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1 INTRODUCTION 1

Quantities that Frequency-Dependent Selection

Maximizes

Carlo Matessi1 and Kristan A. Schneider 2

Abstract

We consider a model of frequency-dependent selection, to which we refer as the Wild-
card Model, that accommodates as particular cases a number of diverse models of bio-
logically specific situations. Two very different particular models (Lessard, 1984; Bürger,
2005; Schneider, 2006), subsumed by the Wildcard Model, have been shown in the past
to have a Lyapunov functions (LF) under appropriate genetic assumptions. We show
that the Wildcard Model: (i) in continuous time is a generalized gradient system for
one locus, multiple alleles and for multiple loci, assuming linkage equilibrium, and its
potential is a Lyapunov function; (ii) the LF of the particular models are special cases
of the Wildcard Model’s LF; (iii) the LF of the Wildcard Model can be derived from
a LF previously identified for a model of density- and frequency- dependent selection
due to Lotka-Volterra competition, with one locus, multiple alleles, multiple species and
continuous-time dynamics (Matessi and Jayakar, 1981). We extend the LF with density
and frequency dependence to a multilocus, linkage equilibrium dynamics.

1 Introduction

Frequency-dependent selection has been invoked in the explanation of many important
evolutionary phenomena. These include the evolution of behavioral traits, the mainte-
nance of genetic variation, and disruptive selection with its possible consequences of eco-
logical character displacement, reproductive isolation and, eventually, speciation (May-
nard Smith, 1966, 1982; Bulmer, 1974, 1980; Matessi and Jayakar, 1976, 1981; Clark,
1979; Slatkin, 1979, 1980; Felsenstein, 1981; Abrams, 1986, 1987; Asmussen and Bas-
nayake, 1990; Dieckmann and Doebeli, 1999; Bürger et al., 2006; Schluter, 2000; Turelli
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2Department of Mathematics, University of Vienna, Nordbergstrasse 15, UZA 4, A-1090 Vienna
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1 INTRODUCTION 2

et al., 2001; Gavrilets, 2003, 2004). Frequency-dependent selection occurs if the fitness
of a particular phenotype depends on the frequency of its own and other phenotypes in
the population. Many mechanisms causing frequency dependence are known, including
intraspecific competition, systems of mimicry, host-parasite or predator-prey interactions,
aposematic and cryptic coloration, or the evolution of self-incompatibility (cf. Matessi and
Cori, 1972; Ayala and Campell, 1974; Clarke and Partridge, 1988). In general, frequency
dependence occurs if changes in the population composition affect the biotic or abiotic
environment that induces selection on this population.

Population-genetics theory has included frequency-dependent selection since its con-
ception (Fisher, 1930), but concrete studies remained sporadic (e.g., Wright, 1948). A
pioneer work by Haldane and Jayakar (1963) established it as a powerful mechanism for
the maintenance of polymorphism in natural populations. Moreover, for the first time in
population genetics it showed the possibility of permanent, more or less regular oscilla-
tions, a feature that is intimately engrained in this selective mechanism (e.g., Matessi and
Cori, 1972; Gavrilets and Hastings, 1995). After the discovery of the impressive and unex-
pected amount of polymorphism at the molecular level in natural populations (Lewontin
and Hubby, 1966), and during the intense debates over the causes of its maintenance,
frequency-dependent selection has been often indicated as a most likely source of this
phenomenon (e.g., Kojima and Yarbrough, 1967). Subsequently, the theory of one-locus
models under frequency- (and density-) dependent selection has been the subject of a
more systematic study (e.g., Clarke, 1972; Cockerham et al., 1972; Matessi and Jayakar,
1976, 1981; Asmussen, 1983; Asmussen and Basnayake, 1990), whereas the theory of mul-
tilocus models was limited to the study of much less general models (e.g., Bürger, 2005;
Schneider, 2006).

Lately, the evolutionary consequences of frequency-dependent selection have been in-
vestigated mainly within the framework of population game theory (e.g., Maynard Smith,
1982; Hofbauer and Sigmund, 1998) and, more recently, also within what has been called
adaptive dynamics theory (Dieckmann, 1997; Geritz et al., 1998; Doebeli and Dieckmann,
2000). Common to approaches within these frameworks is, with few exceptions, a lack of
genetics, i.e., they usually assume asexual reproduction and monomorphic populations.
Simple genetics has been incorporated in some ecological models, often, however, resting
on a number of assumptions that are not completely specified or justified. In most cases
computer simulations have been performed, but only little analytical theory has been de-
veloped. However, there are a few exceptions that either allow for more genetic details
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(Lessard, 1984; Matessi et al., 2001; Kopp and Hermisson, 2006; Matessi and Gimelfarb,
2006), or provide analytical results for multilocus genetics (Schneider, 2007).

A well known and disappointing feature of frequency-dependent selection is that the
mean fitness is in general not maximized, i.e., it is not a Lyapunov function, not even for
selection at a single locus for which ‘Fisher’s Fundamental Theorem of Natural Selection’
holds for constant (frequency-independent) selection (although recent work, Schneider,
2008, establishes some conditions under which mean-fitness maximization occurs). On
the other hand, alternative maximization principles for frequency-dependent selection
have been found in a few cases: Matessi and Jayakar (1976, 1981) were one of the first
to provide a global Lyapunov function for a general one-locus multiallele, multispecies
model of frequency- and density- dependent selection in continuous time. Lessard (1984)
established a Lyapunov function for the discrete-time, one-locus, multiallele dynamics
resulting from a two-phenotype selection model where fitness depends on the payoffs from
random pairwise contests. More recently, Bürger (2005) proved, for a particular model of
selection on a continuous trait due to intraspecific competition, that a Lyapunov function
exists in continuous time when the selected trait is genetically determined by multiple
additive diallelic loci, under a so called linkage-equilibrium approximation. In particular,
it was proved that the underlying system of differential equations forms a Shashahani
gradient system. These results have been further generalized to multiple additive alleles
by Schneider (2006).

In this paper we will consider a model of frequency-dependent selection that is suf-
ficiently broad to accommodate many models of this type of selection which are present
in the literature. We will refer to it as the Wildcard Model. In spite of their biological
diversity, the models of Lessard (1984) and of Bürger (2005) and Schneider (2006) turn
out to be particular cases of the Wildcard Model. Assuming one-locus, multiallele ge-
netics, we will show that the continuous-time dynamics of the Wildcard Model forms a
generalized gradient system. The potential of such a gradient system is therefore a Lya-
punov function for the Wildcard Model. Moreover, it subsumes, as particular cases, the
Lyapunov functions already identified for the Lessard and the Bürger-Schneider models,
which, from their biological interpretation, would superficially appear to be very different.
We then consider the relationships between the Lyapunov function of our model and that
found by Matessi and Jayakar (1981) for density- and frequency-dependent selection due
to scramble competition, represented by a Lotka-Volterra interaction model. We show
that the former can be derived from the latter. Finally, we consider a multilocus, multi-
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allele model and, assuming approximate linkage equilibrium, we show that the Lyapunov
function of the Wildcard Model works also in this case. Moreover, we find that the form
of density-dependence in the Matessi-Jayakar model and its Lyapunov function can be
generalized to some extent.

Our results generalize all of the above mentioned models to some extent. In order to
be able to precisely appreciate these generalizations, it is necessary first to briefly review
these models and, if appropriate, also the results that have been previously established.
This approach will guide us throughout this article to enforce our intuition for the various
biological situations to which our Wildcard Model is applicable, and in particular how it
is related to concrete evolutionary situations.

Acknowledgements. This work was initiated while both authors were independently
visiting the Department of Ecology and Evolutionary Biology of the University of Ten-
nessee at Knoxville (USA), under the invitation and the warm hospitality of S. Gavrilets
with financial support provided by National Institutes of Health grant GM56693 to S.
Gavrilets. The brewing of C. Matessi’s contributions to this work owes much to the
exchange of ideas with S. Lessard, that he enjoyed while visiting his laboratory at the
Département de Mathématiques et de Statistique, Université de Montréal, with finacial
support by the Natural Sciences and Engineering Research Council (NSERC) of Canada.
Most part of this research was done while both authors were staying at the ‘Mathema-
tisches Forschungsinstitut Oberwolfach’ (MFO), supported by the generous Research in
Pairs Programme, from Sept. 21 to Oct. 11, 2008.

2 Wildcard Model and Particular Cases

2.1 The Wildcard Model

The frequency-dependent selection model that we consider assumes that the fitness of an
individual of type x ∈ X, where X is the set of all types, is given by the following function
of population composition:

Wx = Wx(qqq) = Sx +
∑
y

Ax,yqy + C(qqq) , with Ax,y = Ay,x for all x, y ∈ X , (1)

where qx is the frequency of type x in the population, so that the vector qqq = (qx)x∈X rep-
resents the population composition; Sx is a frequency-independent component of fitness;



2 WILDCARD MODEL AND PARTICULAR CASES 5

Ax,y is the effect that individuals of type y have on the fitness of individuals of type x;
such an effect is assumed to be the same as that of type x on type y. Finally, the function
C(qqq) is arbitrary and represents any effect on fitness that may vary with the population
composition but is the same for all types.

It should be mentioned that (1) has a similar structure as the pairwise-interaction
model of frequency-dependent selection which is commonly studied in the theoretical lit-
erature, e.g., Schutz et al. (1968), Allard and Adams (1969), Cockerham et al. (1972),
Asmussen and Basnayake (1990), Altenberg (1991), Gavrilets and Hastings (1995), As-
mussen et al. (2004), Trotter and Spencer (2008), Schneider (2008). However, the pairwise
interaction model assumes C ≡ 0 and, in general, does not require the symmetry condi-
tions Ax,y = Ay,x.

Assuming that the different types correspond to the genotypes of a single diploid locus
with n alleles, A1, . . . , An, with respect to which matings occur at random, the dynamics
in discrete generations of the allele frequencies, ppp = (p1, . . . , pn), under the selection regime
(1) is then given by the following system of recursion equations:

p′i = pi
W i(ppp)
W (ppp)

for i ∈ {1, . . . , n} , (2a)

where the marginal fitness of allele i, W i(ppp), and the population mean fitness, W (ppp), are

W i(ppp) =
n∑
j=1

Sijpj +
n∑

j,k,l=1

Aij,klpjpkpl + C(ppp) (2b)

W (p) =
n∑
i=1

W i(p)pi =
n∑

i,j=1

Sijpipj +
n∑

i,j,k,l=1

Aij,klpipjpkpl + C(ppp) . (2c)

Note that, since we assume that the effect of a gene does not depend on the parent by
which it is transmitted, i.e., a lack of genomic imprinting, it follows that Sij = Sji and
Aij,kl = Aji,kl = Aij,lk = Aji,lk.

Whenever selection is sufficiently weak, namely the parameters Sij are sufficiently close
to one another and the same can be said of the parameters Aij,kl, the system of recursion
relations (2) can be approximated by a system of differential equations. More precisely, we
can argue as follows. Let the duration of the time interval between successive generations
be τ , and the point of time at which the current generation is observed be t, so that the
gene frequencies at the current generation can be indicated by ppp(t) and those of the next
generation by ppp(t+ τ). In addition, let the selection parameters be written as

Sij = s+ τsij , Aij,kl = a+ τaij,kl , C(ppp) = c+ τγ(ppp). (3)
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Hence, we have

pi(t+ τ)− pi(t)
τ

= pi(t)
si + ai − s− a

s+ a+ c+ τ (s+ a+ γ(ppp))
for i ∈ {1, . . . , n} ,

where

si =
n∑
i=1

sijpj , s =
n∑
i=1

sipi , ai =
n∑

j,k,l=1

aij,klpjpkpl , a =
n∑
i=1

aipi. (4a)

Assuming without loss of generality that the scaling constant s+ a+ c has been incorpo-
rated into the sij , aij,kl parameters and letting τ → 0, we obtain the system of differential
equations

ṗi(t) = pi(t) (wi − w) for i ∈ {1, . . . , n} , (4b)

where

wi = si + ai and w = s+ a . (4c)

For the purposes of this paper we will refer to the model defined by (1) and (2) or (4) as the
Wildcard Model, because it incorporates many particular models of frequency-dependent
selection present in the literature, motivated by specific biological situations, of which we
will recall some in this article.

2.2 Particular Cases

2.2.1 Random pairwise contests

The Lessard model

Lessard (1984) introduced a model of frequency-dependent selection resulting from ran-
dom pairwise contests, to investigate the population genetics dynamics implicitly under-
lying basic principles and results of ‘population game theory’, and in particular the notion
of evolutionarily stable strategy (ESS) (see Maynard Smith and Price, 1973). This model
contemplates two phenotypes - or strategies such as, for example, manners of behavior -
C1 and C2, that determine the outcomes of interactions among pairs of individuals. The
fitness payoff accruing to Ci individuals from interactions with Cj individuals is given by
the matrix F = (Fij)i,j∈{1,2}, which is not necessarily symmetric. Hence, if the population



2 WILDCARD MODEL AND PARTICULAR CASES 7

consists of several types of individuals with different probabilities of expressing C1 or C2,
such that type x has frequency qx and expresses C1 with probability hx (and C2 with
probability 1− hx), then the fitness of a type-x individual is

W (L)
x =

[
hF11 +

(
1− h

)
F12

]
hx +

[
hF21 +

(
1− h

)
F22

]
(1− hx)

= (F12 − F22)hx + (F11 − F21 + F22 − F12)hxh+
[
hF21 +

(
1− h

)
F22

]
,

(5a)

where h =
∑
y
hyqy is the overall frequency of strategy C1 in the population. Comparison

of (1) and (5a) shows immediately that this model is a particular case of our Wildcard
Model with

Sx = (F12 − F22)hx , (5b)

Ax,y = Ay,x = (F11 − F21 + F22 − F12)hxhy , (5c)

C(qqq) = hF21 +
(
1− h

)
F22 . (5d)

The Matessi-Gimelfarb-Gavrilets model

Like Lessard (1984), Matessi et al. (2001) and Matessi and Gimelfarb (2006) considered a
model in which frequency-dependent selection results from random pairwise interactions.
While Lessard (1984) assumed a discrete strategy set of two elements, C1, C2, the other
authors were interested in the case where the outcome of a confrontation depends on the
respective value of some continuous trait of interacting individuals. If interactions with
opponents of trait value y provide the fitness payoff f(x, y) to individuals of trait value x,
then the fitness of these individuals is

∑
y
f(x, y)qy. In Matessi et al. (2001) and in Matessi

and Gimelfarb (2006) the payoff function f(x, y) is assumed to be

f(x, y) = 1 + αx2 − (α+ β) yx+ βy2 , x, y ∈ R . (6)

Note that at the trait value x = 0, there is an evolutionary singularity (see Geritz
et al., 1998) since ∂f(x,y)

∂x

∣∣∣
x=y=0

= 0. Hence, with this choice, for any smooth payoff

function F (x, y) the function f (x, y)− 1 is the second order Taylor approximation of
F (x, y)− F (x, x), if all individuals in the population have trait values in the vicinity
of the singularity. This particular point is continuously stable, namely evolution in the
phenotypic space tends to proceed in its direction (see Eshel, 1983), provided

α < β continuous stability condition (7a)
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and is a MEAST (see Christiansen, 1991), or a continuously stable ESS (CSS, see Eshel,
1983), if

α < β , α < 0 MEAST condition. (7b)

In such a case selection in the vicinity of zero is stabilizing. On the opposite, the
singularity is a PEAST (see Christiansen, 1991), or a branching point (see Geritz et al.,
1998), and selection in its vicinity is disruptive, if

α < β , α > 0 PEAST condition. (7c)

Under (6) and either (7b) or (7c), the fitness of an individual of trait value x is

W (MG)
x = 1 + αx2 − (α+ β)xx+ β

(
x2 + v

)
, (8a)

where x =
∑
x
xqx and v =

∑
x

(x− x)2 qx are respectively the mean and the variance of

the trait values in the population. Comparison of (1) and (8a) shows that this model is
a particular case of our Wildcard Model with

Sx = 1 + αx2 , Ax,y = Ay,x = − (α+ β)xy , C(qqq) = β
(
x2 + v

)
. (8b)

2.2.2 Intraspecific Competition. The Bürger-Schneider model

Bürger (2005) and Schneider (2006) formulated a model of density- and frequency-depen-
dent selection, due to competition for limited resources, where the competitive abilities of
individuals are determined by the size of some continuous trait. The explicit intent of this
model was that of providing a unified weak-selection approximation to many and diverse
models of this kind available in the literature (e.g., Roughgarden, 1972; Slatkin, 1979; Bul-
mer, 1974, 1980; Christiansen and Loeschcke, 1980; Bürger, 2002a,b). The formulation is
based on a rather general model presented by Bulmer (1974), which is then approximated
in the limit of overall selection strength tending to zero (Bürger, 2005; Schneider, 2006).
The resulting model assigns to individuals of trait value x in a population of size N a
fitness given by

W (BSdd)
x = F (N)

[
1− σx2 + ση (N) (x− x)2 + ϕ (N,qqq)

]
, (9)

where the trait’s mean is x. Here, F (N) can be any non-negative, monotonically decreas-
ing, continuously differentiable function that is suitable to represent the rate of increase of
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a population as a function of its size, such as, for example, those employed in the Beverton-
Holt or the Hassel model (e.g., Thieme, 2003, Chapter 9) of population regulation. The
positive parameter σ is a direct measure of the strength of stabilizing selection. Further-
more, η(N) = −f NF

′(N)
F (N) , where the positive parameter f is a measure of the strength

of the frequency-dependent effect, resulting from intraspecific competition, relative to the
strength, σ, of stabilizing selection implied by the resource distribution. Finally, ϕ(N,qqq),
which is independent of x, is an arbitrary positive function of the population size and of
the composition of the population, qqq.

This model, however, has been used more often (e.g., Bürger, 2005; Schneider, 2006,
2007) in its density-independent version, derived from (9) by assuming that the population
size is constant. In such a case both F (N) and η(N) are positive constants and ϕ depends
only on the population composition, qqq, so that (9) can be rewritten as (Bürger, 2005;
Schneider, 2006)

W (BS)
x = 1− σx2 + ση (x− x)2 + ϕ (qqq) . (10a)

Short- and long-term evolution due to frequency-dependent selection as prescribed by the
selection regime of (10a) has been studied, mostly assuming continuous time, under a one-
locus or multilocus genetic model, with multiple alleles per locus, assuming additivity and,
in the multilocus case, quasi-linkage equilibrium (Bürger, 2005; Schneider, 2006, 2007).
By rewriting (10a) as

W (BS)
x = 1 + σ(η − 1)x2 − 2σηxx+ σηx2 + ϕ (qqq) (10b)

we perceive it immediately as basically equivalent to the fitness function of the selection
model of Matessi et al. (2001) and Matessi and Gimelfarb (2006), given by (8a), and
therefore as a particular case of the Wildcard Model, (1). Table 1 summarizes the cor-
respondences among the parameters of these two functions and also those of a fitness
function derived from the model of Christiansen and Loeschcke (1980), to be discussed
below (Section 3.2.2).

3 Optimization by frequency-dependent selection

3.1 The Wildcard Model

Both in the Lessard model, (5), and in the Bürger-Schneider model, (10), it has been
found that certain quantitative population properties increase monotonically in the course
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of frequency-dependent selection and attain a maximum at a population equilibrium.
The existence of such global Lyapunov functions has been demonstrated, for the Lessard
model, assuming one locus with multiple alleles and discrete time (Lessard, 1984), while
for the Bürger-Schneider model multiple additive loci and alleles, linkage equilibrium and
a continuous-time approximation have been assumed (Bürger, 2005; Schneider, 2006).
Given the equivalence of the Bürger-Schneider model to the Matessi-Gimelfarb-Gavrilets
model, the Lyapunov function possessed by the former is of course shared by the latter
model.

The Lessard model and the Bürger-Schneider model are aimed to represent quite dis-
tinct biological situations. Hence, the biological meaning of their respective Lyapunov
functions is also very different. The question then arises whether such optimizing proper-
ties are only due to special features, peculiar of each of these two models, or can instead
be extended to whatever model has the structure of our Wildcard Model, (1). We can
show that indeed a global Lyapunov function is admitted by this model, for a one locus,
multiple allele system, at least in the continuous-time approximation, and (in Section 4)
that it can be extended to multilocus, multiallele genetics, provided linkage equilibrium
can be assumed to prevail.

Referring to (4), consider the function

Λ(ppp) = 2s+ a , (11)

where ppp = ppp(t) = (p1(t), . . . , pn(t)). By virtue of the symmetries in the sij and aij,kl

parameters we obtain

∂Λ
∂pi

= 4
n∑
j=1

sijpj + 4
n∑

j,k,l=1

aij,klpjpkpl = 4(si + ai) = 4wi . (12)

Hence, the time derivative of Λ is

Λ̇(ppp) =
n∑
i=1

∂Λ
∂pi

ṗi = 4
n∑
i=1

wi(wi − w)pi = 4
n∑
i=1

(wi − w)2pi , (13)

which is always positive except at any equilibrium of (4), where it vanishes. Hence,
under (4), Λ(ppp) increases in time and is maximized at the locally stable equilibria of
the population. The above calculations show that (4) is even a generalized (Shashahani)
gradient system (see e.g., Hofbauer and Sigmund, 1998; Bürger, 2000). Hence, we obtain
the following
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Theorem 1. Consider the system (4). Moreover, let Λ = 2s+a, where s and a are given
by (4a). Then (4) is a generalized gradient system with potential Λ

4 . In particular Λ is
an (increasing) global Lyapunov function for (4), and its time derivative vanishes only at
the equilibrium points. Furthermore, every trajectory approaches the set of equilibria.

We have to show now that the Lyapunov function, Λ, of the Wildcard Model includes
the Lyapunov functions already identified for the Lessard and the Bürger-Schneider models
as particular cases.

3.2 Lyapunov Functions Previously Found in the Particular

Cases

3.2.1 The Lessard Model

Lessard (1984) has demonstrated that the one-locus, multiallele, discrete-time dynamics
generated by his frequency-dependent selection model, (5), admits the following global
Lyapunov function increasing across generations:

Λ(Ld)(ppp) = (F11 − F21 + F22 − F12)
∣∣h− h∗∣∣ , (14)

where ppp = (p1, . . . , pn) is the vector of allele frequencies, h is the overall frequency of
strategy C1 and

h∗ =
F12 − F22

F21 − F11 + F12 − F22

is the frequency of C1 at the unique mixed ESS of the population game with payoff matrix
F , whenever such an ESS indeed exists, namely whenever

F12 − F22 > 0 and F21 − F11 > 0 .

Observe that if this condition is satisfied, then (F11 − F21 + F22 − F12) < 0, which, by the
(increasing) Lyapunov function (14) implies that

∣∣h− h∗∣∣ decreases across generations,
namely the population phenotypic composition approaches the ESS.

On the other hand the Lessard model, as we have seen, is a particular case of the
Wildcard Model. Hence, it must admit, in continuous time, the global Lyapunov function
Λ, (11), in the particular version appropriate to its specific parametrization. But in order
to derive this version of Λ it is required that we first represent the parameters of the
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model in the form suitable to the continuous-time (i.e., weak-selection) approximation.
In analogy to (3) we write Fij = f + τfij . This yields

h∗ =
f12 − f22

f21 − f11 + f12 − f22
, Λ(Ld) = τ (f11 − f21 + f22 − f12)

∣∣h− h∗∣∣ (15a)

which, by (3) and (5b) - (5d) entails

Sij = τ (f12 − f22)hij , (15b)

Aij,kl = τ (f11 − f21 + f22 − f12)hijhkl , (15c)

C(ppp) = f + τ
[
hf21 +

(
1− h

)
f22

]
. (15d)

Hence, by applying this parametrization to the general Lyapunov function Λ of (11) it
results in

Λ (ppp) = (f11 − f21 + f22 − f12)
(
h

2 − 2hh∗
)
.

Considering that adding a constant to a Lyapunov function obviously cannot change its
nature, we may conclude that the particular version of the general Lyapunov function
appropriate to the Lessard model in continuous time is

Λ(Lc) (ppp) = Λ (ppp) + (f11 − f21 + f22 − f12)h∗2 = (f11 − f21 + f22 − f12)
(
h− h∗

)2
, (16)

which is clearly equivalent to the discrete time Lyapunov function Λ(Ld), of (14) or (15a),
originally identified by Lessard (1984). We can therefore assert the following

Corollary 1. The continuous-time version of the two-phenotype model of Lessard is a
particular case of the Wildcard Model (4). Hence, it forms a generalized gradient system.
Moreover, since Λ(Lc) given by (16) differs from Λ given by (11) only by a constant,
Λ(Lc)/4 is a potential function of this system. Thus, the global (increasing) Lyapunov
function Λ(Lc) can be regarded as a particular case of Λ.

3.2.2 The Bürger-Schneider model

Bürger (2005) and Schneider (2006) have demonstrated that the continuous-time dynam-
ics induced by their frequency-dependent selection model, (10b), on a single locus with
multiple additive alleles, or even on multiple additive loci with multiple alleles, is governed
by an increasing global Lyapunov function, that in the one locus case is

Λ(BS) (ppp) = (η − 1) v − x2 , (17)
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where the trait’s mean and variance are respectively x and v. Note that if selection near
the evolutionary singularity at x = 0 is stabilizing, i.e., if η < 1, the implication of this
Lyapunov function is that the population variance of the selected trait, v, tends to be
minimized. If, instead, selection is disruptive, i.e., η > 1, the population variance tends
to be maximized. In either cases the mean trait tends to the singular trait value of zero.

Again, since the Bürger-Schneider model is a particular case of the general model, it
must also admit the general Lyapunov function Λ, (11), so that we expect Λ(BS) to be a
particular version of Λ. Indeed, since

sij = σ (η − 1)x2
ij , aij,kl = −2σηxijxkl (18a)

by computing Λ, subject to this prescription we find

Λ (ppp) = 2σ (η − 1) v − 2σx2 = 2σΛ(BS) (ppp) . (18b)

Hence, we have

Corollary 2. The one-locus, multiallele version of the Bürger-Schneider model in con-
tinuous time is a particular case of the Wildcard Model (4). Hence, it is a generalized
gradient system. Its potential is σ

2 Λ(BS), where Λ(BS) is given by (17), which, in particular
is a global (increasing) Lyapunov function. Thus, Λ(BS) can be regarded as a particular
case of Λ, given by (11).

Note that the statement of the above corollary is more general than the results of
Bürger (2005) and Schneider (2006) for the one-locus case, since it is not limited by the
restriction to additive alleles.

Also, from the correspondence between the Bürger-Schneider and the Matessi-Gimelfarb-
Gavrilets models and from (17) we immediately obtain

Corollary 3. The one-locus multiallele dynamics in continuous time driven by the Matessi-
Gimelfarb-Gavrilets frequency-dependent selection model form a generalized gradient sys-
tem. Its potential function is given by β−α

4 Λ(MG), where

Λ(MG) (ppp) =
2α

β − α
v − x2 (19)

is an increasing global Lyapunov function.
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3.3 An ancestor of the Lyapunov function of the Wildcard

Model

3.3.1 The Matessi-Jayakar model

Matessi and Jayakar (1981) analyzed density- and frequency-dependent selection, arising
from scramble competition for limited resources, by means of a Lotka-Volterra fitness
model applied to a system of multiple species with a single locus and multiple alleles per
species. In the case of just one species, the fitness that this model assigns to individuals
of type x in a population of size N is

W (MJ)
x = 1 + r

(
Kx −N

∑
y

Bx,yqy

)
, Bx,y = By,x , (20a)

where r is the intrinsic rate of increase of the population, Kx/Bx,x is the carrying capacity
the population would have if it consisted only of individuals of type x, and Bx,y/Bx,x is
the intensity of competition between types x and y.

We again assume that a single locus with n alleles determines the types. Accordingly,
with discrete time, the changes occurring to a population in one generation are described
by the following system of recurrence equations

N ′ = N
[
1 + r

(
K −NB

)]
, (20b)

p′i = pi
1 + r

(
Ki −NBi

)
1 + r

(
K −NB

) , (20c)

for i ∈ {1, . . . , n}, where pi is the frequency of i-th allele while

Ki =
n∑
j=1

Kijpj , K =
n∑
i=1

Kipi , Bi =
n∑

j,k,l=1

Bij,klpjpkpl and B =
n∑
i=1

Bipi . (20d)

If the intrinsic rate of increases, r, is small enough a continuous-time approximation
can be made - even without assuming that differences among genotypes are very slight -
transforming (20) into the following system of differential equations (Matessi and Jayakar,
1981)

Ṅ(t) = ρN(t)
[
K −N(t)B

]
, (21a)

ṗi(t) = ρpi(t)
[
Ki −N(t)Bi −K +N(t)B

]
, (21b)
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for i ∈ {1, . . . , n}, where r = τρ, and τ is the duration of the time interval between succes-
sive generations, that by tending to zero transforms (20) into (21). Matessi and Jayakar
(1981) have demonstrated that (21) admits the following global Lyapunov function

Ψ(MJ) (ppp,N) = 2KN −BN2 (22)

By comparing (20) - (21) to (1) - (4) we immediately notice that these two models would be
essentially the same were it not for the density dependence in (20a). Correspondingly, it is
clear that there is a close relation among the respective Lyapunov functions Ψ(MJ)(ppp,N),
(22), and Λ(ppp), given by (11); so close that one would ask how the latter could be derived
from the former.

Indeed, from a purely formal point of view, (11) can be immediately obtained from
(22) by simply assuming that the population size, N , is a constant, N ≡ N0. Hence, by
deleting the differential equation (21a) from (21), Ψ(MJ) and Λ become identical, by the
obvious switch of notation

N0Kij = sij , N2
0Bij,kl = −aij,kl. (23)

This point of view, although formally correct, has the weakness that it destroys the
biological meaning of the Matessi-Jayakar model, (20) - (21), because a model in which
competition for limited resources keeps the population size constant would be biologically
inconceivable.

However, we can put forward a second argument that leaves intact the biology of (20) -
(21) while producing Λ as an ‘approximation’ of Ψ(MJ). This argument is rooted in the ap-
proach taken by Christiansen and Loeschcke (1980) to analyze evolutionary consequences
of competition for limited resources, starting from Lotka-Volterra-like equations exactly
of the same form as (20). To this model the authors add two assumptions. The first
is implicitly justified by a ‘singular perturbation’ argument (e.g., Hoppensteadt, 1974).
Namely it is stipulated that the population size changes much more rapidly than the
population composition. This is reasonable if selection is sufficiently weak relative to the
intrinsic rate of increase. Hence, it can be assumed that, on the slow time scale of the
population-composition dynamics, it is always very close to the equilibrium value corre-
sponding to the current value of the allele frequencies. The second assumption is that
the carrying capacity parameters, Kx, and the competition parameters, Bx,y, (20a), are
determined by the value of a continuous phenotypic trait, according to

Kx = exp
[
−θx2

]
and Bx,y = exp

[
−ϑ (x− y)2

]
. (24a)
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In addition Christiansen and Loeschcke (1980) concentrate mostly on the case where all
individuals have trait values close to zero. A situation that entails weak selection and
justifies the further approximation that

Kx ' 1− θx2 and Bx,y ' 1− ϑ (x− y)2 . (24b)

In order to show the kinship of the two Lyapunov functions, Ψ(MJ) and Λ, we follow the
lead of Christiansen and Loeschcke (1980) and therefore, first, replace (21a) by

N(t) = N̂ (ppp(t)) =
K

B
. (25a)

Next, we assume there is a small number ε such that

Ki = k0 + kiε+ o(ε) , K = k0 + kε+ o(ε) , ki =
n∑
j=1

kijpj , k =
n∑
i=1

kipi , (25b)

Bi = b0 + biε+ o(ε) , B = b0 + bε+ o(ε) , bi =
n∑

j,k,l=1

bij,klpjpkpl , b =
n∑
i=1

bipi . (25c)

Finally, resting on these assumptions we can immediately conclude with

Result 1. (i) The system of differential equations (21) can be approximated by

N(t) = N̂ (ppp(t)) =
K

B
(26a)

ṗi(t) = ρpi(t)
[
Ki −N0Bi −K +N0B

]
, (26b)

for i ∈ {1, . . . , n}, where N0 = k0/b0.

(ii) The function Ψ(MJ)(ppp,N) of (22) can be approximated by

Ψ(MJ)
0 (ppp) = 2N0K −N2

0B . (26c)

(iii) By changing notation according to (23), it is seen that the system (26b) and the
function Ψ(MJ)

0 (ppp) coincide exactly with the system (4b) and its global Lyapunov
function Λ(ppp), (11), respectively.

3.3.2 The Christiansen-Loeschcke model

Having recalled above some of the assumptions that characterize the model of Christiansen
and Loeschcke (1980), we have the opportunity to uncover another tread of the network
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connecting a variety of apparently unrelated models of frequency-dependent selections. In
fact, it is easy to verify that, by its very assumptions, (24b) and (25a), this model reduces
to a density-independent selection model equivalent to the models of Matessi et al. (2001),
Matessi and Gimelfarb (2006), (8a), and of Bürger (2005), Schneider (2006), (10b). To
see this it suffices to substitute (24b) and (25a) into the fitness function (20a), which
coincides exactly with the basic model from which Christiansen and Loeschcke (1980)
start. In this substitution only the terms that are up to second order in the trait values
are to be retained, because all trait values in the population are assumed to be very close
to zero. In this way we find that the fitness function resulting from the assumptions of
Christiansen and Loeschcke (1980) is

W (CL)
x = 1 + (ϑ− θ)x2 − 2ϑxx+ (ϑ+ θ)

(
x2 + v

)
− 2ϑv , (27a)

where x and v are respectively the mean and the variance of the trait values in the pop-
ulation. The parameters ϑ and θ depend on the variances of the (Gaussian) resource
spectrum, VR, and the individual’s (Gaussian) resource utilization distribution, VU , as-
sumed to be the same for all individuals that, depending on their genotype, vary only in
the modal position of their utilization distributions. More specifically, the relation among
these parameters is

θ =
r

2VR + 2VU
, ϑ =

r

4VU
. (27b)

Table 1: The correspondence between the Christiansen-Loeschcke (CL), the Matessi-Gimelfarb-Gavrilets (MG) and the Bürger-Schneider (BS)

model is shown. In the table, x, v and qqq denote the mean trait value, the variance of trait values, and the distribution of types, respectively. The

parameters are described in the main text. Moreover, their admissible range is shown and the condition under which selection is stabilizing in the

respective models. If the respective condition is violated selection is disruptive.

generic formula: Wx = 1 + Ax2 +Bxx+ C(qqq)

model A B C(qqq) range
stabilizing

selection

CL ϑ− θ −2ϑ (ϑ+ θ)(x2 + v)− 2ϑv ϑ, θ > 0 ϑ < θ

MG α −(α + β) β(x2 + v) α < β α < 0

BS σ(η − 1) −2ση σηx2 + ϕ(qqq) σ, η > 0 η < 1
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From (27a) it is immediately obvious that W (CL)
x is essentially equivalent to the fitness

functions W (MG)
x , of (8a), and W (BS)

x , of (10b). Table 1 summarizes the correspondences
among the parameters of these three functions. We also conclude that the global Lyapunov
function associated to the one-locus, multiple-allele dynamics in continuous time, gener-
ated by frequency-dependent selection with the Christiansen-Loeschcke fitness function
W

(CL)
x , (27), is

Λ(CL) (ppp) =
ϑ− θ
θ

v − x2 . (28)

This Lyapunov function directly informs us that, in the Christiansen-Loeschcke model,
selection is stabilizing and phenotypic variance, v, (the variance among the positions of
individual utilization distributions on the resource axis) tends to be minimized when the
width of the resource spectrum, VR, is smaller than that of the individual utilization
distribution, VU . In the opposite case selection is disruptive and the phenotypic variance
tends to be maximized. In both cases the mean of the positions of individual utilizations
on the resource axis tends to the modal point of resources abundance.

4 Multiple Loci

Concerning the genetic assumptions, so far we have assumed a single locus with multiple
alleles. In this section we want to generalize the results of the previous sections to the
case of multiple multiallelic loci under a linkage equilibrium approximation. Furthermore,
based on the motivation of the last section, we will introduce a density-dependent version
of our model.

Before we formulate our model and generalize our results to multiple loci we need some
preliminaries. In the next section we will briefly summarize the multilocus notation that
we will use.

4.1 The Multilocus Multiallele Framework

For the multilocus dynamics we use the notation introduced by Nagylaki (1993) and
Nagylaki et al. (1999). As before, we assume a randomly mating diploid population
under viability selection. Now, we consider n loci instead of just one, where on locus
k the mk alleles A

(k)
ik

can occur (ik ∈ {1, . . . ,mk}). The multi-index iii = (i1, . . . , in) is

used as an abbreviation for the gamete A
(1)
i1

A
(2)
i2

. . .A
(n)
in

; its frequency is denoted by piii.
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Collectively, these frequencies form the vector ppp of gamete frequencies, which are elements
of the simplex Sm1·...·mn . The frequency of A

(k)
ik

is given by

p
(k)
ik

=
∑
iii

(k)piii . (29)

The above sum runs over all multi-indices iii with the kth component fixed as ik. We denote
the gene-frequency vector (p(k)

ik
) by ρρρ ∈ S := Sm1 × . . .× Smn . The fitness of genotype iiijjj

is denoted by Wiiijjj , and since we assume a lack of genomic imprinting Wiiijjj = Wjjjiii holds for
all iii, jjj. The marginal fitness of gamete jjj is given by

W jjj =
∑
iii

Wiiijjjpiii , (30)

and the mean fitness of the population is

W =
∑
iiijjj

Wiiijjjpiiipjjj . (31)

Let I, J be a nontrivial decomposition of the set M = {1, . . . , n}, i.e., I ∪ J = M and
I ∩ J = ∅ normalized by 1 ∈ I. We denote by rI the recombination probability between
the sets of loci I and J . Throughout we assume rI > 0 for every I. Thus, the dynamics
of the gametic frequencies are given by the following recurrence relations,

p′iii = piii
W iii

W
−Diii , (32)

where

Diii =
1
W

∑
jjj

∑
I

rI(Wiiijjjpiiipjjj −WiiiIjjjJ ,jjjIiiiJpiiiIjjjJ
pjjjIiiiJ ) (33)

is a measure for linkage disequilibrium for gamete iii. In the above formula, iiiIjjjJ signifies
the vector with kth component ik if k ∈ I and jk if k ∈ J .

The allele frequencies in the next generation are

p
(k)
ik
′ =

p
(k)
ik
W

(k)
ik

W
, (34)

where the marginal fitness, W (k)
ik

, of allele A
(k)
ik

is defined by

p
(k)
ik
W

(k)
ik

:=
∑
iii

(k)piiiW iii . (35)
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The linkage-equilibrium manifold, or Wright manifold, is given by

L0 = {ppp : piii = p
(1)
i1
p

(2)
i2
. . . p

(n)
in

for all iii} . (36)

We assume that there is no position effect, i.e., Wiiijjj = WiiiIjjjJ ,jjjIiiiJ for every iii, jjj, and I.
Therefore, it follows immediately that Diii = 0 for every ppp ∈ L0, and we have L0 ⊆
{ppp| Diii = 0 for every iii}. Equality holds in the absence of selection (see Nagylaki et al.,
1999).

Fitnesses are frequency dependent and if population regulation is added to the model,
they depend also on the population size, N . In such a situation the population size
changes according to the following recursion relation:

N ′ = NW . (37)

In the following we will assume linkage equilibrium, in which case it is sufficient to
consider the dynamics of allele frequencies (34) instead of the dynamics of gamete fre-
quencies (32). Additionally, in analogy to the one-locus case of previous sections, we
will assume weak selection and therefore the discrete-time dynamics (34) and (37) will
be approximated by a continuous-time dynamics. Hence, our results will hold for any
model of weak selection which can be accurately approximated by the linkage-equilibrium
dynamics. In other words, our results hold if there exists an invariant manifold (the quasi
linkage-equilibrium manifold) sufficiently close to the linkage-equilibrium manifold, where
the dynamics behave almost as if they are in linkage equilibrium, which is reached by ev-
ery trajectory within a few generations. Of course the linkage-equilibrium approximation
will not be accurate for any given model. The applicability of such an approximation will
heavily depend on the concrete model, i.e., the concrete expressions of the fitnesses, the
strength of selection relative to recombination etc.

As in the previous sections, we will concentrate on our Wildcard Model, (1), and also
introduce a density-dependent modification of this model, which slightly generalizes the
Matessi-Jayakar model (20a).

4.2 The Density-Independent Model

Now, we are able to formulate the multilocus version of our Wildcard Model. In analogy
to the single locus case we assume that the phenotypes under selection are identified with
their genotypic configuration at the n loci under consideration. Since we are dealing with
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a continuous-time approximation, according to an argument analogous to that in Section
2.1, the fitness of the genotype iiijjj appropriate for the differential equations is given by

wiiijjj = siiijjj +
∑
kkk,lll

aiiijjj,kkklllpkkkplll + γ(ρρρ) . (38)

Here, the parameters are defined in a way similar to (3). In particular, the frequency-
independent fitness component, siiijjj , satisfies siiijjj = sjjjiii. Moreover, the parameters aiiijjj,lllkkk of
the frequency-dependent term must satisfy

aiiijjj,kkklll = ajjjiii,kkklll = aiiijjj,lllkkk = ajjjiii,lllkkk

for all iii, jjj, kkk, lll. As in the one-locus case we assume that an individual iiijjj is affected by
an individual kkklll in the same way as kkklll is affected by iiijjj, which implies

aiiijjj,kkklll = akkklll,iiijjj

for all iii, jjj, kkk, lll. Moreover, γ(ρρρ) is a function that depends only on the frequency distri-
bution of alleles and is the same for all genotypes. We mention here that all our results
hold if γ(ρρρ) in (38) is replaced by ϕiiijjj for all iii, jjj, which are arbitrary functions of the allele
frequencies ρρρ satisfying ϕiiijjj = ϕjjjiii and

γ(ρρρ) :=
∑
jjj

ϕiiijjj(ρρρ)pjjj =
∑
jjj

ϕkkkjjj(ρρρ)pjjj for all iii, kkk .

The marginal fitness of gamete iii is then given by

wiii =
∑
jjj

siiijjjpjjj +
∑
jjj,kkk,lll

aiiijjj,kkklllpjjjpkkkplll + γ(ρρρ) ,

and the mean fitness is given by

w =
∑
iii,jjj

siiijjjpiiipjjj +
∑
iii,jjj,kkk,lll

aiiijjj,kkklllpiiipjjjpkkkplll + γ(ρρρ) . (39a)

The dynamics under linkage equilibrium then become

ṗ
(k)
ik

= p
(k)
ik

(w(k)
ik
− w) for 1 ≤ ik ≤ mk, 1 ≤ k ≤ n , (39b)

where

w
(k)
ik

=
∑
iii

(k)wiii

n∏
l=1
l 6=k

p
(l)
il

=
∑
iii

(k)
n∏
l=1
l 6=k

p
(l)
il

∑
jjj

siiijjjpjjj +
∑
iii

(k)
n∏
l=1
l 6=k

p
(l)
il

∑
jjj,kkk,lll

aiiijjj,kkklllpjjjpkkkplll + γ(ρρρ)

(39c)
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Note that (39b) is independent of γ(ρρρ).
We are now able to generalize the results of the corresponding one-locus model to the

multilocus model in linkage equilibrium.

Theorem 2. Consider the system (39). Moreover, let

Λ(ρρρ) := 2s+ a ,

where

s =
∑
iii,jjj

siiijjjpiiipjjj and a =
∑
iii,jjj,kkk,lll

aiiijjj,kkklllpiiipjjjpkkkplll .

Then, the system (39b) is a generalized gradient system with potential Λ/4, i.e.,

ṗ
(k)
ik

=
p

(k)
ik

4

(
∂Λ

∂p
(k)
ik

−
mk∑
jk=1

p
(k)
jk

∂Λ

∂p
(k)
jk

)
for 1 ≤ ik ≤ mk, 1 ≤ k ≤ n .

In particular, Λ is a global Lyapunov function for the set of equilibria, i.e., Λ̇(ρρρ) ≥ 0 and
Λ̇(ρ̂ρρ) = 0 if and only if ρ̂ρρ is an equilibrium.

Proof. We need to derive the partial derivatives ∂Λ

∂p
(k)
ik

. First, note that we have

∂pjjj

∂p
(k)
ik

= δik,jk

n∏
l=1
l 6=k

p
(l)
jl
,

where δ denotes the Kronecker -δ. Now, straightforward calculations yields

1
4
∂Λ

∂p
(k)
ik

=
1
2

∑
iii,jjj

siiijjj

(
∂piii

∂p
(k)
ik

pjjj +
∂pjjj

∂p
(k)
ik

piii

)

+
1
4

∑
iii,jjj,kkk,lll

aiiijjj,kkklll

(
∂piii

∂p
(k)
ik

pjjjpkkkplll +
∂pjjj

∂p
(k)
ik

piiipkkkplll +
∂pkkk

∂p
(k)
ik

piiipjjjplll +
∂plll

∂p
(k)
ik

piiipjjjpkkk

)
=
∑
iii,jjj

siiijjj
∂piii

∂p
(k)
ik

pjjj +
∑
iii,jjj,kkk,lll

aiiijjj,kkklll
∂piii

∂p
(k)
ik

pjjjpkkkplll

=
∑
iii

(k)
∑
jjj

siiijjjpjjj

n∏
l=1
l 6=k

p
(l)
il

+
∑
iii

(k)
∑
jjj,kkk,lll

aiiijjj,kkklllpjjjpkkkplll

n∏
l=1
l 6=k

p
(l)
il

=w(k)
ik
− γ(ρρρ) .
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From the above we obtain

ṗ
(k)
ik

= p
(k)
ik

(1
4
∂Λ

∂p
(k)
ik

−
mk∑
jk=1

1
4
∂Λ

∂p
(k)
jk

p
(k)
jk

)
,

which immediately proves the first statement.
Now, applying the chain rule gives

1
4

Λ̇ =
1
4
dΛ
dt

=
1
4

n∑
k=1

mk∑
ik=1

∂Λ

∂p
(k)
ik

ṗ
(k)
ik

=
n∑
k=1

mk∑
ik=1

(
w

(k)
ik
− γ(ρρρ)

)
(w(k)

ik
− w)p(k)

ik

=
n∑
k=1

mk∑
ik=1

(w(k)
ik
− w)2p

(k)
ik
≥ 0 .

Moreover, we have Λ̇ = 0 if and only if w(k)
ik

= w or p(k)
ik

= 0, i.e., if and only if w(k)
ik

= w

whenever p(k)
ik
6= 0. In other words, we have Λ̇ = 0 only at an equilibrium. Thus, Λ is a

global Lyapunov function for the set of equilibria.
�

From similar considerations as in the previous section and from straightforward mul-
tilocus formulations of the particular models we immediately obtain the following

Corollary 4. Corollaries 1 - 3 remain valid for underlying multilocus, multiallele genetics
if a linkage-equilibrium approximation can be assumed.

Note that Bürger (2005) and Schneider (2006) in the proofs of the existence of a gra-
dient system in their model assumed additive genetics, i.e., no dominance or epistasis, an
assumption that is not required by our more general result (Corollary 4). However, using
the additivity assumption Bürger (2005) and Schneider (2006) were able to prove that
the trajectories in their model indeed converge to a quasi-linkage equilibrium if selection
is sufficiently weak compared with recombination. It is yet unknown to what extent the
linkage-equilibrium approximation is valid if the additivity assumption is relaxed, as in
our model. Thus, to apply our more general results to a concrete model one has first to
ascertain the validity of the linkage-equilibrium approximation.

4.3 The Density-Dependent Model

Here, we shall formulate a model which is slightly more general than the Matessi-Jayakar
model (see Section 3.3.1) with underlying multilocus genetics. We will refer to it as the
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density-dependent version of the Wildcard Model. It assumes that the fitness of genotype
iiijjj is given by

wiiijjj = siiijjj + f(N)
∑
kkk,lll

aiiijjj,kkklllpkkkplll , (41)

where siiijjj , and the aiiijjj,kkklll’s are as in the density-independent case, hence have the same
interpretation, and we impose the same relations. Moreover, f(N) is some differentiable
function of the population size satisfying f(N), f ′(N) > 0 or f(N), f ′(N) < 0 for all
admissible values of N . Note, that (41) is similar to (1) or (38), but it does not allow for
an arbitrary function γ.

The marginal fitness of gamete iii is then given by

wiii =
∑
jjj

siiijjjpjjj + f(N)
∑
jjj,kkk,lll

aiiijjj,kkklllpjjjpkkkplll ,

the mean fitness is given by

w =
∑
iii,jjj

siiijjjpiiipjjj + f(N)
∑
iii,jjj,kkk,lll

aiiijjj,kkklllpiiipjjjpkkkplll , (42a)

and the marginal fitness of allele A
(k)
ik

is given by

w
(k)
ik

=
∑
iii

(k)
n∏
l=1
l 6=k

p
(l)
il

∑
jjj

siiijjjpjjj + f(N)
∑
iii

(k)
n∏
l=1
l 6=k

p
(l)
il

∑
jjj,kkk,lll

aiiijjj,kkklllpjjjpkkkplll . (42b)

The continuous-time dynamics under weak selection and linkage equilibrium, is given by
the following system of differential equations

ṗ
(k)
ik

= p
(k)
ik

(w(k)
ik
− w) for 1 ≤ ik ≤ mk, 1 ≤ k ≤ n (42c)

and

Ṅ = Nw . (42d)

The following theorem, a density-dependent analog of Theorem 2, extends the results
of the corresponding one-locus results of Matessi and Jayakar (1981) to the multi-locus
model with linkage equilibrium:



4 MULTIPLE LOCI 25

Theorem 3. Consider the system of differential equations (42). Let

Ψ(ρρρ,N) := f(N)(2s+ f(N)a) ,

where

s =
∑
iii,jjj

siiijjjpiiipjjj and a =
∑
iii,jjj,kkk,lll

aiiijjj,kkklllpiiipjjjpkkkplll .

Then (42) is a generalized gradient system with potential Ψ, i.e.,

ṗ
(k)
ik

=
p

(k)
ik

4f(N)

(
∂Ψ

∂p
(k)
ik

−
mk∑
jk=1

p
(k)
jk

∂Ψ

∂p
(k)
jk

)
and

Ṅ = N
1

2f ′(N)
∂Ψ
∂N

.

In particular Ψ is a global Lyapunov function for the set of equilibria, i.e., Ψ̇(ρρρ,N) sign f(N) ≥
0 and Ψ̇(ρ̂ρρ, N̂) = 0 if and only if (ρ̂ρρ, N̂) is an equilibrium.

Proof. Similarly as in the proof of Theorem 2, straightforward calculation yields

1
4
∂Ψ

∂p
(k)
ik

= f(N)w(k)
ik
.

Moreover, we have

1
4
∂Ψ
∂N

=
f ′(N)

4

(
2
∑
iii,jjj

siiijjjpiiipjjj + 2f(N)
∑
iii,jjj,kkk,lll

aiiijjj,kkklllpiiipjjjpkkkplll

)

=
f ′(N)

2
w .

The above derivations immediately yield the first statement.
By applying the chain rule we obtain

Ψ̇ =
dΨ
dt

=
∂Ψ
∂N

Ṅ +
n∑
k=1

mk∑
ik=1

∂Ψ

∂p
(k)
ik

ṗ
(k)
ik

=N
f ′(N)

2
w2 + f(N)

n∑
k=1

mk∑
ik=1

w
(k)
ik

(w(k)
ik
− w)p(k)

ik

=N
f ′(N)

2
w2 + f(N)

n∑
k=1

mk∑
ik=1

(w(k)
ik
− w)2p

(k)
ik
.
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Hence, sign f(N)Ψ̇ ≥ 0. Moreover, we have Ψ̇ = 0 if and only if w = 0 and w
(k)
ik

= w

provided p
(k)
ik
6= 0. In other words, we have Ψ̇ = 0 only at an equilibrium. This finishes

the proof.
�

We immediately obtain the following corollary

Corollary 5. The multilocus, multiallele version of the Matessi-Jayakar model under the
assumption of linkage equilibrium is a generalized gradient system. Its potential function
is a global Lyapunov function and is given by

Ψ(MJ)(ρρρ,N) = N(2K −NB) .

We can further conclude

Remark 1. The density-dependent version of the Christiansen-Loeschcke model, i.e., the
model without the singular-perturbation approximation, is a particular case of the Matessi-
Jayakar model. Hence, Corollary 5 is also valid for the Christiansen-Loeschcke model with
obvious modifications.

Note that the density-dependent version of the Bürger-Schneider model is not a par-
ticular case of our density-dependent Wildcard Model.

5 Discussion

In this article we studied a model of frequency-dependent selection (the Wildcard Model)
at a single autosomal locus with arbitrarily many alleles. Initially, starting from a discrete-
time formulation we switched to the continuous-time analog of the model, which can be
regarded as an approximation if selection is weak. We proved that our model forms a
generalized gradient system, for which the potential function Λ can be derived explicitly.
In particular, this function is a global Lyapunov function. Moreover, as a consequence all
trajectories approach the set of equilibria. If this is finite, every trajectory converges to
an equilibrium. We were able to generalize these results to a density-dependent version of
the Wildcard Model, which is a slightly more general version of the model introduced by
Matessi and Jayakar (1981). Furthermore, under the assumption of linkage equilibrium,
we generalized the results to multilocus, multiallele versions of the density-independent as
well as of the density-dependent model. Our model, in both its density-independent and
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density-dependent versions, subsumes and generalizes in some respects several other par-
ticular models, and hence admits many different interpretations. Furthermore, it extends
to these other models the validity of our results concerning the Lyapunov function. In
order for this to transpire most clearly and to show with the greatest precision in which
directions our generalizations are effected it has been necessary in this paper to review
some of these models in detail.

Christiansen and Loeschcke (1980) studied a model of intraspecific competition for a
continuous, unimodal resource spectrum, which is a special case of the Wildcard Model.
Their model, however, was derived from Lotka-Volterra-like equations. The competi-
tion model studied by Bürger (2005) and Schneider (2006, 2007) also is a special case
of the Wildcard Model. Their model was derived as an approximation to, at the best
of our knowledge, all models of intraspecific competition for a unimodal resource con-
tinuum that are available in the theoretical literature. Initially motivated by the model
of Bulmer (1974, 1980), it approximates for instance the models of Roughgarden (1972),
Slatkin (1979), Christiansen and Loeschcke (1980), Christiansen (1982) and Loeschcke
and Christiansen (1984). Hence, these models can be approximately represented by our
model.

Lessard (1984) studied a game theoretically motivated model. In his model individuals
join one of two phenotypic pools - or pure strategies - with a certain probability based
on their genotype. Although this is not a model of intraspecific competition it is also a
special case of the Wildcard Model. Another model that is rooted in evolutionary game
theory is that of Matessi et al. (2001), which was later studied by Matessi and Gimelfarb.
They formulated a quadratic model to study stabilizing or disruptive selection near an
evolutionary singularity, i.e., MEAST or PEAST, respectively (cf. Christiansen, 1991).
This model, which has no biologically specific interpretation, can also be formulated in
terms of our model.

A commonly studied model of frequency-dependent selection is the pairwise interac-
tion model, e.g., Schutz et al. (1968), Allard and Adams (1969), Cockerham et al. (1972),
Asmussen and Basnayake (1990), Altenberg (1991), Gavrilets and Hastings (1994), As-
mussen et al. (2004), Trotter and Spencer (2008), Schneider (2008). The pairwise in-
teraction model can be formulated in terms of our density-independent model, whereas
the class of frequency- and density-dependent models studied by Asmussen (1983) are
connected to our density-dependent model.

Since all of the above mentioned models can be represented, at least approximately, by
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the Wildcard Model, the existence of a global Lyapunov function for each of them follows
immediately. Note that Lyapunov functions were already established for the models of
Matessi and Jayakar (1981), Lessard (1984) and Bürger (2005), Schneider (2006). These
Lyapunov functions are all equivalent to ours. However, the Lyapunov function in the
two-phenotype model of Lessard (1984) was established for discrete time.

Bürger (2005) and Schneider (2006) used the assumptions of additivity within and
between loci to show the existence of a Lyapunov function for the density-independent
version of their model. However, our results prove that for their model additivity is not
required for the existence of a Lyapunov function in the one-locus case, and epistasis does
not need to be excluded, as long as the assumption of linkage equilibrium is justified, in the
multilocus case. The existence of a global Lyapunov function for the density-dependent
version of the Bürger-Schneider model remains open, since this model is not a particular
case of our density-dependent Wildcard Model. Christiansen and Loeschcke (1980) ini-
tially formulated their model with Gaussian resource utilization functions. However, for
most of their analysis they assumed a quadratic approximation. Since their model is a spe-
cial case of ours even in the Gaussian formulation, the results of this article are applicable,
suggesting that more detailed analytical results might be feasible for this particular model.
Furthermore, our results also apply to multilocus generalizations of the Christiansen and
Loeschcke (1980) model, as studied for instance by Loeschcke and Christiansen (1984) in
a two-locus context. Hence, for the latter model more analytical results could be feasible.

Lessard (1984) and Schneider (2007) used the existence of a global Lyapunov function
to study the long-term evolution of their models by repeated occurrence and possible
invasion of new mutations. Thus, our results might be used to study long-term evolution
of a variety of models with different interpretations based on explicit short-term results.
Thus, we conclude that our results have the potential to bridge the gap between traditional
population genetic and evolutionary models based on dynamical systems (short-term evo-
lution) and adaptive dynamics (long-term evolution) based on invasion dynamics.

Although our results are relevant for many models in the theoretical literature, they
are restricted in several respects. First, the Wildcard Model is formulated in continu-
ous instead of discrete time, which implies weak selection. However, most of the above
mentioned models that are special cases of ours were formulated originally in discrete
time. Hence, it would be desirable to prove similar results for this case. Since differ-
ence equations are usually more complicated than differential equations, it is uncertain
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whether similar results can be proved. Second, the symmetry assumption of our model
is crucial, i.e., aij,kl = akl,ij . Since our results do not hold without this assumption, the
biological scenarios that are covered by our results are constrained. For instance, our
density-independent model is formally equivalent to the pairwise interaction model. How-
ever, because of the symmetry assumptions, our results do not cover situations like the
rock-scissor-paper scenario, which is commonly studied in evolutionary game theory (cf.
Hofbauer and Sigmund, 1998).

Note that multi-phenotype generalizations of the two-phenotype model of Lessard
(1984) can be formulated with our model. However, in general, the symmetry assumption
will be violated, unless the payoff matrix is symmetric. Therefore, our results cannot
be applied to generalizations of the Lessard model, indicating that the results of Lessard
(1984) cannot be generalized. Anyway, our model will cover multilocus generalizations of
the two-phenotype model. Third, our model allows only for a very specific kind of den-
sity dependence. Although it is not very general, this kind of density dependence occurs
frequently in the theoretical literature. Fourth, in the multilocus case the assumption
of linkage equilibrium is crucial. Generalizing our assumptions to linkage disequilibrium
seems infeasible. Thus, when applying our results to a particular multilocus model, one
has to establish convergence to quasi-linkage equilibrium first. Especially if recombina-
tion is weak compared with selection, or for strong epistasis, convergence to quasi-linkage
equilibrium has been disproved.

Summarizing, we studied population-genetic models of frequency-dependent selection
with underlying one-locus or multilocus genetics, that may also allow for population reg-
ulation, which cover many particular models that have been studied in the theoretical
literature so far. Although, these models superficially seem to be different and have com-
pletely different biological interpretations, they turn out to be different disguises of the
model studied in this article. Our results are hence applicable to various evolutionary
problems, and give hope that many of them can be tackled analytically. Especially the
perspective of studying long-term evolution seems inviting for future research.
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