∆,∆′(t∆
′

pq ) = t∆pq

for all (p, q) ∈ [n]× [n], p 6= q.
Define a partial order ≺ on [n]• by the covering insertion relations i ≺ i′ if

(2.48) i = (. . . , it, it+1, it+2, . . .), i
′ = (. . . , it, it+1, a, it+1, it+2, . . .)

for any a ∈ [n].
We need the following obvious fact.

Lemma 2.73. For each i ∈ [n]• there is a unique element [i] such that:
• [i] � i.
• [i] is minimal in the partial order ≺.

Clearly, if i, i′ ∈ [n]2• and i ≺ i′, then ti = ti′ .
Furthermore, fix a distinct quadruple P := (i, j, k, ℓ) in [n] and denote by P the underlying set {i, j, k, ℓ}.
For any i = (i1, . . . , ir) ∈ [n]r, r ≥ 2 define the index set Indi(P ) ⊂ [r − 1] by:

Indi(P ) = {s ∈ [r − 1] : {is, is+1} ∈ {{i, k}, {j, ℓ}}

(with the convention that ik = 0 if k ≤ 0 and ik = ∞ if k > r) and the index indi(P ) ∈ Z≥0 by

indi(P ) = min Indi(P )

with the convention that min ∅ := 0.
Denote by IP the set of all sequences i such that |Indi(P )| = 1
Clearly, IP ′ = IP for any permutation P ′ = (i′, j′, k′, ℓ′) of P = (i, j, i, ℓ) such that {i′, k′} ∈ {{i, k}, {j, ℓ}}.

Proposition 2.74. For each i ∈ IP one has [i] ∈ IP and ind[i](P ) ≡ indi(P ) mod 2.

Proof. We need the following fact.

Lemma 2.75. If Let i, i′ ∈ [n]• be such that i ≺ i′ and i′ ∈ IP . Then i ∈ IP .

Proof. It suffices prove the assertion only for i and i′ = jtab(i) as in (2.48). Let s′ = indi′(P ). Since
|Indi′(P )| = 1, and i′s′−1 6= i′s′+1, i

′
s′ 6= is′+2, but i′t+1 = i′t+3, then s′ /∈ {t + 1, t + 2}. In particular,

{it, a} /∈ {{i, k}, {j, ℓ}}. This immediately implies that |Indi(P )| = 1 and

(2.49) Indi(P ) =

{
{s′} if s′ ≤ t

{s′ − 2} if s′ ≥ t+ 3
.

The lemma is proved. �

Thus, for any i ∈ IP we see that {i′′ ∈ [n]• : i′′ ≺ i} ⊂ IP , in particular, [i] ∈ IP .
The proposition is proved. �

For a, b ∈ [n] and 1 ≤ s < r define the map jsab : [n]
r → [n]r+2 by (. . . , is, is+1, . . .) 7→ (. . . , is, a, b, is+1, . . .).

Define a map JP : IP × {−1, 1} → [n]• × {−1, 1} by

(2.50) JP (i, ε) = (jsi′k′(i), (−1)(s−1)χ{i,j}(is))

where s := indi(P ) and χ{b,c}(a) is the characteristic function, i.e., it is 1 if a ∈ {b, c} and 0 otherwise, and
the pair (i′, k′) is determined by {i′, k′} = P \ {is, is+1} and:

• If s is odd then {i′} = P ε \ {is, is+1}, where we abbreviated P ε :=

{
{i, j} if ε = −1

{k, ℓ} if ε = 1
.

• If s is even then {i′} =





{is−1} if is−1 ∈ P \ {is, is+1}

P \ {is, is+1, is+2} if is+2 ∈ P \ {is−1, is, is+1}

{i, j} \ {is, is+1} otherwise

.



22 ARKADY BERENSTEIN AND VLADIMIR RETAKH

Let ÎP be the set of all (i, ε) ∈ IP × {−1, 1} such that
• if s = indi(P ) is even, then ε = 1;
• if s = indi(P ) is odd then:
(i) If {is−1} = P ε \ {is, is+1}, {is+2} = P−ε \ {is, is+1}, is−2 6= is, is+3 6= is+1, then is ∈ {i, j}.
(ii) If {is−1} = P ε \ {is, is+1}, {is+2} 6= P−ε \ {is, is+1}, then is−2 6= is+1.

Proposition 2.76. JP (ÎP ) ⊂ ÎP , that is, JP is a map JP : ÎP → ÎP .

Proof. We need the following fact.

Lemma 2.77. Let i ∈ IP and let s = indi(P ). Then

(2.51) Indjs
i′k′ (i)(P ) = {indi(P ) + 1}

for any i′, k′ ∈ [n] such that {i′, k′} = P \ {is, is+1}.

Proof. Let s = indi(P ) and i′ := jsi′k′(i). Note that s+ 1 ∈ Indi′(P ) because {i′s+1, i
′
s+2} ∈ {{i, k}, {j, ℓ}}.

This and the fact that {i′s, i
′
s+1, i

′
s+2, i

′
s+3} = P imply that s /∈ Indi′(P ) and s + 2 /∈ Indi′(P ). Finally, if

s′′ ≤ s− 1 (res. s′′ ≥ s+ 3), then s′′ /∈ Indi′(P ) because s
′′ /∈ Indi(P ) (resp. because s

′′ − 2 /∈ Indi(P )).
This proves (2.51). �

Furthermore, let (i, ε) ∈ ÎP , (i
′, ε′) := JP (i, ε), s := Indi(P ), s

′ = Indi′(P ). By Lemma 2.77, s′ = s + 1.

This, in particular, implies that ε′ = (−1)(s−1)χ{i,j}(is) ∈ {1, (−1)s
′

}. If s is odd, this proves the desired

inclusion JP (i, ε) ∈ ÎP .
It remains to consider the case when s is even. Indeed, i′ = ji′,k′(i), where i′ = i′s′ , k

′ = i′s′+1 are given by
the even case of (2.50). Note that

(2.52) Pε′ =

{
{i, j} if is ∈ {i, j}

{k, ℓ} if is ∈ {k, ℓ}
, P−ε′ =

{
{i, j} if is+1 ∈ {i, j}

{k, ℓ} if is+1 ∈ {k, ℓ}

hence {is} = {i′s′−1} = Pε′ \ {i′s′ , i
′
s′+1}, {is+1} = {i′s′+2} = P−ε′ \ {i′s′ , i

′
s′+1}.

Finally, i′s′−2 6= i′s′ and i
′
s′+1 6= i′s′+3 if and only if {is−1, is+2} ∩ P = ∅ hence {i′} = {i, j} \ {is, is+1}.

This proves that JP (i, ε) ∈ ÎP for even s as well.
The proposition is proved. �

Denote by [IP ] ⊂ IP the set of all i ∈ ÎP such that i = [i] is minimal in the partial order ≺ and abbreviate

[ÎP ] := ÎP ∩ ([IP ]× {−1, 1}).

Proposition 2.74 guarantees that the assignment i 7→ [i] defines a projection IP → [IP ] (resp. ÎP → [ÎP ]).

Proposition 2.78. The assignment (i, ε) 7→ [JP (i, ε)] defines an involution [JP ] : ÎP → ÎP .

Proof. Let (i, ε) ∈ [ÎP ], let s := indi(P ), (i
′, ε′) := [JP (i, ε)], s

′ := indi′(P ). By definition,

(2.53) i′ = [(. . . , is, i
′, k′, is+1, . . .)] =





(. . . , is, i
′, k′, is+1, . . .) if i′ 6= is−1, k

′ 6= is+2

(. . . , is−1, is+2, . . .) if i′ = is−1, k
′ = is+2

(. . . , is−1, is, i
′, is+2, . . .) if i′ 6= is−1, k

′ = is+2

(. . . , is−1, k
′, is+1, is+2, . . .) if i′ = is−1, k

′ 6= is+2

in the notation (2.50). In particular, i′s′ = i′, i′s′+1 = k′.
Note that, by Lemma 2.77 and Proposition 2.74, s′ ≡ s+ 1 mod 2.
First, show that (i′, ε′) ∈ [ÎP ] (i.e., [JP ] is well-defined). If s is odd, this is obvious. Suppose that s is even.

Then we have in each of the cases of (2.53):

• i′ 6= is−1, k
′ 6= is+2. Since s

′ = s+1 and {i′s′−1, i
′
s′ , i

′
s′+1, i

′
s′+2} = P and i′ ∈ {i, j}, clearly, (i′, ε′) ∈ [ÎP ].

• i′ = is−1, k
′ = is+2. Since s

′ = s− 1 and {i′s′−1, i
′
s′+2} ∩ P = ∅, clearly, (i′, ε′) ∈ [ÎP ].

• i′ 6= is−1, k
′ = is+2. Since s

′ = s+1 and {is} = {i′s′−1} = P ε′ \ {i
′
s′ , i

′
s′+1}, {i

′
s′+2} = {is+3} 6= {is+1} =

P−ε′ \ {i
′
s′ , i

′
s′+1} by (2.52) and i′s′+1 = is+2 6= is−1 = i′s′−2, clearly, (i

′, ε′) ∈ [ÎP ].

• i′ = is−1, k
′ 6= is+2. Since s

′ = s− 1 and {i′s′+2} = P−ε′ \ {i
′
s′ , i

′
s′+1} by (2.52), clearly, (i′, ε′) ∈ [ÎP ].
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Furthermore, let (i′′, ε′′) = JP (i
′, ε′). That is,

i′′ = js
′

i′′,k′′(i′) ,

where ε′′ = (−1)(s
′−1)χ{i,j}(i

′
s′), {i′′, k′′} = {is, is+1} and one has (note that {i′s′ , i

′
s′+1} = {i′, k′}):

• If s is even, then {i′} =





{is−1} if is−1 ∈ P \ {is, is+1}

P \ {is, is+1, is+2} if is+2 ∈ P \ {is−1, is, is+1}

{i, j} \ {is, is+1} otherwise

, ε′ = (−1)χij(is), and:

(2.54) {i′′} = P ε′ \ {i
′
s′ , i

′
s′+1} = P ε′ \ {i

′, k′} =

{
{i, j} \ {i′} if is ∈ {i, j}

{k, ℓ} \ {k′} if is ∈ {k, ℓ}
= {is} .

• If s is odd, then: {i′} = P ε \ {is, is+1},

(2.55) {i′′} =





{i′s′−1} if i′s′−1 ∈ P \ {i′, k′}

P \ {i′, k′, i′s′+2} if i′s′+2 ∈ P \ {i′s′−1, i
′, k′}

{i, j} \ {i′, k′} otherwise

.

First, show that ε′′ = ε. Indeed, by the above, ε′′ = (−1)sχ{i,j}(i
′). Since ε ∈ {1, (−1)s}, then the above

implies that for even s one has ε′′ = ε = 1. If s is odd, then, by definition, i′ ∈ {i, j} iff ε = −1. This proves
that ε′′ = ε in this case as well.

Thus, it remains to prove that

(2.56) i � i′′ .

To do so, consider show that i′′ = is in each case of (2.53):
• i′ 6= is−1, k

′ 6= is+2, s
′ = s + 1, i′′ = (. . . , is, i

′, i′′, k′′, k′, is+1, . . .), where for even s we have i′′ = is by
(2.54) and for odd s we also have i′′ = is by (2.55) because i′s′−1 = is and i′s′+2 = is+1.

• i′ = is−1, k
′ = is+1, e.g., {is−1, is+2} = P \ {is, is+1}, s′ = s− 1, i′′ = (. . . , is−1, i

′′, k′′, is+2, . . .), where
for even s, i′′ = is by (2.54) and for odd s we have: is−1 ∈ Pε, is+2 ∈ P−ε, is−2 6= is, is+3 6= is+1 hence
is ∈ {i, j} and: {i′′} = {i, j} \ {is−1, is+2} = is by (2.55).

• i′ 6= is−1, k
′ = is+2, s

′ = s + 1, i′′ = (. . . , is, i
′, i′′, k′′, is+2, . . .), where for even s, i′′ = is by (2.54) and

for odd s we have {i′′} = P \ {i′, k′} = {is} by (2.55) because is = i′s′−1 ∈ P \ {i′, k′}.
• i′ = is−1, k

′ 6= is+2, s
′ = s − 1, i′′ = (. . . , is−1, i

′′, k′′, k′, is+1, is+2, . . .), where for even s, i′′ = is by
(2.54) and for odd s we have {i′′} = P \ {i′, k′, i′s′+2} = {is, is+1} \ {is+1} = {is} by (2.55) because:

• is−1 ∈ Pε \ {is, is+1}, is+2 /∈ P−ε \ {is, is+1} hence is−2 6= is+1.
• is+1 = i′s′+2 ∈ P \ {i′s′−1, i

′, k′} = {is, is+1} \ {is−2}.
Thus, i′′ = is, k

′′ = is+1 in all cases, which immediately implies (2.56) in all these cases.

This proves that [JP ] is an involution on [ÎP ].
The proposition is proved. �

Now suppose that P = (i, j, k, ℓ) where ∆ \∆′ = {(i, k), (k, i)}, ∆′ \∆ = {(j, ℓ), (ℓ, j)}, as in Lemma 2.72.
In what follows, we assume that (p, i)∩ (j, ℓ) = ∅ and (pq)∩ (i, j) 6= ∅ (i.e., informally speaking, (i, j) is closer
to p than (k, ℓ)).

By Definition 2.9 of admissible sequences, if i ∈ Adm∆(p, q) ⊂ [IP ] ⊔ Adm∆′(p, q) then [i] = i is minimal,

its index s := indi(P ) is positive and unique, and {is, is+1} =

{
{i, k} if i ∈ Adm∆(p, q)

{j, ℓ} if i ∈ Adm∆′(p, q)
.

Proposition 2.79. Let ∆,∆′ be triangulations of [n] and P = (i, j, k, ℓ) as above. Then the restriction of

[JP ] to (Adm∆′(p, q)× {−1, 1})∩ [ÎP ] is a bijection:

(2.57) J∆,∆′ : (Adm∆′(p, q)× {−1, 1}) ∩ [ÎP ]→̃(Adm∆(p, q)× {−1, 1})∩ [ÎP ]

Proof. We need the following obvious fact.

Lemma 2.80. Let i ∈ Adm∆(p, q) ⊔ Adm∆′(p, q) such that s := indi(P ) > 0. Then

(i) If s is even, then (i, 1) belong to [ÎP ].

(ii) If s is odd, then both (i, 1) and (i,−1) belong to [ÎP ].
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Furthermore, for any triangulation ∆ of [n] and any p, q ∈ [n] denote by PreAdm∆(p, q) the set of all
i ∈ [n]• such that [i] ∈ Adm∆(p, q). We need the following fact.

Lemma 2.81. In the assumptions of Proposition 2.79, let i ∈ Adm∆′(p, q) and suppose that s = indi(P ) > 0.
Then:

(a) if s is odd, then jsi′,k′(i) ∈ PreAdm∆(p, q) whenever {is, is+1, i
′, k′} = {i, j, k, ℓ}.

(b) If s is even then [JP (i, 1)] ∈ Adm∆(p, q)× {−1, 1}.

Proof. In what follows, we will write p ≤ p′ for any points p,p′ in the chord (p, q) such that either p = p′

or p is closer to p than p′.
Prove (a). Indeed, it suffices to show that for i = (i1, . . . , i2m) ∈ Adm∆′(p, q), one has

(2.58) i′ := (. . . , is, i
′, k′, is+1, . . .) ∈ PreAdm∆(p, q) ,

where s = indi(P ) is odd (note that {is, is+1} = {j, ℓ} and {i′, k′} = {i, k}).
Let p− and p+ be the intersection points of (p, q) respectively with (is−1, is) and (is+1, is+2) (with the

convention that p− = p if s = 1 and p′ = q if s = 2m− 1). Clearly, p− < p+.
We now consider a number of cases.
Case 1. Suppose that (p, q)∩(is, is+1) 6= ∅, 3 ≤ s ≤ 2m−3 (i.e., {p, q}∩{i, j, k, ℓ} = ∅). Since (ir, ir+1) ∈ ∆

for r = s − 1, s, s+ 1, the above and convexity of the n-gon [n] imply that there exist i′′, k′′ ∈ [n] such that
{i′′, k′′} = {i′, k′} and (p, q) ∩ (is, i

′′) 6= ∅, (p, q) ∩ (is, k
′′) 6= ∅, (p, q) ∩ (i′, k′) 6= ∅ and

p− ≤ (p, q) ∩ (is, i
′′) < (p, q) ∩ (i′, k′) < (p, q) ∩ (is, k

′′) ≤ p+ .

In turn, this immediately implies (2.58) in this case.
Case 2. Suppose that (p, q) ∩ (is, is+1) = ∅, 3 ≤ s ≤ 2m − 3. By definition, p− < p0 < p+. Then the

convexity of the n-gon [n] implies that there exist i′′, k′′ ∈ [n] such that {i′′, k′′} = {i′, k′} and (p, q)∩(is, k′′) =
∅, (p, q) ∩ (is+1, k

′′) = ∅. This and the facts that (i′′, k′′) ∩ (is, is+1) 6= ∅ and that i′′ does not belong to the
convex hull of p−, p+, is, is+1 imply that (p, q) ∩ (is, i

′′) 6= ∅, (p, q) ∩ (is+1, i
′′) 6= ∅, (p, q) ∩ (i′, k′) 6= ∅ and

p− ≤ (p, q) ∩ (is, i
′′) < (p, q) ∩ (i′, k′) < (p, q) ∩ (is+1, k

′′) ≤ p+ .

In turn, this immediately implies (2.58) in this case.
Case 3. Suppose that s = 1 or s = 2m − 1. If s = 1 = 2m − 1, we have nothing to prove because

i = (i1, i2) = (p, q), i′ = (p, i′, k′, q) ∈ Adm∆(p, q). Therefore it remains to consider the sub-case when s = 1,
m ≥ 2 (the sub-case s = 2m − 1 ≥ 3 is identical to it). Indeed, the facts that (i′, k′) ∩ (i1, i2) 6= ∅ implies
that there exist i′′, k′′ ∈ [n] such that {i′′, k′′} = {i′, k′} and (p, q) ∩ (i1, i

′′) = ∅. This and the facts that
(i′′, k′′) ∩ (i1, i2) 6= ∅ and that k′′ does not belong to the convex hull of p− = p = i1, i2 p+ imply that
(p, q) ∩ (i2, k

′′) 6= ∅, (p, q) ∩ (is+1, i
′′) 6= ∅, (p, q) ∩ (i′, k′) 6= ∅ and

(p, q) ∩ (i′, k′) < (p, q) ≤ p+ .

In turn, this immediately implies (2.58) in this case.
This finishes the proof of part (a).
Prove (b) now. That is, we have to show that

(2.59) i′ := [(. . . , is, i
′, k′, is+1, . . .)] ∈ Adm∆(p, q) ,

where s = indi(P ) is even and i′, k′ are as in (2.50) (note that {is, is+1} = {j, ℓ} and {i′, k′} = {i, k}).
Denote p0 := (p, q) ∩ (is, is+1) and consider a number of cases.
Case 1. Suppose that {is−1, is+2} = {i, k}. Then i′ = is−1, k

′ = is+2 by (2.50) and

i′ = (. . . , is−1, is+2, . . .) ,

i.e., i′ is obtained from i by simultaneously replacing is with is−1 and is+1 with is+2. This immediately
implies (2.59) in this case.

Case 2. Suppose that is+2 ∈ {i, k}, is−1 /∈ {i, k} (the case is−1 ∈ {i, k}, is+2 /∈ {i, k} is identical to it).
Then k′ = is+2 by (2.50) and

i′ = (. . . , is, i
′, is+2, . . .) ,

i.e., i′ is obtained from i by replacing is+1 with i
′. Thus, to prove (2.59), it suffices to show that (p, q)∩(is, i′) 6=

∅. Indeed, suppose that (p, q) ∩ (is, i
′) 6= ∅. If s = 2, is−1 = p /∈ {i, k}, then taking into account that

(is, i
′) ∈ ∆, we see that i′ belongs to the interior of the convex hull of p,p0, is. If s ≥ 4, (is−2, is−1) ∈ ∆,
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(p, q)∩ (is−2, is−1) 6= ∅, we then i′ belongs to the interior of the convex hull of p,p0, is−1, is. This contradicts
to that i′ is a vertex of the convex n-gon [n], which immediately implies (2.59) in this case.

Case 3. Suppose that {is−1, is+2} ∩ {i, k} = ∅ Then i′ = i, k′ = k by (2.50) and

i′ = (. . . , is, i, k, is+2, . . .) .

Thus, to prove (2.59), it suffices to show that (p, q)∩(is, i) 6= ∅, (p, q)∩(k, is+1) 6= ∅. Since (p, i)∩(j, ℓ) = ∅,
using the same argument as in Case 2, we see that if (p, q)∩ (is, i) = ∅, then i′ belongs to the interior of the
convex hull of p,p0, is−1, is; and if (p, q) ∩ (k, is+1) = ∅, then k belongs to the interior of the convex hull of
q,p0, is, is+1. This finishes the proof of (2.59) in this case.

This finishes the proof of (b).
Lemma 2.81 is proved. �

Using Lemma 2.81(b) with P = (i, j, k, ℓ) such that (p, i) ∩ (j, ℓ) = ∅ and (p, q) ∩ (i, j) 6= ∅ and Lemma
2.81(a) with any i′, k′ such that {i′, k′} = {i, k}, we see that

[JP ]((Adm∆′(p, q)× {−1, 1})∩ [ÎP ]) ⊂ (Adm∆(p, q)× {−1, 1})∩ [ÎP ]

hence J∆,∆′ given by (2.57) is a well-defined map

(Adm∆′(p, q)× {−1, 1})∩ [ÎP ] →֒ (Adm∆(p, q)× {−1, 1})∩ [ÎP ] .

Interchanging ∆ and ∆′, taking into account that (p, j) ∩ (i, k) = ∅, and applying Lemma 2.81 again, we see
that

[JP ]((Adm∆(p, q)× {−1, 1})∩ [ÎP ]) ⊂ (Adm∆′(p, q)× {−1, 1})∩ [ÎP ] .

This gives a well-defined map

J∆′,∆ : (Adm∆(p, q)× {−1, 1})∩ [ÎP ] →֒ (Adm∆′(p, q)× {−1, 1})∩ [ÎP ] .

Since [JP ] is an involution by Proposition 2.78, the maps J∆,∆′ and J∆′,∆ are inverse of each other, hence
each of them is a bijection.

The proposition is proved. �

Furthermore, we need the following obvious fact.

Lemma 2.82. In the assumptions of Lemma 2.72 let s ∈ [2m− 1] be odd and let i = (i1, . . . , i2m) ∈ [n]2m,
m ≥ 1 be such that {is′ , is′+1} 6= {j, ℓ} for r ∈ [2m− 1] \ {s}.

(a) If {is, is+1} = {j, ℓ} then ϕ∆,∆′(ti) = tjs
ik
(i) + tjs

ki
(i).

(b) If {is, is+1} = {i, k}, then ϕ∆,∆′(tjs
jℓ
(i) + tjs

ℓj
(i)) = ti.

Now we are ready to prove (2.47). Indeed, t∆
′

pq = t0 + t− + t+, where

t0 =
∑

i′∈Adm∆′(p,q):indi′ (P )=0

ti′ , t− =
∑

i′∈Adm∆′(p,q):indi′ (P )∈2Z+1

ti′ , t+ =
∑

i′∈Adm∆′(p,q):indi′ (P )∈2Z≥1

ti′ .

Clearly,

ϕ∆,∆′(t0) = t0 =
∑

i∈Adm∆(p,q):indi(P )=0

ti .

Furthermore, combining Proposition 2.79 and Lemma 2.82, we obtain:

ϕ∆,∆′(t−) =
∑

i′∈Adm∆′(p,q):indi(P )∈2Z+1

tJ∆,∆′(i,1) + tJ∆,∆′(i,−1) =
∑

i∈Adm∆(p,q):indi(P )∈2Z≥1

ti ,

ϕ∆,∆′(t+) =
∑

i∈Adm∆(p,q):indi(P )∈2Z+1

ϕ∆,∆′(tJ∆′,∆(i,1) + tJ∆′,∆(i,−1)) =
∑

i∈Adm∆(pq):indi(P )∈2Z+1

ti .

This finishes the proof of (2.47).
Furthermore, we define a homomorphism ψ∆,∆′ as follows. First, composing ϕ∆,∆′ with the universal

localization by S∆ and taking into the account that t∆jℓ ∈ S∆, we obtain a homomorphism of algebras:

ϕ′
∆,∆′ : QT∆′ → QT∆[(t

∆
jℓ)

−1]



26 ARKADY BERENSTEIN AND VLADIMIR RETAKH

such that ϕ′
∆,∆′(t∆

′

ij ) = t∆ij for all i, j. Since t∆ij ∈ S∆ is invertible in the image, ϕ′
∆,∆′ canonically extends to

a homomorphisms of algebras
ψ∆,∆′ : QT∆′ [S−1

∆′ ] → QT∆[S
−1
∆ ] .

Switching ∆ and ∆′ we obtain a homomorphism ψ∆′,∆ : QT∆[S
−1
∆ ] → QT∆[S

−1
∆′ ], which is, clearly, inverse of

ψ∆,∆′.
This proves Theorem 2.71 for neighboring triangulations ∆,∆′.
Now we prove Theorem 2.71 for any (non-neighboring) triangulations ∆,∆′ of [n] as follows. We say

that the distance dist(∆,∆′) is the minimal number d ≥ 0 such that there is a sequence of triangulations
∆ = ∆(0),∆(1), . . . ,∆(d) = ∆′ of [n] such that ∆(s),∆(s+1), s ∈ [r − 1] are neighboring.

We construct appropriate ϕ∆,∆′ by induction in dist(∆,∆′). If dist(∆,∆′) = 1, then ∆ and ∆′ are
neighboring and we have nothing to prove. Suppose that d = dist(∆,∆′) > 1. Then there is a triangulation
∆′′ of [n] with dist(∆,∆′′) < d and dist(∆′′,∆′) < d.

By the inductive hypothesis, there are isomorphisms

ψ∆,∆′′ : QT∆′′ [S−1
∆′′ ] → QT∆[S

−1
∆ ], ψ∆′′,∆′ : QT∆′ [S−1

∆′ ] → QT∆′′ [S−1
∆′′ ]

such that ψ∆,∆′′(t∆
′′

ij ) = t∆ij and ψ∆′′,∆′(t∆
′

ij ) = t∆
′′

ij for all i, j.

Define ψ∆,∆′ := ψ∆,∆′′ ◦ ψ∆′′,∆′ . By definition, ψ∆,∆′ is an isomorphism QT∆′ [S−1
∆′ ] → QT∆[S

−1
∆ ] such

that ψ∆,∆′′(t∆
′

ij ) = t∆ij for all i, j. In particular, ψ∆,∆′ does not depend on the choice of ∆′′. This finishes the
induction.

The transitivity (2.44) also follows.
Theorem 2.71 is proved. �

Furthermore, we need the following result.

Proposition 2.83. In the notation of Theorem 2.71, for each triangulation ∆ of [n] the homomorphism
i∆ : QT∆ → A∆ ⊂ An given by (2.4) extends to an isomorphism of algebras QT∆[S

−1
∆ ]→̃An.

Proof. We need the following result.

Lemma 2.84. Let ∆ be any triangulation of [n]. Then
(i) For any distinct i, j, k ∈ [n], the elements x′ab := t∆ab, {a, b} ⊂ {i, j, k} satisfy the triangle relations (2.1).
(ii) For any cyclic quadruple (i, j, k, ℓ) the elements x′ab := t∆ab, {a, b} ⊂ {i, j, k, ℓ} satisfy the exchange
relations (2.2).

Proof. Indeed, to prove (i) note that for any distinct i, j, k ∈ [n] there exists a triangulation ∆0 such that
(i, j, k) is a triangle in ∆0 therefore, the elements tab ∈ T∆′ , {a, b} ⊂ {i, j, k} satisfy (2.1). Applying the
isomorphism ψ∆,∆0 given by (2.71), we finish the proof of (i).

To prove (ii) note that for any cyclic (i, j, k, ℓ) there exists a triangulation ∆0 such that both triangles

(i, j, k) and (j, k, ℓ) belong to ∆0 (hence (j, ℓ) /∈ ∆0). By (2.45) for ∆0, we see that t∆0

ab , {a, b} ⊂ {i, j, k, ℓ}
satisfy (2.2).

Thus applying the isomorphism ψ∆,∆0, we finish the proof of (ii).
The lemma is proved. �

By Lemma 2.84, the assignment xpq 7→ t∆pq for all distinct p, q ∈ [n] defines an epimorphism of algebras

An ։ QT∆[S
−1
∆ ] .

On the other hand, by (already proved) Theorem 2.10, for each triangulation ∆ of [n] and any distinct i, j ∈ [n]
the element xij ∈ i∆(QT∆). Therefore, by the universality of localizations, i∆ extends to an epimorphism of

algebras î∆ : QT[S−1
∆ ] ։ An. Clearly, these two homomorphisms are mutually inverse.

This finishes the proof of Proposition 2.83. �

Furthermore, denote by S the submonoid of A∆ \ {0} generated by all xij . Clearly, S = i∆(S∆) and
A∆ = i∆(QT∆). Therefore, An = A∆[S

−1].
This proves Theorem 2.8. �

Finally, Theorem 2.3 follows from Theorem 2.8 and that A′
n := A∆ = i∆(QT∆) is the group algebra of

T∆, which is a free group in 3n− 4 generators by (already proved) Theorem 2.7. �
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2.15. Self-similarity implies injectivity. In this section we prove the following result.

Proposition 2.85. If Conjecture 5.18 holds for m = 3n − 4, n ≥ 4 and k = 2, . . . , n − 2, then for each
triangulation ∆ of [n] the homomorphism of algebras

An → F3n−4 ,

which is the canonical (by Proposition 2.83 and Lemma 5.1) extension to An
∼= QT∆[S

−1
∆ ] of the natural

inclusion QT∆ →֒ Frac(QT∆) ∼= F3n−4 is a also a monomorphism (hence An has no zero divisors).

Proof. it suffices to show that for at lest one triangulation ∆ of [n] the submmonoid Ŝ∆ ⊂ QT∆ \ {0}
generated by all t∆ij and by (QT∆)

× = Q× · T∆ is factor-closed in the sense of Definition 5.4. Since T∆ is a

free group by Theorem 2.7, in view of Proposition 5.15, it suffices to verify that each t∆ij , (i, j) /∈ ∆ is prime

in QT∆ and all primes similar to tij belong to Ŝ∆. Now let ∆ = ∆1 be the starlike triangulation as in (2.6)
with i = 1.

We need the following obvious fact.

Lemma 2.86. For all n ≥ 2 the group T∆1 is freely generated by τj := T j,j+1
1 , j = 2, . . . , n − 1, t1,k, tk,1,

k = 2, . . . , n.

Proof. Clearly, T∆1 has a presentation tj,j+1 = tj,1τjt1,j+1, tj+1,j = tj+1,1τjt1j for j = 2, . . . , n− 1.
This proves the lemma. �

Furthermore, Corollary 2.22 implies that the monoid Ŝ∆1 is generated by T∆1 and noncommutative angles

T ij
1 = τi + . . .+ τj

for 2 ≤ i < j ≤ n. Clearly, each T ij
1 , i < j − 1 is prime in QT∆1 . Let Pij := Q× · T∆1 · T ij

1 · T∆1 for

2 ≤ i < j ≤ n. By Conjecture 5.18 with m = 3n − 4, k = j, that the only primes similar to T ij
1 are

elements of Pij . This together with Proposition 5.15 and Remark 5.14 proves that the submonoid Q× · Ŝ∆1

of QT∆1 \ {0} is factor-closed because it is generated by Q× ·T∆1 and P =
⋃

2≤i<j≤n

Pij . Therefore, Corollary

5.13 guarantees that QT∆1 [S
−1] = QT∆1 [Q

× · Ŝ−1
∆1

] is a subalgebra of F3n−4 = Frac(QT∆1).
Using this and Proposition 2.83 with ∆ = ∆1, we finish the proof of Proposition 2.85. �

3. Noncommutative surfaces

In this section we extend all the constructions and results of Section 2 to marked surfaces i.e., (connected
compact smooth) surfaces Σ possibly with boundary equipped with a non-empty finite set I = I(Σ) = Ib ⊔ Ip
of marked points with a subset Ib = Ib(Σ) ⊂ I of marked boundary points, the set Ip = Ip(Σ) = I \ Ib of
ordinary punctures and a set Is = Is(Σ) of special punctures (which were called orbifold point of order 2 in
[18], however, we will not use this terminology). We also require that each boundary component contains at
least one point from Ib. We denote by Σ the underlying topological space.

3.1. Multi-groupoid of curves on Σ. Given points p1, p2 ∈ I(Σ), consider connected smooth directed
curves C in Σ \ Ip(Σ) starting at p1 and terminating at p2. For a curve C denote by C the same curve
traversed from p2 to p1. We say that curves C and C′ in Σ from p1 to p2 are equivalent if C and C′ are
homotopy equivalent as (connected smooth directed) curves in Σ \ Ip(Σ).

Pairwise non-equivalent curves from puncture 1 to puncture 2
Denote by Γij = Γij(Σ) the set of equivalence classes of curves C in Σ which originate at i and terminate

at j then let Γ = Γ(Σ) :=
⊔

i,j∈I(Σ)

Γij . For γ ∈ Γij we denote by s(γ) ∈ I(Σ) (resp. by t(γ) ∈ I(Σ)) the source

i (resp. the target j).
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Thus we have a natural involution · : Γ →̃Γ (γ 7→ γ). By definition, Γij = Γj,i for all i, j ∈ I(Σ).

Involution γ 7→ γ

For j ∈ I(Σ) denote by idj the trivial loop at j. Clearly, γ = γ iff γ is trivial.
It is easy to see that Γ(Σ) is finite iff Σ is homeomorphic to an n-gon, i.e., a disk with n ≥ 1 marked points

and no punctures. In that case, the assignment γ 7→ (s(γ), t(γ)) defines a bijection Γ→̃{(i, j) ∈ [n], i 6= j}.
We say that γ ∈ Γ(Σ) is simple if it has a non-self-intersecting representative. Denote by Γ0(Σ) the set of

all simple γ ∈ Γ(Σ).

Definition 3.1. We say that a pair (γ, γ′) in Γ(Σ) is composable if t(γ) = s(γ′) and define the composition
γ′′ = γ◦γ′ to be the pullback, under the natural projection Γ(Σ) ։ Γ(Σ\(Ip(Σ)\{t(γ)})) of the concatenation
of γ and γ′.

Clearly, the multi-composition γ ◦ γ′ is a 1-element set element iff t(γ) = s(γ) ∈ Ib(Σ) Otherwise γ ◦ γ′ is
a countable set.

Multi-composition: {γ−, γ, γ+} ∈ (1, 0) ◦ (0, 2).

The following is immediate.

Lemma 3.2. For each marked surface Σ the set Γ(Σ) is a multi-groupoid with the object set I(Σ) and the
inverse given by γ−1 := γ.

Remark 3.3. A multi-category (e.g., a multi-groupoid) is a natural generalization of a category (e.g., of a
groupoid) where we allow the composition of two morphisms to be a set of arrow and require the associativity
(γ ◦ γ′) ◦ γ′′ = γ ◦ (γ′ ◦ γ′′), which is an equality of sets.

Remark 3.4. If Ip(Σ) = ∅, then Γ(Σ) is an ordinary groupoid (cf. [12, Section 2.2]).

3.2. Category of surfaces and reduced curves.

Definition 3.5. Given a continuous map f : Σ → Σ′ with discrete fibers, we say that f is a morphism of
marked surfaces Σ → Σ′ if:

• f−1(I(Σ′)) = I(Σ), f(Is(Σ)) ⊂ Is(Σ
′) (we abbreviate If := f−1(Is(Σ

′)) \ Is(Σ)).
• For each point p ∈ Σ \ If there is a neighborhood Op of p in Σ such that the restriction of f to Op is

injective (if p ∈ ∂Σ is a boundary point, then Op is a “half-neighborhood”).
• For each p ∈ If there is a neighborhood Op of p in Σ such that the restriction of f to Op is a two-fold

cover of f(Op) ramified at f(p).

Theorem 3.6. For any morphisms marked surfaces f : Σ → Σ′ and f ′ : Σ′ → Σ′′ the composition f ′ ◦ f :
Σ → Σ′′ is also a morphism of marked surfaces Σ′ → Σ′′.

We prove Theorem 3.6 in Section 3.11.
In what follows, denote by Surf the category whose objects are marked surfaces and arrows are morphisms

of marked surfaces.
Note that if f : Σ → Σ′ is a morphism in Surf with If = ∅, then f respects (homotopy) equivalence of

curves and, in particular, defines a map Γ(Σ) → Γ(Σ′). In general, this is no longer true. To fix it, we define
below a stronger equivalence relation than the equivalence for curves in Σ′.

Indeed, given i ∈ Is(Σ), we say that a curve C in Σ is i-reducible if there is a self-intersection point p ∈ C
such that the loop C0 ⊂ C defined by p encloses exactly one special puncture i; otherwise, C is i-reduced.
Respectively, γ ∈ Γ(Σ) is i-reducible (resp. i-reduced) if γ has an i-reducible (resp. i-reduced) representative.
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Denote by [Γ(Σ)]i the set of all i-reduced γ ∈ Γ(Σ), abbreviate [Γ(Σ)] :=
⋂

i∈Is(Σ)

[Γ(Σ)]i and refer to elements

of [Γ(Σ)] as reduced. Clearly, [Γ(Σ)] = Γ(Σ) iff Is(Σ) = ∅. It is also clear that and each γ ∈ Γ0(Σ) is reduced.
For each i-reducible γ ∈ Γ(Σ) denote by [γ]i the class in Γ(Σ) obtained by resolving the self-intersecting

simple loop around i in (a generic representative C of) γ so that the resulting curve is connected (the “wrong”
crossing resolution would result in creating two connected components, one of which is a circle around i).

Crossing resolution
The following is obvious.

Lemma 3.7. (a) The assignment γ →

{
[γ]i if γ is i-reducible

γ if γ is i-reduced
defines a map πi : Γ(Σ) → Γ(Σ).

(b) πi ◦ πj = πj ◦ πi for all i, j ∈ Is(Σ).
(c) The assignment γ 7→ πN

i (γ) for sufficiently big N defines a projection π∞
i : Γ(Σ) → [Γ(Σ)]i.

(d) The composition π∞ :=
∏

i∈Is(Σ)

π∞
i is a projection Γ(Σ) → [Γ(Σ)].

This, in particular, defines an equivalence relation on [Γ(Σ)], namely for γ, γ′ ∈ Γ(Σ) we say that any
representatives C ∈ γ and C′ ∈ γ′ are Is(Σ)-equivalent iff π∞(γ) = π∞(γ′). We naturally identify Is(Σ)-
equivalence classes with elements of [Γ(Σ)].

For each i ∈ Is(Σ) and j ∈ I(Σ) let λij denote a (unique up to ·) simple loop at j around i in [Γ(Σ)]. We
refer to such loops as special. Clearly, each special loop λ determines a (homeomorphic) copy of P1(1) with
the marked point set {j} and the special puncture set {i}.

Lemma 3.8. For any marked surface Σ the set [Γ(Σ)] has a natural multi-groupoid structure:

[γ] ◦ [γ′] := [γ ◦ γ′]

for any composable (γ, γ′) in the multi-groupoid Γ(Σ) with the object set I(Σ). Moreover,
(i) the assignment γ 7→ [γ] is a surjective homomorphism of multi-groupoids Γ(Σ) ։ [Γ(Σ)].

(ii) For each i ∈ Is(Σ) and j ∈ I(Σ) each special loop satisfies λij = λij .

Special loops are involutions in [Γ(Σ)]

The following result asserts functoriality of the multi-groupoid under morphisms of surfaces.

Theorem 3.9. Let f be any morphism of marked surfaces Σ → Σ′ and let γ ∈ [Γ(Σ)]. Then
(a) for any generic representatives C,C′ ∈ γ, their images f(C) and f(C′) are Is(Σ

′)-equivalent.
(b) For each γ ∈ [Γ(Σ)] there exists a unique Is(Σ

′)-equivalence class f(γ) ∈ [Γ(Σ′)] such that f(C) ∈ f(γ)
for any generic curve C ∈ γ.

(c) f : [Γ(Σ)] → [Γ(Σ′)] (γ 7→ f(γ)) is a homomorphism of multi-groupoids.
(d) The assignment Σ 7→ [Γ(Σ)] is a functor from Surf to the category of multi-groupoids.
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Is(Σ)-equivalence of images of curves under the ramified double cover z 7→ z2 of C
We prove Theorem 3.9 in Section 3.11.
For n ≥ 1, h ≥ 0 denote by Pn(h) the n-gon (i.e., a disk with n marked boundary points) with h special

punctures and abbreviate Pn := Pn(0).
It is well-known that marked surfaces can be glued out of polygons, i.e., for any Σ there exists a surjective

gluing morphism f : Pn(h) ։ Σ in Surf with h = |Is(Σ)|, n ≥ 1 such that all f(i, i+) ∈ Γ0(Σ) and the
restriction of f to the interior of Pn(h) is injective. For readers’ convenience we construct such a gluing
morphism f in Lemma 3.47 for any triangulation of Σ.

The following fact is obvious.

Lemma 3.10. Let Σ be a marked surface. Then [Γ(Σ)] is finite if an only if Σ is homeomorphic either a
once punctured sphere or to [n] = Pn or to Pn(1) for some n ≥ 1. More precisely, the assignment

γ 7→

{
(s(γ), t(γ),+) if the special puncture is to the right of γ

(s(γ), t(γ),−) if the special puncture is to the left of γ

is a bijection [Γ(Pn(1))]→̃{(i, j) ∈ [n]} × {−,+}.

3.3. Polygons in surfaces, noncommutative surfaces and functoriality. We say that a sequence P =
(γ1, . . . , γr) of not necessarily distinct γi ∈ [Γ(Σ)], i ∈ [r], is cyclic if each pair (γi, γi+), i ∈ [r] is composable.

Definition 3.11. We say that a sequence P = (γ1, . . . , γn) is an n-gon in Σ if there exists a morphism
f : Pn → Σ such that f(i, i+) = γi for i ∈ [n]. We also denote γij := f(i, j) for all distinct i, j ∈ [n] (clearly,
γij is nontrivial for all distinct i, j ∈ [n]). We will refer to such an f as an accompanying to P morphism).

Clearly, each n-gon P = (γ1, . . . , γn) in Σ is cyclic and for any γ ∈ [Γ(Σ)] the pair (γ, γ) is a 2-gon in Σ.
It is convenient to define the interior P 0 of an n-gon P = (γ1, . . . , γn) to be the image of the interior of Pn

under an accompanying morphism (to do so we choose generic representatives Ci ∈ γi so that f(i, i+) = Ci

for i ∈ [i]). It is also clear that P 0 does not depend on the choice of f , and different choices of Ci ∈ γi result
in homotopic to each other morphisms f : Pn → Σ. We say that P is simple if P 0 is homeomerphic to a disk.

We will sometimes refer to an 3-gon in Σ respectively as a triangle and to a 4-gon – as a quadrilateral.

Non-simple triangles in an annulus and in P3(1)

Definition 3.12. For a marked surface Σ let AΣ be the Q-algebra generated by all xγ , γ ∈ [Γ(Σ)] subject to
(i) xγ = 1 if γ is trivial.
(ii) (triangle relations) For any triangle (γ1, γ2, γ3) in Σ one has

(3.1) xγ1x
−1
γ2
xγ3 = xγ3

x−1
γ2
xγ1

.

(iii) (exchange relations) For any quadrilateral (γ1, γ2, γ3, γ4) in Σ:

(3.2) xγ24 = xγ21x
−1
γ31
xγ34 + xγ23x

−1
γ13
xγ14 .
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Likewise (similarly to Section 2.5), we define the big triangle group TΣ of Σ to be generated by all tγ ,
γ ∈ [Γ(Σ)] subject to:

• tγ = 1 if γ is trivial.

• (triangle relations) tγ1t
−1
γ2
tγ3 = tγ3

t−1
γ2
tγ1

for all triangles (γ1, γ2, γ3) in Σ.

The following fact is obvious.

Lemma 3.13. For each marked surface Σ the assignment tγ 7→ xγ defines a homomorphism of groups:

(3.3) TΣ → A×
Σ .

It is natural to conjecture that this homomorphism is an isomorphism.
The following result is also obvious.

Lemma 3.14. (a) For each marked surface Σ there is a unique involutive anti-automorphism ·̄ of AΣ (resp.
of TΣ) such that xγ = xγ (resp tγ = tγ) for all γ ∈ [Γ(Σ)].

(b) If γ is a simple special loop around i ∈ Ip(Σ) ⊔ Is(Σ), then xγ = xγ (resp. tγ = tγ).

Remark 3.15. This bar anti-involution is analogous to the one in quantum algebras. Also, Lemma 3.14(b)
asserts that simple loops around an ordinary and special punctures are “close relatives.”

The following result, in fact, asserts that the assignments Σ 7→ TΣ and Σ 7→ AΣ are respectively functors
Surf → Groups and Surf → Q−Alg.

Theorem 3.16. For any morphism f : Σ → Σ′ in Surf the assignment tγ 7→ tf(γ) (resp. xγ 7→ xf(γ)) defines
a homomorphism of groups f⋆ : TΣ → TΣ′ (resp. of algebras f∗ : AΣ → AΣ′) and the following diagram is
commutative.

(3.4)

TΣ −−−−→ AΣ

f⋆

y f∗

y

TΣ′ −−−−→ AΣ′

We prove Theorem 3.16 in Section 3.11.

Definition 3.17. For a marked surface Σ denote by Σ̂ the marked surface obtained from Σ by turning each
special puncture into the ordinary one, i.e., Σ̂ = Σ, I(Σ̂) = I(Σ) ⊔ Is(Σ), Is(Σ̂) = ∅.

Clearly, [Γ(Σ)] ⊆ [Γ(Σ̂)] = Γ(Σ̂) and the complement [Γ(Σ̂)]\ [Γ(Σ)] consists of classes of curves originating
or terminating in formerly special punctures.

Proposition 3.18. The assignment tγ 7→ tγ for γ ∈ [Γ(Σ)] defines a homomorphism of groups

(3.5) TΣ → TΣ̂ ,

where Σ̂ is as in Definition 3.17.

Remark 3.19. It is natural to conjecture that (3.5) is injective. Note, however, that the natural identi-

fication Id : Σ →֒ Σ̂ is not a morphism in Surf since it takes Is(Σ) to Ip(Σ̂), so we expect that there is
no homomorphisms AΣ → AΣ̂, which together with (3.5) would make the diagram (3.4) commutative, and
illustrate this the following example.

Example 3.20. Let Σ = P2(1) with the vertex set I = {1, 2} and a single special puncture 0. For i ∈ I
denote by γi the clockwise loop at i around 0 inside Σ. For i, j ∈ I, i 6= j denote by γ+ij (resp. γ−ij ) the

boundary curve from i to j so that 0 is to the right (resp. to the left).

A quadrilateral in P2(1)
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We abbreviate xi := xγi
, xi := xγi

, x+ij := xγ+
ij
, x−ij := xγ−

ij
for the corresponding generators of AΣ.

Then, according to Definition 3.12, AΣ has a presentation:

x1 = x1, x2 = x2, x
+
21x

−1
1 x+12 = x−21x

−1
1 x−12, x

+
12x

−1
2 x+21 = x+12x

−1
2 x−21 ,

x2 = x+21x
−1
1 x−12 + x−21x

−1
1 x+12, x1 = x+12x

−1
2 x−21 + x−12x

−1
2 x+21 .

Let Σ̂ be obtained from Σ by converting all special punctures into ordinary ones (as in Definition 3.17).

Therefore, curves on Σ̂ are those on Σ plus four additional ones: directed intervals γ0,i from 0 to each i and

γi,0 := γ−1
0,i . We abbreviate the generators of AΣ̂ same way as in AΣ and x0,i := xγ0,i , xi,0 := xγi,0 .

Then, according to Definition 3.12, AΣ̂ has a presentation:

x1 = x1, x2 = x2, x
+
21x

−1
1 x+12 = x−21x

−1
1 x−12, x

+
12x

−1
2 x+21 = x−12x

−1
2 x−21, x01(x

±
21)

−1x20 = x02(x
±
12)

−1x10 ,

x1 = x10x
−1
20 (x

+
21 + x−21), x2 = x20x

−1
10 (x

+
12 + x−12) .

In particular,

x2 = x−21x
−1
1 x−12+x

+
21x

−1
1 x+12+x

−
21x

−1
1 x+12+x

+
21x

−1
1 x−12, x1 = x−12x

−1
2 x−21+x

+
12x

−1
2 x+21+x

−
12x

−1
2 x+21+x

+
12x

−1
2 x−21 .

Therefore, there is no homomorphism AΣ → AΣ̂ or AΣ̂ → AΣ which would send xi 7→ xi, x
±
ij 7→ x±ij (which

justifies Remark 3.19).

3.4. Triangulations of marked surfaces. Let Σ be a marked surface, given distinct γ, γ′ ∈ [Γ(Σ)], define
their intersection number nγ,γ′ ∈ Z≥0 to be the number of intersection points in the interiors of their generic
representatives minus the endpoints of γ and γ′. Clearly, nγ,γ′ is well-defined, i.e., does not depend on the
choice of representatives. By definition, nγ,γ′ = nγ′,γ = nγ,γ′ for all γ, γ′. Note that nγ,γ′ = 0 iff γ and γ′ do
not intersect (and may have only endpoints in common).

Given a marked surface Σ, we say that a subset Γ′ ⊂ Γ0(Σ) is non-crossing if nγ,γ′ = 0 for all distinct
γ, γ′ ∈ Γ′, i.e., one can simultaneously choose generic representatives of classes in Γ′ such that they pairwise
do not intersect in Σ and do not self-intersect (i.e., may have only endpoints in common). Furthermore, we
say that ∆ is a triangulation of Σ if ∆ is a maximal non-crossing subset of Γ0(Σ) such that ∆ = ∆.

Clearly, if Is(Σ) 6= ∅, then any triangulation ∆ of Σ has a special loop λij at some j ∈ Is(Σ) around each
i ∈ Is(Σ), i.e., λij defines a a 2-gon (λij , λij) in ∆ homeomorphic to P1(1). It is customary to fix a generic
representative of each γ0 ∈ ∆ so that Σ is literally cut into triangles and P1(1)’s.

It is well-known that all triangulations of Σ are finite of same cardinality. Moreover, any triangulation ∆′

can be obtained from a given triangulation ∆ by a sequence of flips of diagonals in quadrilaterals in ∆ (see
e.g., [20, Proposition 7.10] and [18, Theorem 4.2]).

Given an r-gon Q = (γ1, . . . , γr) in Σ and a triangulation ∆ of Σ. We say that γ0 ∈ ∆ is attracted to P
if either γ0 intersects P or there is a triangle τ = (γ−, γ0, γ+) in ∆ such that γ− intersects P ; denote by
∆0 = ∆0(P,∆) the set of all γ0 ∈ ∆ attracted to P .

The following is immediate.

Theorem 3.21. Let ∆ be a triangulation of Σ. Then for each r-gon Q = (γ′1, . . . , γ
′
r) in Σ there exists an

n-gon P = (γ1, . . . , γn) ∈ (∆0(Q,∆))n for some n ≥ r, a triangulation ∆0 of [n], and an order-preserving
embedding ι : [r] →֒ [n] such that:

(a) γij ∈ ∆0(Q,∆) iff (i, j) ∈ ∆0.
(b) γ′k = γι(k),ι(k+) for all k ∈ [r] (i.e., Q is a “sub-polygon” of P ).

In fact, if Q = (γ, γ), γ ∈ [Γ(Σ)], we will construct a canonical polygon P∆(γ) as follows.
We need the following obvious fact.

Lemma 3.22. Let ∆ be a triangulation of Σ and let γ ∈ [Γ(Σ)] \ ∆. Then there exists a unique (up to
relabeling) triangle τ1 = (γ1, γ−, γ+) ∈ ∆3 such that nγ,γ− > 0 and the closest to s(γ) intersection point of γ
with ∆ is the intersection point of γ and γ−.
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The initial triangle for γ

We refer to such a triangle as initial for γ. Fix the initial triangle τ as in Lemma 3.22 and denote by γ(1)

the unique (class of) curve which starts as γ−, follows this “route” until the first intersection point of γ−

and γ and then “becomes” γ. Repeating this process, we obtain a new initial triangle τs = (γs, γ
(s)
− , γ

(s)
+ ) for

γ(s), s = 1, . . . , j − 1, where j ≥ 2 is unique with γ(j) = γj ∈ ∆. This process converges by induction in
nγ,∆ :=

∑
γ0∈∆

nγ,γ0 because nγ,∆ > nγ(1),∆ > · · · > nγ(j),∆ = 0. Denote F∆(γ) := (γ1, . . . , γj) ∈ ∆j . and refer

to this sequence as a ∆-factorization of γ. By definition, γ ∈ γ1 ◦ · · · ◦ γj in the multi-groupoid [Γ(Σ)], which
justifies the terminology.

Finally, we set P∆(γ) := (F∆(γ), F∆(γ)) and refer to it as the canonical polygon of γ in ∆ due to the
following obvious result.

Lemma 3.23. Each P∆(γ) = (γ1, . . . , γn) is an n-gon in ∆.

Canonical polygon, no special punctures

Canonical polygon, no special punctures, γ self-intersects

Canonical polygon, one special puncture

3.5. Triangular groups and their topological invariance. For each triangulation ∆ of Σ we define the
triangle group T∆ = T∆(Σ) to be generated by all t±1

γ , γ ∈ ∆ subject to (same relations as in TΣ):
• tγ = tγop for all γ ∈ [Γ(Σ)] and tγ = 1 if γ is trivial.

• tγ1t
−1
γ2
tγ3 = tγ3

t−1
γ2
tγ1

for any triangle T = (γ1, γ2, γ3) in ∆.
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Also, for each triangulation ∆ of Σ denote by Y∆ the subgroup of T∆ generated by:

yγ,γ′ := t−1
γ tγ′

for all γ, γ′ ∈ ∆ such that (γ, γ′, γ′′) is a triangle in ∆ for some γ′′ ∈ ∆.

Theorem 3.24. For any two triangulations ∆ and ∆′ of a marked surface Σ there exists a group isomorphism:

f∆,∆′ : T∆
∼= T∆′

such that f∆,∆′(Y∆) = Y∆′ .

We prove Theorem 3.24 in Section 3.11.

Remark 3.25. Theorem 3.24 implies that isomorphism classes of groups T∆ and YΣ are topological invariants
of surfaces. However, by contrast with Theorem 3.16, we do not expect the assignment Σ 7→ T∆ to be
functorial.

Our next result is classification of triangle groups of marked surfaces.

Theorem 3.26. Let Σ be a marked surface with the Euler characteristic χ(Σ), the set I = I(Σ) 6= ∅ of marked
points, the set Ib ⊆ I of marked boundary points, and h = |Is| special punctures. Then for any triangulation
∆ of Σ one has:
(a) If Σ has a boundary or special punctures, then T∆ is a free group in:

• |I|+ 1 generators if Σ is a disk with |I|+ |Ib| = 2, h = 0.
• 2h+ 3|I| − 4 generators if Σ is a disk with |I|+ |Ib| = 2, h > 0.
• 2h+ 4(|I| − χ(Σ))− |Ib| generators otherwise.

(b) If Σ is a closed surface without special punctures, then T∆ is:
• Trivial if Σ is the sphere with |I| = 1.
• A free group in 3|I| − 4 generators if Σ is the sphere with |I| ∈ {2, 3}.
• A free group in 2 generators if Σ is the real projective plane with |I| = 1.
• A 1-relator torsion free group (in the sense of Definition 5.6) in 4(|I| − χ(Σ)) + 1 generators otherwise.

We prove Theorem 3.26 in Section 3.12 by choosing an appropriate triangulation of Σ.

Remark 3.27. If Σ has r boundary components, then it is homotopy equivalent to a bunch of g ≥ r circles
and χ(Σ) = 1 − g. If Σ is a closed orientable (resp. non-orientable) surface, then it is homeomorphic
the connected sum of g copies of the torus (resp. of the real projective plane) and χ(Σ) = 2 − 2g (resp.
χ(Σ) = 2− g).

Example 3.28. If ∆ is a triangulation of the torus, the Klein bottle, the real projective plane respectively
with one, one, two (ordinary) punctures, then T∆ is generated c1, c2, c1, c2, t3 subject to, respectively:

(i) for the torus with one puncture: c2t3c1c
−1
2 c1 = c1c

−1
2 c1t3c2, because ∆ is glued from a square with

diagonal (1, 3), where: S = {1, 2} ⊂ [4], σ(1) = 3, σ(2) = 4, ε(1) = ε(2) = + (equivalently, abcde = cbeda
after substitution a = t3, b = c1, c = c−1

2 , d = c1, e = c−1
2 ).

(ii) for the Klein bottle with one puncture: c2t3c1c
−1
2 c1 = c1c

−1
2 c1t3c2, because ∆ is glued from a square

with diagonal (1, 3), where: S = {1, 2} ⊂ [4], σ(1) = 3, σ(2) = 4, ε(1) = +, ε(2) = − (equivalently,
abcdc = ebeda after substitution a = t3, b = c1, c = c−1

2 , d = c1, e = c−1
2 ).

(iii) for the real projective plane with two punctures: c2t3c1c
−1
2 c1 = c1c

−1
2 c1t3c2, because ∆ is glued from

a square with diagonal (1, 3), where: S = {1, 2} ⊂ [4], σ(1) = 3, σ(2) = 4, ε(1) = ε(2) = − (equivalently,
abcbc = ededa after substitution a = t3, b = c1, c = c−1

2 , d = c1, e = c−1
2 ).

Example 3.29. If ∆ is a triangulation of the sphere with four punctures, we can view it as glued from a
regular hexagon with S = {1, 2, 5} ⊂ [6], σ(1) = 4, σ(2) = 3, σ(5) = 6, ε(1) = ε(2) = ε(5) = +. Then
T∆ is isomorphic to the group generated by c1, c2, c1, c2, t3, t4, t5 subject to the relation c2t3c2t4c1t5c1 =
c1t5c1t4c2t3c2.



NONCOMMUTATIVE MARKED SURFACES 35

3.6. Noncommutative Laurent Phenomenon for surfaces. The following result extends Noncommuta-
tive Laurent Phenomenon for n-gons (Theorem 2.10) to all marked surfaces.

Theorem 3.30. (Noncommutative Laurent Phenomenon for surfaces) Let Σ be a marked surface and let ∆
be a triangulation of Σ. Then for each γ ∈ [Γ(Σ)] the element xγ of AΣ belongs to the subalgebra of AΣ

generated by x±1
γ0

, γ0 ∈ ∆. More precisely, in the notation of Theorem 2.10, one has

(3.6) xγ =
∑

i∈Adm∆0(1,j)

xi ,

where ∆0 is the triangulation of [n] assigned (as in Theorem 3.21(a)) to the canonical polygon P∆(γ) =
(γ1, . . . , γn) in ∆ with γ = γ1,j, and we abbreviated

xi := xγi1,i2
x−1
γi3,i2

xγi3,i4
· · ·x−1

γi2m−1,i2m−2
xγi2m−1,i2m

for any sequence i = (i1, . . . , i2m) ∈ [n]2m, m ≥ 1.

We prove Theorem 3.30 in Section 3.11.

Remark 3.31. Theorem 3.30 is a noncommutative generalization of [35, Theorem 6.1].

Example 3.32. Let Σ be a regular triangle with the clockwise vertex set I = {1, 2, 3} and a special puncture
0 in the center. For i ∈ I denote by λi the the special loop at i around 0. As in Example 3.7, for i, j ∈ I,
i 6= j denote by γ+ij (resp. γ−ij) the curve from i to j so that 0 is to the right (resp. to the left) of the curve

and abbreviate xi := xλi
, x±ij := xγ±

ij
for the corresponding generators of AΣ.

Clearly, every triangulation of Σ contains γ+12, γ
−
21, γ

+
23, γ

−
32, γ

+
31, γ

−
13. Let ∆ be the triangulation of Σ con-

taining also γ1 and γ−12. Then (3.6) reads:

x2 = x+21x
−1
1 x−12 + x−21x

−1
1 x+12, x−23 = x−21(x

+
21)

−1x+23 + x+21x
−1
1 x−13 + x−21x

−1
1 x+12(x

−
12)

−1x−13 ,

x3 = x+31x
−1
1 x−13 + x+31(x

+
21)

−1x−21(x
+
21)

−1x+23 + x−32(x
−
12)

−1x1(x
+
21)

−1x+23
+x−32(x

−
12)

−1x+12(x
−
12)

−1x−13 + x+31(x
+
21)

−1x−21x
−1
1 x+12(x

−
12)

−1x−13 .

Let Σ̂ be as in Definition 3.17. Therefore, simple curves on Σ̂ are those on Σ plus six additional ones:
directed intervals γ0,i from 0 to each i and γi,0 := γ0,i. We abbreviate the generators of AΣ̂ same way as in
AΣ and x0,i := xγ0,i , xi,0 := xγi,0 .

Let ∆̂ be the triangulation of Σ̂ obtained from ∆ by adding the intervals γ0,1 and γ1,0. Then (3.6) reads:

x3 = x+31x
−1
1 x−13 + x+31(x

+
21)

−1x−21(x
+
21)

−1x+23 + x−32(x
−
12)

−1x1(x
+
21)

−1x+23

+x−32(x
−
12)

−1x+12(x
−
12)

−1x−13 + x+31(x
+
21)

−1x−21x
−1
1 x+12(x

−
12)

−1x−13+

+x+31(x
+
21)

−1x+23 + x−32(x
−
12)

−1x−13 + x+31x
−1
1 x+12(x

−
12)

−1x−13 + x+31(x
+
21)

−1x−21x
−1
1 x−13 .

3.7. Noncommutative (n, 1)-gon. In this section we consider the (n, 1)-gon Σ = Pn(1) (with the clockwise
ordering of the set [n] = Ib(P (n, 1))). We abbreviate An,1 := AΣ and refer to it as the noncommutative (n, 1)-

gon. Clearly, An,1 is generated by x±ij := xγ±
ij

and (x±ij)
−1, i, j ∈ [n], where γ±ij is the curve corresponding to

(i, j,±) under the bijection in Lemma 3.10 where x+ii = x−ii for i ∈ [n] (we abbreviate xi := x+ii = x−ii). The
following is immediate.

Lemma 3.33. The algebra An,1 is generated by (x±ij)
±1, i, j ∈ [n] subject to:

(i) (triangle relations) For any distinct i, j, k ∈ [n]:

x+ij(x
+
kj)

−1x+ki = x−ik(x
−
jk)

−1x−ji, x
+
ij(x

−
kj)

−1x+ki = x−ik(x
+
jk)

−1x−ji .

(ii) (2-gon exchange relations) For any distinct i, j ∈ [n]:

xj = x+jix
−1
i x−ij + x−jix

−1
i x+ij .

(iii) (4-gon exchange relations) For any cyclic (i, j, k, ℓ) in [n] and ε ∈ {−,+}:

x+jℓ = x+jk(x
ε
ik)

−1xεiℓ + x−ε
ji (x

−ε
ki )

−1x+kℓ , x
+
iℓ = xεik(x

−ε
jk )

−1x−ε
jℓ + x−ε

ij (xεki)
−1xεkℓ

x−jℓ = xεjk(x
ε
ik)

−1x−iℓ + x−ji(x
−ε
kj )

−1x−ε
kℓ , x−ℓi = xεℓj(x

ε
kj)

−1x−ε
ki + x−ε

ℓk (x−ε
jk )

−1xεji
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Clearly, the assignments x±ij 7→ x∓ji define an involutive anti-automorphism of An,1. One can easily show

For each n ≥ 1 define a map π : [2n] → [n] by π(i) =

{
i if i ∈ [n]

i− n if i /∈ [n]
.

Also for distinct i, j ∈ [2n] define the sign εij ∈ {−,+} by setting εij := + if the clockwise arc from i to j
is shorter than the clockwise arc from i to i+ n and εij := − otherwise.

Note that the restriction of the function f̂ : C → C given by z 7→ z2 to the unit disk D ⊂ C centered at 0
is a map f : D → D hence for each n ≥ 1 it is a morphism fn : P2n → Pn(1) in Surf for all n ≥ 1 (where the
marked boundary points are appropriate roots of unity and the special puncture in Pn(1) is the center 0 of
D). The following is immediate corollary of Theorems 3.9 and 3.16.

Corollary 3.34. For each n ≥ 1 one has:
• The morphism fn in Surf defines a surjective map Γ(P2n) = [2n]×[2n] ։ [n]×[n]×{−,+} = [Γ(P (n, 1))]

given by (ij) 7→ γ
εij
π(i),π(j) for all distinct i, j ∈ [2n].

• The assignment xij 7→ x
εij
π(i),π(j) for all distinct i, j ∈ [2n], defines an epimorphism of algebras (fn)∗ :

A2n ։ An,1.

Remark 3.35. For any 1 ≤ i < j < k ≤ n, the triple (γ−ij , γ
−
jk, γ

−
ki) is a triangle in Σ = P (n, 1) because it

is the image of the triangle (i, j + n, k) in [2n] under the above morphism fn : P2n → Pn(1). Note, however,
that all intersections γ−ij ∩ γ

−
jk, γ

−
ij ∩ γ

−
ki, γ

−
jk ∩ γ−ki are non-empty.

3.8. Universal localizations of noncommutative surfaces. Generalizing (2.4), for any triangulation ∆
of any marked surface Σ let A∆ be the subalgebra of AΣ generated by all xγ , γ ∈ [Γ(Σ)] and all x−1

γ0
, γ0 ∈ ∆.

Clearly, the assignment tγ 7→ xγ , γ ∈ ∆ defines a homomorphisms of algebras:

(3.7) i∆ : QT∆ → A∆ .

The following result is a generalization of Theorem 2.8 to all marked surfaces.

Theorem 3.36. For each triangulation ∆ of Σ one has:
(a) The homomorphism i∆ given by (3.7) is an isomorphism of algebras.
(b) AΣ = A∆[S

−1], where S is the submonoid of A∆ \ {0} generated by all xγ , γ ∈ [Γ(Σ)].

We prove Theorem 3.36 in Section 3.13.
Theorems 3.26, 3.36, and 5.7 imply the following.

Corollary 3.37. For each triangulation ∆ of Σ the homomorphism (3.7) is injective.

Theorem 3.36 implies that for each Σ the natural homomorphism QT∆ →֒ Frac(QT∆) defines a homo-
morphism of algebras:

(3.8) AΣ → Frac(QT∆) .

In view of Theorem 5.7, we propose the following conjecture.

Conjecture 3.38. For each Σ the homomorphism (3.8) is injective, e.g., the submonoid S∆ of QT∆ \ {0} is
divisible in the sense of Definition 5.4.

Remark 3.39. Conjecture 3.38 generalizes the expected injectivity of (2.3). To prove Conjecture 3.38 for
non-closed surfaces (i.e., with free T∆ according to Theorem 3.26) it would suffice to show that the monoid
S∆ is generated by Q× · T∆ and a subset of prime elements in QT∆.

3.9. Noncommutative angles and regular elements in noncommutative surfaces. Similarly to Sec-
tion 2.3, for each triangle (γ1, γ2, γ3) denote by Tγ1,γ2,γ3 the element of AΣ given by:

(3.9) Tγ1,γ2,γ3 = x−1
γ1
xγ2x

−1
γ3

and refer to it as a noncommutative angle of (γ1, γ2, γ3) at s(γ1) = t(γ3).
Given a triangulation ∆ of Σ, for any i ∈ I define the total angle T∆

i at i ∈ I by:

(3.10) T∆
i :=

∑
Tγ1,γ2,γ3 ,

where the summation is over all clockwise triangles (γ1, γ2, γ3) in ∆ such that s(γ1) = i.
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Theorem 3.40. For any triangulations ∆, ∆′ of Σ and i ∈ I one has:

T∆
i = T∆′

i .

Therefore, in what follows, we simply denote Ti := T∆
i for any triangulation ∆ of Σ.

Furthermore, denote by UΣ the subalgebra of AΣ generated by generated by all xγ , γ ∈ [Γ(Σ)], x−1
γ0

,
γ0 ∈ ∂Γ(Σ) and all total angles Ti.

In particular, the algebra Un from 2.3 is naturally isomorphic to UPn
. The following is an analogue of

Lemma 2.18.

Lemma 3.41. The algebra UΣ satisfies the following relations:
(a) (reduced triangle relations) for all triangles (γ1, γ2, γ3) in [Γ(Σ)] such that γ2 is a boundary curve:

(3.11) xγ1x
−1
γ2
xγ3 = xγ3

x−1
γ2
xγ1

.

(b) (reduced exchange relations) for all quadrilaterals (γ1, γ2, γ3, γ4) in Σ such that γ2, γ3 are boundary
curves:

(3.12) xγ13x
−1
23 xγ24 = xγ14 + xγ12x

−1
γ32
xγ34

Remark 3.42. It is natural to conjecture that the relations (3.11) and (3.12) are defining for UΣ.

Noncommutative Laurent phenomenon (3.6) guarantees that UΣ belongs to each subalgebra A∆ ⊂ AΣ.
The following is an analogue of Conjecture 2.20.

Conjecture 3.43. For each n ≥ 2 one has:

(3.13) UΣ =
⋂

∆

A∆ ,

where the intersection is over all triangulations ∆ of Σ.

We say that an element ofAΣ is regular if it belongs to each subalgebraA∆ as ∆ runs over all triangulations
of Σ. Thus, similarly to Section 2.3, Conjecture 3.43 asserts that regular elements of AΣ belong to UΣ.

3.10. Noncommutative cohomology of surfaces. Given a surface Σ, for each triangle (γ1, γ2, γ3) in Σ
we define the element τγ1,γ2,γ3 ∈ AΣ (in notation (3.9)) by:

τγ1,γ2,γ3 = Tγ1,γ2,γ3 + Tγ2,γ3,γ1 + Tγ3,γ1,γ2 .

That is, τγ1,γ2,γ3 is the sum of all noncommutative angles of the triangle (γ1, γ2, γ3).
Then define the algebraH(Σ) to be the quotient of AΣ by the ideal generated by all τ(γ1,γ2,γ3)−τ(γ′

1,γ
′
2,γ

′
3)
as

(γ1, γ2, γ3) and (γ′1, γ
′
2, γ

′
3) run independently over all triangles of Σ. We refer to H(Σ) as the noncommutative

cohomology of Σ.
This notation is justified by the following construction.
Fix a triangulation ∆ of Σ. For each loop θ in Σ which does not pass through marked points, define the

element [θ]′∆ ∈ A∆ by:

[θ]′∆ =
∑

εγ1,γ2,γ3(θ) · Tγ1,γ2,γ3 ,

the summation is over all clockwise triangles (γ1, γ2, γ3) in ∆ such that θ intersects γ1 and γ2 (but not γ3)

and εγ1,γ2,γ3(θ) :=

{
1 if γ3 is to the right of θ

−1 if γ3 is to the left of θ
.

Note that if θ = θi is a (small) clockwise loop around a puncture i ∈ I, then [θ]′∆ = T∆
i , the total angle at

i (defined in (3.10)).
Furthermore, define [θ]∆ ∈ H(Σ) by

[θ]∆ := π(i∆([θ]
′
∆)) ,

where i∆ is the homomorphism QT∆ → AΣ given by (3.7) and π : AΣ → H(Σ) is the canonical epimorphism.
The following immediate result is an analogue of Theorem 3.40.

Theorem 3.44. Given a loop on Σ not passing through marked points, then for any triangulations ∆ and
∆′ of Σ one has:

[θ]∆′ = [θ]∆ .

This allows us to define a noncommutative loop [θ] ∈ H(Σ) by [θ] := [θ]∆ for any triangulation ∆ of Σ.
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3.11. Proof of Theorems 3.6, 3.9, 3.16, 3.24, and 3.30.

Proof of Theorem 3.6. Clearly, the composition f ′ ◦ f : Σ → Σ′′ is a continuous map with finite fibers.
Also,

(f ′ ◦ f)−1(I(Σ′′)) = f−1(f ′−1
(I(Σ′′))) = f−1(I(Σ′′)) = I(Σ) ,

(f ′ ◦ f)(Is(Σ)) = f ′(f(Is(Σ)) ⊂ f ′(Is(Σ
′)) ⊂ Is(Σ

′′) .

This verifies the fist requirement of Definition 3.5 for f ′ ◦ f .
Furthermore, prove that If

′◦f = If ⊔ f−1(If
′

). Indeed,

If
′◦f = (f ′ ◦ f)−1(Is(Σ

′′)) \ Is(Σ) = f−1(f ′−1
(Is(Σ

′′)) \ Is(Σ)

= f−1(Is(Σ
′) ⊔ If

′

) \ Is(Σ) = (f−1(Is(Σ
′)) ⊔ f−1(If

′

)) \ Is(Σ) = If ⊔ f−1(If
′

)

since f ′−1
(Is(Σ

′′)) = Is(Σ
′) ⊔ If

′

, f−1(Is(Σ
′)) = f−1(Is(Σ

′)) \ If , f−1(If
′

) ∩ Is(Σ) = ∅, and f−1(A ⊔ B) =
f−1(A) ⊔ f−1(B) for any disjoint subsets A and B of Σ′.

Let now p ∈ Σ \ If
′◦f . By above, this is equivalent to that p ∈ Σ \ If and f(p) ∈ Σ′ \ If

′

. Hence there
is a neighborhood Op of p in Σ (Op is a half-neighborhood if p ∈ ∂Σ) such that the restriction of f to Op is
injective and a (half-)neighborhood Of(p) of f(p) in Σ′ such that the restriction of f ′ to Of(p) is injective. In

particular, O′
p := f−1(Of(p)) is a neighborhood of p in Σ and the restriction of f ′ ◦ f to O′

p is injective. This
verifies the second requirement of Definition 3.5 for f ′ ◦ f .

Let now p ∈ If
′◦f . By above, this is equivalent to that either p ∈ If or f(p) ∈ If

′

.

In the first case, clearly, f(p) ∈ Σ′ \ If
′

, therefore there is a neighborhood Of(p) of f(p) in Σ′ such that
the restriction of f ′ to Of(p) is injective and a neighborhood Up of p in Σ such that the restriction of f to Up

is a two-fold cover of the neighborhood O′
p = f(Up) ramified at f(p). Therefore, the restriction of f to the

neighborhood U ′
p = f−1(Op ∩ O′

p) is a two-fold cover of Op ∩ O′
p ramified f(p) and the restriction of f ′ to

Op∩O′
p is injective. Thus, the restriction of f ′ ◦ f to U ′

p is a two-fold cover of f(Op∩O′
p) ramified (f ′ ◦ f)(p).

In the second case, clearly, p ∈ Σ \ If , therefore there is a neighborhood Op of p in Σ such that the
restriction of f to Op is injective and a neighborhood Uf(p) of f(p) in Σ′ such that the restriction of f ′ to
Uf(p) is a two-fold cover of the neighborhood Of ′(f(p)) = f(Up) ramified at f(f ′(p)). Therefore, the restriction
of f ′ to the neighborhood U ′

f(p) = f(Op) ∩ Uf(p) is a two-fold cover of f ′(U ′
f(p)) ramified f ′(f(p)) and the

restriction of f to O′
p = f−1(U ′

f(p)) is injective. Thus, the restriction of f ′ ◦ f to O′
p is a two-fold cover of

f ′(U ′
f(p)) ramified (f ′ ◦ f)(p).

This verifies the last requirement of Definition 3.5 for f ′ ◦ f .
The theorem is proved. �

Proof of Theorem 3.9. Without loss of generality, it suffices to prove the first assertion in the case when
C ⊂ C′ and C′ \ C is a single loop around i ∈ If not enclosing any points I(Σ) ∪ Is(Σ) ∪ If \ {i} (where we
regard C and C′ as subsets of Σ). Moreover, it suffices to take C = {p} for some p ∈ Σ, p 6= i, so that C′ is
a simple loop at p around i (e.g., C′ is contractible to p in Σ \ I(Σ)).

By definition, there is a neighborhood Up of p such that the restriction of f to Up is a two-fold cover of
f(Up) ramified at f(p). Once again, without loss of generality, we may assume that C′ intersects Up and
there exist exactly two distinct points p′, p′′ ∈ C such that f(p′) = f(p′′). This implies that f(C′) ⊂ Σ′ is
a (self-intersecting) loop at f(p) with a single self-intersection point f(p′) = f(p′′). If we denote by γ′ the
equivalence class of f(C′) in Σ′ \ (I(Σ) ∪ Is(Σ)) ∪ {f(p)}, then, clearly, [γ′]i is trivial.

This proves (a).
Parts (b), (c) and (d) follow.
The theorem is proved. �

Proof of Theorem 3.16. We need the following fact.

Lemma 3.45. In the notation of Theorem 3.9, for any polygon P = (γ1, . . . , γn) in Σ the tuple f(P ) =
(f(γ1), . . . , f(γn)) is a polygon in Σ′.

Proof. Indeed, let P = (γ1, . . . , γn) be a polygon in Σ and let g : Pn → Σ be an accompanying morpism.
Then g′ = f ◦ g is a morphism Pn → Σ′ in Surf such that g′(i, i+) = f(γi) for i ∈ [n], i.e., f(P ) is an n-gon
in Σ′).

The lemma is proved. �
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Thus the triangle relations in TΣ are carried by f⋆ to those in TΣ′ . This proves the assertion for groups.
Likewise, the triangle and exchange relations in AΣ are carried by f∗ to those in AΣ′ . This proves the

assertion for algebras. The commutativity of the diagram (3.4) follows.
The theorem is proved. �

Proof of Theorem 3.24. It suffices to prove the assertion only for neighboring triangulations ∆ and ∆′,
i.e., for a quadrilateral (γ1, γ2, γ3, γ4) in ∆ such that ∆ \∆′ = {γ13, γ31} and ∆′ \∆ = {γ24, γ42}.

The following result is obvious.

Lemma 3.46. In the notation as above, the assignment tγ 7→





tγ12t
−1
γ42
tγ43 if γ = γ13

tγ34t
−1
γ24
tγ21 if γ = γ31

tγ otherwise

for i, j ∈ [4], i 6= j,

defines an isomorphism ϕ∆,∆′ : T∆→̃T∆′ .

The second assertion follows immediately because one has for γ, γ′ ∈ ∆, γ′ /∈ {γ13, γ31}:

f∆,∆′(yγ,γ′) =





t−1
γ21
tγ24t

−1
γ34
tγ′ if γ = γ13

t−1
γ43
tγ42t

−1
γ12
tγ′ if γ = γ31

t−1
γ tγ′ otherwise

=





yγ12,γ24yγ43,γ′ if γ = γ13

yγ34,γ42yγ21,γ′ if γ = γ31

yγ,γ′ otherwise

∈ Y∆′ .

This proves the theorem. �

Proof of Theorem 3.30. Indeed, let f : Pn → Σ be an accompanying map for the canonical polygon
P∆(γ) = (γ1, . . . , γn). Then, by Theorem 3.16, the assignment xij 7→ xγij

defines an algebra homomorphism
f∗ : An → AΣ, where An = APn

is the noncommutative n-gon as in Section 2.2. Applying f∗ to (2.5) with
i = 1 yields (3.6).

The theorem is proved. �

3.12. Noncommutative triangle groups and proof of Theorem 3.26. We need the following immediate
result.

Lemma 3.47. For any marked surface Σ there is n ≥ 1, a subset S ⊂ [n], an injective map σ : S → [n] \ S,
and a function ε : S → {−,+} such that Σ is obtained from Pn(h), h = |Is(Σ)| by gluing the chord (i, i+) to

the chord

{
(σ(i)+, σ(i)) if ε(i) = +

(σ(i), σ(i)+) if ε(i) = −
for all i ∈ S.

Remark 3.48. Clearly, for any n ≥ 2 and any pair (σ, ε) as in Lemma 3.47, there is a marked surface Σσ,ε

obtained from Pn(h) by such a gluing procedure.

The following is an obvious version of Theorem 3.16.

Lemma 3.49. Let f : Σ → Σ′ be as in Theorem 3.16 and let ∆ and ∆′ be triangulations of Σ and Σ′

respectively such that f(∆) ⊂ ∆′. Then the assignment tγ 7→ tf(γ) for γ ∈ ∆ defines homomorphism of
groups f⋆ : T∆ → T∆′ .

Combining Lemmas 3.47 and 3.49 and taking into account that under the gluing map f : Pn(h) → Σ, the
image f(∆) of any triangulation ∆ of Pn(h) is a triangulation of Σ = Σσ,ε, we see that the quotient group of
T∆ by the relations

(3.14) ti,i+ =

{
tσ(i)+,σ(i) if ε(i) = +

tσ(i),σ(i)+ if ε(i) = −
, ti+,i =

{
tσ(i),σ(i)+ if ε(i) = +

tσ(i)+,σ(i) if ε(i) = −
,

i ∈ S, is naturally isomorphic to Tf(∆) (of course, Tf(∆)
∼= T∆′′ for any triangulation ∆′′ of Σ by Theorem

3.24).

We will use this observation with the appropriately modified starlike triangulation ∆ = ∆̃1 of Pn(h), where
∆1 is the starlike triangulation of [n] as in (2.6) with i = 1.

Namely, for all n ≥ 2, ∆̃1 is obtained from ∆1 by adding h curves γ
(s)
12 , s ∈ [h] from the vertex 1 to the

vertex 2 outside of ∆1 so that each 2-gon ((γ
(s)
12 )

−1, γ
(s−1)
12 ), s ∈ [h] contains exactly one special puncture
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(here, with a slight abuse of notation, γ
(0)
12 is the chord (1, 2) in [n]) and a clockwise loop γ

(s)
1 around each

special puncture inside ((γ
(s)
12 )−1, γ

(s−1)
12 ), s ∈ [h].

Lemma 3.50. Suppose that n ≥ 2. Then, using same arguments as in the proof of Lemma 2.86, we see

that the group T∆̃1
is generated by tj = T 1,j+

j , j = 3, . . . , n − 1, ck = tk,k+ , ck = tk+,k, k ∈ [n], ys = t
γ
(s)
12

,

zs = t
γ
(s)
1

, s ∈ [h], and yh = t
(γ

(h)
12 )−1 , subject to (if n ≥ 4):

(3.15) c2t3c3 · · · tn−1cn−1c
−1
n c1 = c1c

−1
n cn−1tn−1cn−2 · · · t3c2

and (if h > 0):

(3.16) yh = c1(z
−1
1 y1c

−1
1 z1)(z

−1
2 y2y

−1
1 z2) · · · (z

−1
h yhy

−1
h−1zh) .

Proof. It is easy to see that t1,j = c1t2c2 · · · tj−1cj−1, tj,1 = cj−1tj−1 · · · c2t2c1 for j = 1, . . . , n. Thus, T∆1

is generated by t2, . . . , tn−1, ck, ck, k = 1, . . . , n subject to the relations:

cn = c1t2c2 · · · cn−2tn−1cn−1, cn = cn−1tn−1 · · · c2t2c1 .

By eliminating t2, we see that T∆1 is subject to the relation (3.15). Furthermore, the 1-gon relations in

the 1-gons (γ
(s)
1 ) and triangle relations in the triangles ((γ

(s)
12 )−1, γ

(s)
1 , γ

(s−1)
12 ) for the remaining generators

ys = t
γ
(s)
12

, ys = t
(γ

(s)
12 )−1 zs = t

γ
(s)
1

, zs = t
(γ

(s)
1 )−1 , s ∈ {0} ⊔ [h] of T∆̃1

read:

zs = zs, ysz
−1
s ys−1 = ys−1z

−1
s ys

for s ∈ [h] (here y0 = c1, y0 = c1). That is, one can eliminate all zs, s ∈ [h] and one can solve recursively for
all ys, s ∈ [h]:

ys = c1(z
−1
1 y1y

−1
0 z1)(z

−1
2 y2y

−1
1 z2) · · · (z

−1
s ysy

−1
s−1zs) ,

so that the remaining generators zs and ys, s ∈ [h] are free.
The lemma is proved. �

Combining Lemmas 3.47 and 3.50, we see that for n ≥ 3 the group Tf(∆) is generated by tj , j = 3, . . . , n−1,
ck, ck, k = 1, . . . , n, ys, zs, s ∈ [h], and yh subject to (3.15) and the following relations for all i ∈ S:

cσ(i) =

{
c′i if ε(i) = +

c′i if ε(i) = −
, cσ(i) =

{
c′i if ε(i) = +

c′i if ε(i) = −
,where c′i :=

{
ci if i 6= 1

yh if i = 1
, c′i :=

{
ci if i 6= 1

yh if i = 1
.

Thus, if n ≥ 3, then the group T∆̃1
has (n − 3) + 2(n − |S|) + 2h = 3n − 3 − 2|S| + 2h generators tj ,

j = 3, . . . , n− 1, ck, ck, k ∈ [n] \ σ(S), ys, zs, s ∈ [h] and exactly one relation (3.15). Now compute the Euler
characteristic of Σ using the triangulation ∆′′ of Σ obtained by removing all h loops around special punctures
from f(∆). By definition,

χ(Σ) = |I| − E + T ,

where E is the number of edges and T is the number of triangles in ∆′′. Clearly, T = n − 2 and E =
(n− 3) + (n− |S|), therefore,

χ(Σ) = |I| − ((n− 3) + (n− |S|)) + n− 2 = |I|+ 1− n+ |S| − h = |I|+ 1−
n

2
−

|Ib|

2

because n− 2|S| = |Ib|. Therefore, the number of generators of Tf(∆) is:

3n− 3− 2|S|+2h= 2n− 3+ |Ib|+2h = 4(|I|+1−χ(Σ)−
|Ib|

2
)− 3+ |Ib|+2h = 4(|I|−χ(Σ))+1− |Ib|+2h .

We now consider several cases.
Case 1. n ≥ 3 and either Σ has boundary, i.e., S ∪σ(S) 6= [n] or h > 0. The above implies that Tf(∆) is free
in 4(|I| − χ(Σ))− |Ib|+ 2h generators.
Case 2. n = 2 (hence h > 0). Then, clearly, T∆̃1

is a free group in 2h+ 2 generators. Therefore:

• If n = 2, h ≥ 2, then Tf(∆) is free in 2h+ 2− 2|S| generators, where |S| ∈ {0, 1}.
• If n = 2, h = 1, then Tf(∆) is free in 4− |S| generators, where |S| ∈ {0, 1}.

Case 3. n = 1, then f is the identity map and Σ is disk with |I| = |Ib| = 1 and h special punctures. If h = 0,
then, clearly, T∆ is free in two generators tγ and tγ , where γ is the clockwise loop; Suppose that h > 0. Then
one can choose a triangulation ∆ of Σ in such a way that, in addition to γ it consists of a special loop λs,
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s ∈ [h] around each special puncture and a clockwise loop γs enclosing first s special punctures (from the
left to the right), s = 2, . . . , h (so that λ1 = γ1 and γh = γ). Then T∆ is generated by zs = tλs

, ys = tγs
,

ys = tγs
, s ∈ [h] subject to the following triangle relations in the h− 1 triangles (γs−1, λs, γs), s = 2, . . . , h:

ys−1z
−1
s ys = ysz

−1
s ys−1

for s = 2, . . . , h if h ≥ 2. That is, similarly to the equations (3.16), one can solve recursively for all ys,
s = 2, . . . , h:

ys = (zsy
−1
s−1ys) · · · (z3y

−1
2 z3y2) · (z2z

−1
1 z2z1)

(since y1 = y1 = z1) so that T∆ is freely generated by zs, s ∈ [h] and ys, s = 2, . . . , h.
This finishes the proof of Theorem 3.26(a).

Case 4. n ≥ 3 and Σ has no boundary, i.e., |Ib| hence S ∪ σ(S) = [n] and h = 0. Then n = 2|S| is even
and Tf(∆) is a 1-relator torsion-free group in 4(|I| − χ(Σ)) + 1 generators tk, k = 3, . . . , n− 1, ck, ck, k ∈ S.
Suppose that Σ is a sphere with |I| ≤ 3 punctures. Then Tf(∆) trivial for |I| = 1 because all loops are
contractible, is free in 2 generators tγ and tγ−1 if |I| = 2, where γ is an arc between these two punctures, and
if |I| = 3, it is free in 5 generators, because we can take S = {1, 3} ⊂ [4], σ(1) = 2, σ(3) = 4, ε(1) = ε(3) = +
so that Tf(∆) is freely generated by c1, c1, c3, c3, t1. Otherwise, it is, clearly, non-free. This finishes the proof
of Theorem 3.26(b).

The theorem is proved. �

3.13. Noncommutative curves and proof of Theorem 3.36. For each γ ∈ [Γ(Σ)], a triangulation ∆ of
Σ define the elements tγ,∆ ∈ QT∆ same way as in Theorem 2.10:

(3.17) t∆γ :=
∑

i∈Adm∆0(1,j)

ti ,

where ∆0 is the triangulation of [n] assigned (as in Theorem 3.21(a)) to ∆ and the canonical polygon P∆(γ) =
(γ1, . . . , γn) with γ = γ1,j and we abbreviated

ti := tγi1,i2
t−1
γi3,i2

tγi3,i4
· · · t−1

γi2m−1,i2m−2
tγi2m−1,i2m

for any sequence i = (i1, . . . , i2m) ∈ [n]2m, m ≥ 1.
We refer each t∆γ as it as a noncommutative triangulated curve.
Clearly, if Σ = Pn(0) is an n-gon (i.e., a disk with I(Σ) = Ib(Σ) = [n]) so that γ = (p, q) ∈ [n]× [n], then

t∆γ = t∆pq is as in (2.42).
To finish the proof of Theorem 3.36, we need the following result.

Proposition 3.51. The assignment xγ 7→ t∆γ for γ ∈ [Γ(Σ)] defines an epimorphism of algebras

(3.18) AΣ → QT∆[S
−1
∆ ] ,

where S∆ is the sub-monoid of QT∆ generated by all t∆γ .

Proof. It suffices to show that the elements t∆γ satisfy the defining relations of AΣ from Definition 3.12.
We need the following result.

Lemma 3.52. Let Q = (γ′1, . . . , γ
′
r) be an n-gon in Σ and let ∆ be any triangulation of Σ. Then the

assignments xij 7→ xγij
, i, j ∈ [r] define a homomorphism of algebras

(3.19) Ar → QT∆[S
−1
∆ ] .

Proof. Let P = (γ1, . . . , γn), ∆
0, and ι : [r] →֒ [n] be as in Theorem 3.21. Then, in view of Theorem, for any

accompanying morphism f : Pn → Σ Therefore, the assignments (i, j) 7→ f(i, j) = γij restricted to ∆0 define

a homomorphism of algebras f∆ : QT∆0 → QT∆ such that f∆(t
∆0

ij ) = t∆γij
for i, j ∈ [n]. Since f∆(S∆0) ⊂ S∆,

then passing to the universal localizations, this gives an algebra homomorphism

QT∆0 [S−1
∆0 ] → QT∆[S

−1
∆ ] .

Composing it with the isomorphism An
∼= QT∆0 [S−1

∆0 ] given by Theorem 2.8(b) and the homomorphism
Ar → An given by xk,ℓ 7→ xι(k),ι(ℓ) give the desired homomorphism (3.19). The lemma is proved. �
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Using the Lemma with r = 3, 4, we finish the proof of the proposition. �

Since each xγ , γ ∈ [Γ(Σ)] is invertible in AΣ, the universality of localization QT∆[S
−1
∆ ] implies that (3.7)

extends to a homomorphism of algebras

(3.20) QT∆[S
−1
∆ ] → AΣ .

By the construction and Theorem 3.30, (3.7) takes each t∆γ to x∆ and therefore is an epimorphism Q[T∆] ։
A∆. In turn, (3.20) is an epimorphism as well.

Thus, we obtained two mutually inverse epimorphisms (3.19) and (3.20), which implies that they are
isomorphisms of algebras.

Therefore, (3.18) is an isomorphism, which proves Theorem 3.36(b). Theorem 3.36(a) also follows because
(3.7) is a restriction to QT∆ of the isomorphism (3.20) and i∆(QT∆) = A∆.

Theorem 3.36 is proved. �

4. Noncommutative discrete integrable systems

4.1. An integrable system in an annulus. Denote by Σ1,r, the annulus with no punctures, one marked
point p on the outer circle and r marked points p1, . . . , pr on the inner circle (listed clockwise).

It is easy to see that equivalence classes of curves from p to {p1, . . . , pr} in Σ1,r are in a natural bijection
with Z: the n-th curve γn goes (without self-intersections) from p to ps where s ≡ n mod r and γn has the
winding number q such that n = rq + s (so that the arc is winding clockwise if q ≥ 0 and counterclockwise if
q < 0).

We also denote γ−i (resp. γ −
i ) the short counterclockwise boundary arc in the inner circle from pi to the

previous point pi− (resp. from pi− to pi), i ∈ [r]; and by γ+ (resp. γ +) the clockwise (resp. counterclockwise)
loop in the outer circle.

We abbreviate in the algebra AΣ1,r :

xn := xγn
, xn := xγn

, cn := xγ−
n
, cn := xγ −

n
, d := xγ+ , d := xγ +

for n ∈ Z (where we extend γ−n periodically so that γ−n+r = γ−r for all n ∈ Z).

Since (γn−1, γ
−
n−1, γn) and (γn, γ

+, γn−r) is a triangle in Γ(Σ1,r) = [Γ(Σ1,r)] and (γn−1, γ
+, γn−r, γ

−
n ) is

a 4-gon in Γ(Σ1,r) (containing these triangles) for all n ∈ Z, the following fact is immediate from Definition
3.12.

Lemma 4.1. For each r ≥ 1 one has in AΣ1,r :
(i) (triangle relations)

(4.1) xn−1c
−1
n xn = xnc

−1
n xn−1, xnd

−1
xn−r = xn−rd

−1xn .

(ii) (exchange relations) For each n ∈ Z:

(4.2) xn−r−1d
−1xn = cn + xn−1d

−1
xn−r, xnd

−1
xn−r−1 = cn + xn−rd

−1xn−1 .

Note that for each m ∈ Z the annulus Σ1,r has a triangulation

∆m := {γ+, γ +; γ−1 , γ
−
1 . . . , γ

−
r , γ

−
r ; γm, γm, . . . , γm+r, γm+r} .

Hence the group Tr generated by xn, xn, n = 1, . . . , r + 1, ci, ci, i = 1, . . . , r, d, d subject to the triangle
relations

(4.3) xr+1d
−1
x1 = x1d

−1xr+1, xs−1c
−1
s xs = xsc

−1
s xs−1,

s = 2, . . . , r+1 (with the convention pr+n = pr hence cr+n = cr, cr+n = cn for n ∈ Z) is naturally isomorphic
to the triangle group T∆1 . Moreover, in the notation of Section 3.8, the subalgebra A∆1 of AΣ (generated by
all xγ , γ ∈ Γ(Σ1,r) and all x−1

γ0
, γ0 ∈ ∆1) is the group algebra ZTr by Theorem 3.36(a).

Proposition 4.2. For each r ≥ 1 we have:
(a) Each xn, xn, n ∈ Z is sum of elements of Tr in ZTr.
(b) The total angle Tp ∈ ZTr at p is given by

Tp = d
−1
xn−rx

−1
n + d−1xn+rx

−1
n = x−1

n xn−rd
−1 + x−1

n xn+rd
−1
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for each n ∈ Z.

Proof. Part (a) follows directly from Theorem 3.30 and Corollary 3.37.
Prove (b). Consider a triangle (γ+, γn, γn−r) in ∆n−r and (γ+, γn, γn+r) in ∆n.
The following is an immediate corollary of Theorem 3.40.

Lemma 4.3. Tp = Tγ+,γn,γn−r
+ Tγ+,γn,γn+r

.

Using this and taking into account that

Tγ+,γn,γn−r
= d

−1
xn−rx

−1
n = x−1

n xn−rd
−1, Tγ+,γn,γn+r

= d
−1
xn+rx

−1
n = x−1

n xn+rd
−1

in the notation (3.9), we obtain (b).
The proposition is proved. �

Remark 4.4. Using the triangulation ∆n, it is easy see that

Tp = d−1xnx
−1
n−r + d

−1
xn−rx

−1
n +

n∑

m=n+1−r

x−1
m−1cmx

−1
m

for all n ∈ Z.

Clearly, by Theorem 3.40, Tp does not depend on n.
If r is even, we can refine these observations and thus recover the recursion (1.4).

Indeed, set Un :=

{
xn if n is even

xn if n is odd
, Cn :=

{
cn if n is even

cn if n is odd
, and D := d−1, D := d

−1
.

By definition, Tr is freely generated by D, D and Ci, i ∈ [r], Uj , j ∈ [r + 1] and, by Proposition 4.2,
Un ∈ QTr is a sum of elements of Tr. This and Proposition 4.2 imply the following result.

Theorem 4.5. Let r ≥ 1 be even. Then each element Un ∈ ZTr, n ∈ Z satisfies the recursion:

(4.4)

{
Un−r−1DUn = Cn + Un−1DUn−r if n is even

UnDUn−r−1 = Cn + Un−rDUn−1 if n is odd
.

(with the convention Cn+r = Cr). Furthermore, the element Hn ∈ Frac(ZTr), n ∈ Z, given by

(4.5) Hn :=

{
DUn−rU

−1
n +DUn+rU

−1
n if n is even

U−1
n Un−rD + U−1

n Un+rD if n is odd

does not depend on n and belongs to ZTr.

The recursion (4.4) clearly coincides with the recursion (1.4) with k = r + 1 and the element Hn given by
(4.5) coincides with the element given by (1.5).

Remark 4.6. In fact, Remark 4.4 implies that the “conserved quantity” H = Hn is equal (for any n ∈ Z) to




DUnU
−1
n−r +DUn−rU

−1
n +

n/2∑
m=(n+2−r)/2

U−1
2m−1C2mU

−1
2m + U−1

2m−1C2m−1U
−1
2m−2 if n is even

U−1
n Un−rD + U−1

n−rUnD +
(n−1)/2∑

m=(n+1−r)/2

U −1
2m−1C2mU

−1
2m + U −1

2m+1C2m+1U
−1
2m if n is odd

.

4.2. An integrable system in an infinite strip. In this section we establish Laurentness of another
noncommutative recursion (which specializes to the discrete integrable system recently studied by P. Di
Francesco in [17]). Indeed, let Σ∞ be a vertical strip with marked boundary points I = I− ⊔ I+, where
I+ = {i+, i ∈ Z} (resp. I− = {i−, i ∈ Z}) is the marked point set on the left (resp on the right) boundary
line. Then, clearly,

Γ(Σ∞) = [Γ(Σ∞)] = {(iε, jε′) : i, j ∈ Z, ε, ε′ ∈ {−,+}, i 6= j if ε = ε′} .

Clearly,

Σ∞ =
⋃

m−,m+∈Z,n∈Z>0

Σn
m−,m+
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where Σn
m−,m+ ⊂ Σ is the convex hull of the real intervals [m− +1,m− +n]− ⊂ I−, [m

+ +1,m+ +n]+ ⊂ I+.

Clearly, it is an 2n-gon embedded (as a parallelogram) into Σ, where we identify its vertex set [2n] with
{(m− + 1)− . . . , (m

− + n)−} ⊔ {(m+ + 1)+ . . . , (m
+ + n)+} via

k 7→

{
(m− + k)− if k ≤ n

(m+ + 2n+ 1− k)+ if k > n
.

We denote by AΣn

m−,m+
a copy of A2n under the above identification of the vertex set [2n].

Then the natural inclusions Σn
m−,m+ ⊂ Σn′

m′−,m′+ form′− ≤ m−, m′+ ≤ m+,m′−+n′ ≥ m−+n,m′++n′ ≥

m++n are morphisms in Surf so they define (by Theorem 3.16) the appropriate homomorphisms of algebras

AΣn

m−,m+
→ AΣn′

m′−,m′+
, so we denote by AΣ the direct limit

−→

lim AΣn

m−,m+
under these homomorphisms.

Clearly, the following noncommutative Ptolemy relations (in the form (2.13)) hold in AΣ∞ :

(4.6) x(i+1)±,j∓x
−1
(j+1)∓ ,j∓

x(j+1)∓ ,i± = x(i+1)±,i∓ + x(i+1)±,(j+1)∓x
−1
j∓,(j+1)∓

xj∓,i±

together with the triangle relations:

(4.7) xi±,j∓x
−1
(j+1)∓ ,j∓

x(j+1)∓ ,i± = xi±,(j+1)∓x
−1
j∓,(j+1)∓

xj∓,i±

for all i, j ∈ Z.

Remark 4.7. It is natural to conjecture that the relations (4.6) and (4.7) are defining for AΣ∞ and (in view
of Remark 2.6 that) all natural homomorphisms AΣn

m−,m+
→֒ AΣ∞ are injective.

Note that Σm has a triangulation

∆∞ = {(i±, (i+ 1)±), ((i + 1)±, i±); (i−, i+), (i+, i−), (i−, (i+ 1)+), ((i + 1)+, i−) : i ∈ Z} .

Hence the group T∞ generated by di,± := xi±,(i+1)± , di,± := xi±,(i+1)± , xi := xi−,i+ , xi := xi+,i− ,
yi = xi−,(i+1)+ , yi = xi−,(i+1)+ , i ∈ Z subject to the triangle relations

(4.8) xid
−1

i,+yi = yid
−1
i,+xi, yid

−1

i,−xi+1 = xi+1d
−1
i,−yi

for i ∈ Z is naturally isomorphic to the triangle group T∆∞ .

Lemma 4.8. ??? In the notation of Section 3.8, the subalgebra A∆∞ of AΣ (generated by all xγ , γ ∈ Γ(Σ∞)
and all x−1

γ0
, γ0 ∈ ∆∞) is the group algebra ZT∞ by Corollary 3.37.

Proposition 4.9. In AΣ∞ we have:
(a) Each xi±,j∓ , i, j ∈ Z is sum of elements of T∞ in ZT∞.
(b) The total angle Ti± ∈ ZTr at i± is given by

Ti± = x−1
j∓,i±

(xj∓,(i−1)±x
−1
i±,(i−1)±

+xj∓,(i+1)±x
−1
i±,(i+1)±

) = (x−1
(i−1)± ,i±

x(i−1)±,j∓ +x−1
(i+1)±,i±

x(i−1)±,j∓)x
−1
i± ,j∓

for each j ∈ Z.

Proof. Part (a) follows directly from Theorem 3.30.
Prove (b). Consider triangles in the vertices (i±, j∓, (i− 1)±) and (i±, j∓, (i+ 1)±) in Σ∞.
The following is an immediate corollary of Theorem 3.40.

Lemma 4.10. Ti± = T(i±,j∓),(j∓,(i−1)±),((i−1)±,i±) + T(i±,j∓),(j∓,(i+1)±),((i+1)±,i±).

Using this and taking into account that

T(i±,j∓),(j∓,(i−1)±),((i−1)±,i±) = x−1
j∓,i±

xj∓,(i−1)±x
−1
i±,(i−1)±

= x−1
(i−1)±,i±

x(i−1)±,j∓x
−1
i±,j∓

,

T(i±,j∓),(j∓,(i+1)±),((i+1)±,i±) = x−1
j∓,i±

xj∓,(i+1)±x
−1
i±,(i+1)±

= x−1
(i+1)±,i±

x(i−1)±,j∓x
−1
i±,j∓

in the notation (3.9), we obtain (b).
The proposition is proved. �

Remark 4.11. Using the triangulation ∆∞, it is easy see that

Ti− = d−1
i−1,−yi−1x

−1
i + x−1

i di,+y
−1
i + d

−1

i+1,−xi+1y
−1
i , Ti+ = y−1

i xi−1d
−1

i−1,+ + y−1
i di−1x

−1
i + x−1

i yid
−1
i,+ .
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We can refine these observations and thus recover the recursions (1.6), (1.7). Indeed, set

Uij = xi−,j+ , Vij := xi+,j− , Aj := x−1
(j+1)+,j+

, Aj = x−1
j+,(j+1)+

, Bj := x−1
(j+1)−,j−

, Bj = x−1
j−,(j+1)−

.

By definition, T∞ is freely generated by Ai, Ai, Bi, Bi, Ui,i, Vi,i, Ui,i+1, i ∈ Z and, by Proposition 4.9,

each U±
ij ∈ QT∞ is a sum of elements of Tr. This and Proposition 4.9 imply the following result.

Theorem 4.12. The elements Uij , Vij ∈ ZT∞ i, j ∈ Z satisfy (1.6), (1.7). Furthermore, the elements
H±

ij ∈ Frac(ZT∞), i ∈ Z, given by (1.8) do not depend on j and belong to ZT∞.

5. Appendix: Noncommutative localizations

Recall that for a multiplicative monoid S its linearization ZS is the ring ZS =
⊕

s∈S Z · [s] with the natural
extension of multiplication on S.

If S is a multiplicative submonoid a unital ring of R, we define the universal localization R[S−1] of R by
S to be quotient of the free product R ∗ (ZSop) by the ideal generated by all elements of the form s ∗ [s]− 1,
[s] ∗ s− 1 for any s ∈ S.

By definition, one has a canonical ring homomorphism

(5.1) R → R[S−1] .

In other words, R[S−1] is the unital ring R′ with the universal property that one has a ring homomorphism
R→ R′ under which the image of each element of S in invertible.

Note that (5.1) in not always injective. For each unital ring R denote by R× the set of all units (i.e.,
invertible elements) in R.

The following fact is obvious.

Lemma 5.1. For any ring homomorphism ϕ : R → R′ and any submonoid S ⊂ R\{0} such that ϕ(S) ⊂ (R′)×

there is a unique ring homomorphism ϕS : R[S−1] → R′ such that the composition R → R[S−1] → R′ is ϕ.

For each submonoid S ⊂ R \ {0} define its saturation Ŝ to be the set of all r ∈ R such that the image of

r in R[S−1] is invertible. Clearly, Ŝ is a submonoid of R \ {0} containing S. We say that S is saturated if

Ŝ = S. The following obvious fact justifies this definition.

Lemma 5.2. For any submonoid S ⊂ R \ {0} one has

R[S−1] = R[Ŝ −1] .

Moreover, Ŝ is the largest submonoid of S ⊂ R \ {0} with this property.

Following Malcev and Cohn, we say that a unital ring is of class E if it can be embedded into a skew-field.

Lemma 5.3. Let R be any ring of class E. Then for any multiplicative submonoid S of R \ {0} the canonical
homomorphism (5.1) is injective.

Proof. Indeed, let F be a skew field and ϕ : R→ F be a monomorphism. By definition, for any submonoid
S of R \ 0, ϕ factors as ϕ = g ◦ f , where f : R→ R[S−1] and g : R[S−1] → F are canonical homomorphisms.
Since ϕ is a monomorphism, then f is also a monomorphism. �

Definition 5.4. For a ring R of class E we say that a submonoid S of R \ {0} is divisible if R[S−1] is also of
class E .

Following Cohn, we say that a submonoid S of R \ {0} is factor-closed if for any a, b ∈ R \ {0}, ab ∈ S
implies that a, b ∈ S.

Proposition 5.5. Let R be of class E and S be a divisible submonoid of R \ {0}. Then the saturation Ŝ of
S is a factor-closed submonoid of R \ {0}.

Proof. Since S is divisible, in particular, the canonical homomorphism R → R′ = R[S−1] = R[Ŝ−1] is

injective. It suffices to prove that RI ⊂ R and IR ⊂ I, where I := R \ Ŝ \ {0}.

We shall prove that if x, y ∈ R such that xy ∈ Ŝ, then x ∈ Ŝ, y ∈ Ŝ. Indeed, let z := (xy)−1 and
t := yzx− 1 in R′. By definition, xyz = 1 = zxy. This implies that xt = xyzx− x = 1 · x− x = 0. Since R′
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has no zero divisors and x 6= 0, then t = 0, i.e., (yz)x = 1. Since x(yz) = 1, we see that x is invertible in R′

hence x ∈ Ŝ. Similarly, y ∈ Ŝ as well.
The proposition is proved. �

Below we provide a sufficient criterion for a group algebra of a group to belong to class E and for divisibility
of some of its submonoids.

Definition 5.6. A group G is called 1-relator torsion-free if G is isomorphic to F/〈x〉 where F is a finitely
generated free group, x ∈ F \ {1} is not a proper power in F , and 〈x〉 denotes the normal subgroup of F
generated by x.

Results of Malcev, Newman, J. Lewin and T. Lewin (see e.g., [13, Section 8.7], [34]) imply the following.

Theorem 5.7. Let G be any finitely generated free group or any 1-relator torsion free group. Then the group
algebra R = QG is of class E. In particular, for any submonoid S ⊂ QG \ {0} the canonical homomorphism
(5.1) is injective.

We will need the following result, which is a particular case of [38, Theorem 10.11] (here Fℓ denotes a free
skew field freely generated by ℓ elements).

Proposition 5.8. Let ℓ ≥ 1 and assume that ℓ elements t1, . . . , tℓ of Fℓ generate Fℓ. Then t1, . . . , tℓ are
free generators. In particular, the assignment ci 7→ ti for i = 1, . . . , ℓ defines an injective homomorphism of
algebras QFℓ →֒ Fℓ.

Following Cohn, we say that a ring R is a left (resp. right) semifir if each finitely generated left (resp.
right) ideal J is isomorphic to Rn for a unique n = nJ . R is called semifir if it is both left and right semifir.
We use below the standard definition of a universal R-field, see [13, Section 7.2].

Theorem 5.9. Let R be a semifir. Then:
(a) There exists a universal skew field Frac(R) containing R as a subalgebra and generated by R.
(b) For any factor-closed submonoid S of R\{0} the canonical homomorphism RS → Frac(R) is injective.

Proof. Recall from [13] that:
• an n× n matrix A over a unital ring R is full if for any factorization A = BC for some n× p matrix B

and a p× n matrix C one has p ≥ n;
• A homomorphism f : R→ R′ is honest if the image of each full matrix is full.
• A set Σ of square matrices over a unital ring R is multiplicative if any upper block-triangular matrix

with diagonal in Σ also belongs to Σ and Σ is closed under simultaneous permutation of rows and columns;
• A set Σ of matrices over a unital ring R is called factor-closed if AB ∈ Σ for some n× n matrices A and

B over R implies that A,B ∈ Σ.
• For any set Σ of square matrices over a unital ring R, RΣ denotes the universal localization ([13, Theorem

2.1]) so that the image of each element of Σ under the canonical homomorphism R → RΣ is an invertible
matrix (e.g., RS = R[S−1] in the notation as above);

Then Theorem 5.9(a) immediately follows from the following result.

Theorem 5.10. [13, Section 7.5, Corollary 5.11]) For each semifir R the universal localization Frac(R) :=
RΦ, where Φ is the set of full matrices over R, is a skew field and the canonical homomorphism R→ Frac(R)
is honest (hence injective).

To prove (b) we need following results from [13].

Proposition 5.11. ([13, Section 7.5, Proposition 5.7(ii)]) Given unital rings R and R′ and an honest homo-
morphism f : R → R′, then for any factor-closed multiplicative set Σ of square matrices over R, the canonical
homomorphism fΣ : RΣ → R′ is injective.

For any S ⊂ R denote by ΣS the set of all matrices over R of the form PMQ where P and Q are invertible
matrices over R and M is an upper triangular matrix over R with diagonal entries in S.

Lemma 5.12. ([13, Section 7.5, Lemma 10.1]) Let R be a semifir. Then for any factor-closed submonoid S
of R \ {0} the set ΣS is factor-closed and multiplicative.
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Indeed, letting R be a semifir and R′ = Frac(R) in Proposition 5.11, Σ = ΣS as in Lemma 5.12 and taking
into account that R[S−1] = RS = RΣS

, we finish the proof of part (b).
Theorem 5.9 is proved. �

It is well-known (see e.g., [16]) that for any finitely generated free group F its group algebra if R = QF is
a semifir. Therefore, Theorem 5.9 implies the following corollary.

Corollary 5.13. Let F be a finitely generated free group and R = QF . Then any factor-closed submonoid S
of R \ {0} is divisible, more precisely, R[S−1] ⊂ Frac(R).

Remark 5.14. Based on Theorem 5.7, we expect that an analogue of Corollary 5.13 also holds for R = QG,
where G is a torsion-free 1-relator group.

Given a unital ring R, following Cohn, we say that:
• Elements a, b ∈ R are similar if the right R-modules R/aR and R/bR are isomorphic (clearly, similarity

is an equivalence relation on R).
• An element p ∈ R \R× is prime if for any factorization p = p′p′′ one has: either p′ ∈ R× or p′′ ∈ R×.
• A unital ring R is a (noncommutative) unique factorization domain (UFD) if each nonzero non-unit

admits a prime factorization and for any two prime factorizations of a non-unit x ∈ R:

x = p1 · · · pr = q1 · · · qs

one has s = r and qi is similar to pσ(i) for i = 1, . . . , r where σ is a permutation of {1, . . . , r}.

Proposition 5.15. Let R be a UFD and S be a submonoid of R \ {0}. Then S is factor-closed iff it is
generated by R× together with a set P which is the union of similarity classes of prime elements in R.

Proof. Denote by P the set of all primes in R and by SP the submonoid of R \ {0} generated by R× and
P . Clearly, SP ⊂ S.

Suppose that is factor-closed. Let us show that S = SP . We proceed by contradiction, i.e., suppose that
there is at least one element a ∈ S \ SP . Then a is not a unit hence a has a prime factorization a = p1 · · · pr.
If r = 1, then a = p1 ∈ S hence a ∈ SP and we arrive at the contradiction. If r ≥ 2, then since S is
factor-closed, we have pi ∈ S for i = 1, . . . , r. Hence a ∈ SP and we arrive at the contradiction once again.

Suppose that P is a union of similarity classes and S = SP . Let us prove that S is factor-closed. Suppose
that ab ∈ S for some a, b ∈ R. Let us show that a, b ∈ S. If either a or b is a unit, we have nothing to prove
because R× ⊂ S. Thus, suppose that a, b ∈ R \R× and let

a = p1 · · · pr′, b = pr′+1 · · · pr

be respective prime factorizations with 1 ≤ r′ < r, where p1, . . . , pr are some primes in R. On the other hand,
since ab is a non-unit element of S, it admits a prime factorization in S:

ab = q1 · · · qs

where q1, . . . , qs ∈ P . Comparing the factorizations:

p1 · · · pr = q1 · · · qs

and using the fact that R is UFD, we obtain: r = s and each pi is similar to one of qj . Since all similars of
all qj belongs to P , we obtain p1, . . . , pr ∈ P hence a ∈ S, b ∈ S.

The proposition is proved. �

Remark 5.16. The class of noncommutative UFD’s is rather large: it contains group rings QF , where F is
any finitely generated free group (see e.g., [15, Theorem 3.4, Proposition 3.5 and Corollary]).

Note however, that similarity classes of primes may contain some “unexpected” elements. For instance,
if R is the free ring in x, y then xy + 1 and yx + 1 are similar (see e.g. ??) This motivates the following
definition.

Definition 5.17. Given a ring R, we say that an element a ∈ R \ {0} is self-similar if all elements similar to
a are of the form uau′, where u, u′ ∈ R×.

Taking into account that (QF )× = Q× ·F for a free (or, more generally, an ordered) group F (see e.g., [33,
Theorem 6.29]), we obtain the following conjectural characterization of certain self-similar primes in QF .
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Conjecture 5.18. Let F be a free group freely generated by t1, . . . , tm, m ≥ 2. Then for k = 2, . . . ,m the
element τk := t1+ . . .+tk is a self-similar prime, e.g., all elements of QF similar to τk belong to Q× ·F ·τk ·F .

Remark 5.19. This conjecture was shaped during our discussions with George Bergman, Dolors Herbera,
and Alexander Lichtman. We are immensely grateful to these mathematicians.
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