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FOURIER–MUKAI TRANSFORM ON WEIERSTRASS CUBICS AND

COMMUTING DIFFERENTIAL OPERATORS

IGOR BURBAN AND ALEXANDER ZHEGLOV

Abstract. In this article, we describe the spectral sheaves of algebras of commuting
differential operators of genus one and rank two with singular spectral curve, solving a
problem posed by Previato and Wilson. We also classify all indecomposable semi–stable
sheaves of slope one and ranks two or three on a cuspidal Weierstraß cubic.

The purpose of this article is to study spectral sheaves of genus one commutative sub-
algebras in the algebra of ordinary differential operators D = CJzK[∂].

Let Λ ⊂ C be a lattice and ℘(z) be the corresponding Weierstraß function. As it was
observed by Wallenberg [51] in 1903, the ordinary differential operators

(0.1) P = ∂2 − 2℘(z + α) and Q = 2∂3 − 4℘(z + α)∂ − 3℘′(z + α),

commute for all α ∈ C and obey the relation Q2 = 4P 3 + g2P + g3, where g2 and g3 are
the Weierstraß parameters of the lattice Λ, see [51].

In 1968 Dixmier discovered another interesting example [14]: for any κ ∈ C, put D :=
∂2 + z3 + κ and consider

(0.2) P = D2 + 2z and Q = D3 +
3

2

(
zD +Dz

)
.

Then P and Q commute and satisfy the relation Q2 = P 3 − κ. Dixmier also shown that
the subalgebra C[P,Q] ⊂ D is in fact maximal.

It turns out that any non–trivial commutative subalgebra B in D is finitely generated
and has Krull dimension one. Moreover, the affine curve X0 = Spec(B) admits a one–
point compactification by a smooth point p to a projective curve X. The arithmetic genus
of X is called genus of the algebra B. Additionally, the algebra B defines a coherent
torsion free sheaf F on the curve X characterized by the following properties:

• For any point q ∈ X0 (smooth or singular) corresponding to an algebra homomor-

phism B
χ−→ C, we have an isomorphism of vector spaces

F
∣∣∗
q
−→

{
f ∈ CJzK |P ◦ f = χ(P )f for all P ∈ B

}
.

• The evaluation map H0(X,F)
evp−→ F

∣∣
p

is an isomorphism and H1(X,F) = 0.

The curveX (respectively, the sheaf F) is called spectral curve (respectively, spectral sheaf )
of the algebra B. The rank of the torsion free sheaf F is called rank of B. Krichever
correspondence [29] asserts that any non–trivial commutative subalgebra of B of rank one
is essentially determined by its spectral data (X, p,F). The description of commutative
subalgebras of D of higher rank is more complicated. It was first given by Krichever
[27, 28, 29] and then elaborated by many authors, including Drinfeld [15], Mumford [40],
Segal and Wilson [47], Verdier [50], Mulase [38] and others.

A first description of genus one and rank two commutative subalgebras of D was ob-
tained by Krichever and Novikov [30], who also discovered a connection between this kind
of problems and soliton solutions of certain non–linear PDE equations. In their Ansatz,
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2 IGOR BURBAN AND ALEXANDER ZHEGLOV

however, the spectral curve X was taken to be smooth. Since that time, the study of
genus one commutative subalgebras of D attracted a considerable attention, see for ex-
ample [19, 20, 13, 41, 36]. We refer to [41, Section 1] for an illuminative overview. It
is not difficult to show that for any (normalized) genus one and rank two commutative
subalgebra B ⊂ D there exist two operators L,M ∈ B such that B = C[L,M ] and

(0.3) L = ∂4 + a2∂
2 + a1∂ + a0, M = 2L

3
2
+, M2 = 4L3 + g2L+ g3

for some g2, g3 ∈ C, see [21, 41] or Proposition 3.1 below. Here, L
3
2 is taken in the algebra

of pseudo–differential operators CJzK((∂−1)) and L
3
2
+ is the projection of L

3
2 onto D. A full

description of all operators L as in (0.3) satisfying the constraint [L,M ] = 0 for M = 2L
3
2
+

was obtained by Grünbaum [21], who also got convenient formulae for the coefficients
a0, a1 and a2. In this article we deal with the following

Problem. What is the spectral sheaf F of the algebra B = C[L,P ] of genus one and
rank two, expressed through the coefficients a0, a1 and a2 from (0.3) in the case when the
spectral curve X is singular? In particular, what is the spectral sheaf of Dixmier’s family
(0.2) for κ = 0?

Previato and Wilson gave a complete solution of the above problem in the case the spec-
tral curve X is smooth [41, Theorem 1.2]. Their answer was given in terms of Grünbaum’s
classification [21] as well as of Atiyah’s classification of vector bundles on elliptic curves
[2]. The description of the spectral sheaf in the case of a singular spectral curve was left
as an open problem. Quoting [41, Page 109]: “We have not worked out the case when
the curve X is singular, that is, when X is nodal or cuspidal cubic. It would probably be
rather complicated (because of the need to consider torsion free sheaves)”.

It turns out that the problem of Previato and Wilson can be completely solved thanks
to the technique of derived categories and Fourier–Mukai transforms on the Weierstraß
cubics [8]. The main idea is that instead of dealing with the spectral sheaf F directly, it
is easier to describe the Fourier–Mukai transform T of F , which is a certain torsion sheaf
on X. This approach brings a new light on the method of [41] and allows to treat the
analogous problem for genus one commutative subalgebras of D of arbitrary rank.

The structure of this article is the following. In Section 1, we review the theory of
commutative subalgebras in D. The major new result of this section is Theorem 1.25
explaining the appearance of Fourier–Mukai transforms in the study of spectral sheaves.

A classification of indecomposable vector bundles on a smooth elliptic curve was ob-
tained by Atiyah in [2]. In this case, indecomposable vector bundles are automatically
semi–stable. Semi–stable torsion free sheaves of integral slope on a nodal Weierstraß cu-
bic were explicitly classified in [8], see also [17, 5]. However, the category of semi–stable
torsion free sheaves of slope one on a cuspidal cubic curve turns out to be representation
wild [16, 5]. Nevertheless, one can obtain a full classification of all rank two or three semi–
stable coherent sheaves of slope one on a cuspidal cubic curve. This is done in Section 2,
see in particular Theorem 2.8 (providing a self–contained classification in the nodal case
as well) and Corollary 2.15.

In Section 3 we give a full answer on the question of Previato and Wilson [41], describing
the spectral sheaf of a genus one and rank two commutative subalgebra of D with singular
spectral curve, see Theorem 3.7, Theorem 3.11 and Theorem 3.16. In particular, we
describe all such commutative subalgebras, whose spectral sheaf is indecomposable and not
locally free, see Corollary 3.13. Finally, taking the Fourier transform of Dixmier’s example
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(0.2), we illustrate how the spectral sheaf of a genus one and rank three commutative
subalgebra of D can be explicitly determined, see Example 3.22.

Acknowledgement. Parts of this work were done at the Mathematical Research Institute in
Oberwolfach within the “Research in Pairs” programme in the period October 5 – October
17, 2015, as well as during research stays of the second–named author at the University
of Cologne. The research of the second–named author was supported by RFBR grants
14-01-00178-a, 16-01-00378 A and 16-51-55012 China-a. We are also grateful to Emma
Previato for fruitful discussions.

1. Commutative subalgebras in the algebra of differential operators

Let D = CJzK[∂] =
{ n∑
i=0

ai(z)∂
i | ai(z) ∈ CJzK, 0 ≤ i ≤ n

}
be the algebra of ordinary

differential operators with coefficients in the algebra CJzK of formal power series. In this
section we shall review the theory of commutative subalgebras of D. The first systematic
study of this problem dates back to a work of Schur [46]. Burchnall and Chaundy [10, 11,
12] and Baker [3] obtained a full classification of pairs of commuting differential operators
of coprime orders. The modern algebro–geometric treatment of arbitrary commutative
subalgebras in D was initiated by Krichever [27, 28, 29]. This theory has been extensively
applied by Novikov and his school in the study of soliton solutions of various non–linear
partial differential equations, see for example the survey [30]. Krichever’s approach was
formalized and further developed by Drinfeld [15], Mumford [40], Verdier [50], Segal and
Wilson [47] and Mulase [38]. The literature dedicated to this area is vast and the described
bibliography is definitely uncomplete. There are numerous survey articles on this subject,
see for example [42, 52, 39]. Nonetheless, for our purposes we felt it was necessary to
review this theory once again, setting the notation and introducing all the relevant notions.
The main novelty of this section is Theorem 1.25 explaining the appearance of derived
categories in the study of spectral sheaves of commutative subalgebras of D.

Let us begin with the following well–known result about automorphisms of D.

Lemma 1.1. Let ϕ be an algebra endomorphism of D. Then there exist u ∈ CJzK satisfying
u(0) = 0 and u′(0) 6= 0, and v ∈ CJzK such that

(1.1)

 z
ϕ7→ u

∂
ϕ7→ 1

u′
∂ + v.

In particular, ϕ is an automorphism of D, i.e. End(D) = Aut(D).

Proof. Let u := ϕ(z) ∈ D. It is not difficult to show that u belongs CJzK and satisfies the
properties stated in the theorem. Let P := ϕ(∂) = an∂

n + an−1∂
n−1 + · · · + a0 ∈ D for

some n ∈ N, where an 6= 0. Clearly, [P, u] = nu′an∂
n−1 + l.o.t, hence [∂, z] = 1 = [P, u] if

and only if n = 1 and a1 =
1

u′
. �

Remark 1.2. Let w ∈ CJzK be a unit (i.e. w(0) 6= 0). Then for the inner automorphism
Adw : D −→ D, P 7→ w−1Pw, we have:{

z 7→ z

∂ 7→ ∂ +
w′

w
.
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Note that for any CJzK 3 v =
∞∑
i=0

βiz
i = β0 + ṽ, the formal power series w := exp(v) =

eβ0 exp(ṽ) is a unit in CJzK. Therefore, any automorphism ϕ ∈ Aut(D) satisfying ϕ(z) = z
is inner, see (1.1)

Proposition 1.3. Let P = an∂
n +an−1∂

n−1 + · · ·+a0 ∈ D, where an(0) 6= 0. Then there
exists ϕ ∈ Aut(D) such that

(1.2) Q := ϕ(P ) = ∂n + bn−2∂
n−2 + · · ·+ b0

for some b0, . . . , bn−2 ∈ CJzK. Moreover, if Q ∈ D is a normalized differential opera-
tor of positive order (i.e. a differential operator having the form (1.2)) and ψ an inner
automorphism of D such that ψ(Q) = Q then ψ = id.

Proof. By assumption, an is a unit in CJzK. Therefore, there exists a ∈ CJzK such that
an = an. It implies that P =

(
a∂
)n

+ l.o.t. Hence, there exists a change of variables

transforming P into an operator of the form P̃ := ∂n+ cn−1∂
n−1 + · · ·+ c0. Applying now

to P̃ an automorphism (1.1) with u = z and v = −cn−1

n
, we get a normalized operator Q.

This proves the first statement. The proof of the second statement is straightforward. �

Definition 1.4. A differential operator P = an∂
n + an−1∂

n−1 + · · ·+ a0 ∈ D of positive
order n is called formally elliptic if an ∈ C∗.

The following useful observation is due to Verdier [50, Lemme 1].

Lemma 1.5. Let B be a commutative subalgebra of D containing a formally elliptic
element P . Then all elements of B are formally elliptic.

Remark 1.6. An algebra B ⊂ D containing a formally elliptic element is called elliptic.
There exists non–trivial non–elliptic commutative subalgebras in D, i.e. those which are
not of the form C[P ], where P is a non–elliptic operator. Nonetheless, the major interest
concerns those commutative subalgebras of D which belong to the subalgebra C{z}[∂]
of ordinary differential operators, whose coefficients are convergent power series. If P =
an∂

n + an−1∂
n−1 + · · ·+ a0 is such an operator then shifting the variable z 7→ z + ε with

ε ∈ C such that |ε| is sufficiently small, we may always achieve that an(0) 6= 0. Note
that this operation can not be extended on the whole D. Nonetheless, one can show that
all elements of B belong to C{z}[∂] (this follows for example from Schur’s theorem [39,
Theorem 2.2], see for example [38, Lemma 5.3]) and one can choose a common radius of
convergence for all coefficients of all elements of B. According to Proposition 1.3, we can
transform P into a normalized formally elliptic differential operator. Therefore, in the
sequel all commutative subalgebras of D are assumed

• to contain an elliptic operator of positive order (i.e. being elliptic)
• to be normalized, meaning that all elements of B of minimal positive order are

normalized.

The last assumption eliminates reduntant degrees of freedom in the problem of classifica-
tion of commutative subalgebras of differential operators: if B ⊂ D is a normalized elliptic
subalgebra and ϕ an inner automorphism of D such that ϕ(B) = B then ϕ = id.

Definition 1.7. Let B be a commutative subalgebra of D. We call the natural number

r = rk(B) = gcd
{

ord(P )
∣∣P ∈ B

}
the rank of B.
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Theorem 1.8. Let B be a commutative subalgebra of D.

(1) Then B is finitely generated integral domain of Krull dimension one. In particular,
B determines an integral affine algebraic curve X0 := Spec(B).

(2) Moreover, X0 can be compactified to a projective algebraic curve X by adding a
single smooth point p, which is determined by the valuation

valp : Q −→ Z,
P

Q
7→ ord(Q)− ord(P )

r
,

where Q is the quotient field of B and r is the rank of B.

Comment to the proof. Algebraic curves entered for the first time into the theory of
commutative subalgebras of D in the works of Burchnall and Chaundy [10, 11] and in a
greater generality in the works of Krichever [27, 28]. In the stated form, this result can be
found in the articles of Mumford [40, Section 2] and Verdier [50, Proposition 1]. See also
[38, Theorem 3.3].

Definition 1.9. The projective curve X = X0 ∪ {p} is called spectral curve of a commu-
tative subalgebra B ⊂ D. The arithmetic genus of X is called genus of B.

Example 1.10. In the example of Wallenberg (0.1), the algebra C[P,Q] has rank one and
genus one. In the example of Dixmier (0.2), the algebra C[P,Q] has rank two and genus
one for any κ ∈ C.

Definition 1.11. Let B ⊂ D be a commutative subalgebra. Consider the right D–module

F := D/zD
∼=−→ C[∂], a(z)∂n 7→ a(0)∂n. Clearly, the right action of D on C[∂] is given by

the following rules:

(1.3)

{
p(∂) � ∂ = ∂ · p(∂)
p(∂) � z = p′(∂).

Restricting the action (1.3) on the subalgebra B, we endow F with the structure of a
B–module. Since the algebra B is commutative, we shall view F as a left B–module
(although having the natural right action in mind).

Theorem 1.12. Let B ⊂ D be a commutative subalgebra of rank r. Then F is finitely
generated and torsion free over B. Moreover, Q ⊗B F ∼= Q⊕r, i.e. rkB(F ) = rk(B). In
other words, the rank of the algebra B in the sense of Definition 1.7 coincides with the
rank of F viewed as a B-module.

Comment to the proof. In the stated form, this result can be found in [50, Proposition
3] and [40, Section 2]. See also [31, Theorem 2.1] for another treatment as well as for a
generalization on the higher–dimensional cases.

Remind that according to the Nullstellensatz, the points of X0 stand in bijection with the
algebra homomorphisms B −→ C (called in what follows characters).

Definition 1.13. Let q ∈ X0 be any point and χ = χq : B −→ C the corresponding
character. We call the C–vector space

(1.4) Sol
(
B, χ

)
:=
{
f ∈ CJzK

∣∣P ◦ f = χ(P )f for all P ∈ B}
the solution space of the algebra B at the point q. Here, we take the usual left action ◦
of D on CJzK. Observe, that Sol

(
B, χ

)
has a natural B–module structure.

The geometric meaning of the B–module F is explained by the next result.
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Theorem 1.14. The following C–linear map

(1.5) F
ηχ−→ Sol

(
B, χ

)∗
, ∂i 7→

(
f 7→ f (i)(0)

)
is also B–linear, where Sol

(
B, χ

)∗
= HomC

(
Sol
(
B, χ

)
,C
)

is the vector space dual of the
solution space. Moreover, the induced map

(1.6) B/Ker(χ)⊗B F
η̄χ−→ Sol

(
B, χ

)∗
is an isomorphism of B–modules.

Proof. These statements can be found in [40, Section 2] or [50, Proposition 5], where the
proofs are briefly outlined. Since this result plays a central role in our work, we give a
detailed proof here. First note that the following map

(1.7) HomC
(
F,C

) Φ−→ CJzK, λ 7→
∞∑
p=0

1

p!
λ(∂p)zp

is an isomorphism of left D–modules. Let B
χ−→ C be a character, then C = Cχ :=

B/Ker(χ) is a left B–module. We obtain a B–linear map

(1.8) Ψ : HomB(F,Cχ)
I−→ HomC(F,C)

Φ−→ CJzK,

where I is the forgetful map. The image of I consists of those C–linear functionals, which
are also B–linear, i.e.

Im(I) =
{
λ ∈ HomC(F,C)

∣∣ λ(P � − ) = χ(P ) · λ(− ) for all P ∈ B
}
.

This implies that Im(Ψ) = Sol(B, χ). Next, we have a canonical isomorphism of B–
modules: HomB(F,Cχ) ∼= HomC

(
B/Ker(χ)⊗B F,C

)
. Dualizing again, we get an isomor-

phism of vector spaces

Ψ∗ : Sol(B, χ)∗ −→
(
B/Ker(χ)⊗B F

)∗∗ ∼= B/Ker(χ)⊗B F.

It remains to observe that Ψ∗ is also B–linear and
(
Ψ∗
)−1

= η̄χ. �

Remark 1.15. The isomorphism (1.6) has the following geometric meaning: if we view
F as a coherent sheaf on X0 = Spec(A) then for any point q ∈ X0 (smooth or singular)

we have: F
∣∣
q
∼= Sol(B, χ)∗, where B

χ−→ C is the character corresponding to the point q.

Because of this fact, F is called spectral module of the algebra B.

Corollary 1.16. Let B ⊂ D be a commutative subalgebra of rank r. Then for any

character B
χ−→ C we have: r ≤ dimC

(
Sol(B, χ)

)
<∞. Moreover, dimC

(
Sol(B, χ)

)
≥ r+1

if only if χ defines a singular point q ∈ X0 and F is not locally free at q.

According to Theorem 1.8, the affine curve X0 = Spec(B) admits a canonical compactifi-
cation X. It turns out that the spectral module F can also be canonically extended from
X0 on the whole projective curve X.

Theorem 1.17. Let B be a commutative subalgebra in D of rank r. Then there exists
a unique torsion free sheaf F (called spectral sheaf of B) on the projective curve X =
X0 ∪ {p} such that

(1) Γ(X0,F) is isomorphic to F viewed as a B–module (remind that B ∼= Γ(X0,O)).
(2) The image of the canonical restriction map Γ(X,F) −→ Γ(X0,F) is the vector

space 〈1, ∂, . . . , ∂r−1〉C ⊂ C[∂] = F ∼= Γ(X0,F). In particular, dimC
(
Γ(X,F)

)
= r.
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(3) The evaluation map Γ(X,F)
evp−→ F

∣∣
p

is an isomorphism and H1(X,F) = 0.

Comment to the proof. Taking the long exact cohomology sequence, associated with the
short exact sequence of coherent sheaves 0 → F(−[p]) → F → F

∣∣
p
→ 0, we immediately

see that the condition (3) of Theorem 1.17 on F is equivalent to the vanishing

(1.9) H0
(
X,F(−[p])

)
= 0 = H1

(
X,F(−[p])

)
.

The statement follows from [38, Theorem 3.4], applied to the torsion free sheaf F(−[p]).

Definition 1.18. The slope of a torsion free (but not necessarily locally free) coherent

sheaf G on X is the ratio µ(G) := χ(G)
rk(G) , where χ(G) := dimC

(
H0(X,G)

)
−dimC

(
H1(X,G)

)
is the Euler characteristic of G and rk(G) is the rank of G. A coherent sheaf G is semi–stable
when for any subsheaf G′ ⊂ G we have: µ(G′) ≤ µ(G).

Corollary 1.19. Let B be a commutative subalgebra in D and F be its spectral sheaf.

(1) The following sequence of coherent sheaves on X is exact:

(1.10) 0 −→ Γ(X,F)⊗O ev−→ F −→ T −→ 0,

where T is a torsion sheaf on X, whose support belongs to the affine part X0.
(2) F is semi–stable of slope one.

Proof. (1) Let T := Cok
(
Γ(X,F) ⊗ O ev−→ F

)
. Because of the condition (3) in the

axiomatic description of the spectral sheaf F from Theorem 1.17, the infinite point p ∈ X
does not belong to the support of T . It implies that T is a torsion sheaf, whose support
belongs to X0. Since the ranks of the torsion free sheaves Γ(X,F) ⊗ O and F are both
equal to r, the rank of Ker(ev) is equal to zero. This means that Ker(ev) is a torsion sheaf.
On the other hand, Ker(ev) is a subsheaf of a torsion free sheaf Γ(X,F)⊗O. Therefore,
Ker(ev) = 0 and the sequence (1.10) is exact.

(2) The coherent sheaf F̃ := F(−[p]) is semi–stable. Indeed, because of the vanishing

(1.9), µ(F̃) = 0. If H is a subsheaf of F̃ then H0(X,H) = 0, thus µ(H) ≤ 0. Hence, F̃ is
semi–stable, therefore F is semi–stable as well. �

Definition 1.20. Let B ⊂ D be a commutative subalgebra. Then the tuple (X, p,F) is
called spectral data of B. In particular, B ∼= Γ

(
X \ {p},O

)
viewed as a C–algebra.

Theorem 1.21 (Krichever correspondence). Consider the following two sets:

(1.11) DiffOp =
{
B ⊂ D

∣∣ B is commutative, elliptic and normalized
}

and

(1.12) SpecData =

(X, p,F)

∣∣∣∣∣∣∣∣
X is an integral projective curve
p ∈ X is a smooth point
F is torsion free, H1(X,F) = 0

Γ(X,F)
evp−→ F

∣∣
p

is an isomorphism

 .

Then the Krichever map

(1.13) DiffOp
K−→ SpecData, B 7→ (X, p,F)

is surjective. Moreover, its restriction DiffOp1
K−→ SpecData1 on the set of commutative

subalgebras B ⊂ D of rank one, respectively the set of tuples (X, p,F) with F of rank one,
is essentially a bijection (the word “essentially” means that the spectral data of B and B′

are the same if and only if B′ = ϕ(B) for ϕ ∈ Aut(D) induced by z 7→ αz with α ∈ C∗).
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Comment to the proof. In the case X is a smooth Riemann surface, this result has been
proven by Krichever [28, Theorem 2.2]. Singular curves and torsion free sheaves which are
not locally free were included into the picture by Mumford [40, Section 2] and Verdier [50,
Proposition 4]. Their approach was further developed by Mulase [38, Theorem 5.6].

Example 1.22. It was already pointed out by Burchnall and Chaundy in 1923, that the
Wallenberg’s family (0.1) exhausts the list of rank one commutative subalgebras of D,
whose spectral curve X is elliptic [10, Section 8]. This perfectly matches with Theorem
1.21: in this case X := C/Λ ∼= Pic0(X). Next, if we wish the coefficients of the operators
P and Q to be regular at 0, we have to demand that the parameter α ∈ C from (0.1) does
not belong to the lattice Λ. This corresponds to the exclusion of the structure sheaf O
from the set Pic0(X). For any α ∈ C, consider the following function

(1.14) ψα(z, t) =
σ(t− α− z)
σ(t)σ(z + α)

exp
(
ζ(t)(z + α)

)
,

where σ and ζ are the Weiertraß elliptic functions. Then we have:

(1.15)

{
Lz ◦ ψα(z, t) = ℘(t) · ψα(z, t)
Pz ◦ ψα(z, t) = ℘′(t) · ψα(z, t).

Clearly, q =
(
℘(t), ℘′(t)

)
∈ X0 = V (y2 − 4x3 − g2x − g3) for all t ∈ C \ Λ, where g2 and

g3 are the Weierstraß parameters of the lattice Λ. The function ψα(z, t) is the genus one
Baker–Akhieser function. An analogous expression for the Baker–Akhieser function exists
for an arbitrary commutative subalgebra B ⊂ D of rank one, such that the spectral curve
X of B is smooth, see [28]. This provides another interpretation of the spectral sheaf F .

Remark 1.23. The study of commutative subalgebras of D of arbitrary rank has been
initiated by Krichever [27, 28, 29]. Although the Krichever map K is surjective, the
algebra B can not be recovered from (X, p,F) in the case rk(B) ≥ 2. In order to study
this “inverse scattering problem”, Krichever and Novikov introduced the formalism of
vector–valued Baker–Akhieser functions. This method leads to explicit expressions for
commutative subalgebras of genus one and rank two [30, Section 5] and three [36]. Using
this approach, new commutative subalgebras of rank two and higher genus with polynomial
coefficients were recently constructed in [34, 37].

Remark 1.24. Commutative subalgebras B ⊂ D with singular spectral curve arise nat-
urally in various applications in mathematical physics, see for instance [18, 53] and [49].

Main question. Assume we are given a commutative subalgebra B ⊂ D of arbitrary
rank. How to describe explicitly its spectral sheaf F?

The following observation plays a key role in our work, also explaining why the genus one
case is so special.

Theorem 1.25. The torsion sheaf T from the short exact sequence (1.10) is isomorphic
to the Seidel–Thomas twist of F . If the arithmetic genus of X is one then the spectral
sheaf F can be recovered back from T .

Proof. For any projective variety X (smooth or singular) there exists an exact endo-
functor T = TO : Db

(
Coh(X)

)
−→ Db

(
Coh(X)

)
of the derived category of coherent

sheaves Db
(
Coh(X)

)
called Seidel–Thomas twist functor [48, Definition 2.5], assigning to

a complex F• another complex T(F•) defined through the distinguished triangle

(1.16) RHom•(O,F•)
k

⊗ O ev−→ F• −→ T(F•) −→
(
RHom•(O,F•)

k

⊗ O
)
[1].
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In our case, X is a curve, F• = F [0] is a stalk complex, Ext1
X(O,F) = 0 and the evaluation

map HomX(O,F) ⊗ O ev−→ F is injective. Therefore, the distinguished triangle (1.16) is
nothing but the short exact sequence (1.10). The key point is the following: TO is an
auto–equivalence of Db

(
Coh(X)

)
provided X is a Calabi–Yau variety, meaning that

ExtiX(O,O) =

{
C i = 0, dim(X)
0 otherwise.

It remains to note that the irreducible Calabi–Yau curves are precisely the irreducible
projective curves of arithmetic genus one (which are nothing but the Weierstraß cubics

X = Xg2,g3 = V (y2 − 4x3 − g2x− g3) ⊂ P2, where g2, g3 ∈ C). �

The above Theorem 1.25 implies that the torsion sheaf T is an important invariant of the
algebra B, allowing to reconstruct the spectral sheaf F in the genus one case. It turns
out that at least the support of T can be algorithmically determined.

Let C((z)) be the field of formal Laurent series and D̃ = C((z))[∂] be the algebra of

ordinary differential operators with coefficients in C((z)). For any character B
χ−→ C

consider the C–vector space

(1.17) Sol′
(
B, χ

)
:=
{
f ∈ C((z))

∣∣P ◦ f = χ(P )f for all P ∈ B}.
Obviously, Sol

(
B, χ

)
⊆ Sol′

(
B, χ

)
. However, the following result is true.

Theorem 1.26. Let B ⊂ D be a commutative subalgebra of rank r and B
χ−→ C a

character. Then we have: Sol
(
B, χ

)
= Sol′

(
B, χ

)
and there exists a uniquely determined

(1.18) Rχ = ∂m + c1∂
m−1 + · · ·+ cm ∈ D̃

such that Ker(Rχ) = Sol′
(
B, χ

)
. Moreover, m ≥ r and m = r if and only if F is locally

free at the point q ∈ X0 corresponding to χ. Finally, for any χ the operator Rχ is regular
meaning that the order of the pole of ci(z) at z = 0 is at most i for all 1 ≤ i ≤ m.

Proof. Let P = ∂n + a1∂
n−1 + · · · + an ∈ D. Then the dimension of the C–vector space

Ker(P ) ⊂ C((z)) is n and Ker(P ) ⊂ CJzK. This implies that Sol
(
B, χ

)
= Sol′

(
B, χ

)
.

For any differential operators Q1, . . . , Ql ∈ D̃ we denote by 〈Q1, . . . , Ql〉 ⊆ D̃ the left

ideal generated by these elements. Recall that any left ideal J ⊆ D̃ is principal. Let
P1, . . . , Pn ∈ B be the algebra generators of B (i.e. B = C[P1, . . . , Pn]) and αi = χ(Pi)

for all 1 ≤ i ≤ n. Then there exists a uniquely determined Rχ ∈ D̃ as in (1.18) such that

(1.19)
〈
P − χ(P )1

∣∣ P ∈ B
〉

=
〈
P1 − α1, . . . , Pn − αn

〉
= 〈Rχ〉.

Let K be the universal Picard–Vessiot algebra of C((z)), see [43, Section 3.2]. The algebra D̃

acts on K and any differential operator operator of order m from D̃ has exactly m linearly
independent solutions with values in K. Obviously, Ker(Rχ) = Sol′

(
B, χ

)
= Sol

(
B, χ

)
viewed as subspaces of K. Moreover, dimC

(
Ker(Rχ)

)
= ord(Rχ). In virtue of Corollary

1.16, we get the statement about the order of Rχ. The regularity of Rχ follows from a
classical theorem of Fuchs, see for example [23, Theorem 1.1.1]. �

Definition 1.27. In what follows, the differential operator Rχ given by (1.19) will be
called the greatest common divisor of P1 − α1, . . . , Pn − αn.

Theorem 1.28. Let B ⊂ D be a commutative subalgebra of rank r, B
χ−→ C a character,

q ∈ X0 the corresponding point and Rχ the differential operator from Theorem 1.26. Then
q belongs to the support of T if and only if one of the following two cases occurs.
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(1) ord(Rχ) ≥ r + 1. In this case, q is a singular point of X0 and the spectral sheaf F
is not locally free at q.

(2) ord(Rχ) = r and the coefficient c1 of Rχ from the expansion (1.18) has a pole at
z = 0. In this case, F is locally free at q (which is allowed to be singular).

Proof. A point q ∈ X0 belongs to the support of T if and only if the evaluation map

Γ(X,F)
evq−→ F

∣∣
q

is not an isomorphism. If ord(Rχ) ≥ r+1 then evq is not an isomorphism

from the dimension reasons. Since dimC
(
F
∣∣
q

)
> rk(F), the spectral sheaf F is not locally

free at q. From now on assume that ord(Rχ) = r. Note that the following diagram

(1.20)

Γ(X,F) �
� ı //

η̃χ

��

evq

&&

Γ(X0,F)

ev′q
��

Sol(B, χ)∗ F
∣∣
qη̄χ

oo

is commutative. Remind that Γ(X0,F) ∼= F = C[∂] as B = Γ(X0,O)–modules. The map ı
is the canonical restriction map of a global section. By the construction of F , the image of
ı is the linear space 〈1, ∂, . . . , ∂r−1〉C, see Theorem 1.17. Next, η̄χ is the isomorphism (1.6)

and η̃χ assigns to the element ∂i ∈ Γ(X,F) the linear functional
(
f 7→ f (i)(0)

)
∈ Sol(B, χ)∗

for all 0 ≤ i ≤ r − 1. Therefore, the map Γ(X,F)
evq−→ F

∣∣
q

is an isomorphism if and only

if η̃χ is an isomorphism.
Now, assume that F is locally free at the point q. Then the order of the differential

operator Rχ is r, see Theorem 1.26. The map η̃χ is an isomorphism if and only if the
solution space Sol(B, χ) has a basis

(
ziwi(z)

∣∣ 0 ≤ i ≤ r − 1
)

with wi(0) 6= 0 for all
0 ≤ i ≤ r − 1. Since Sol(B, χ) ⊂ CJzK, the solution space has a basis of the form(
zρiw̃i(z)

∣∣ 1 ≤ i ≤ r
)
, where 0 ≤ ρ1 < ρ2 < · · · < ρr and w̃i(0) 6= 0 for all 1 ≤ i ≤ r.

Therefore, η̃χ is an isomorphism if and only if (ρ1, . . . , ρr) = (0, . . . , r − 1). Since the
singularities of the differential operator Rχ are regular, the exponents ρ1, . . . , ρr are the
roots of the indicial equation

(1.21) [x]r + γ1[x]r−1 + · · ·+ γr = 0,

where [x]k = x(x− 1) . . . (x− k + 1) and γk is the residue of zk−1ck(z) at the point z = 0
for all 1 ≤ k ≤ r, see [26, Section 16.11]. Therefore, (ρ1, . . . , ρr) = (0, . . . , r − 1) if and
only if γ1 = 0. This implies the statement. �

Theorem 1.28 provides a constructive approach to compute the support Z ⊂ X0 of the
torsion sheaf T . If q ∈ Z is a smooth point of X0 then the knowledge of the roots of
the indicial equation (1.21) permits to extract an additional information about the Oq–
module structure of Tq, see [41]. To study the case when q is singular, we shall need a new
ingredient: the spectral data for families of commuting differential operators.

Definition 1.29. Let R be an integral finitely generated C–algebra and DR = RJzK[∂].
A commutative R–subalgebra B ⊂ DR is called elliptic if it is flat over R and there exist
two monic elements P,Q ∈ B (i.e. elements whose coefficients at the highest power of ∂
is one) such that

(1.22) gcd
(
ord(P ), ord(Q)

)
= gcd

(
ord(L)

∣∣ L ∈ B
)
.

We call the number r = gcd
(
ord(P ), ord(Q)

)
the rank of B.
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Theorem 1.30. Let R be an integral finitely generated C–algebra, B = Spec(R), B ⊂ DR

an elliptic subalgebra and X0 = Spec(B). Then the following statements are true.

(1) The algebra B is finitely generated of Krull dimension kr.dim(R) + 1.

(2) There exists an algebraic variety XB, flat and projective morphism XB
π−→ B and

coherent sheaf FB on XB such that

(a) π admits a section B
σ−→ XB, whose image belongs to the regular part of π,

(b) if Σ = Im(σ) then XB = Spec(B) ∪ Σ and Spec(B) ∩ Σ = ∅,
(c) FB is flat over B,
(d) For any point b ∈ B, the tuple

(
Xb, σ(b),Fb

)
is the spectral data of the algebra

R/m ⊗R B ⊂ D, where m is the maximal ideal in R corresponding to b,
Xb = π−1(b) and Fb = FB

∣∣
Xb

.

Comment to the proof. To explain, how X,Σ and F are defined, we follow the exposition
of [31]. Let F := DR/zDR

∼= R[∂]. Then F is a right DR–module with the action given
by (1.3). For any i ∈ N0 we define:

Fi = {Q ∈ F
∣∣ ord(Q) ≤ i} and Bi = {P ∈ B

∣∣ ord(P ) ≤ i}.

Consider the Rees algebra (respectively, the Rees module)

B̃ :=

∞⊕
i=0

Bit
i ⊂ B[t] respectively F̃ :=

∞⊕
i=0

Fit
i ⊂ F [t].

Then we pose XB := ProjR(B̃) and FB := ProjR(F̃ ). The statements about kr. dim(B)
and coherence of FB can be proven exactly in the same way as in [31].

Consider the short exact sequence of R–modules 0→ Bi → B→ B/Bi → 0. From the
assumption (1.22) it follows that B/Bi is a free R–module for all i ∈ N sufficiently large.
Since B is flat, Bi is flat, too. Since Bi is finitely generated as R–module, it is projective
for all i sufficiently large. The flatness of π follows from [24, Theorem 9.9]. Analogously,

FB is flat over B, too. Consider I = (t) ⊂ B̃. Then Σ := V (I) ⊂ XB. See also [44], in
particular [44, Theorem 3.15 and Lemma 4.1], for a detailed study of the spectral data in
the relative setting. �

Remark 1.31. In this article arise commutative subalgebras B ⊂ DR with the following
additional property: for any i ∈ N such that Bi/Bi−1 6= 0 there exists a monic element
Li ∈ Bi with ord(Li) = i. In this case, B is free (hence flat), viewed as an R–module.

2. Semi–stable coherent sheaves on the Weierstraß cubic curves

In this section, k is an algebraically closed field of characteristic zero. We begin with a
brief survey of various techniques which were used to study semi–stable coherent sheaves
on irreducible curves of arithmetic genus one.

2.1. Fourier–Mukai transform on the Weierstraß cubic curves. Let

X = Xg2,g3 = V (y2 − 4x3 − g2x− g3) ⊂ P2
k

be a Weierstraß cubic curve, where g2, g3 ∈ k. Let p = (0 : 1 : 0) be the infinite point
of X (which is the neutral element with respect to the standard group law on the set of

smooth points of X) and X
ı−→ X, (x, y) 7→ (x,−y) the standard involution of X. The

following facts are well–known, see for example [25].
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Theorem 2.1. Any integral projective curve of arithmetic genus one is isomorphic to an
appropriate Weierstraß cubic X = Xg2,g3. Moreover, if δ := g3

2 + 27g2
3 then we have:

(1) X is smooth if and only if δ 6= 0. In this case, X is an elliptic curve.
(2) Assume that δ = 0, i.e. that X is singular. Then X has a unique singular point

s = (ξ, 0) = (ξ : 0 : 1) with

ξ =

 −
3g3

2g2
g2 6= 0 (s is a nodal singularity),

0 g2 = 0 (s is a cuspidal singularity).

Definition 2.2. For any coherent sheaf F on the curve X, we define another coherent

sheaf F(F) := Cok
(
Γ(X,F)⊗O ev−→ F

)
, where ev is the evaluation morphism.

Theorem 2.3. Let X be a Weierstraß cubic curve, Sem(X) the category of semi–stable
coherent sheaves on X of slope one and Tor(X) the category of torsion coherent sheaves.
Then the following results are true.

(1) For any object F of Sem(X), the evaluation morphism ev is a monomorphism and
the corresponding coherent sheaf F(F) is torsion, i.e. belongs to Tor(X). In other
words, the sequence (1.10) is exact for T = F(F). Moreover,

(2.1) Sem(X)
F−→ Tor(X)

is an equivalence of categories.
(2) Similarly, for any object T of Tor(X), consider the coherent sheaf G(T ) given by

the universal extension sequence

(2.2) 0 −→ Ext1(T ,O)∗ ⊗O −→ G(T ) −→ T −→ 0.

Then G(T ) is semi–stable of slope one. Moreover, G is an equivalence between the
categories Tor(X) and Sem(X), which is quasi–inverse to F.

(3) For any object F of Sem(X) and the corresponding object T = F(F) of Tor(X) the
following results are true.
(a) The rank of F is equal to the length of T .
(b) F is locally free if and only if T has projective dimension one.
(c) Analogously, F is not locally free if and only if the torsion sheaf T has infinite

projective dimension. In this case, the singular point of X belongs to the
support of T .

(4) Moreover, the following diagram of categories and functors is commutative:

(2.3)

Sem(X)
D //

F
��

Sem(X)

F
��

Tor(X)
E // Tor(X),

where
(a) D(F) := ı∗(F∨)⊗O

(
2[p]
)

for F from Sem(X) with F∨ := HomX(F ,O).

(b) E(T ) := HomX

(
T ,K/O

)
is the Matlis duality on Tor(X), see e.g. [6, Section

3.2] or [8, Section 6]. Here, K is the sheaf of rational functions on X.

Comment to the proof. The functorial correspondences F and G were essentially introduced
by Atiyah [2, Part II], who used them to classify indecomposable vector bundles on elliptic
curves [2, Theorem 7]. A translation of Atiyah’s method into the formalism of derived
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categories can be for instance found in [7]. The idea to use the functor F to study semi–
stable sheaves on singular Weierstraß curves and elliptic fibrations (the so–called spectral
cover construction) is due to Friedman, Morgan and Witten, see [22, Section 1]. In [8,
Section 2], the approach of [22] was elaborated and included into the framework of derived
categories. We refer to [22, 8] for a proof of all statements of Theorem 2.3, see especially
[8, Theorem 2.21 and Theorem 6.11]. �

Remark 2.4. The described equivalence between the categories Sem(X) and Tor(X) can
be best understood using the Seidel–Thomas twist functor T, see Theorem 1.25. Namely,
the following diagram of categories and functors is commutative:

(2.4)

Sem(X)
F //

_�

I
��

Tor(X)� _

I
��

Db
(
Coh(X)

) T // Db
(
Coh(X)

)
,

where I assigns to a coherent sheaf the corresponding stalk complex, see [8, Theorem
2.21]. The twist functor T is isomorphic to the integral transform M with the kernel
P• = I∆[1], where I∆ ⊂ OX×X is the ideal sheaf of the diagonal ∆ ∈ X × X, see [48,
Lemma 3.2]. Remind, that the image of an object F• from Db

(
Coh(X)

)
under M is

M(F•) := Rπ2∗
(
π∗1(F•)

L

⊗ P•
)
, where πi : X × X −→ X is the canonical projection for

i = 1, 2, see for example [4]. In what follows, we shall call the functor F the Fourier–Mukai
transform of Db

(
Coh(X)

)
. For a torsion free sheaf F from Sem(X), the corresponding

torsion sheaf T will be called Fourier–Mukai transform of F .

Remark 2.5. The formalism of integral transforms allows to extend the construction of

functors F and G to the relative setting, where we start with a genus one fibration XB
π−→

B, see [22, 9, 4]. As in the absolute case, we can define the category Sem(XB/B) consisting
of those coherent sheaves F on XB, which are flat over B and such that for any b ∈ B
the restricted sheaf F

∣∣
Xb

is semi–stable of slope one, where Xb = π−1(b). Analogously, we

define the category Tor(XB/B) of relative torsion coherent sheaves. Again, for any object
F of Sem(XB/B), the canonical morphism π∗

(
π∗(F)

)
−→ F is a monomorphism and we

get an equivalence of categories FB : Sem(XB/B) −→ Tor(XB/B), given by the rule

0 −→ π∗
(
π∗(F)

)
−→ F −→ FB(F) −→ 0.

Clearly, for any b ∈ B the following diagram of categories and functors is commutative:

Sem(XB/B)
FB //

ı∗b
��

Tor(XB/B)

ı∗b
��

Sem(Xb)
F // Tor(Xb),

where ıb : Xb −→ XB is the inclusion of the fiber over b. Let ∆B ⊂ XB ×B XB be
the relative diagonal, P•B = I∆B

[1] and MB the integral transform with the kernel P•B
(the relative Fourier–Mukai transform). Then MB is an auto–equivalence of the derived
category Db

(
Coh(XB)

)
extending the equivalence FB similarly to the diagram (2.4).

Theorem 2.6. Let X be a Weierstraß cubic curve. Then the following results are true.
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(1) For any r ∈ N there exists a unique indecomposable vector bundle Ar of rank r
on X recursively defined through a short exact sequence

(2.5) 0 −→ Ar −→ Ar+1 −→ O −→ 0,

where A1 = O.
(2) Let q ∈ X be a smooth point, r ∈ N and Tq,r := Oq/mr

q the indecomposable torsion

sheaf of length r supported at q. Then we have: G
(
Tq,r
) ∼= O([q])⊗Ar.

Comment to the proof. The first claim was established by Atiyah [2, Theorem 5]. The
key point here is that the category of vector bundles on X admitting a filtration with
quotients isomorphic to O is equivalent to the category of finite dimensional modules
over the discrete valuation ring kJtK. It follows from the definition of the functor F that
F
(
O
(
[q]
)
⊗Ar

) ∼= Tq,r, implying the second part. �

The following well–known result can be for instance found in [1, Example 8.9 (iii)].

Proposition 2.7. Let XB
π−→ B be a genus one fibration with irreducible fibers admitting

a section B
σ−→ XB such that σ(B) belongs to the regular part of π. Let L ∈ Picd(XB/B),

i.e. L is a line bundle on XB such that deg
(
L
∣∣
Xb

) = d for all points b ∈ T , where

Xb = π−1(b). Then there exists a unique section B
−→ XB with whose image also belongs

to the regular part of π such that L
∣∣
Xb
∼= OXb

(
(d− 1)[σ(b)] + (b)

)
for all b ∈ B.

2.2. Semi–stable sheaves of slope one and rank two on singular cubic curves. In
this subsection, let λ ∈ k and X = X(λ) := V (y2 − x3 − λx2) ⊂ P2

k
be the corresponding

singular cubic curve. Let p = (0 : 1 : 0) be the infinite point of X and s = (0 : 0 : 1) = (0, 0)
its singular point. Let R = k[x, y]/(y2 − x3 − λx2) be the coordinate ring of the affine
curve X0 = X \ {p}. Let A = A2 be the Atiyah bundle or rank two on X, see (2.5). For
any point t = (α : β) ∈ P1

k
, let It =

〈
x2, αx + βy

〉
⊂ R and Tt = R/It. Finally, let Tt be

the torsion coherent sheaf on X corresponding to the R–module Tt.

Theorem 2.8. The following results are true.

(1) Let F be an indecomposable semi–stable sheaf on X of rank two and slope one.
Then either
(a) F ∼= A⊗O

(
[q]
)

for some smooth point q ∈ X, or

(b) F ∼= Bt := G(Tt) for some t ∈ P1
k

.
(2) For any θ ∈ k, let Bθ := B(θ:1). Then Bθ is locally free if and only if θ2 − λ 6= 0.

In this case, det
(
Bθ
) ∼= O([p] + [qθ]

)
, where qθ =

(
(θ2 − λ) : θ(θ2 − λ) : 1

)
. In

particular, Bθ ∼= Bθ′ if and only if θ = θ′.
(3) Similarly, B∞ := B(1:0) is locally free with det(B∞) ∼= O

(
2[p]
)
.

(4) In the nodal case, the torsion free sheaves U± := B±√λ are not isomorphic. In
the cuspidal case, U := B0 is the only indecomposable and not locally free object of
Sem(X) of rank two.

Proof. (1) If F is indecomposable then the support of its Fourier–Mukai transform T :=
F(F) is a single point q ∈ X. Since F has rank two, the length of T is two as well. If
q 6= s then T ∼= Tq,2 = Oq/m2

q and hence F ∼= A⊗O
(
[q]
)
.

From now on assume that T is supported at the singular point s of X. Let T =
Γ
(
X \ {p}, T ) be the R–module corresponding to T . We claim that T ∼= R/J , where J is

an ideal in R with
√
J = ms. Indeed, if msT = 0 then T ∼= R/ms⊕R/ms is decomposable,

contradiction. Hence, msT 6= 0. By Nakayama’s Lemma, msT 6= T . Therefore, there
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exists elements u ∈ T \ msT and 0 6= v ∈ msT . Since dimk(T ) = 2, the elements u and v
form a basis of T . Moreover, 〈v〉k = msu, i.e. u is a cyclic vector of T . This shows that

T ∼= R/J for some ideal J with
√
J = ms. But all such ideals can be classified: it can be

easily shown that J = It for an appropriate t ∈ P1
k
.

(2) Let F = Bt for some t ∈ P1
k
. Then F is locally free if any only if the R–module T = R/J

has projective dimension one. The last property is true precisely when the localized ideal
Js ⊂ Rs is principal. Clearly, I∞ = 〈x〉 is already principal in R. Therefore, we assume
that t = (θ : 1) for some θ ∈ k and It = 〈x2, x+ θy〉. In the ring R, we have the equality
y2 − θ2x2 = x2

(
x + (λ − θ2)

)
. If λ − θ2 6= 0, then x2 belongs to the ideal generated by

y+ θx in the local ring Rs. In particular, the localization of It is a principal ideal. On the
other hand, if λ+ θ2 = 0, the localization of It is not principal.

The determinant of the vector bundle Bθ can be computed using the following trick.
For any θ ∈ k, consider the line Lθ given by the equation y + θx = 0. Since λ − θ2 6= 0,
the line Lθ intersects the curve X at two points: the singular point s and another point
q′θ =

(
θ2 − λ : −θ(θ2 − λ) : 1

)
. Moreover, we have: Cθ := G(R/Lθ) ∼= Bθ ⊕ O

(
[q′θ]
)
.

Now we claim that det
(
Cθ
) ∼= O(3[p]

)
. Indeed, consider the constant genus one fibration

XB = X × B over the base B = Spec
(
k[τ ]

)
and the B–flat family of torsion sheaves

given by the k[x, y, τ ]/(y2 − x3 − λx2)–module L̃ := k[x, y, τ ]/(y2 − x3 − λx2, y− τ + θx).

Using the inverse relative Fourier–Mukai transform GB, we get a family C̃ := GB(L̃) of

relatively semi–stable vector bundles on X × B with C̃
∣∣
X×{0}

∼= Cθ. For ζ 6= 0, we have:

C̃
∣∣
X×{ζ}

∼= O([p1])⊕O([p2])⊕O([p3]), where p1, p2 and p3 are the intersection points of X

with the line V (ϕθ,ζ), where ϕθ,ζ(x, y) := y− ζ + θx. However, the divisor of the function

ϕθ,ζ is [p1] + [p2] + [p3]− 3[p]. It means that det
(
C̃
∣∣
X×{ζ}

) ∼= O(3[p]
)

for all ζ 6= 0. From

Proposition 2.7 easily follows that det(Cθ) ∼= det
(
C̃
∣∣
X×{0}

) ∼= O(3[p]
)

as well. This fact

implies that det(Bθ) ∼= O
(
3[p])⊗O

(
[q′θ]
)∨ ∼= O(3[p])⊗O

(
[qθ]− 2[p]

) ∼= O([p] + [qθ]
)
.

(3) Note that for θ 6= 0 we have: qθ =
(
(θ2−λ) : θ(θ2−λ) : 1

)
=
(
(ξ−λξ3) : (1−λξ2) : ξ3

)
and It = 〈x2, x + ξy〉, where ξ = θ−1. From the continuity consideration similar to the
previous paragraph, we deduce that det(B∞) ∼= O

(
2[p]
)
.

(4) Let λ 6= 0, i.e. the curve X is nodal. We choose a square root ρ =
√
λ and consider

the ideal I = 〈x2, y + ρx〉 in the local ring Rs. Let R̂ be the completion of Rs and m the

maximal ideal of R̂. Consider the element R̂ 3 w = x
√
λ+ x := ρx+ 1

2ρx
2 + . . . Writing

x as a power series in w we conclude that x ≡ 1
ρw mod m2. Posing u± = y ± x

√
λ+ x :=

y ± w ∈ R̂ we get: R̂ = kJu+, u−K/(u+u−). The next step is to determine the images of

the generators of I under the completion map Rs → R̂. We see that y + ρx ≡ u+ mod m2

and x2 = 1
4ρ2

(
u2

+ + u2
−
)

mod m4. Therefore, we conclude that

(2.6) U+ := R/(x2, y + ρx) ∼= R̂/(u+, u
2
−) and U− := R̂/(x2, y − ρx) ∼= R̂/(u−, u

2
+).

In particular, U+ 6∼= U−, where U± are torsion sheaves on X corresponding to U±. �

Remark 2.9. Let X be a singular Weierstraß cubic with the singular point s and the
“infinite” point p. According to Theorem 2.8, for any smooth point q ∈ X there exists
a unique semi–stable vector bundle with determinant O

(
[p] + [q]

)
, whose Fourier–Mukai

transform is supported at the singular point s. Abusing the notation, we shall denote this
vector bundle by Bq in what follows. Such description of vector bundles from Sem(X) is
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advantageous since it eliminates unessential choices (for example, the dependence of λ in
the nodal case, see part (2) of Theorem 2.8).

Corollary 2.10. Let X be a singular Weierstraß cubic curve, p ∈ X its point at infinity,

P1 ν−→ X the normalization morphism, S = ν∗
(
OP1

)
and A = A2 is the rank two Atiyah

bundle on X. Let F be a semi–stable torsion free sheaf on X of rank two and slope one,
T be the Fourier–Mukai transform of F and Z = Supp(T ).

(1) If F is locally free and indecomposable, then it is either isomorphic to A⊗O
(
[q]
)

for some smooth point q ∈ X or to Bq̄, where det
(
Bq̄
)

= O
(
[q̄] + [p]

)
∈ Pic2(X),

where q̄ is a smooth point of X (which can be arbitrary). In the first case Z = {q},
whereas in the second Z = {s}.

(2) If F is indecomposable but not locally free, then it is isomorphic to one of the
sheaves U± (nodal case) or to U (cuspidal case). In this case, Z = {s}.

(3) If F is decomposable, then it is isomorphic to O
(
[q]
)
⊕O

(
[q′]
)
, O
(
[q]
)
⊕S or S⊕S

for some smooth points q, q′ ∈ X. We have: Z = {q, q′}, {q, s} or {s} respectively.

For any object F of Sem(X) we have: H1(X,F) = 0. Moreover, Γ(X,F)
evp−→ F

∣∣
p

is an

isomorphism if and only if p /∈ Z.

Remark 2.11. In fact, one can derive from [45] the following result. For λ ∈ k, let

X = V (y2 − x3 − λx2) and s = (0, 0) be the singular point of X. Let Hilb2
s(X) be the

Hilbert scheme of points of length two on X, supported at s. Then Hilb2
s(X) ∼= P1.

Moreover, the corresponding universal ideal J ⊂ OX×P1 is 〈x2, z0x− z1y〉, where (z0 : z1)
are homogeneous coordinates on P1.

2.3. Regular semi–stable sheaves on a cuspidal cubic curve. In this subsection,
X = V (y2 − x3) ⊂ P2

k
is a cuspidal cubic curve, R = k[t2, t3] = k[x, y]/(y2 − x3) and

R̂ := kJt2, t3K is the completed local ring of X at the singular point s = (0, 0). According

to a result of Drozd [16], the category of finite dimensional R̂–modules is representation
wild. This means that for any finitely generated k–algebra Λ there exists an exact functor

Λ− fdmod
J−→ R̂− fdmod such that

• J(M) ∼= J(M ′) if and only if M ∼= M ′.
• J(M) is indecomposable if and only if M is indecomposable.

See also [5, Proposition 8] for a more detailed discussion of representation wildness and a
simpler proof of Drozd’s result. Therefore, the category Sem(X) is representation–wild,
too. Nevertheless, in this subsection we shall give a full classification of the indecomposable
objects of Sem(X) having rank three.

Definition 2.12. For any n ∈ N0 and θ ∈ k consider the following ideals in R̂:

(2.7) In,θ =
〈
tn(t2 + θt3)

〉
and Jn = tn〈t2, t3〉.

Lemma 2.13. Let I ⊂ R̂ be a proper ideal. Then we have: I = In,θ or I = Jn for some
n ∈ N0 and θ ∈ k.

Proof. Let f = tm+ θtm+1 + · · · = tm(1 + θt+ . . . ) = tm ·w ∈ kJtK be an element of I with
the minimal multiplicity m ∈ N≥2, where θ ∈ k is some scalar. Then for any k ∈ N≥2 the

power series tkw−1 belongs to R̂. Therefore, tk+m belongs to the principal ideal (f) in R̂,
provided k ≥ 2. Now, the following two cases can occur.

Case 1. The ideal I contains an element of multiplicity m+ 1. Then I = 〈tm, tm+1〉.
Case 2. The ideal I does not contain any elements of multiplicity m+1. Then I = 〈f〉. �
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Theorem 2.14. Let M be an indecomposable R̂–module with dimk(M) = 3. Then M is
isomorphic to some module from the following list:

(1) Mθ := R̂/(t3 + θt4), where θ ∈ k.

(2) N := R̂/(t4, t5).
(3) N ] := E(N) (the Matlis dual of N).

Moreover, pr.dim
R̂

(Mθ) = 1 and pr.dim
R̂

(N) = pr.dim
R̂

(N ]) =∞.

Proof. For any n ∈ N, an n–dimensional R̂–module is determined by an algebra homomor-

phism R̂ −→ Matn×n(k). Since R̂ ∼= kJu, vK/(v2 − u3), such a homomorphism is specified
by a pair of nilpotent matrices U, V ∈ Matn×n(k) satisfying the conditions

UV = V U and V 2 = U3.

Moreover, two such pairs (U, V ) and (U ′, V ′) define isomorphic R̂–modules if and only if
there exists a matrix S ∈ GLn(k) satisfying

U ′ = SUS−1 and V ′ = SV S−1.

Case 1. Assume that rk(U) = 2. Then we may without loss of generality assume that

U =

 0 1 0
0 0 1
0 0 0

 . The equalities UV = V U and V 2 = 0 imply that V =

 0 0 θ
0 0 0
0 0 0


for some θ ∈ k. It is easy to see that

(
k

3, U, V
) ∼= M−θ.

Case 2. Assume that rk(U) = 1. Then we may without loss of generality assume that

U =

 0 0 1
0 0 0
0 0 0

 . From the equalities UV = V U and V 2 = 0 we conclude that V = 0 α γ
0 0 β
0 0 0

 for some α, β, γ ∈ k such that αβ = 0. In the case α = 0 = β, the module

M contains the trivial module k = R̂/(t2, t3) as a direct summand. In particular, M is
decomposable.

Assuming that α = 0 and β 6= 0, we see thatk3,

 0 0 1
0 0 0
0 0 0

 ,

 0 0 γ
0 0 β
0 0 0

 ∼=
k3,

 0 0 1
0 0 0
0 0 0

 ,

 0 0 0
0 0 1
0 0 0

 ∼= N.

Similarly, if β = 0 and α 6= 0, we have:k3,

 0 0 1
0 0 0
0 0 0

 ,

 0 α γ
0 0 0
0 0 0

 ∼=
k3,

 0 0 1
0 0 0
0 0 0

 ,

 0 1 0
0 0 0
0 0 0

 ∼= N ].

The last isomorphism follows from the well–known fact that the Matlis duality in the

category of finite dimensional R̂–modules is given by the rule (U, V ) 7→ (U t, V t), where
U t is the transposed matrix of U , see for example [8, Remark 6.5].

Case 3. Finally, for U = 0 it is easy to show that M contains the trivial module (k, 0, 0)
as a direct summand.

The statement about the projective dimension of M is obvious. �
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Corollary 2.15. An indecomposable semi–stable coherent sheaf of rank three and slope
one on a cuspidal cubic curve X is isomorphic to a one of the following sheaves:

(1) O
(
[q]
)
⊗ A3, where A3 is the Atiyah bundle of rank three from Theorem 2.6 and

q ∈ X is a smooth point.

(2) Eq(θ) := G(Mθ) for some θ ∈ k, where Mθ is the R̂–module from Theorem 2.14,
viewed as a torsion sheaf on X. Moreover, Eq(θ) is locally free and det(Eq(θ)) ∼=
O
(
[qθ] + 2[p]

)
, where qθ = (θ : 1 : θ3), see the next Lemma 2.16.

(3) V := G(N) and V† := G(N ]). They are not locally free and D(V) ∼= V†, where D
is the duality on Sem(X) from Theorem 2.3.

The following class of indecomposable semi–stable vector bundles on a cuspidal cubic curve
X was introduced by Friedman, Morgan and Witten [22].

Lemma 2.16. For any n ∈ N≥2 and θ ∈ k, consider the R̂–module Tn,θ = R̂/(tn+θtn+1),
which we view as a torsion sheaf on X. Let E(n, θ) := G

(
T (n, θ)

)
. Then we have:

(1) E(n, θ) is an indecomposable locally free sheaf of rank n on X with

det
(
E(n, θ)

) ∼= O([qθ] + (n− 1)[p]
)
, where qθ = (θ : 1 : θ3).

(2) D
(
E(n, θ)

) ∼= E(n, θ), where D is the duality on Sem(X) from Theorem 2.3.

Proof. The fact that E(n, θ) is an indecomposable locally free sheaf of rank n follows from
the fact that Tn,θ is an indecomposableR–module with dimk(Tn,θ) = n and pr.dim

R̂
(Tn,θ) =

1, and Theorem 2.3. Consider the vector bundle C(n, θ) := G
(
R/(tn + θtn+1)

)
. As in the

proof of Theorem 2.8 we show that

• C(n, θ) ∼= E(n, θ)⊕O
(
[q′θ]
)
, where q′θ = (θ : −1 : θ3).

• det
(
C(n, θ)

) ∼= O((n+ 1)[p]
)
.

This implies that det
(
E(n, θ)

) ∼= O((n+ 1)[p]− [q′θ]
) ∼= O([qθ] + (n− 1)[p]

)
.

Next, note that Tn,θ has a one–dimensional socle generated by the class of tn. Therefore,

its Matlis dual module T ]n,θ := E(Tn,θ) has a simple top. Since dimk(T ]n,θ) = n, Lemma 2.13

implies that there exists some θ̃ ∈ k with T ]n,θ
∼= Tn,θ̃. Therefore, D

(
E(n, θ)

) ∼= E(n, θ̃).

On the other hand, it is easy to see that det
(
D(F)

) ∼= det(F) for any locally free object

of Sem(X). Therefore, θ̃ = θ. �

Remark 2.17. A full classification of all indecomposable semi–stable coherent sheaves of
arbitrary integral slope on a nodal Weierstraß curve was given in [8, Theorem 5.1].

3. Spectral sheaves of rank two and genus one commutative subalgebras

In this section, we classify the spectral sheaves of all rank two and genus one commutative
subalgebras of D with singular spectral curve, completing the result of Previato and Wilson
[41, Theorem 1.2].

3.1. Grünbaum’s classification. We begin by recalling the classification of rank two
and genus one commutative subalgebras of D, following Grünbaum’s work [21]. In what
follows, E = CJzK((∂−1)) is the algebra of pseudo–differential operators and for any Q ∈ E
we denote by Q+ the “differential part” of Q, i.e. the projection of Q onto D. We refer to
[38] and [44, Appendix A] for a survey of properties of the algebra E.

The following result can be found in [21, Section 2], see also [41, Lemma 5.2]. For the
readers’s convenience, we give a detailed proof here.
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Proposition 3.1. Let B ∈ D be a normalized commutative subalgebra of rank two and
genus one. Then there exist two operators L,M ∈ B such that B = C[L,M ] and

(3.1) L = ∂4 + a2∂
2 + a1∂ + a0, M = 2L

3
2
+, M2 = 4L3 + g2L+ g3

for some g2, g3 ∈ C.

Proof. If X is the spectral curve of B then B ∼= Γ
(
X\{p},O

)
as associative algebras. As B

has genus one, there exist g2, g3 ∈ C such that Γ
(
X\{p},O

) ∼= C[x, y]/(y2−4x3−g2x−g3).
In particular, we can find a pair of operators L,M ∈ B such that B = C[L,M ] and
M2 = 4L3 + g2L + g3. As the rank of B is two, ord(L) = 4 and ord(M) = 6 is the only
possibility. Since B is normalized, the operator L is normalized. Our next goal is to show
that we can find a change of variables{

L 7→ L̂ = L+ α

M 7→ M̂ = M + β + γL

with α, β, γ ∈ C such that M̂ = 2L̂
3
2
+. From the theory of pseudo–differential operators we

know that there exists a uniquely determined operator L
1
4 = ∂ + b1∂

−1 + b2∂
−2 + . . . in

E. Then for any i ∈ Z we have: L
i
4 = ∂i + b

(i)
1 ∂i−2 + b

(i)
2 ∂i−3 + . . . If M ∈ D is such that

[L,M ] = 0 and ord(M) = 6 then there exist constants γi ∈ C for i ∈ Z≤6 such that

(3.2) M =
−∞∑
i=6

γiL
i
4 =

0∑
i=6

γiL
i
4
+.

Rescaling, assume that γ6 = 1. Next, we have the following identity in the algebra B ⊂ E:

M2 − L3 =
(
2γ5L

11
4 + . . .

)
=
(
2γ5L

11
4 + . . .

)
+

= 2γ5∂
11 + l.o.t.

Since B has rank two, it does not contain any differential operators of odd order. There-
fore, γ5 = 0 and

M = L
3
2 + γ4L+ γ3L

3
4 + γ2L

1
2 + · · · = L

3
2
+ + γ4L+ γ3L

3
4
+ + γ2L

1
2
+ + γ1L

1
4
+ + γ0.

Consider N := M − γ4L ∈ B. Again, we get the following equality in B:

N2 − L3 =
(
2γ3L

9
4 + . . .

)
=
(
2γ3L

9
4 + . . .

)
+

= 2γ3∂
9 + l.o.t.

This implies that γ3 = 0, too.

Let α ∈ C and L̂ = L + α. Obviously, we have: C[L,M ] = C[L̂,M ]. Moreover,

L̂
3
2
+ = L

3
2
+ + 3

2αL
1
2
+ and L̂

i
4
+ = L

i
4
+ for i = 1, 2. Therefore, we get a yet new identity in B:

M̂ := M − γ4L− γ0 = L̂
3
2 + γ1L̂

1
4 + γ−1L̂

− 1
4 + · · · = L̂

3
2
+ + γ1L̂

1
4
+.

As in the previous steps, we get an element M̂2 − L̂ = 2γ1∂
7 + l.o.t. ∈ B implying that

γ1 = 0, as rk(B) = 2. �

The following result is due to Grünbaum [21].

Theorem 3.2. Let B ⊂ D be a genus one and rank two commutative subalgebra. Then

B = C[L,M ] = C[x, y]/(y2 − 4x3 − g2x− g3)

for some parameters g2, g3 ∈ C. Here,

(3.3) L =
(
∂2 +

1

2
c2

)2
+
(
c1∂ + ∂c1) + c0
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for certain c0, c1, c2 ∈ CJzK obeying further constraints described below and M = 2L
3
2
+.

1. In the so–called formally self–adjoint case, c1 = 0 and the following two subcases occur:

(1) c0 is a constant. Then the spectral curve is y2 = 4x3 − 3c2
0x− c3

0.
(2) c′0 6= 0. Then c0 = f and c2 is given by the formula

(3.4) c2 =
K2 + 2K3f + f3 − f ′′′f ′ + 1

2(f ′′)2

f ′2
.

for some K2,K3 ∈ C. Other way around, if f,K2,K3 are such that c2 is regular
at z = 0 then B = C[L,M ] has genus one and rank two. The spectral curve of B

is given by the equation y2 = 4x3 + 2K3x−
K2

2
.

2. In the “generic” non–self–adjoint case, c0, c1 and c2 are given by the formulae

(3.5)


c0 = −f2 +K11f +K12

c1 = f ′

c2 =
K14 − 2K10f + 6K12f

2 + 2K11f
3 − f4 + f ′′2 − 2f ′f ′′′

2f ′2

where f ∈ CJzK satisfies f(0) = 0, and K10,K11,K12,K14 ∈ C. Other way around, if
f,K10,K11,K12,K14 are such that c2 is regular at z = 0 then B = C[L,M ] has genus one
and rank two. In this case, the Weierstraß parameters g2 and g3 of the spectral curve are
given by the expressions

g2 = K14 − 3K2
12 −K10K11 and g3 =

1

4

(
K2

10 − 2K10K11K12 − 4K3
12 −K14(K2

11 + 4K12)
)
.

Comment to the proof. Any normalized formally elliptic operator of order four can be
written in the form (3.3), which turns out to be convenient for the computational purposes.

Then one takes the operator of order six M := 2L
3
2
+. The statement of the theorem follows

from the analysis of the commutation relation [L,M ] = 0, where one additionally has to
rule out the rank one algebras C[L,M ]. �

Remark 3.3. In the case f ′(0) = 0, there are constraints between the coefficients of f
and Grünbaum’s parameters K10,K11,K12 and K14 (respectively, K2 and K3) to insure
that the Laurent series c2 actually belongs to CJzK. If that constraints are not satisfied,
the resulting operators L and M still commute, but C[L,M ] does not belong to D.

Remark 3.4. The different combinatorics of Grünbaum’s parameters c0, c1 and c2 in
the formally self–adjoint and non–self–adjoint cases looks like artificial. However, this
separation turns out to be quite natural from the point of view of the computation of the

greatest common divisor Rχ for a character B
χ−→ C. See also Remark 3.19. For the

reader’s convenience, and also following the work of Previato and Wilson [41], we decided
to keep Grünbaum’s notations [21] in our article.

Although Grünbaum’s classification looks like quite massy on the first sight, it turns
out to be perfectly suited to describe the spectral data (X, p,F) of B in terms of Section
2. Krichever and Novikov derived their formulae [30] starting from the geometric side of
Krichever’s correspondence and then obtained from it an explicit formula for the operator
L. A comparison between the answers of [30] and [21] can be found in [21, Section 6]. At
the present moment it is not clear to us, how to generalize the method of vector–valued
Baker–Akhieser functions and deformations of Tyurin parameters of [30] on the case of
singular Riemann surfaces.
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Notation. In the sequel, the following notation will be used.

• B = C[L,M ] ⊂ D is a genus one and rank two commutative subalgebra with L
given by Grünbaum’s formulae from Theorem 3.2.
• Next, X is the compactified spectral curve of B, p ∈ X is its point at infinity and
X0 = X \ {p}. If X0 is singular then s denotes its unique singular point.
• Let F be the spectral sheaf of B. See Corollary 2.10 for a list of possibilities.
• Finally, T is the Fourier–Mukai transform of F and Z := Supp(T ) ⊂ X0.

Proposition 3.5. Let q = (λ, µ) ∈ Z be such that F is locally free at q. Let B
χ−→ C be

the character corresponding to q and

Rχ := ∂2 + c1∂ + c2 = gcd(L− λ,M − µ) ∈ D̃.

Let ν := −res0

(
c1(z)

)
−1 and

(
zρ1w1(z), zρ2w2(z)

)
be a basis of the solution space Sol(B, χ) =

Ker(Rχ), where 0 ≤ ρ1 < ρ2 ∈ N0 and wi(0) 6= 0 for i = 1, 2.

(1) We have: 0 ≤ ν ≤ 3 and (ρ1, ρ2) ∈
{

(0, 2), (0, 3), (1, 2), (1, 3), (2, 3)
}

.

(2) Next, (ρ1, ρ2) = (2, 3) if and only if q is a smooth point and F ∼= O
(
[q]
)
⊕O

(
[q]
)
.

This case occurs if and only if ν = 3.
(3) The case ν = 2 is equivalent to (ρ1, ρ2) = (1, 3). If q is a smooth point then
F ∼= A⊗O

(
[q]
)
. If q is singular then F ∼= Bq̄ for some smooth point q̄ ∈ X.

Proof. All essential ideas are taken from [41].

(1) The indicial equation (1.21) implies that ρ1 + ρ2 = ν + 2. By construction, Ker(Rχ) =
Sol(B, χ) ⊂ Ker(L−λ). Recall that ord(L−λ) = 4. If zρw(z) ∈ Ker(Rχ) and w(z) 6= 0 then
ρ ≤ 3 (by the uniqueness of solution of a differential equation with regular coefficients).
All together, this implies the first statement.

(2) Obviously, ν = 3 if and only if (ρ1, ρ2) = (2, 3). However, {0, 1} ∩ {ρ1, ρ2} = ∅ if and
only if the map η̃χ from the commutative diagram (1.20) is zero. Going through the list

of vector bundles from Corollary 2.10 we conclude that the map Γ(X,F)
evq−→ F|q is zero

if and only if q is a smooth point and F ∼= O
(
[q]
)
⊕O

(
[q]
)
. See also [41, Proposition 3.1].

(3) If q is a smooth point then the stated result is [41, Theorem 1.2(ii)]. If q is singular,
the result follows from Corollary 2.10. �

3.2. Formally self–adjoint case. In this subsection, we describe the spectral sheaf of
the algebra B from Grünbaum’s Theorem 3.2 in the formally self–adjoint case c1 = 0.

Lemma 3.6. Let L =
(
∂2 + 1

2c2

)2
+ γ for some c2 ∈ CJzK and c0 = γ ∈ C (degenerate

self–adjoint case). Then X is singular and F ∼= S ⊕ S.

Proof. According to Grünbaum [21, Section 2], we have: M = 2
(
∂2 + 1

2c2

)3
+3γ

(
∂2 + 1

2c2

)
and the equation of the spectral curve X0 is y2 = 4x3 − 3γ2x− γ3. Clearly, X0 is singular

at the point s = (−γ
2 , 0). Let P =

(
∂2 + 1

2c2

)
. It is easy to see that

M = P ·
(
L+

γ

2

)
implying that the order of the greatest common divisor Rχ (1.18) for the character χ
corresponding to the singular point s, is four. Therefore, we have: F

∣∣
s
∼= C4. It remains

to observe that S⊕S is the only semi–stable sheaf or rank two and slope one on X, whose
fiber over s is four dimensional, see Corollary 2.10. Note that C[L,M ] ⊂ C[P ], hence
C[L,M ] is not maximal in this case. �
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Theorem 3.7. Let L be given by (3.3) with c1 = 0 and f ′ 6= 0 (non–degenerate formally
self–adjoint case). Then F is locally free. Let ν be the order of vanishing of f ′(z) at

z = 0. Then Z is invariant under the involution X0
ı−→ X0,

(
(λ, µ)

ı7→ (λ,−µ)
)

and the

following results are true (we assume that X0 = V
(
y2 − 4x3 − 2K3x+

K2

2

)
is singular):

(1) If ν = 0 then F is isomorphic to
(a) O

(
[q]
)
⊕O

(
[ı(q)]

)
if Z = {q, ı(q)} with q 6= ı(q).

(b) A⊗O
(
[q]
)

if Z = {q} = {ı(q)} and q 6= s.
(c) Bp if Z = {s}.

(2) If ν = 1 then F ∼= O
(
[q]
)
⊕O

(
[ı(q)]

)
with q 6= ı(q) and Z = {q, ı(q)}.

(3) If ν = 2 then necessarily Z = {q} with q = ı(q).
(a) If q 6= s then F ∼= A⊗O

(
[q]
)
.

(b) If q = s then F ∼= Bp.
(4) If ν = 3 then F ∼= O

(
[q]
)
⊕O

(
[q]
)
, where q = ı(q) is a smooth point of X0. In this

case, Z = {q}, what can occur only if X0 is nodal.

Proof. Let q = (λ, µ) ∈ X0 and B
χ−→ C be the corresponding character. The key point

is the following result [41, Section 5]: there exist R,Q ∈ D both of order two such that

M − µ = Q · (L− λ) +R,

where R = a0∂
2 + a1∂ + a2 with a0 = (2λ+ f) and a1 = −f ′. Since f is not a constant,

the order of Rχq is two for all q ∈ X0 implying that the spectral sheaf F is locally free.
Note that ν coincides with the parameter introduced in Proposition 3.5.

By Theorem 1.28 we have: Z =
{

(λ0,±µ0)
}

, where λ0 = −1
2f(0) and ±µ0 are the

roots of the equation µ2 = h(λ0) with h(λ) = 4λ3 + 2K3λ − 1
2K2. Unless Z = {s}, the

description of F can be obtained along the same lines as in [41, Theorem 1.2], see also
Proposition 3.5. From now on we assume that Z = {s}. According to Corollary 2.10,
F ∼= Bq̄ for some smooth point q̄ ∈ X and we only have to show that q̄ = p. Note that

res0

( f ′(z)

f(z)− f(0)

)
= ν + 1.

Proposition 3.5 implies that 0 ≤ ν ≤ 3.

Case 1. Assume that Grünbaum’s parameters K2,K3 and f are such that f ′(0) 6= 0
(i.e. ν = 0). Let B be the corresponding commutative subalgebra of D. Consider now the
C[t]–flat family BB ⊂

(
C[t]

)
JzK[∂] defined by the Grünbaum’s parameters K2,K3(t) :=

K3+t and f . Let XB
π−→ B be the corresponding spectral fibration (here, B = Spec

(
C[t]

)
)

and FB be the corresponding spectral sheaf, see Theorem 1.30. For any b ∈ B we denote by

Xb = π−1(b) the fiber over b and Fb := FB
∣∣∣
Xb

. Clearly, F0
∼= F and Fb ∼= OXb

(
[q1(b)] +

[q2(b)]
)

for b 6= 0 from some open neighbourhood U ⊂ B of 0, where ı(q1(b)) = q2(b)

in Xb. Therefore, det
(
Fb
) ∼= OXb(2[p]

)
for all b ∈ U \ {0}. But then we also have:

det(F0) ∼= OX0

(
2[p]
)

and therefore F ∼= Bp.
Case 2. Assume that Grünbaum’s parameters K2,K3 and f are such that f ′(0) = 0. Then
f has an expansion of the form f(z) = α + βz2 + γz3 + δz4 + . . . Now we have to use
the fact that Grünbaum’s parameter c2(z) given by (3.4) is regular. This in particular

implies that α3 + 2K3α + K2 + 2β2 = 0, i.e.
(
−α

2
,±β

)
∈ X0. Since we assumed that

T is supported at the singular point of X0, we get: β = 0. Hence, ν ≥ 2 and in virtue
of Proposition 3.5 we have: ν = 3, i.e. γ 6= 0. Requiring the regularity of c2(z), we get
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the following constraint: 2K3 + 3α2 − 24δ = 0. Observe that the point
(
−α

2
, 0
)
∈ X0 is

singular if and only if δ = 0. Summing up, we have in this case:

(3.6)


f = α+ γz3 + τz5 + . . . , with γ 6= 0,
K2 = 2α3,
K3 = −3

2α
2.

Let B = C[L,M ] be the corresponding commutative subalgebra of D. It admits the
following flat deformation BB over the base B = Spec

(
C[δ]

)
:

(3.7)


f(δ) = f + δz4,
K2(δ) = 2α3 − 24αδ,
K3(δ) = 12δ − 3

2α
2.

The total space of the corresponding genus one fibration XB
π−→ B is given by the equation

XB := V
(
y2 − 4x3 − (24δ − 3α2)x− 2α(α2 − 12δ)

)
⊂ P2

(x,y) × A1
δ .

It is interesting to note that XB is singular and B
σ−→ XB, δ 7→

(
−α

2
, 0, δ

)
is a section of

π. Let FB be the spectral sheaf of BB, see Theorem 1.30. There exists an open subset
U ⊂ B with 0 ∈ U and such that for all b ∈ U \ {0} we have: Fb := FB

∣∣
Yb
∼= A⊗O

(
[q]
)

with q =
(
−α

2
, 0
)

for b 6= 0. Therefore, det(Fb) ∼= O
(
2[p]
)

for b ∈ U \ {0}. This implies

that det(F0) ∼= O
(
2[p]
)

as well, see Proposition 2.7. Thus, F ∼= Bp as claimed. �

Example 3.8. Let B = C[P,Q] be as in the example of Dixmier (0.2) for κ = 0. Then
the spectral sheaf of B is Bp.

3.3. Non–self–adjoint case. Let L be the fourth order differential operator given by
Grünbaum’s parameters K10,K11,K12,K14 and f as in (3.5). The equation of the affine
spectral curve X0 of the algebra C[L,M ] is y2 = 4x3 + g2x+ g3 with

(3.8)

{
g2 = K14 − 3K2

12 −K10K11,
g3 = 1

4

(
K2

10 − 2K10K11K12 − 4K3
12 −K14(K2

11 + 4K12)
)
.

For any λ ∈ C pose

(3.9)

 a(λ) =
(
λ+ 1

2K12

)2
+ 1

4K14

b(λ) =
(
λ+ 1

2K12

)
K11 − 1

2K10

c(λ) = −λ+K12 + 1
4K

2
11.

Our analysis of the spectral sheaf F is based in the following result from the article of
Previato and Wilson [41, Section 5] attributed there to the PhD thesis of Latham [32].

Theorem 3.9. Let (λ, µ) be any point of X0 (smooth or singular) and B
χ−→ C be

the corresponding character. Let R̃χ, R̂χ ∈ D be the differential operators defined by the
following conditions:

(3.10)

{
M − µ = Q̃χ · (L− λ) + R̃χ, ord(R̃χ) ≤ 3

L− λ = Q̂χ · R̃χ + R̂χ, ord(R̂χ) ≤ 2.

Then we have: ord(R̃χ) = 3 and R̂χ = e0(z;λ, µ)∂2 − e1(z;λ, µ)∂ + e2(z;λ, µ) with

(3.11) e0 = a(λ) + b(λ)f + c(λ)f2 and e1 =
1

2

(
b(λ)− µ

)
f + c(λ)ff ′.

Similarly to [41, Section 5], we have the following result.
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Proposition 3.10. A point q = (λ, µ) ∈ X0 belongs to Z if and only if a(λ) = 0 and
µ = −b(λ).

Proof. A lengthy but elementary computation shows the following

Fact. If a point (λ, µ) ∈ C2 belongs to X0 and a(λ) = 0 then necessarily µ = ±b(λ).

Let Rχ := gcd(L− λ,M − µ) in the sense of Theorem 1.26.

Case 1. Assume that a(λ) = b(λ) = c(λ) = 0. Then e0(z;λ, µ) = 0. In virtue of the

formulae (3.10) we see that ord(R̂χ) ≤ 1 in this case. However, rk
(
C[L,M ]

)
= 2 and the

only possibility for this to be true is that R̂χ = 0. Hence, ord(Rχ) = 3. This case occurs
if and only if X0 is singular with the singular point s = (λ, 0) and F is not locally free at
s. See Theorem 3.11 below. In this case, the singular point s belongs to the support of T
due to Theorem 1.28.

Case 2. Assume now that
(
a(λ), b(λ), c(λ)

)
6= (0, 0, 0). In this case, e0(z;λ, µ) 6= 0 and

Rχ =
1

e0(z;λ, µ)
R̂χ = ∂2 − e1(z;λ, µ)

e0(z;λ, µ)
∂ +

e2(z;λ, µ)

e0(z;λ, µ)
.

According to Theorem 1.28, (λ, µ) belongs to the support of T if and only if the Laurent

power series
e1(z;λ, µ)

e0(z;λ, µ)
has a pole at z = 0. Taking into account explicit expressions

(3.11) for ei(z;λ, µ) for i = 0, 1 as well as the assumption f(0) = 0, we see that a(λ) = 0.
Therefore, µ = ±b(λ). Note, that by assumption

(
b(λ), c(λ)

)
6= (0, 0).

If µ = −b(λ) then
e1(z;λ, µ)

e0(z;λ, µ)
=

f ′(z)

f(z)
. This function has a pole at z = 0 as f(0) =

0. Therefore, the point
(
λ,−b(λ)

)
belongs to the support of T due to Theorem 1.28.

Moreover, the order of vanishing of f at 0 is at most four, see Proposition 3.5.

Now suppose that µ = b(λ). Then
e1(z;λ, µ)

e0(z;λ, µ)
=

c(λ)f ′(z)

b(λ) + c(λ)f(z)
has a pole at z = 0 if

and only if b(λ) = 0 (and we are in the previous case). �

Theorem 3.11. Let B = C[L,M ] be a genus one and rank two commutative subalgebra,
which is not formally self–adjoint and given by Grünbaum’s parameters K10,K11,K12,K14

and f . Then we have:

(1) the spectral sheaf F of B is not locally free if and only if

(3.12)

{
K10 = (3K12 + 1

2K
2
11)K11

K14 = −(3K12 + 1
2K

2
11)2.

(2) Moreover, in this case F is indecomposable (i.e. isomorphic to U± in the nodal
case, respectively to U in the cuspidal case) if and only if

(3.13) ∆ := 6K12 +K2
11 = 0.

(3) If ∆ 6= 0 then F ∼= S ⊕O
(
[q]
)
, where q =

(
−2K12 − 1

4K
2
11,−1

2K11(K2
11 + 6K12)

)
.

Proof. (1) Assume that F is not locally free. According to Theorem 1.28, this is equivalent
to ord(Rχ) = 3, where χ is the character, corresponding to some point (λ0, 0) ∈ X0.

This can happen if and only if R̂χ = 0. In particular, e0(z;λ0, 0) = 0 implying that
a(λ0) = b(λ0) = c(λ0) = 0. From the equality a(λ0) = 0 we get λ0 = K12 + 1

4K
2
11, whereas

the vanishings b(λ0) = c(λ0) = 0 imply the constraints (3.12).
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Other way around, assume that (3.12) are satisfied. A direct computation shows that
the Weierstraß parameters g2, g3 given by the formulae (3.8), take the following form:{

g2 = −3
(
2K12 + 1

2K
2
11

)2
g3 =

(
2K12 + 1

2K
2
11

)3
.

By Theorem 2.1, the spectral curve X0 is singular with the singular point s = (λ0, 0), where
λ0 = K12 + 1

4K
2
11. Moreover, constraints (3.12) imply that a(λ0) = b(λ0) = c(λ0) = 0,

hence F is indeed not locally free at s.

(2) The possibilities for the spectral sheaf F are listed in Corollary 2.10. The case F ∼=
S⊕S is excluded since ord(R̃χ) = 3 by Theorem 3.9, implying that dimC

(
F
∣∣
s

)
≤ 3. Hence,

F is indecomposable if and only if T is supported at the singular point of X0. According
to Proposition 3.10, this occurs if and only if K14 = 0: otherwise, the equation a(λ) = 0
has two different solutions, both contributing to the support of T due to Proposition 3.10.
Since we already showed that the formulae (3.12) are true, the indecomposability of F is
equivalent to the vanishing ∆ = 0.

(3) Assume that the equations (3.12) are satisfied and ∆ 6= 0. Then the equation a(λ) = 0

has two different solutions: λ0 = K12+ 1
4K

2
11 and λ̃0 = −2K12− 1

4K
2
11. The torsion sheaf T

is supported at s = (λ0, 0) and q :=
(
λ̃0,−b(λ̃0)

)
=
(
−2K12− 1

4K
2
11,−1

2K11(K2
11 +6K12)

)
.

Taking into account Corollary 2.10, we get the statement. �

Lemma 3.12. Let g ∈ CJzK. Then the Laurent series h =
2gg′′ − g′2

g2
is regular at z = 0

if and only if g(0) 6= 0 or g(z) = z2g̃(z) with g̃(0) 6= 0 and g̃′(0) = 0.

Proof. Obviously, h(z) is regular provided g(0) 6= 0. Assume that g(z) = zρg̃(z) with
ρ ∈ N0 and g̃(0) 6= 0. Note that

(3.14) h =
g′′

g
+
(g′
g

)′
=
(ρ(ρ− 1)

z2
+

2ρ

z

g̃′

g̃
+ ϕ

)
+
(
− ρ

z2
+ ψ

)
for appropriate ϕ,ψ ∈ CJzK. If ρ ≥ 1 then h is regular if and only if ρ = 2 and g̃′(0) = 0.
Therefore, the series g(z) has the form

(3.15) g(z) = ζ2z
2 +

∞∑
i=4

ζiz
i with ζ2 6= 0.

�

Corollary 3.13. Let B = C[L,M ] be a genus one and rank two commutative subalgebra
in D. Then the spectral sheaf of B is indecomposable and not locally free (i.e isomorphic
to U± in the nodal case and to U in the cuspidal case) if and only if L is formally non–
self–adjoint and given by the formulae (3.3) with the parameters c0, c1 and c2:

(3.16)


c0 = −f2 + %f − %2

6
c1 = f ′

c2 =
2%f3 − %2f2 − f4 + f ′′2 − 2f ′f ′′′

2f ′2

for an arbitrary % ∈ C and any f ∈ CJzK satisfying f(0) = 0 and either of two conditions:

• f ′(0) 6= 0 or

• f ′(0) = f ′′(0) = f (4)(0) = 0, f ′′′(0) 6= 0.
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The equation of the spectral curve in this case is

(3.17) y2 = 4x3 − 1

12
%4x+

1

216
%6.

Remark 3.14. In the notation of Theorem 3.2 we have % = K11. Note that the family
(3.16) admits an obvious involution % 7→ −%. It turns out that this involution corresponds
to the flip U± 7→ U∓ on the level of spectral sheaves. The precise description of F in the
nodal case (i.e. U+ versus U−) is rather subtle, see the proof of Theorem 3.16.

Example 3.15. Let us set % = 0 and f = z in the equations (3.16). Then we get

L =
(
∂2 − z4

4

)2
+ 2∂ − z2.

A straightforward computation shows that in this case M := 2L
3
2
+ is given by the formula

M = 2∂6− 3
2z

4∂4 +6(1−2z3)∂3 +z2
(

3
8z

6−45
)
∂2 +z

(
3z6− 3

2z
3−54

)
∂+

(
− 1

32z
12 + 37

4 z
6−

3z3 − 14
)
. Moreover, another straightforward computation yields:

R := gcd(L,M) = ∂3 − 1

2
z2∂2 + z

(
−1

4
z3 + 1

)
∂ +

(1

8
z6 − 3

2
z3 + 1

)
.

Since ord(R) = 3, the spectral sheaf of C[L,M ] is the torsion free sheaf U , as predicted.
Notably, the coefficients of R are regular. We hope that a more detailed treatment of genus
one commutative subalgebras in the Weyl algebra W = C[z][∂] with a cuspidal spectral
curve and the spectral sheaf which is not locally free will be helpful for various studies
related to Dixmier’s conjecture about Aut(W), see [35].

The following result characterizes those genus one and rank two commutative subalgebras
of D, whose spectral curve X is singular and the associated torsion sheaf T is indecom-
posable and supported at the singular point of X.

Theorem 3.16. Let B = C[L,M ] be given by Grünbaum’s parameters K10,K11,K12,K14

and f . Then the following results are true.

(1) The (affine) spectral curve X0 of B is singular and the torsion sheaf T is supported
at the singular point of X0 if and only if K10 = 0 = K14. In this case, X0 =
Spec(R) with

(3.18) R = C[x, y]
/(
y2 − 4

(
x+

K12

2

)2
(x−K12)

)
.

(2) The spectral sheaf F of B is locally free if and only if ∆ := 6K12 + K2
11 6= 0. In

this case, F ∼= Bq̄ with

(3.19) q̄ =
(1

4
K2

11 +K12,
K11

4

(
6K12 +K2

11

))
.

(3) Moreover, for the Fourier–Mukai transform T of F we have:

(3.20) T ∼= R̂
/((

x+
K12

2

)2
, y −K11

(
x+

K12

2

))
.

Proof. (1) According to Proposition 3.10, the support of T consists of a single point
q = (λ0, µ0) if and only if K14 = 0. In this case, λ0 = −1

2K12 and µ0 = −b(λ0). If q is
the singular point of X0 then b(λ0) = 0 implying that K10 = 0. Other way around, if
K10 = 0 = K14 then X0 is given by the equation y2 = 4x3 − 3K2

12x −K3
12. According to

Theorem 2.1, the curve X0 is singular with the singular point s = (λ0, 0) =
(
−1

2K12, 0
)
.

Moreover, a(λ0) = 0 = b(λ0), hence T is indeed supported at s.
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(2) We already showed in Theorem 3.11 that the spectral sheaf F is locally free if and
only if ∆ 6= 0. Therefore, in this case F ∼= Bq̄ for some smooth point q̄ ∈ X determined
by the condition det(F) ∼= O

(
[p] + [q̄]

)
. To compute the determinant of F , we use again

a deformation argument.

Case 1. Assume that f ′(0) 6= 0. Then the power series c2 given by (3.5) is automatically
regular and the non–zero Grünbaum’s parameters K11,K12 do not correlate with the
coefficients of the power series f . Keeping K11,K12 and f unchanged and introducing
new parameters α = K10 and β = K14, we get a family BB of commutative subalgebras
in D given by (3.5), flat over the base B = Spec(C[α, β]) and such that B(0,0)

∼= B. Let
FB be the corresponding spectral sheaf, see Theorem 1.30. Assume that t = (α, β) ∈ B
is such that the support of the Fourier–Mukai transform Tt of the corresponding spectral
sheaf Ft is locally free and supported at two different points of the spectral curve Xt.
According to Proposition 3.10, the support of Tt is

{
q1, q2

}
=
{

(λ1,−b(λ1), (λ2,−b(λ2)
}

,

where λ1 and λ2 are the roots of the equation λ2 + K12λ + 1
4(K2

12 + β) = 0. Moreover,

Ft ∼= O
(
[q1]
)
⊕O

(
[q2]
)
, hence det

(
Ft
) ∼= O([q1] + [q2]

) ∼= O([p] + [q̄]
)
, where q̄ = q1 + q2

with “+” taken in the sense of the group law on the set of smooth points of Xt. Computing
explicitly q1 + q2 ∈ Xt and then setting α = β = 0, we get: det(F) ∼= O

(
[p] + [q̄]

)
with q̄

given by (3.19).

Case 2. Suppose now that f ′(0) = 0. The proof in this case is analogous to the previous

one, but is technically more involved. First note that the Laurent series
f

f ′
is regular

at z = 0. Since K10 = K14 = 0, the regularity of c2 given by (3.5) is equivalent to the

regularity of
f ′′2 − 2f ′f ′′′

f ′2
. Lemma 3.12 implies that the order of vanishing of f at z = 0

is precisely three. Moreover, f has the following form: f = ξ3z
3 +

∞∑
i=5

ξiz
i with ξ3 6= 0,

see (3.15). Setting

{
fξ = f + ξz4

K10 = −24ξ
and keeping the parameters K11,K12 untouched,

then we get a flat family of commutative subalgebras BB over the base B = Spec(C[ξ])
with B0

∼= B. As K14 = 0, the spectral sheaf Fξ is isomorphic to A ⊗ O
(
[qξ]
)

for ξ 6= 0,
where qξ is a smooth point of the spectral curve (such behaviour is completely parallel to
the self–adjoint case, see the proof of Theorem 3.7). Therefore, det(Fξ) ∼= O

(
2[qξ]

)
. In a

similar manner we get again: F = Bq̄ with q̄ given by (3.19).

(3) In the case ∆ 6= 0, the isomorphism (3.20) for the torsion sheaf T follows from Theorem
2.8. It remains to describe T in the case when ∆ = 0 and the spectral curve is nodal.
Assume that K10 = K14 = 0, K12 = τ is fixed and K11 = θ can be varied. Furthermore,
let f ∈ zCJzK be such that c2 is regular at z = 0. Then we get a family of commutative
subalgebras BT flat over T = Spec(C[θ]), whose affine spectral surface XT ⊂ A2

x,y × T is

given by the equation y2 = 4
(
x+ τ

2

)2
(x− τ). Let FT be the spectral sheaf of this family

and TT its relative Fourier–Mukai transform. Let b ∈ C = T be such that b2 + 6τ = 0.
Clearly, the torsion sheaf

(
TT
)∣∣
Xb

is a quotient of OXb . Therefore, TT0 := TT
∣∣
T0

is a

quotient of OXT0 for some open neighbourhood T0 ⊂ T of b. Using Remark 2.11 as well

as the universal property of the Hilbert scheme of points applied to (T0, TT0), we get a

uniquely determined morphism T0
γ−→ P1, θ 7→

(
γ0(θ) : γ1(θ)

)
such that

Tθ ∼= R̂/
((
x+

τ

2

)2
, γ0(θ)

(
x+

τ

2

)
− γ1(θ)y

)
.
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From part (2) and Theorem 2.8(2) we already know that for θ ∈ T0 \ {b} we have: γ(θ) =
(1 : θ). By continuity of γ we finally obtain: γ(b) = (1 : b). Theorem is proven. �

Remark 3.17. The description of the spectral sheaf F of the algebra B in the case s /∈ Z
is the same as in the work of Previato and Wilson [41]. In particular, q = (λ, µ) belongs
to Z if and only if a(λ) = 0 and µ = −b(λ). There are namely the following possibilities:

• F ∼= O
(
[q]
)
⊕O

(
[q]
)

if Z =
{
q, q′

}
.

• F ∼= O
(
[q]
)
⊗ A or F ∼= O

(
[q]
)
⊕ O

(
[q]
)

if Z =
{
q
}

. The last case occurs if and
only if f has a zero of order four at z = 0.

3.4. Spectral sheaf of the Fourier transform of Dixmier’s example. The methods
developed in our article can be applied to determine the spectral sheaves of genus one and
rank three commutative subalgebras of D.

Example 3.18. The Weyl algebra W = C[z][∂] admits an algebra automorphism z
φ7→

∂, ∂
φ7→ −z called Fourier transform. Consider now the Fourier transform of Dixmier’s

example (0.2). Namely, for any κ ∈ C, put D̂ := φ(D) = ∂3 + z2 + κ and pose

(3.21) P̂ := φ(P ) = D̂2 + 2∂ and Q̂ := φ(Q) = D̂3 +
3

2

(
∂D̂ + D̂∂

)
.

Then P̂ and Q̂ commute and satisfy the relation Q̂2 = P̂ 3 − κ. Moreover, the algebra

B̂ := C[P̂ , Q̂] has genus one and rank three. Let q = (λ, µ) ∈ Spec(B̂) and B̂
χ−→ C be

the corresponding character. A straightforward computation gives the following formula

for Rχ := gcd(P̂ − λ, Q̂− µ):

(3.22) Rχ = ∂3 − 1

z + µ
∂2 +

λ

z + µ
∂ +

(
κ+ z2 − λ2

z + µ

)
.

Let F be the spectral sheaf of B̂. The formula (3.22) yields the following result.

(1) If κ 6= 0 then F ∼= O
(
[q1]
)
⊕O

(
[q2]
)
⊕O

(
[q3]
)
, where qi = (λi, 0) with λ3

i = κ for

i = 1, 2, 3. In particular, det(F) ∼= O
(
3[p]
)
.

(2) If κ = 0 then F ∼= Ep, where Ep is the indecomposable rank three vector bundle on
the cuspidal curve from Corollary 2.15. Indeed, F is locally free and its Fourier–
Mukai transform T is supported only at the singular point of the spectral curve
due to Proposition 3.10. Therefore, F ∼= Eq for some q ∈ X. From Proposition 2.7
we deduce that det(F) ∼= O

(
3[p]
)
, hence q = p.

3.5. Summary. Combining the classification of Grünbaum [21], [41, Theorem 1.2] of
Previato and Wilson with results of our article, we get the following picture. Let B ⊂ D
be a genus one and rank two commutative subalgebra. Then we have:

B = C[L,M ] = C[x, y]/(y2 − h(x)), where h(x) = 4x3 + g2x+ g3

for appropriate parameters g2, g3 ∈ C. The operator L has the form

L =
(
∂2 +

1

2
c2

)2
+
(
c1∂ + ∂c1) + c0 and M = 2L

3
2
+.

Let F be the spectral sheaf of B, T its Fourier–Mukai transform and Z the support of

T . If the spectral curve X = V
(
y2 − h(x)

)
is singular then s denotes its singular point.

Finally, X
ı−→ X, (λ, µ) 7→ (λ,−µ) is the canonical involution of X and p = (0 : 1 : 0) is

the infinite point of X. We use the notation of Corollary 2.10 to describe F .
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1. The spectral curve X is singular and F ∼= S ⊕ S if and only if c1 = 0 and c0 is a
constant. See Lemma 3.6.

2. Let L be formally self–adjoint (i.e. c1 = 0) with c′0 6= 0. Then c0 and c2 are given by

c0 = f and c2 =
K2 + 2K3f + f3 − f ′′′f ′ + 1

2(f ′′)2

f ′2

for some f ∈ CJzK and K2,K3 ∈ C. We have in this case: g2 = 2K3 and g3 = −1
2K3. The

spectral sheaf F is automatically locally free and self–dual. Moreover, Z = {q+, q−} =
{(λ, µ+), (λ, µ−)}, where λ = −1

2f(0) and µ2
± = h(λ). According to Theorem 3.7, the

following results are true.

(1) If q+ 6= q− then F ∼= O
(
[q+]

)
⊕O

(
[q−]

)
.

(2) If q+ = q− = q is a smooth point of X then F ∼= O
(
[q]
)
⊕O

(
[(q)]

)
in the case f ′

has zero of order three at z = 0 and F ∼= A⊗O
(
[q]
)

otherwise.
(3) If X is singular and Z = {s} then F ∼= Bp.

3. Assume now that c1 6= 0, i.e. L is not self–adjoint case. Then c0, c1 and c2 are given by
c0 = −f2 +K11f +K12

c1 = f ′

c2 =
K14 − 2K10f + 6K12f

2 + 2K11f
3 − f4 + f ′′2 − 2f ′f ′′′

2f ′2

where f ∈ zCJzK and K10,K11,K12,K14 ∈ C. The Weierstraß parameters g2 and g3 of the
spectral curve X are given by the formulae

g2 = K14 − 3K2
12 −K10K11 and g3 =

1

4

(
K2

10 − 2K10K11K12 − 4K3
12 −K14(K2

11 + 4K12)
)
.

Consider the following expressions:{
a(λ) =

(
λ+ 1

2K12

)2
+ 1

4K14

b(λ) =
(
λ+ 1

2K12

)
K11 − 1

2K10

Let λ1, λ2 be the roots of a(λ). Then Z = {q1, q2} =
{

(λ1,−b(λ1)), (λ2,−b(λ2))
}

.

(1) If q1 6= q2 are smooth then F ∼= O
(
[q1]
)
⊕O

(
[q2]
)
.

(2) If q1 = q2 = q is smooth then F ∼= O
(
[q]
)
⊕ O

(
[(q)]

)
in the case f ′ has zero of

order three at z = 0 and F ∼= A⊗O
(
[q]
)

otherwise, see Proposition 3.5.
(3) The spectral curve X is singular and Z = {s} if and only if K10 = K14 = 0, see

Theorem 3.16. In this case,

X = V
(
y2 − 4

(
x+

K12

2

)2
(x−K12)

)
.

(a) The spectral sheaf F is locally free if and only if ∆ := 6K12 + K2
11 6= 0.

Moreover, F ∼= Bq with q =
(

1
4K

2
11 +K12,

1
4K11

(
6K12 +K2

11

))
.

(b) If ∆ = 0 then F is indecomposable but not locally free. If X is cuspidal
(i.e. K11 = K12 = 0) then F ∼= U . If X is nodal (i.e. K12 6= 0) then then
F is isomorphic to one of the sheaves U±. More precisely, it is the inverse
Fourier–Mukai transform of

T := R̂
/((

x+
K12

2

)2
, y −K11

(
x+

K12

2

))
,

where R̂ := CJx, yK
/(
y2 − 4

(
x+ K12

2

)2
(x−K12)

)
∼= Ôs.
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(4) The spectral curve X is singular and the spectral sheaf F is decomposable and
not locally free if and only if K10 = (3K12 + 1

2K
2
11)K11 and K14 = −(3K12 +

1
2K

2
11)2 6= 0. In this case, Z = {s, q} and F ∼= S ⊕ O

(
[q]
)
, where q =

(
−2K12 −

1
4K

2
11,−1

2K11(K2
11 + 6K12)

)
, see Theorem 3.11.

Remark 3.19. We see from this description that L is non–degenerate formally self–adjoint
(i.e. c1 = 0 and c′0 6= 0) if and only if F is locally free and det(F) ∼= O

(
2[p]
)
. For such L we

have: D(F) ∼= F , where D is the duality from Theorem 2.3. The converse is however not
true. Consider a non–self–adjoint operator L with K10 = K11 = 0 and K14 6= 0. Then the
spectral curve X is smooth (for generic K14) and F ∼= O

(
[q1]
)
⊕O

(
[q2]
)
, where ı(qi) = qi

for i = 1, 2. Therefore, D(F) ∼= F in this case.
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