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TENSOR REPRESENTATIONS OF q(∞)

DIMITAR GRANTCHAROV AND VERA SERGANOVA

Abstract. We introduce a symmetric monoidal category of modules over the di-
rect limit queer superalgebra q(∞). The category can be defined in two equivalent
ways with the aid of the large annihilator condition. Tensor products of copies of
the natural and the conatural representations are injective objects in this category.
We obtain the socle filtrations and formulas for the tensor products of the inde-
composable injectives. In addition, it is proven that the category is Koszul self-dual.

2000 MSC: 17B65, 17B10, 16G10.

Keywords and phrases: queer superalgebras, tensor representations, Koszul duality.

1. Introduction

Recently new symmetric monoidal categories have attracted considerable attention.
Among them are the categories Trep g of modules over direct limit g of classical
Lie algebras generated as abelian tensor categories by the natural and conatural
representations. Namely, g is one of the following: gl(∞) = lim

−→
gl(n), o(∞) =

lim
−→

o(n) and sp(∞) = lim
−→

sp(n). In [2] it is proven that these categories have enough

injective objects and that every object has a finite injective resolution. Furthermore,
the algebra of endomorphisms of an injective cogenerator is described explicitly. With
the aid of this description, it follows that the categories are Koszul. Furthermore, it
is shown in [14] that these categories satisfy a natural universality property.

The categories Trep g of direct limits of basic classical Lie superalgebras g =
gl(∞|∞) and g = osp(∞|∞) were studied in [15]. It was shown there that no
new categories appear, namely that the categories Trep gl(∞|∞) and Trep gl(∞)
are equivalent and that the categories Trep o(∞) and Trep osp(∞|∞) are equivalent
as symmetric monoidal categories. Furthermore, one can use the properties of the
category Trep osp(∞|∞) to prove that Trep o(∞) and Trep sp(∞) are equivalent as
monoidal abelian categories.

In contrast with gl(∞|∞) and osp(∞|∞), for the strange Lie superalgebras q(∞)
and p(∞) we obtain new interesting symmetric monoidal categories. We believe that
these categories satisfy certain universality conditions analogous to the the category
Trep gl(∞) and Trep o(∞). The case of p(∞) is discussed in [15] and [16].

The goal of this paper is to investigate in detail the category Trep q(∞) of the
direct limit queer Lie superalgebra q(∞). We give two equivalent intrinsic definitions
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2 DIMITAR GRANTCHAROV AND VERA SERGANOVA

of Trep q(∞) using the large annihilator condition. Then we classify the simple and
indecomposable injective modules of Trep q(∞) and show that the category is Koszul
self-dual. The latter is especially interesting since it is known that the category
of finite-dimensional modules over q(n) is not Koszul, even more - the algebra of
endomorphisms of an injective cogenerator is not quadratic, see [9]. In the present
paper we also classify the blocks of Trep q(∞) and express the Ext-groups between
the simple objects using the shifted Littlewood–Richardson coefficients, [19], [4].

Another motivation to study the category Trep gl(∞) arises from the fact that
the Lie superalgebras q(n) have very interesting representation theory and combina-
torics. Representations of q(n) in the tensor algebra of the natural representation
were originally studied by A. Sergeev, [17], [18]. He discovered a duality analogous
to the celebrated Schur-Weyl duality, often called the Sergeev duality. This duality
relates the above representations with projective representations of the symmetric
group, and the characters of these representations are given by Schur Q-functions,
see [7]. If one considers representations of q(n) in the tensor algebra of the natural
representation and its dual, the situation is more complicated. In particular, the
representations are not completely reducible and the algebras of intertwining opera-
tors are not semisimple. This situation was studied in [6], where the latter algebras
are presented in a diagrammatic form. These algebras are generalizations of Brauer
and walled Brauer algebras. The Koszul algebra which appears in our category, is a
subalgebra of this diagrammatic algebra. This is related to the fact, that we have a
tensor functor Γn from our category Trep q(∞) to the category of finite-dimensional
q(n)-modules but this functor does not map simple objects to simple objects.

We would like to remark that the category Trep gl(∞|∞) was used in [3] as a tech-
nical tool for constructing the abelian envelope of the Deligne’s category RepGl(t)
when t is integer. It seems that a similar construction can be obtained for type Q
which we will address in a subsequent paper.

The organization of the paper is the following. In Section 2 we collect some useful
results on associative superalgebras and finite-dimensional representations of q(n).
The two equivalent definitions of Trep q(∞) and a classification of its simple objects
are included in Section 3. In Section 4 we classify the indecomposable injective
objects of Trep q(∞) and obtain their socle filtration. In this section we also prove
that the category is a symmetric monoidal category. In Section 5 we compute the
extension groups between the simple objects in Trep q(∞) and show that every object
has a final injective resolution. We also derive a formula of the tensor product of the
indecomposable injectives in terms of shifted Littlewood-Richardson coefficients. The
Koszulity and self-dual Koszulity of the category is proven in Section 6.

Acknowledgements. This research was supported through the programme “Research
in Pairs” by the Mathematisches Forschungsinstitut Oberwolfach (MFO) in 2015.
Both authors would like to express their gratitude for the excellent working conditions
provided by MFO. The first author is partially supported by Simons Collaboration
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Grant 358245. The second author is partially supported by the NSF Grant DMS
1303301.

2. Preliminaries

In this paper we work in the categories of A-modules for a Lie superalgebra or an
associative superalgebra A over C. Thus, all objects are equipped with Z2-grading.
We use the notation Hom(·, ·) for the supervector space of all A-equivariant linear
maps. For abelian categories we consider only morphisms that preserve parity, which
we denote by hom(·, ·). The Ext-groups in the abelain category of A-modules will be
denoted by exti(·, ·).

All multiplicities and dimensions will be considered as elements of Z[ε]/(ε2 − 1).
We set θ = 1 + ε. Note that multiplication by θ is an injective map N[ε]/(ε2 − 1)→
N[ε]/(ε2− 1). Hence we say that ζ ∈ N[ε]/(ε2− 1) is divisible by θ if ζ = ξθ for some
(unique) ξ ∈ N[ε]/(ε2 − 1) and we set ξ = ζ

theta
. At the level of Grothendieck rings

we let ε[M ] = [ΠM ], where Π is the switch of parity functor.
We next state the super-analogue of the classical Schur’s Lemma. For the proof,

see §1.1.6 in [10].

Lemma 2.1. Let A be a finite or countable-dimensional superalgebra over C and M
be a simple A-module. Then either End(M) = C or End(M) is isomorphic to the
superalgebra C[ξ]/(ξ2 − 1) with an odd generator ξ.

We say that a simple A-module is of M-type if End(M) = C or, equivalently, if
M and ΠM are not isomorphic. Alternatively, a simple A-module is of Q-type if
End(M) = C[ξ]/(ξ2 − 1) or, equivalently, if M and ΠM are isomorphic. From now
on we set C1 = C[ξ]/(ξ2 − 1).

Let A and B be two superalgebras, M be a simple A-module and N be a simple
B-module. If both M and N are of Q-type, we set

M�̂N := M ⊗C1 N.

Then M�̂N is a simple A⊗ B-module. We have the natural decomposition

M�N 'M�̂N ⊕ Π(M�̂N),

and the embedding C1 ↪→ EndA⊗B(M�̂N) defined by ξ 7→ ξ ⊗ 1.
Let A = U(k) be the universal enveloping of a superalgebra k, then A is a Hopf

superalgebra and M ⊗N is equiped with an A-module structure. If M and N are of
Q-type, then we define

M⊗̂N := M ⊗C1 N.

We will also need the following general lemma.

Lemma 2.2. Let A be a semisimple associative unital superalgebra over C and let
e ∈ A be a primitive idempotent of A.
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(i) The following identity holds

(2.1) A =
⊕

L∈IrrA

L�End(L) L
∗,

where IrrA denote the set of isomorphism classes of irreducible leftA-modules.
(ii) Ae is an irreducible A-module.

(iii) Let M be a finite-dimensional A-module. Then

[M : Ae] =
dim eM

dim EndA(Ae)
and

dim eM = dim HomA(Ae,M).

In what follows we also use several facts about representation theory of the Lie
superalgebra q(n). We call a weight κ integral dominant if the irreducible q(n)-
module Ln(κ) with highest weight κ is finite-dimensiional and can be lifted to the
representation of the algebraic supergroup Q(n). It follows from [11] that the integral
dominant weights are of the form a1δ1 + · · · + anδn, with ai ∈ Z satisfying the
conditions

(1) if ai 6= 0, then ai > ai+1;
(2) if ai = 0, then ai ≥ ai+1.

Let Mn(κ) denote the Verma module with highest weight κ and Xn(κ) be the
maximal finite-dimensional quotient of Mn(κ). Then Xn(κ) has the following geo-
metric interpretation. Let Pκ be the maximal parabolic subgroup of Q(n) such that
κ induces a one-dimensional representation of the even subgroup (Pκ)0. Let O(κ) be
the vector bundle over Q(n)/Pκ corresponding to the irreducible representation of Pκ
with character −κ. Then

Xn(κ) ' H0(Q(n)/Pκ,O(κ))∗

(see for example Lemma 2 in [5]). Certain bounds for the multiplicities of the simple
Q(n)-subquotients of H i(Q(n)/Pκ,O(κ))∗ can be deduced from [12]. We will use the
following statement about the structure of Xn(κ) which follows from these bounds.

Proposition 2.3. Let κ = a1δ1 + · · · + anδn be an integral dominant weight such
that a1 > a2 > · · · > ak > 0, ak+1 = · · · = ak+r = 0, 0 > ak+r+1 > · · · > an.

(i) The length of Xn(κ) is at most 2a1+···+ak−ak+r+1−···−an ;
(ii) Assume that r > a1 + · · · + ak − ak+r+1 − · · · − an and [Xn(κ) : Ln(0)] 6= 0.

Then κ = 0 or κ = δ1 − δn.

3. Category Trep q(∞)

3.1. Lie superalgebra q(∞). Let V = V0⊕V1 and W = W0⊕W1 be two countable-
dimensional supervector spaces, equipped with an even non-degenrate pairing

(·, ·) : W × V → C.
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Denote by 1W and 1V the identity endomorphisms on W and V , respectively. Let
P : V → V be an odd linear operator such that P 2 = −1V . Define the action of P
on W by setting

(Pw, v) = −(−1)p(w)(w,Pv).

Note that P 2|W = 1W .
Following [8], we fix dual bases {ei, i ∈ Z \ 0} of V0 and {fi, i ∈ Z \ 0} of W0 such

that (fi, ej) = δij. Set ēi = Pei and f̄i = Pfi. Then we have (f̄i, ēj) = δij.
Let q(∞) be the Lie superalgebra of finitary linear operators in End(V )⊕End(W )

which satisfy

(Xw, v) = −(−1)p(w)p(X)(w,Xv), [X,P ] = 0.

Henceforth we set g = q(∞).
One can easily see that V and W are g-modules. We denote by T p,q the tensor

product V ⊗p ⊗W⊗q which is also a g-module. One can easily check that

T 1,1 = V ⊗W ' g⊕ Πg,

where g is considered as the adjoint g-module. We also have that

g = SpanC{ei ⊗ fj + ēi ⊗ f̄j, ei ⊗ f̄j + ēi ⊗ fj | i, j ∈ Z \ 0}.

Let gn ' q(n) be the Lie subalgebra spaned of ei⊗ fj + ēi⊗ f̄j and ei⊗ f̄j + ēi⊗ fj
for all −bn

2
c ≤ i, j ≤ dn

2
e. Then q(∞) is the direct limit

q(∞) = lim
−→

gn.

Denote by cn the centralizer of gn in g. Note that for all n, cn is isomorphic to q(∞).

3.2. Large annihilator condition. Define a left exact functor Γn : g − mod →
gn −mod by setting

Γn(M) := M cn .

The direct limit

Γ := lim
−→

Γn : g−mod→ g−mod

is also a left exact functor.
Clearly, we have a canonical embedding Γ(M) ↪→M . We say that M satisfies the

large annihilator condition if Γ(M) = M . Note that modules satisfying this condition
form an abelain subcategory in g−mod. Furthermore, one can easily see that if M
and N satisfy the large annihilator condition, the tensor product M⊗N also satisfies
it. In particular, V , W , and hence T p,q, satisfy the large annihilator condition. The
following lemma is straightforward.

Lemma 3.1. Let M and Y be g-modules. Assume that M satisfies the large anni-
hilator condition. Then there is a canonical isomorphism

Homg(M,Y ) ' Homg(M,Γ(Y )).
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We call a g-module M integrable if for any n > 0 it can be lifted to a representation
of algebraic group Q(n) with the Lie superalgebra gn.

Definition 3.2. The category Trep g of tensor representations of g is the full sub-
category of g−mod whose objects M satisfy the following properties.

(1) M is an integrable g-module.
(2) M has finite length.
(3) M satisfies the large annihilator condition.

It is clear that T p,q satisfies (1) and (3). Furthermore, the restriction of T p,q to g0

has finite length, see Theorem 2.3 in [13]. Hence T p,q has finite length as a g-module.
Therefore T p,q is an object of Trep g.

Consider the Cartan subalgebra h of g spanned by ei⊗fi+ ēi⊗ f̄i and ei⊗ f̄i+ ēi⊗fi
for i ∈ Z \ 0. Note that the even part h0 of h is the diagonal subalgebra of g. Let
{εi, i ∈ Z \ 0} be the system in h∗0 dual to the basis ei ⊗ fi + ēi ⊗ f̄i of h0. Denote by
Λ the Z-linear span of {εi, i ∈ Z \ 0}.

Lemma 3.3. If M ∈ Trep g, then M is h0-semisimple and the weights of M belong
to Λ.

Proof. Note that M is semisimple over the Cartan subalgebra hn of gn. Together
with the large annihilator condition this implies that M is h-semisimple since h is
the direct limit of hn. �

3.3. Highest weight category. Throughout the paper we will use the following
“exotic” total order on Z \ 0:

1 ≺ 2 ≺ · · · ≺ −2 ≺ −1.

In particular, the positive numbers are smaller than the negative ones.
Let n ⊂ g be the subalgebra spanned by ei ⊗ fj + ēi ⊗ f̄j and ei ⊗ f̄j + ēi ⊗ fj

for all i ≺ j. Then b = n ⊕ h is a Borel subalgebra of g and we can define the
category O with respect to b. More precisely, O is the full subcategory of g-modules
consisting of finitely generated modules that are semisimple over h0, and that are
n-locally nilpotent.

We denote by O′ the full subcategory of O consisting of modules which satisfy the
large annihilator condition, and by O′int the subcategory of O′ of integrable modules.
It is easy to check that Lemma 3.3 holds for the category O′ , namely, that that the
weights of all modules in O′int belong to Λ.

Suppose L is a simple highest weight module in O′int. Then by [11] the highest
weight of L is of the form

(3.1) a1ε1 + · · ·+ akεk − a−lε−l − · · · − a−1ε−1

with positive integers ai such that a1 > · · · > ak and a−1 > · · · > a−l. Hence we have
a bijection between the dominant weights in Λ and the strict bipartions (λ, µ), where
λ = (a1, . . . , ak) and µ = (a−1, . . . , a−l).
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For any strict partition λ of r we set |λ| = r, denote by l(λ) the number of parts
(nonzero components) of λ, and by p(λ) the parity of l(λ). For a strict bipartition
(λ, µ) we set

p(λ, µ) = p(λ) + p(µ).

For simplicity, for small (bi)partitions, we will use their corresponding Young
tableau. For example � will denote the strict partition (1), and (�,�) will stand for
the strict bipartition ((1), (1)).

Lemma 3.4. If p(λ, µ) = 0, then there exist two up to isomorphism simple modules
V (λ, µ) and ΠV (λ, µ) in O′int with highest weight (λ, µ). If p(λ, µ) = 1 then there is a
unique up to isomorphism simple module V (λ, µ) in O′int with highest weight (λ, µ),
and this module is of Q-type.

Proof. Let k = l(λ) and l = l(µ). Let M be a simple module of highest weight
(λ, µ), and let C(λ, µ) be the (λ, µ)-weight space of M . Then C(λ, µ) is a simple
U(h)-module. It is easy to see that ei ⊗ fi + ēi ⊗ f̄i and ei ⊗ f̄i + ēi ⊗ fi act by zero
on C(λ, µ) if k ≺ i ≺ −l. Thus C(λ, µ) is a simple module over the Clifford algebra
with k + l generators. The statement follows from the theory of Clifford algebras.
Namely, if k + l is even, then the corresponding Clifford algebra is a matrix algebra
equipped with Z2-grading and hence it has two up to isomorphism simple modules,
V and ΠV . If k+ l is odd, the Clifford algebra is a direct sum of two matrix algebras,
however it is simple as a superalgebra and has unique up to isomorphism simple
module V ' ΠV . �

Lemma 3.5. Every module in O′int has finite length.

Proof. For a bipartition (λ, µ), denote by M(λ, µ) the corresponding Verma module.
Let X(λ, µ) be the maximal quotient of M(λ, µ) which is in O′int. Since every module
in O′int has a finite filtration by highest weight modules, it suffices to check that
X(λ, µ) has finite length.

Let n > |λ| + |µ|. Let Yn(λ, µ) be the gn-submodule of X(λ, µ) generated by a
highest weight vector of X(λ, µ). Then

X(λ, µ) = lim
−→

Yn(λ, µ).

On the other hand, Yn(λ, µ) is a quotient of Xn(λ, µ). By Proposition 2.3(i) the
length of Xn(λ, µ) stabilizes. Hence X(λ, µ) has finite length. �

3.4. Polynomial representations and Sergeev duality. By definition, the poly-
nomial representations of g are those which occur in tensor powers of V . We recall
some facts related to the Sergeev duality. It is proven in [17] that the centralizerHr of
g in V ⊗r is a semisimple superalgebra which we call the Sergeev algebra. Irreducible
representations of Hr (up to change of parity) are parametrized by strict partitions
of size r. We denote by S(λ) the irreducible representation of the Sergeev algebra
Hr associated with λ. Note that S(λ) is of M-type (respectively, Q-type) if p(λ) = 0
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(respectively, p(λ) = 1). By e(λ) we denote a primitive idempotent of Hr such that
Hre(λ) ' S(λ).

For any r > 0 we have a decomposition:1

(3.2) V ⊗r =
⊕
p(λ)=0

V (λ, ∅) � S(λ)⊕
⊕
p(λ)=1

V (λ, ∅)�̂S(λ),

where λ runs over the set of all strict partition of r.
Similarly, we have

(3.3) W⊗r =
⊕
p(λ)=0

V (∅, λ) � S(λ)⊕
⊕
p(λ)=1

V (∅, λ)�̂S(λ).

For simplicity, we set V (λ) := V (λ, ∅) and W (λ) := V (∅, λ).

3.5. Littlewood-Richardson coefficients. By fµλ,ν we denote the Littlewood-Richardson
coefficients of type Q:

fµλ,ν = dim Homg(V (µ), V (λ)⊗ V (ν)).

Another way to define Littlewood-Richardson coefficients is by using the branching
law for the Sergeev algebra. Henceforth we set Hp,q = Hp ⊗Hq.

Lemma 3.6. If |λ| = p and |ν| = r, then

fµλ,ν = dim HomHp,r(S(λ) � S(ν), S(µ)) = dim HomHp+r(Ind
Hp+r

Hp,r
S(λ) � S(ν)).

Proof. Then we have

V (λ) = e(λ)V ⊗p, V (ν) = e(ν)V ⊗r

and
V (λ)⊗ V (ν) = e(λ)⊗ e(ν)(V ⊗(p+r)).

By Sergeev duality we obtain

V (λ)⊗V (ν) =
⊕

|µ|=p+r,p(µ)=0

V (µ)�(e(λ)⊗e(ν)(S(µ)))⊕
⊕

|µ|=p+r,p(µ)=1

V (µ)�̂(e(λ)⊗e(ν)(S(µ))).

If p(λ)p(ν) = 0, then e(λ)⊗e(ν) is a primitive idempotent in Hp,r. By Lemma 2.2(iii)
we have that

dim e(λ)⊗ e(ν)(S(µ)) = dim HomHp,r(S(λ) � S(ν), S(µ)).

If p(λ)p(ν) = 1, then e(λ)⊗e(ν) is a sum of two primitive idempotents corresponding
to two irreducible representations of Hp,r such that one is obtained from the other
by parity switch. We again have that

dim e(λ)⊗ e(ν)(S(µ)) = dim HomHp,r(S(λ) � S(ν), S(µ)).

The second equality is a consequence of Frobenius reciprocity. �

1Although the result of Sergeev is for finite rank queer Lie superalgebras, it is easy to extend it
to q(∞) by taking direct limits.
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Corollary 3.7. If fµλ,ν 6= 0, then |λ|+ |ν| = |µ|.

Note that by Theorem 1.11 in [4]

(3.4) fµ�,ν =

{
0, if ν /∈ µ−�,

θp(ν)p(µ)θ, if ν ∈ µ−�.

3.6. The category O′int coincides with Trep g.

Lemma 3.8. Let M be a g-module isomorphic to V ⊕n. Then there exists a subspace
U ⊂ V with dimU = nθ, such that the symmetric algebra S(V ⊕n) is generated by
S(U⊕n) as g-module.

Proof. We use the isomorphism of g-modules

S(M) '
⊕

r1,...,rn∈Z≥0

Sr1(V )⊗ · · · ⊗ Srn(V ).

Furthermore, if V (λ) occurs in Sr1(V )⊗· · ·⊗Srn(V ), then λ has at most n rows. To
show this we use the fact that all V (µ) that appear as direct summands of V (η) ⊗
Sr(V ) have the property that µ−η is contained in a horizontal r-strip. For the latter
we use the Pieri formula for Schur P -functions (see for example (5.7) in §III.5 of
[7]) and the fact that the character of V (λ) is a multiple of the corresponding Schur
P -function (and also of the Q-function).

Therefore the highest weight vectors belong to Sr1(U)⊗ · · · ⊗ Srn(U), where U is
the span of ei and ēi for i = 1, . . . , n. �

Remark 3.9. Let G be the group of all linear operators on V ⊕ W that preserve
the pairing (·, ·), and that commute with P . Then G is a subgroup of the group
of automorphisms of g. Like in the case of gl(∞) (see Theorem 3.4 in [2]) , the
large annihilator condition implies that for any γ ∈ G, the twisted module Mγ is
isomorphic to M . Let W denote the normalizer of h in G. Then for any s ∈W, if
M is a highest weight module with respect to s(b) it is a highest weight module with
respect to b.

Lemma 3.10. Every simple module in Trep g is isomorphic to V (λ, µ) or ΠV (λ, µ).

Proof. Let L be a simple module in Trep g. It suffices to prove the existence of a
b-singular vector in L.

Let v ∈ L be a non-zero weight vector. It is annihilated by some cn. We consider the
parabolic subalgebra p of g with Levi part l = gn⊕cn and whose abelian nilradical m is
isomorpic to Wn�̂V ′, where V ′ is the standard cn-module and Wn is the costandard
gn-module. In particular, m is isomorphic to (V ′)⊕n as a cn-module. By Lemma
3.8, there exists a finite dimensional subspace m′ ⊂ m such that U(m) = S(m) is
generated over cn by S(m′). Since L is integrable, the abelian subalgebra m′ acts
locally nilpotently and therefore for some N ≥ 0 we have SN(m′)v = 0. But then
SN(m)v = 0. The latter implies that Lm 6= 0.
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Since L is irreducible, Lm is an irreducible l-module. On the other hand we note
that Lm is isomorphic to a cn-submodule of Sk(m) for some k. Hence Lm contains a
b ∩ l-singular vector.

Now we pick a b∩ l-singular vector w in Lm 6= 0. Let b′ = (b∩ l)⊕m. Then w is a
b′-singular vector, and hence L is a highest weight module with respect to the borel
subalgebra b′.

It is not difficult to see that b′ = s(b) for some s ∈W. Thus the statement follows
from Remark 3.9. �

Theorem 3.11. The category Trep g coincides with the category O′int.

Proof. Lemma 3.5 implies thatO′int is a subcategory of Trep g. The inclusion Trep g ⊂
O′int follows from Lemma 3.10. �

4. Injective modules in Trep g

4.1. Decomposition of mixed tensor powers. For any strict bipartition (λ, µ)
we define the g-module

Z(λ, µ) :=

{
V (λ)⊗W (µ) if p(λ)p(µ) = 0

V (λ)⊗̂W (µ) if p(λ)p(µ) = 1
.

It clear from Sergeev duality that Z(λ, µ) is a submodule of T p,q for p = |λ|, q = |µ|.
Let S(λ, µ) be the H|λ|,|µ|-module defined by

S(λ, µ) :=

{
S(λ) � S(µ) if p(λ)p(µ) = 0

S(λ)�̂S(µ) if p(λ)p(µ) = 1
.

Sergeev’s duality (3.2) implies the following decomposition

(4.1) T p,q =
⊕

|λ|=p,|µ|=q,p(λ,µ)=0

Z(λ, µ) � S(λ, µ)⊕
⊕

|λ|=p,|µ|=q,p(λ,µ)=1

Z(λ, µ)�̂S(λ, µ).

Moreover, we have the following identities involving the primitive idempotents.

(4.2) e(λ)⊗ e(µ) (T p,q) =

{
Z(λ, µ), if p(λ)p(µ) = 0

Z(λ, µ)⊕ ΠZ(λ, µ), if p(λ)p(µ) = 1
.

4.2. General properties of the functor Γn. We now prove a lemma that is some-
what surprising.

Lemma 4.1. Let M be a g-module satisfying the large annihilator condition. Then
Homg(C,M) = Homg0(C,M).

Proof. We have the obvious inclusion Homg(C,M) ⊂ Homg0(C,M). To prove that
equality we show that M g0 ⊂ M g. Let v ∈ M g0 . By the large annihilator condition
(cn)1v = 0 for some n. But (cn)1 and g0 generate g. Hence gv = 0. �
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Corollary 4.2. For any n > 0 and any module M in Trep g we have Γn(M) = M (cn)0 .

Proof. The statement follows by restricting M to cn and using Lemma 4.1. �

Consider the restriction functor Trep g → Trep g0. If we define Trepk g as the
subcategory of modules whose simple submodules are of the form V (λ, µ) with |λ|+
|µ| ≤ k, then the restriction functor maps Trepk g to Trepk g0.

In a similar way we define the subcategory (gn − mod)k of gn − mod. It is clear
that Γn maps Trepk g to (gn −mod)k.

Lemma 4.3. If n� k, then the functor Γn : Trepk g→ (gn −mod)k is exact.

Proof. Consider the restriction to g0. It is easy to see that the statement is true
for Trepk g0 by semisimplicity of the latter category. Now the lemma follows from
Corollary 4.2. �

4.3. Injectivity of trivial modules.

Proposition 4.4. The trivial modules C and ΠC are injective in Trep g.

Proof. To prove the statement it is enough to show that for any strict bipartition
(λ, µ) any two exact sequences

0→ C→ X → V (λ, µ)→ 0

and
0→ ΠC→ X → V (λ, µ)→ 0

split.
First we assume that V (λ, µ) is isomorphic to C. For the first sequence, we observe

that g1 acts trivially on X and g0 = [g1, g1]. Thus, X is a trivial g-module isomorphic
to C ⊕ C. For the second exact sequence, we have a decompositon X = C ⊕ ΠC of
g0-modules. By Lemma 4.1 we obtain Homg(C, X) = Homg0(C, X) = C1|1. Hence X
is isomorphic to C⊕ ΠC.

Now we assume that V (λ, µ) is not trivial, i.e. that (λ, µ) is a non-empty biparti-
tion. Assume that one of the above sequences does not split. We use the notations
X(λ, µ), Yn(λ, µ) and Xn(λ, µ) introduced in the proof of Lemma 3.5. We know that
X is a quotient of X(λ, µ). In particular, we have [X(λ, µ) : C] 6= 0. Recall that
X(λ, µ) = lim

−→
Xn(λ, µ). Hence we have [Xn(λ, µ) : C] 6= 0 for sufficiently large n. By

Proposition 2.3(ii) this is possible only if (λ, µ) = (�,�). It remains to prove that
the sequence splits in this particular case.

We have
Xn(�,�) ' [gn, gn] := sq(n).

After applying direct limits we obtain

X(�,�) ' [g, g] := sq(∞).

But sq(∞) is a simple superalgebra and hence an irreducible g-module, which leads
to a contradiction. �
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4.4. Injectivity of T p,q. Sergeev’s duality implies that Z(λ, µ) contains a highest
weight vector of weight (λ, µ). Therefore we know that V (λ, µ) is a subquotient of
Z(λ, µ) and hence of T p,q.

Let V̇ (λ, µ) denote the maximal integrable highest weight g0-module with highest
weight (λ, µ). This module is simple (see [2]).

Lemma 4.5. The highest weight g-module V (λ, µ) contains a g0-submodule isomor-
phic to V̇ (λ, µ).

Proof. Pick up a highest weight vector v ∈ V (λ, µ) and consider the submodule
U(g0)v. This is simple g0-module with highest weight (λ, µ). �

Lemma 4.6. (i) If Homg(V (λ, µ), T p,q) 6= 0, then |λ| = p and |µ| = q.
(ii) Homg(T

p,q, T r,s) 6= 0 implies p− r = q − s ≥ 0.

Proof. (i) Let Ṫ p,q = V ⊗p0 ⊗W
⊗q
0 . By Proposition 5.4 in [2], if Homg0(V̇ (λ, µ), Ṫ p,q) 6=

0, then |λ| = p and |µ| = q. Since T p,q is a direct sum of several copies of Ṫ p,q the
statement follows from Lemma 4.5. Part (ii) follows by similar reasoning. �

Lemma 4.7. Let M,N,L be modules in Trep g. Then:

Hom(M ⊗ L,N) ' Hom(M,Γ(HomC(L,N))).

Proof. The following isomorphism holds for all g-modules:

Hom(M ⊗ L,N) ' Hom(M,HomC(L,N)).

Now the statement follows directly from Lemma 3.1. �

Lemma 4.8. We have the following isomorphisms of g-modules

Γ(HomC(V, T p,q)) = T p,q+1⊕ (T p−1,q)⊕pθ, Γ(HomC(W,T p,q)) = T p+1,q ⊕ (T p,q−1)⊕qθ.

Proof. We have V = Vn ⊕ V ′ and W = Wn ⊕W ′ where Vn (respectively, Wn) is the
standard (respectively, costandard) gn-module and V ′ (respectively, W ′) is the stan-
dard (respectively, costandard) cn-module. Recall that Homcn(V ′, (V ′)⊗r⊗(W ′)⊗s) 6=
0 only if r = 1, s = 0 by Lemma 4.6. Hence we have

Γn HomC(V, T p,q) = Homcn

(
V, V ⊗p ⊗W⊗q)

= Homcn

(
V ′ ⊕ Vn, (V ′ ⊕ Vn)⊗p ⊗ (W ′ ⊕Wn)⊗q

)
' Homcn

(
V ′, V ′ ⊗ V ⊗(p−1)

n ⊗W⊗q
n

)⊕p ⊕ Homcn

(
Vn, V

⊗p
n ⊗W⊗q

n

)
' (V ⊗(p−1)

n ⊗W⊗q
n )⊕pθ ⊕ V ⊗pn ⊗W⊗(q+1)

n .

Then the first identity follows by applying direct limits. We similarly establish the
second identity. �

Lemma 4.9. We have that End(T p,q) ' Hp,q.
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Proof. We have an injective map Hp,q ↪→ End(T p,q). In order to prove that this is an
isomorphism, we compute the dimensions of the two spaces. Using Lemma 4.8 we
have

Homg(T
p,q, T p,q) ' Homg(T

p−1,q,HomC(V, T p,q))

= Homg(T
p−1,q,Γ HomC(V, T p,q))

' Homg(T
p−1,q, T p−1,q)⊕pθ ⊕ Homg(T

p−1,q, T p,q+1)

= Homg(T
p−1,q, T p−1,q)⊕pθ.

Now by induction on p + q we prove that dim Homg(T
p,q, T p,q) = θp+qp!q! which

coincides with the dimension of Hp,q. �

Proposition 4.10. T p,q is injective in Trep g for all p and q.

Proof. In the case p = q = 0 the statement follows from Proposition 4.4. We first
assume that q > 0. Then using Lemma 4.8 we obtain:

Homg(M ⊗ V, T p,q−1) ' Homg

(
M,Γ(HomC(V, T p,q−1)

)
' Homg

(
M,T p,q ⊕ (T p−1,q−1)⊕pθ

)
' Homg (M,T p,q)⊕

(
Homg

(
M,T p−1,q−1

))⊕pθ
.

We apply induction on q. The induction hypothesis implies that the functors Homg(·, T p−1,q−1)
and Homg(· ⊗ V, T p,q−1) are exact. Hence, Homg(·, T p−1,q) is an exact functor. The
base case q = 0 follows by induction on p and by applying the same identitites as
above replacing V by W . �

Proposition 4.11. Z(λ, µ) is indecomposable injective in Trep g with simple socle
V (λ, µ).

Proof. Let p = |λ| and q = |µ|. The injectivity of Z(λ, µ) follows from Proposition
4.10 and the fact that Z(λ, µ) is a direct summand of T p,q. The indecomposabil-
ity of Z(λ, µ) follows from Lemma 4.9 and (4.2), since e(λ) and e(µ) are primitive
idempotents on Hp and Hq, respectively.

It remains to show that the socle of Z(λ, µ) is isomorphic to V (λ, µ). Assume that
V (λ′, µ′) is in the socle of Z(λ, µ) and (λ′, µ′) 6= (λ, µ). Then looking at the weights
of Z(λ, µ) we conclude that λ ≥ λ′ and µ ≥ µ′ relative to the dominance order of
partitions. Moreover |λ′| = p, |µ′| = q by Lemma 4.6(i). We now apply induction
on λ and µ with respect to the dominance order. For the minimal pair of partitions
λ, µ the statement is clear. By the induction hypothesis on λ′, µ′, Z(λ′, µ′) has socle
V (λ′, µ′). Since V (λ′, µ′) is a submodule of Z(λ, µ), by the injectivity of Z(λ′, µ′),
we have an injective homomorphism Z(λ′, µ′) → Z(λ, µ). This contradicts with the
indecomposability of Z(λ, µ). �

Corollary 4.12. Let X ∈ Trep g be a highest weight module with highest weight
(λ, µ). Then X is isomorphic to V (λ, µ) or ΠV (λ, µ).
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Proof. Assume that V (λ′, µ′) is in the socle of X. Then λ ≥ λ′ and µ ≥ µ′ relative to
the dominance order of partitions and we have a nonzero homomorphism ϕ : X →
Z(λ′, µ′). If (λ, µ) 6= (λ′, µ′), then a highest weight vector v of X lies in kerϕ. But
X is generated by v, therefore ϕ = 0 which leads to a contradiction. Hence λ = λ′,
µ = µ′ and the statement follows. �

Corollary 4.13. We have

socT p,q =
⊕

|λ|=p,|µ|=q,p(λ,µ)=0

V (λ, µ) � S(λ, µ)⊕
⊕

|λ|=p,|µ|=q,p(λ,µ)=1

V (λ, µ)�̂S(λ, µ).

Proof. The decomposition follows from Proposition 4.11 and (4.1). �

Corollary 4.14. Trep(g) is a symmetric monoidal category (but not rigid!). Fur-
thermore, the functor

Γn : Trep g→ gn −mod

is a tensor functor.

Proof. We have to check that Trep(g) is closed under tensor products. This follows
from the injectivity of T p,q and the fact that any module in Trep(g) is a submodule of a

finite direct sum
s⊕
i=1

T pi,qi . Since Γn is left exact it suffices to check that Γn(M⊗N) '

ΓnM ⊗ ΓnN for M = T p,q and N = T r,s. The latter is straightforward. �

5. On tensor products and extensions in Trep g

5.1. Diagrammatic description of Hom(T p,q, T r,s). Recall that Hom(T p,q, T r,s) 6=
0 implies that p− r = q − s ≥ 0, see Lemma 4.6.

Let C(p, q, r) = Homg(T
p,q, T p−r,q−r) and c(p, q, r) = dimC(p, q, r).

Lemma 5.1. For any p, q, r such that r ≤ min(q, p) we have that:

c(p, q, r) =
p!q!θp+q−r

r!

Proof. We will prove the following recursive relation

c(p, q, r) = c(p− 1, q, r − 1) + (p− r)θc(p− 1, q, r),

c(p, q, r) = c(p, q − 1, r − 1) + (q − r)θc(p, q − 1, r).

Indeed, we have

Homg(T
p,q, T p−r,q−r) = Homg(T

p,q−1,HomC(W,T p−r,q−r))

= Homg

(
T p,q−1,Γ(HomC(W,T p−r,q−r)

)
= Homg

(
T p,q−1, T p−r+1,q−r ⊕ (T p−r,q−r−1)⊕(q−r)θ) .

This implies the second recursive relation. The proof of the first one is similar. Now
the statement follows easily by induction. �
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Our next step is to describe precisely the superspace C(p, q, r) = Homg(T
p,q, T p−r,q−r).

For this we will use diagrams, similar to the ones introduced in [6].
Let D(p, q, r) denote the set of diagrams described as follows. Every diagram in

D(p, q, r) has two horizontal rows of nodes with exactly p white and q black nodes in
the top row, and exactly p− r white and q − r black nodes in the bottom row. The
nodes are connected by edges that are subject to the following rules.

• Every node is connected to exactly one node by one edge. In other words we
have a prefect pairing.
• Every node in the bottom row is connected to exactly one node of the same

color in the top row.
• Every node in the top row is connected either to a node of the same color in

the bottom row or to a node of the opposite color in the top row.
• Every edge is either marked or unmarked.

If d ∈ D(p, q, r) and d′ ∈ D(p − r, q − r, s), then we define d′ · d ∈ D(p, q, r + s)
by concatenating the diagrams d and d′ and removing the middle row. An edge
of the concatenated diagram is marked if the number of marked edges involved the
concatenation of the edge is odd. An edge is unmarked if it is not marked. An
example of a concatenation of three diagrams is presented below.
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...........
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◦

◦

•

•

....................................................................................

....................................................................................

.............................................................
........
.......
......
..........

...............
........................................

Next we define a map γ : D(p, q, r)→ C(p, q, r). Let d ∈ D(p, q, r). Enumerate the
nodes of d in the bottom and in the top row, so that in the top row the white nodes are
labelled by the numbers 1, . . . , p and the black nodes are labelled by p+ 1, . . . , p+ q,
while in the bottom row, the white nodes are labelled by 1, . . . , p − r and the black
nodes are labelled by p + 1 − r, . . . , p + q − 2r. Denote by H+(d) (respectively,
H−(d)) the set of pairs (i, j), i < j, of nodes in the top row joined by an unmarked
(respectively, marked) edge. For any node i in the bottom row by s(i) we denote
the paired to i node in the top row. We let m(i) = 0 (respectively, m(i) = 1) if the
edge joining i and s(i) is unmarked (respectively, marked). We next introduce the
canonical decomposition of d into elementary diagrams s(p, q, i), o(p, q, i), t(p, q) as
follows.

The first type of elementary diagrams are s(p, q, i) ∈ D(p, q, 0), i 6= p, p+q, defined
by the conditions s(j) = j if j 6= i, i + 1, s(i) = i + 1, s(i + 1) = i, and all edges of
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s(p, q, i) are unmarked. For example s(2, 0, 1) is the diagram:
◦

◦◦

◦.........
.........
.........
.........
.........
.........
.........
.........
......................................................................................

while s(0, 2, 1)

is:
•

••

•.........
.........
.........
.........
.........
.........
.........
.........
......................................................................................

. We call a permutation diagram any diagram formed by the concatenation

of diagrams s(p, q, i). The set of all permutation diagrams form a group isomorphic
to Sp × Sq.

Next, o(p, q, i) ∈ D(p, q, 0) is the diagram with s(j) = j for all j = 1, . . . p+ q and

with one marked edge joining i with i. For example, o(1, 0, 1) is:
◦

◦

........................................................................

.......

.......

.......

.......

..............

...........

Finally, let t(p, q) ∈ D(p, q, 1) be defined by the conditions H+(t(p, q)) = (p, p+ 1)
and s(i) = i for all i = 1, . . . p− 1, s(i) = i+ 2 for i = p, . . . , p+ q − 2. For example,

t(1, 1) = ◦ •.........
...............

........................................

For any u1, . . . , up ∈ V and up+1, . . . , up+q ∈ W we set

u = u1 ⊗ · · · ⊗ up+q ∈ T p,q

and define

s̃(p, q, i)(u) := (−1)p(ui)p(ui+1)u1 ⊗ · · · ⊗ ui−1 ⊗ ui+1 ⊗ ui ⊗ ui+2 ⊗ · · · ⊗ up+q,

õ(p, q, i)(u) := (−1)p(u1)+···+p(ui−1)u1 ⊗ · · · ⊗ P (ui)⊗ · · · ⊗ up+q,
t̃(p, q)(u) := (−1)p(up)p(up+1)(up+1, up)u1 ⊗ · · · ⊗ up−1 ⊗ up+2 ⊗ · · · ⊗ up+q.

Note that every d ∈ D(p, q, r) can be written as a concatenation of elementary
diagrams:

d = t(p−r+1, q−r+1) · · · · · t(p, q) ·o(p, q, i1) · · · · ·o(p, q, ik) ·s(p, q, j1) · · · · ·s(p, q, jl).
For any d ∈ D(p, q, r), we fix one such decomposition and we set

γ(d) := t̃(p−r+1, q−r+1)◦· · ·◦t̃(p, q)◦õ(p, q, i1)◦· · ·◦õ(p, q, ik)◦s̃(p, q, j1)◦· · ·◦s̃(p, q, jl).
Then γ(d) ∈ C(p, q, r) and we have

γ(d)(u) = (−1)σ(u,d)
∏

(i,j)∈H+(d)

(uj, ui)
∏

(i,j)∈H−(d)

(uj, Pui)P
m(1)us(1)⊗· · ·⊗Pm(p+q−2r)us(p+q−2r),

where the formula for σ(u, d) is rather long and is not needed in this paper. From this
formula we see that γ(D(p, q, r)) is a linearly independent set in C(p, q, r). On the
other hand, Lemma 5.1 implies that c(p, q, r) = |D(p, q, r)|. Therefore, γ(D(p, q, r))
forms a basis of C(p, q, r). Moreover, from the decomposition of d above we see that
C(p, q, r) is generated by

u(p, q, r) := t(p− r + 1, q − r + 1) ◦ · · · ◦ t(p, q)
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as a rightH(p, q)-module. The following lemma gives a precise description of C(p, q, r)
as an Hp−r,q−r −Hp,q-bimodule.

Lemma 5.2. Consider the embedding Hr,r ↪→ Hp,q defined by

s(r, r, 1) 7→ s(p, q, p− r), . . . , s(r, r, r − 1) 7→ s(p, q, p− 1),

s(r, r, r + 1) 7→ s(p, q, p+ 1), . . . , s(r, r, 2r − 1) 7→ s(p, q, p+ r − 1),

o(r, r, 1) 7→ o(p, q, p− r), . . . , o(r, r, 2r) 7→ s(p, q, p+ r).

Then we have the following isomorphism of Hp−r,q−r −Hp,q-bimodules:

C(p, q, r) ' Ind
Hp,q

Hr,r
C(r, r, r),

where the definition of the left action of Hp−r,q−r on Ind
Hp,q

Hr,r
C(r, r, r) relies on the

fact that Hp−r,q−r and Hr,r are commuting subalgebras of Hp,q.

Proof. Since C(p, q, r) is generated by u(p, q, r) as a right Hp,q-module and the di-

mensions of C(p, q, r) and of Ind
Hp,q

Hr,r
C(r, r, r) coincide, it remains to verify that the

right Hr,r-submodule generated by u(p, q, r) is isomorphic to C(r, r, r). The latter
follows directly from the diagrammatic presentation of u(p, q, r). �

Remark 5.3. The map γ is not a homomorphism of diagramatic algebras. However,
if d1 ∈ D(p, q, r) and d2 ∈ D(p− r, q − r, s), then

γ(d1 · d2) = (−1)〈d1,d2〉γ(d1) ◦ γ(d2)

for some function 〈·, ·〉 : D(p, q, r)×D(p− r, q − r, s)→ Z2.

5.2. Socle filtrations of T p,q and Z(λ, µ).

Proposition 5.4. We have

socr T p,q =
⋂

ϕ∈homg(T p,q ,T p−r,q−r)

kerϕ.

Proof. It is sufficient to prove the statement for r = 1 since then we can proceed by
induction. By Corollary 4.13 all simple subquotients of T p,q/ socT p,q are of the form
V (λ, µ) or ΠV (λ, µ) with |λ| < p and |µ| < q. Therefore we have an inclusion of
T p,q/ socT p,q into a direct sum of several copies of T p−r,q−r for different r. Hence

soc1 T p,q =
⋂

r≤min(p,q)

⋂
ϕ∈homg(T p,q ,T p−r,q−r)

kerϕ.

But, using the diagrammatic presentation of C(p, q, r), every ϕ ∈ homg(T
p,q, T p−r,q−r)

can be factored through some map ψ ∈ homg(T
p,q, (T p−1,q−1)⊕l). Hence kerϕ ⊂ kerψ

and we obtain
soc1 T p,q =

⋂
ϕ∈homg(T p,q ,T p−1,q−1)

kerϕ.

�
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Our next goal is to determine the socle filtration of the indecomposable injective
modules Z(λ, µ). For this we need three lemmas.

Lemma 5.5. The following identity of Hp,q-bimodules holds.

Hp,q =
⊕

|λ|=p,|µ|=q

S(λ, µ)�̂S(λ, µ).

Proof. The identity follows from Lemma 2.2(i). �

Lemma 5.6. We have

dim Homg(Z(λ, µ),C) = δλ,µ.

Proof. By Lemma 4.7 we obtain

Homg(V (λ)⊗W (µ),C) = Homg(V (λ),Γ(HomC(W (µ),C))).

Lemma 4.8 implies

Γ(HomC(T 0,q,C)) = T q,0.

Since W (µ) is a direct summand in T 0,q, it follows that Γ(HomC(W (µ),C)) = V (µ).
Therefore we obtain

dim Homg(Z(λ, µ),C) '

{
dim Homg(V (λ), V (µ)), if p(λ)p(µ) = 0
1
θ

dim Homg(V (λ), V (µ)), if p(λ)p(µ) = 1
,

which implies the statement. �

Lemma 5.7. The following isomorphism of right Hr,r-modules holds.

C(r, r, r) '
⊕
|γ|=r

S(γ, γ).

Proof. Substituting p = q = r in (4.1) we obtain the decomposition:

(5.1) T r,r =
⊕

|λ|=r,|µ|=r

Z(λ, µ)�̂S(λ, µ).

Now, (5.1) together with Lemma 5.6 implies

C(r, r, r) =
⊕
|γ|=r

Homg(Z(γ, γ),C)⊗ S(γ, γ) =
⊕
|γ|=r

S(γ, γ).

�

Theorem 5.8. The following identity holds for |λ| − |λ′| = |µ| − |µ′| = r:

dim Homg(Z(λ, µ), Z(λ′, µ′)) =
1

θp(λ)p(µ)θp(λ′)p(µ′)

∑
|γ|=r

1

θp(γ)
fλλ′,γf

µ
µ′,γ.
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Proof. Let |λ| = p and |µ| = q. Using Lemma 5.2 and (4.2) we obtain

dim Homg(Z(λ, µ), Z(λ′, µ′)) =
dim e(λ′)⊗ e(µ′)C(p, q, r)e(λ)⊗ e(µ)

θp(λ)p(µ)θp(λ′)p(µ′)
.

Recall that for any right Hp,q-module M ,

dimMe(λ)⊗ e(µ) = dim HomHp,q(M,S(λ) � S(µ)).

Next, Lemma 5.2 implies

e(λ′)⊗ e(µ′)C(p, q, r) = e(λ′)⊗ e(µ′)
(

Ind
Hp,q

Hr,r
C(r, r, r)

)
= e(λ′)⊗ e(µ′)

(
Ind

Hp,q

Hr,r⊗Hp−r,q−r
C(r, r, r) �Hp−r,q−r

)
= Ind

Hp,q

Hr,r⊗Hp−r,q−r
C(r, r, r) � e(λ′)⊗ e(µ′)Hp−r,q−r

= Ind
Hp,q

Hr,r⊗Hp−r,q−r
C(r, r, r) � S(λ′) � S(µ′).

Finally, using Lemma 5.7 and Lemma 3.6 we obtain

dim HomHp,q

(
Ind

Hp,q

Hr,r⊗Hp−r,q−r
C(r, r, r) � S(λ′) � S(µ′), S(λ) � S(µ)

)
=

∑
|γ|=r

1

θp(γ)
dim HomHp,q

(
Ind

Hp

Hr⊗Hp−r
(S(γ) � S(λ′)) � Ind

Hq

Hr⊗Hq−r
(S(γ) � S(µ′)), S(λ) � S(µ)

)
=

∑
|γ|=r

1

θp(γ)
dim HomHp

(
Ind

Hp

Hr⊗Hp−r
S(γ) � S(λ′), S(λ)

)
dim HomHq

(
Ind

Hq

Hr⊗Hq−r
(S(γ) � S(µ′)), S(µ)

)
=

∑
|γ|=r

1

θp(γ)
fλλ′,γf

µ
µ′,γ,

which completes the proof. �

We set socrM = socr+1M/socrM .

Corollary 5.9.

[socr Z(λ, µ) : V (λ′, µ′)] =
1

θp(λ)p(µ)θp(λ′)p(µ′)θp(λ,µ)p(λ′,µ′)+p(λ,µ)+p(λ′,µ′)

∑
|γ|=r

1

θp(γ)
fλλ′,γf

µ
µ′,γ.

Proof. The identity follows from Theorem 5.8 and the relation

[socr Z(λ, µ) : V (λ′, µ′)] =
dim Hom(Z(λ, µ), Z(λ′, µ′))

θp(λ,µ)p(λ′,µ′)+p(λ,µ)+p(λ′,µ′)
.

�
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5.3. Extensions and blocks.

Corollary 5.10. If ext1(V (λ′, µ′), V (λ, µ)) 6= 0, then λ ∈ λ′ + � and µ ∈ µ′ + �.
Furthermore we have the following cases:

(1) If both V (λ′, µ′) and V (λ, µ) are of M-type, then

C =

{
ext1(V (λ′, µ′), V (λ, µ)) = ext1(V (λ′, µ′), V (λ, µ)), if p(λ) = p(λ′), p(µ) = p(µ′)

ext1(V (λ′, µ′), V (λ, µ))⊕ ext1(V (λ′, µ′),ΠV (λ, µ)), otherwise,

(2) If V (λ′, µ′) is of Q-type and V (λ, µ) is of M-type, then

ext1(V (λ′, µ′), V (λ, µ))⊕ ext1(V (λ′, µ′),ΠV (λ, µ)) = C,
(3) If V (λ′, µ′) is of M-type and V (λ, µ) is of Q-type, then

ext1(V (λ′, µ′), V (λ, µ))⊕ ext1(ΠV (λ′, µ′), V (λ, µ)) = C,
(4) If both V (λ′, µ′) and V (λ, µ) are of Q-type, then

ext1(V (λ′, µ′), V (λ, µ)) =

{
C2, if p(λ) = p(λ′), p(µ) = p(µ′)

C, otherwise.

Proof. Straightforward calculation using Corollary 5.9 and (3.4). �

The following is an immediate consequence of Corollary 5.10.

Corollary 5.11. Let Trepm g be the full subcategory of Trep g with simple objects
V (λ, µ),ΠV (λ, µ) for all (λ, µ) such that |λ| − |µ| = m. Then we have the decompo-
sition

Trep g =
⊕
m∈Z

Trepm g.

Proposition 5.12. For any m ∈ Z the subcategory Trepm g is an indecomposable
block.

Proof. We define an equivalence relation on isomorphism classes of simple modules
of Trepm g. We say X ≺ Y if ext1(X, Y ) 6= 0, and set ∼ be the minimal equivalence
relation containing ≺. We have to prove that isomorphism classes of simple modules
of Trepm g form one equivalence class. Note that

(5.2) X ∼ Y ⇒ ΠX ∼ ΠY.

Using symmetry we can assume without loss of generality that m ≥ 0. We first
claim that V (λ, µ) is equivalent to V (η, ∅) or ΠV (η, ∅) for some partition η with
|η| = m. Indeed, take λ′ ∈ λ−� and µ′ ∈ µ−�, then we have V (λ′, µ′) ≺ V (λ, µ).
Thus, we can decrease |λ| and |µ| by 1 and proceed by induction.

Next we show that V (η, ∅) ∼ ΠV (η, ∅). Indeed, the statement is non-trivial only
if V (η, ∅) is of M-type, If m > 0 consider η′ obtained from η by adding � in the first
row. Then V (η′,�) is of Q-type and we have

V (η, ∅) ≺ V (η′,�), ΠV (η, ∅) ≺ V (η′,�).
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If m = 0 we have to show ΠC ∼ C. For this set

λ = , µ = .

Then V (λ, µ) is of Q-type and equivalent to both C and ΠC.
If we start with the partition η having one row with m boxes, we can obtain from

it any other strict partition of size m in several steps, where each step consists of
moving a box from the top row to some other row. If η′′ is obtained from η′ in one
step, consider the partition ν obtained from η′′ be adding a box in the first row. Then
we have V (η′′, ∅) ∼ V (ν,�) ∼ V (η′, ∅). Therefore V (κ, ∅) ∼ V (η, ∅) for all κ of size
m. The proof is complete. �

Lemma 5.13. Any M ∈ Trep g has a finite injective resolution. If M = V (λ, µ) and

0→ R0 → R1 → · · · → Rk → 0

is the minimal injective resolution of M , then [Ri : Z(λ′, µ′)] 6= 0 implies |λ| − |λ′| =
|µ| − |µ′| ≥ i. In particular, k ≤ min(|λ|, |µ|) + 1.

Proof. Since Trep g has enough injectives we only need to check finiteness of the min-
imal injective resolution. Let V (λ, µ) be a simple submodule of socM with maximal
|λ| + |µ| = s. Consider an embedding ϕ : M ↪→ R0, where R0 is the injective hull
of socM , then by Corollary 5.9 all simple subquotients V (λ′, µ′) in cokerϕ satisfy
|λ′| + |µ′| < s. That shows that the length of resolution is at most s + 1 and in the
case M = V (λ, µ) implies the last assertion. �

Corollary 5.14. If exti (V (λ′, µ′), V (λ, µ)) 6= 0 then |λ| − |λ′| = |µ| − |µ′| ≥ i.

5.4. Tensor products. In this subsection we find formulas for the tensor products
of the indecomposable injectives in Trep g. The formulas are relatively easy to obtain.

Lemma 5.15. We have

Z(λ, µ)⊗ Z(λ′, µ′) =
⊕

|λ”|=|λ|+|λ′|,|µ′′|=|µ|+|µ′|

Z(λ′′, µ′′)⊕s(λ
′′,µ′′),

where

s(λ′′, µ′′) =
θp(λ

′′)p(µ′′)fλ
′′

λ,λ′f
µ′′

µ,µ′

θp(λ)p(µ)θp(λ′)p(µ′)θp(λ′′)θp(µ′′)

Proof. The identity follows by direct computation using the definitions of Z(λ, µ) and
f νλ,µ. �

Corollary 5.16. We have

Z(λ, µ)⊗ V =
⊕

λ′∈λ+�

Z(λ′, µ)⊕u(λ′,λ,µ), Z(λ, µ)⊗W =
⊕

µ′∈µ+�

Z(λ, µ′)⊕u(µ′,µ,λ),
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where

u(α′, α, β) =

{
1, if p(α, β) = 0, p(α′, β) = 1,

θ, otherwise.

Proposition 5.17. The tensor products V (λ, µ)⊗ V and V (λ, µ)⊗W have Loewy
length at most 2. Furthermore,

soc(V (λ, µ)⊗ V ) =
⊕

λ′∈λ+�

V (λ′, µ)⊕u(λ′,λ,µ),

soc(V (λ, µ)⊗W ) =
⊕

µ′∈µ+�

V (λ, µ′)⊕u(µ′,µ,λ),

and
soc2(V (λ, µ)⊗ V ) =

⊕
µ′∈µ−�

V (λ, µ′)⊕u(µ,µ′,λ),

soc2(V (λ, µ)⊗W ) =
⊕

λ′∈λ−�

V (λ′, µ)⊕u(λ,λ′,µ),

where u(α′, α, β) is defined in Corollary 5.16.

Proof. Let |λ| = p, |µ| = q. Recall that V (λ, µ) is a submodule of socT p,q. Hence
V (λ, µ)⊗ V is a submodule of T p+1,q. We now use Proposition 5.4. Note that

V (λ, µ)⊗ V ⊂ kerϕ

for any ϕ ∈ C(p + 1, q, 2) since any such ϕ involves two contractions. Hence the
Loewy length of V (λ, µ)⊗ V is at most 2.

To obtain soc(V (λ, µ)⊗ V ) we use that

soc(V (λ, µ)⊗ V ) = soc(Z(λ, µ)⊗ V )

and Corollary 5.16.
To compute soc2(V (λ, µ)⊗ V ) we first note that

[soc2(V (λ, µ)⊗ V ) : V (λ′′, µ′′)] 6= 0 ⇒ |λ′′| = |λ|, |µ′′| = |µ| − 1.

Furthermore,

hom(V (λ, µ)⊗ V, Z(λ′′, µ′′)) = hom(V (λ, µ),Γ(HomC(V, Z(λ′′, µ′′))))

and
Γ(HomC(V, Z(λ′′, µ′′))) = Z(λ′′, µ′′)⊗W ⊕ S

for some S ⊂ (T p−1,q−1)⊕pθ. Taking into account that hom(V (λ, µ), S) = 0, we obtain

hom(V (λ, µ)⊗ V, Z(λ′′, µ′′)) = hom(V (λ, µ), Z(λ′′, µ′′)⊗W ).

By Corollary 5.16 we know the decomposition of Z(λ′′, µ′′)⊗W . As a result, we see
that

hom(V (λ, µ), Z(λ′′, µ′′)⊗W ) 6= 0 ⇒ λ′′ = λ, µ ∈ µ′ + �.
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Moroever,

[soc2(V (λ, µ)⊗ V ) : V (λ′′, µ′′)] = dim hom(V (λ, µ), Z(λ′′, µ′′)⊗W ) = u(µ, µ′, λ).

This completes the proof for the identities involving V (λ, µ) ⊗ V . The identities
involving V (λ, µ)⊗W follow by similar reasoning. �

6. Koszulity of Trep g

Theorem 6.1. The category Trep g is Koszul.

Proof. For any bipartition (λ, µ) we set

d(λ, µ) := min(|λ|, |µ|).

Let

0→ R0(λ, µ)→ R1(λ, µ)→ · · · → Rk(λ, µ)→ 0

be the minimal injective resolution of V (λ, µ) (note that the resolution is finite by
Lemma 5.13). The Koszulity of Trep g is equivalent to each of the following two
equivalent statements:

(1) [Ri(λ, µ) : Z(λ′, µ′)] 6= 0 implies d(λ, µ) = d(λ′, µ′) + i;
(2) exti(V (λ′, µ′), V (λ, µ)) 6= 0 implies d(λ, µ) = d(λ′, µ′) + i.

Indeed, (1) is equivalent to Koszulity since d(·, ·) induces the grading on Trep g.
Furthermore, (1) obviously implies (2). To show that (2) implies (1) assume the
opposite, i.e. that there exists (λ′, µ′) such that d(λ, µ) = d(λ′, µ′) + i and [Rj(λ, µ) :
Z(λ′, µ′)] 6= 0 for some j 6= i. Lemma 5.13 implies j < i. Let us choose the minimal
such j. Since extj(V (λ, µ), V (λ′, µ′)) = 0, the map Z(λ′, µ′) → Rj+1(λ, µ) must be
injective, which contradicts the minimality of the resolution.

Without loss of generality we assume that |λ| ≤ |µ|, i.e. d(λ, µ) = |λ|. We prove
(2) for all λ, µ by induction on |λ|. The base case λ = ∅ follows from the fact that
V (∅, µ) is injective. To prove the inductive step pick up ν ∈ λ − �. Recall that
V (ν, µ)⊗ V has Loewy length 2 by Proposition 5.17. Consider the exact sequence

(6.1) 0→ soc(V (ν, µ)⊗ V )→ V (ν, µ)⊗ V → soc2(V (ν, µ)⊗ V )→ 0

and the minimal resolution

0→ R0(ν, µ)→ R1(ν, µ)→ · · · → Rk(ν, µ)→ 0

of V (ν, µ). Note that by Proposition 5.17, all simple components of soc2(V (ν, µ)⊗V )
satisfy the induction hypothesis. Therefore,

(6.2) extj(V (λ′, µ′), soc2(V (ν, µ)⊗ V )) 6= 0 ⇒ i = |ν| − |λ′| = |λ| − |λ′| − 1.

This resolution satisfies (1) by the induction hypothesis. We have that

0→ R0(ν, µ)⊗ V → R1(ν, µ)⊗ V → · · · → Rk(ν, µ)⊗ V → 0.
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is an injective resolution of V (ν, µ) ⊗ V . Since [Ri(ν, µ) : Z(ν ′, µ′)] 6= 0 implies
i = |ν| − |ν ′|, by Corollary 5.16 we have that

(6.3) [Ri(ν, µ)⊗ V : Z(λ′, µ′)] 6= 0 ⇒ i = |ν| − |λ′|+ 1 = |λ| − |λ′|.
Equivalently,

extj(V (λ′, µ′), V (ν, µ)⊗ V )) 6= 0 ⇒ i = |λ| − |λ′|.
Therefore, by (6.2) and (6.3) the long exact sequence ext·(V (λ′, µ′), ·) associated

to (6.1) gives exti(V (λ′, µ′), soc(V (ν, µ)⊗V )) = 0 for i 6= |λ|− |λ′|. Since V (λ, µ) is a
direct summand in soc(V (ν, µ)⊗V ), we prove that condition (2) holds for V (λ, µ). �

Recall that T =
⊕

T p,q. Set T>k =
⊕

p+q>k T
p,q and T≤k =

⊕
p+q≤k T

p,q. Let also

A(k) = {ϕ ∈ Endg T | ϕ(T>k) = 0} .
Clearly, A(k) ' End (T≤k). By A(k)-mod we denote the category of finite-dimensional
Z2-graded A(k)-modules.

We have a chain of monomorphisms

A(1) ⊂ A(2) ⊂ . . .

Note that the unit of A(k) does not map to the unit of A(k+1) under the embedding
A(k) ↪→ A(k+1). We set

A = lim
−→

A(k), A−mod = lim
−→

(
A(k)−mod

)
Note thatA is not unital and that the categoryA−mod consists of all finite-dimensional
Z2-graded A-modules X such that AX = X.

Theorem 6.2. The functors Homg(·,T) and HomA(·,T) establish an antiequivalence
of the categories Trep g and A-mod.

Proof. Recall that Trep g = lim
−→

Trepk g. By Proposition 4.10 and Corollary 4.13, T≤k
is an injective cogenerator of Trep g. In order to prove the statement, it is sufficient
to show that the functors Φ := Homg(·,T≤k) and Ψ := HomA(k)

(·,T≤k) establish an

antiequivalence of the categories Trepk g and A(k)−mod. We have that Φ is an exact

functor since T≤k is an injective module in Trepk g. Therefore, ΨΦ is a left exact
functor, and ΦΨ is a right exact functor.

We first note that for all X ∈ A(k)−mod and M ∈ Trepk g we have isomorphisms

HomA(X,ΦM) ' HomA×g(X ⊗M,T≤k) ' Homg(M,ΨX).

Using the isomorphisms

Homg(ΨX,ΨX) ' HomA(X,ΦΨX), HomA(ΦM,ΦM) ' Homg(M,ΨΦM),

we define morphisms αX : X → ΦΨX and βM : M → ΨΦM . To complete the proof,
it is sufficient to verify that αX and βM are isomorphisms for all X ∈ A(k)−mod and

all M ∈ Trepk g. Note that this is true for simple modules by Corollary 4.13.
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We first prove that βM is an isomorphism using induction on the length of M . As
mentioned above, βM is isomorphism for simple modules M which implies the base
case. Let

0 −−−→ N −−−→ M
σ−−−→ L −−−→ 0

be a short exact sequence of modules in Trepk g. Consider the induced diagram

0 −−−→ N −−−→ M
σ−−−→ L −−−→ 0y βN

y βM

y βL

y
0 −−−→ ΨΦN −−−→ ΨΦM

ΨΦ(σ)−−−→ ΨΦL

By the induction hypothesis, βN and βL are isomorphisms. Therefore βLσ is sur-
jective which implies that ΨΦ(σ) is surjective. By the Five Lemma, βM is an isomor-
phism.

We last show that αX is an isomorphism. Note that αA(k)
is an isomorphism and

hence αZ is an isomorphism for any free A(k)-module Z of finite rank. Any X in
A(k)-mod can be included in a short exact sequence

0 −−−→ Y
τ−−−→ Z

ϕ−−−→ X −−−→ 0

for some free A(k)-module Z of finite rank. Consider the induced diagram

0 −−−→ Y
τ−−−→ Z

ϕ−−−→ X −−−→ 0

αY

y αZ

y αX

y y
ΦΨY

ΦΨ(τ)−−−→ ΦΨZ
ΨΦ(ϕ)−−−→ ΦΨX −−−→ 0

Since αZ is an isomorphism, αX is surjective for any module X. In particular, αY is
surjective. On the other hand, ΦΨ(τ)αY = αZτ is injectve and thus αY and ΦΨ(τ)
are injective as well. By the Five Lemma, αX is an isomorphism. �

Proposition 6.3. A(k) is a Koszul self-dual superalgebra.

Proof. We follow the notation and definitions of Section 2 of [1]. The Koszulity of
Ak follows from the Koszulity of Trepk g. Then

A(k) =
⊕
r≥0

Ar(k)

where Ar(k) =
⊕

p+q≤r C(p, q, r). In particular, A0
(k) =

⊕
p+q≤rHp,q is a semisimple

superalgebra. From Lemma 5.2,

C(1, 1, 1)⊗H1,1 Hp,q ' C(p, q, 1).

Furthermore,

C(p− 1, q − 1, 1)⊗Hp−1,q−1 C(p, q, 1) ' (C(1, 1, 1) � C(1, 1, 1))⊗H1,1⊗H1,1 Hp,q.
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Therefore,

A1
(k) ⊗A0

(k)
A1

(k) '
⊕
p+q≤k

(C(1, 1, 1) � C(1, 1, 1))⊗H1,1⊗H1,1 Hp,q.

and the quadratic relations submodule of A1
(k)⊗A0

(k)
A1

(k) is generated by the elements

x⊗ y − (−1)p(x)p(y)y ⊗ x, x, y ∈ C(1, 1, 1). Let B(k) =
(
A!

(k)

)opp

be the Koszul dual

of A(k). Then A(0) = B(0), A(1) = B(1), and

B1
(k) ⊗B0

(k)
B1

(k) ' A1
(k) ⊗A0

(k)
A1

(k).

The quadratic relations submodule of B1
(k) ⊗B0

(k)
B1

(k) is generated by the elements

x⊗ y + (−1)p(x)p(y)y ⊗ x, x, y ∈ C(1, 1, 1).
Let U = A1

(k) = B1
(k). Then A(k) = T (U)/(R) and B(k) = T (U)/(R⊥). Consider the

automorphism γ of A0
(k) defined by s(p, q, i) 7→ s(p, q, i) if i > p, s(p, q, i) 7→ −s(p, q, i)

if i < p, o(p, q, j) 7→ o(p, q, j). Then Uγ = U and γ extends to an automorphism
γ̃ : T (U)→ T (U) such that γ̃(R) = R⊥. Hence A(k) is isomorphic to B(k). �

Corollary 6.4. We have that

dim exti(V (λ′, µ′), V (λ, µ)) = [soci+1 Z(λ, µ) : V (λ′, µ′)],

and the latter are computed in Corollary 5.9.
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