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EPSILON-HYPERCYCLIC OPERATORS

CATALIN BADEA, SOPHIE GRIVAUX, AND VLADIMIR MÜLLER

Abstract. For each fixed number ε in (0, 1) we construct a bounded linear op-
erator on the Banach space `1 having a certain orbit which intersects every cone
of aperture ε, but with every orbit avoiding a certain ball of radius d, for every
d > 0. This answers a question from [8]. On the other hand, if T is an operator
on the Banach space X such that for every ε > 0 there is a point in X whose orbit
under the action of T meets every cone of aperture ε, then T has a dense orbit.

1. Introduction

The aim of this paper is to study some (variations of) density properties of orbits

of bounded linear operators acting on a real or complex separable Banach space

X. Using a Functional Analysis terminology, an operator T ∈ B(X) is said to be

hypercyclic if there exists a vector x ∈ X such that the orbit Orb(x, T ) = {T nx ; n ≥
0} of x under the action of T is dense in X. A vector x with dense orbit is called a

hypercyclic vector for T .

While the first examples of Banach and Hilbert space hypercyclic operators are

relatively recent ([10]), there is now an important literature on hypercyclicity prop-

erties and the dynamics of bounded linear operators. We refer the reader to the

recent book [1] for more on this topic. It is natural in this context to investigate

which properties of the orbit of a vector, weaker than denseness, imply either that

the orbit itself is in fact dense, or that the operator is hypercyclic (i.e. some other

orbit is dense in X). Let us mention here some of the results in this direction:

– if the orbit Orb(x, T ) is somewhere dense in X, then it is dense in X [3]. This

implies in particular that if the union of finitely many orbits Orb(x1, T ), Orb(x2, T ),

..., Orb(xn, T ) is dense in X, then one of these orbits must already be dense. This

result was proved directly in [5] and [9].
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– suppose that for some positive number d the orbit of x ∈ X meets every open

ball B(y, d) of radius d. Then Orb(x, T ) is not necessarily dense in X, but T must

be hypercyclic [6].

– if x is a frequently hypercyclic vector for T , then T ⊕ T must be hypercyclic on

X ⊕X [7].

Recall that x is a frequently hypercyclic vector for T if for every non empty open

subset U of X, the set of positive integers n such that T nx ∈ U has positive lower

density; in other words, for every non empty open subset U of X, there exists a

sequence (nk)k≥0 with nk = O(k) such that T nkx ∈ U .

On the other hand, some conditions on the orbit, which may look strong enough

at first sight, do not imply that the operator is hypercyclic. For instance:

– there exist operators which are weakly hypercyclic, i.e. for which there exists a

vector x whose orbit is weakly dense in X, but still are not hypercyclic: examples

of weighted shifts having this property are given in [4].

– for every ε > 0, there exists a bounded operator on the space `1(N) which has

the following property: there exists a vector x ∈ `1(N) such that for every non empty

open subset U of `1(N), there exists a sequence (nk)k≥0 with nk = O(k1+ε) such that

T nkx ∈ U , but T ⊕ T is not hypercyclic [2]. This shows that the result of [7] that

every frequently hypercyclic operator on a Banach space satisfies the Hypercyclicity

Criterion is in a sense optimal.

We investigate in this paper a weaker version of Feldman’s result [6] already

mentioned above: it states that if given a positive ε there exists a vector x such that

for every y ∈ X ||T nx− y|| ≤ ε for some integer n, then T is hypercyclic.

Definition 1.1. Let ε be a number in (0, 1). If x is a vector of X, we say that x is

ε-hypercyclic if for every non zero vector y ∈ X there exists an integer n such that

||T nx − y|| ≤ ε||y||. The operator T is ε-hypercyclic if it admits an ε-hypercyclic

vector.

In particular, the orbit of x must intersect every cone of a fixed aperture. This

is in a sense a “scaled” version of the ε-density considered in Feldman’s work. It

is obviously weaker than Feldman’s condition, and in a sense more natural in this

context. The following question was proposed in [8]:

Question 1.2. Suppose that T is a bounded operator on X which admits for some

ε ∈ (0, 1) an ε-hypercyclic vector. Is it true that T is hypercyclic?

The restriction ε ∈ (0, 1) comes from the fact the zero vector is trivially 1-

hypercyclic for any operator T .

The main result of this paper gives a negative answer to Question 1.2:

Theorem 1.3. For every ε ∈ (0, 1) there exists an ε-hypercyclic operator on the

space `1(N) which is not hypercyclic.
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Still:

Theorem 1.4. If T is a bounded operator on X which is ε-hypercyclic for every

ε > 0, then T must be hypercyclic.

We therefore obtain, together with Feldman’s result, the geometric statement

stated in the abstract.

Theorems 1.3 and 1.4 are proved in the next section. Surprisingly enough, our

construction for the proof of Theorem 1.3 really uses the `1-norm, and we are unable

to adapt it to the Hilbertian setting. Thus the following question is still open:

Question 1.5. Let ε ∈ (0, 1) and suppose that T ∈ B(H) is an ε-hypercyclic operator

acting on a Hilbert space H. Must T be hypercyclic?

2. Proof of Theorem 1.3

2.1. Outline of the proof of Theorem 1.3. Fix ε ∈ (0, 1) and a positive integer

a such that ε > 2−a+1. Let X be the space `1(N) endowed with the canonical basis

(en)n≥0. Our operator T will act on the `1-direct sum Y =
⊕∞

i=0 X of countably

many copies of `1(N).

Let (y(k))k≥1 be a sequence of vectors of Y which has the following properties:

(i) the set {y(k) ; k ≥ 1} is dense in Y ;

(ii) each y(k) ∈ Y can be written as a sequence y(k) = (y
(k)
1 , . . . , y

(k)
k−1, 0, . . .),

where each y
(k)
j is a vector of X = `1(N) which is in the linear span of the

vectors ei, i ≤ k − 1;

(iii) 2−k ≤ ‖y(k)
j ‖ for every j = 0, . . . , k − 1, and ‖y(k)‖ ≤ 2k

1+2−a .

For each k ≥ 1 and each j ≤ k − 1, define z
(k)
j = y

(k)
j + 2−a‖y(k)

j ‖ek2+j: it is a

perturbation of the vector y
(k)
j obtained by adding to it a (not too small) multiple

of the basis vector ek2+j, which is far away from the support of y
(k)
j . We have 2−k ≤

‖z(k)
j ‖ for each j ≤ k − 1. We then define z(k) ∈ Y by z(k) = (z

(k)
0 , . . . , z

(k)
k−1, 0, . . .).

Clearly ‖z(k)‖ ≤ 2k.

Set n0 = n′0 = 0. Our goal is to construct by induction a sequence (Sj)j≥1 of

bounded operators on X and two strictly increasing sequences of positive integers

(nk)k≥1 and (n′k)k≥1 such that n′k−1 ≤ n′k−1 + nk−1 ≤ nk < nk + k < n′k for every

k ∈ N and the six following properties hold true:

(a) each operator Sj is bounded and invertible with ‖S−1
j ‖ ≤ 2;

(b) Sje0 = e0 for every j ∈ N;

(c) ‖SjSj−1 . . . S1‖ ≤ 2a+1 for every j ∈ N;

(d) Sn′k
. . . S2S1 = I (the identity operator) for every k ∈ N;

(e) Sj = I for every k ∈ N and every j such that nk − nk−1 < j ≤ nk + k);

(f) ‖Snk
· · ·SjSj+1z

(k)
j ‖ ≤ 2−2k−a for every k ∈ N and every j = 0, . . . , k − 1.
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Suppose that (nk), (n′k) and (Sj) have been constructed so as to satisfy properties

(a) to (f). Consider on Y the operator T which is the backward shift with operator-

weights S−1
j : for any sequence (vj)j≥0 of Y ,

T (v0, v1, . . .) = (S−1
1 v1, S

−1
2 v2, . . .).

Clearly T is bounded on Y with ‖T‖ ≤ 2 by (a). For any n ∈ N we have

T n(v0, v1, . . .) = (S−1
1 . . . S−1

n vn, S
−1
2 . . . S−1

n+1vn+1, . . . , S
−1
j+1 . . . S−1

n+jvn+j, . . .).

For k ∈ N define x(k) ∈ Y by

x(k) = (0, . . . , 0︸ ︷︷ ︸
nk

, Snk
. . . S1z

(k)
0 , Snk

. . . S2z
(k)
1 , . . . , Snk

. . . Skz
(k)
k−1, 0, . . . ).

By (f), we have ‖x(k)‖ ≤ 2−2k−a‖z(k)‖ ≤ 2−k−a, and thus the vector

x =
∞∑

k=1

x(k)

belongs to Y .

2.2. The vector x is ε-hypercyclic for T . Let k ∈ N. Observe that by (e) we

can rewrite x(k) as

x(k) = (0, . . . , 0︸ ︷︷ ︸
nk

, Snk
. . . S1z

(k)
0 , Snk+1 . . . S2z

(k)
1 , . . . , Snk+k−1 . . . Skz

(k)
k−1, 0, . . . ),

and so T nkx(k) = z(k). Clearly T nkx(m) = 0 for m < k, and for m > k we have

T nkx(m) = x(m) by (e) again. Hence

‖T nkx− z(k)‖ =

∥∥∥∥∥
(

∞∑
m=k+1

x(m)

)∥∥∥∥∥ ≤
∞∑

m=k+1

2−m−a = 2−k−a.

Let v be any non zero vector of Y . Choose k ∈ N such that ‖v − y(k)‖ < ε′‖v‖,
where ε′ > 0 satisfies (1 + ε′)21−a + ε′ < ε. Then ‖y(k)‖ < ‖v‖(1 + ε′) and

‖T nkx− v‖ ≤ ‖T nkx− z(k)‖+ ‖z(k) − y(k)‖+ ‖y(k) − v‖
≤ 2−k−a + 2−a‖y(k)‖+ ε′‖v‖ ≤ ‖y(k)‖2−a+1 + ε′‖v‖
≤ ‖v‖((1 + ε′)2−a+1 + ε′) ≤ ε‖v‖.

Hence x is an ε-hypercyclic vector for T .
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2.3. The operator T is not hypercyclic on Y . Suppose on the contrary that

there is a vector v = (v0, v1, . . . ) ∈ Y hypercyclic for T . Then there exists an

increasing sequence (mj)j≥0 of integers such that the quantity ‖Tmjv − (e0, 0, . . . )‖
tends to zero as j tends to infinity. In particular, reading this on the first coordinate

yields that ‖S−1
1 S−1

2 . . . S−1
mj

vmj
− e0‖ tends to zero. Here assumptions (b) and (c)

come into play:

‖vmj
− e0‖ = ‖vmj

− Smj
· · ·S1e0‖ ≤ ‖Smj

· · ·S1‖ · ‖S−1
1 · · ·S−1

mj
vmj

− e0‖
≤ 2a+1‖S−1

1 · · ·S−1
mj

vmj
− e0‖

Hence ‖vmj
− e0‖ tends to zero, thus ‖vmj

|| tends to 1, which contradicts the as-

sumption that v belongs to Y .

2.4. Construction of the sequences (nk)k≥0, (n′k)k≥0 and (Sj)j≥1. Recall that

we set formally n0 = n′0 = 0. Define the numbers nk, n
′
k inductively by setting

nk = n′k−1 + 4k + 2a + 1 + nk−1

and

n′k = nk + 5k + 2a + 1.

We define the operators Sj by induction: at step k the operators Sj are constructed

for n′k−1 < j ≤ n′k. So let k ≥ 1 and suppose that Sj ∈ B(X) are already defined

and invertible for j ≤ n′k−1. For 0 ≤ i ≤ k − 1 write

w
(k)
i = S−1

1 · · ·S−1
i y

(k)
i

and

α
(k)
i = 2−a‖y(k)

i ‖ · ‖S−1
1 · · ·S−1

i ek2+i‖.
Note that for k = 1 we have w

(1)
0 = y

(1)
0 and α

(1)
0 = 2−a‖y(1)

0 ‖.
At step k ≥ 2 we have already defined in particular the invertible operators

S1, . . . , Sk−1, since k − 1 ≤ n′k−1.

We define the operators Sj, n′k−1 < j ≤ n′k, by defining Sjei, depending on the

values of i and j:

• For i < k2, define

(1) Sjei = ei for n′k−1 < j ≤ n′k.

• For k2 ≤ i ≤ k2 + k − 1, define

(2a) Sjei = 2ei (n′k−1 < j ≤ n′k−1 + a);

(2b) Sjei = −
w

(k)

i−k2

2aα
(k)

i−k2

+ ei (j = n′k−1 + a + 1);

(2c) Sjei = 1
2
ei (n′k−1 + a + 1 < j < n′k−1 + 2a + 4k + 1 = nk − nk−1);

(2d) Sjei = ei (nk − nk−1 < j ≤ nk + k);

(2e) Sjei = 2ei (nk + k < j ≤ nk + 5k + a);
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(2f) Sjei =
w

(k)

i−k2

2aα
(k)

i−k2

+ ei (j = nk + 5k + a + 1);

(2g) Sjei = 1
2
ei (nk + 5k + a + 1 < j ≤ nk + 5k + 2a + 1 = n′k).

• For i > k2 + k − 1, define

(3a) Sjei = 1
2
ei (n′k−1 < j ≤ nk − nk−1);

(3b) Sjei = ei (nk − nk−1 < j ≤ nk + k);

(3c) Sjei = 1
2
ei (nk + k < j ≤ n′k − 1);

(3d) Sjei = 2n′k−n′k−1−nk−1−k−1ei (j = n′k).

For k ∈ N let Mk = sp[ei ; i = 0 . . . k2 + k − 1] and Lk = sp[ei ; i > k2 + k − 1].

2.5. Boundedness and invertibility of the operators Sj. We show first by

induction on k that the operators Sj, n′k−1 < j ≤ n′k, defined above are bounded,

invertible and upper triangular, and that their inverses S−1
j are also bounded and

upper triangular.

As mentioned above, for k = 1 we have w
(1)
0 = y

(1)
0 ∈ C · e0, so the operators Sj,

j ≤ n′1 are upper triangular. Moreover, for each j ≤ n′1 we have Sj(M1) ⊆ M1,

Sj(L1) ⊆ L1. The operator Sj|M1 is upper triangular with a positive main diagonal

and Sj|L1 is a nonzero scalar multiple of the identity operator. So Sj is bounded

and invertible and its inverse S−1
j is also bounded and upper triangular.

Suppose that k ≥ 2 and that the operators Sj, S
−1
j , j ≤ n′k−1, are bounded,

invertible and upper triangular. For 0 ≤ i ≤ k − 1, y
(k)
i belongs to the linear

span of the vectors el, l = 0 . . . k − 1, and so this is also the case for the vector

w
(k)
i = S−1

1 · · ·S−1
k−1y

(k)
i . Hence the operators Sj, n′k−1 < j ≤ n′k defined by (1) –

(3) are upper triangular. As above, we conclude that they are also bounded and

invertible, and that their inverses S−1
j are also bounded and upper triangular.

We now have to show that the operators Sj satisfy conditions (a)–(f).

2.6. Proof of properties (b), (e) and (d). By definition, Sje0 = e0 for all j and

Sj is equal to the identity operator for nk − nk−1 < j ≤ nk + k. Hence conditions

(b) and (e) are satisfied trivially. Then we have to prove by induction on k that

Sn′k
· · ·S1 = I, i.e., that Sn′k

· · ·Sn′k−1+1 = I:

• for i < k2, clearly Sn′k
· · ·Sn′k−1+1ei = ei since all the operators Sj, n′k−1 + 1 ≤

j ≤ n′k, act on ei as the identity operator by (1);

• for i > k2+k − 1 it is also easy to check using property (3) that Sn′k
· · ·Sn′k−1+1ei =

ei (just multiply all coefficients together);

• for k2 ≤ i ≤ k2 + k − 1 we have that Sn′k
· · ·Sn′k−1+1ei is equal to

Sn′k
· · ·Sn′k−1+a+1(2

aei) = Sn′k
· · ·Sn′k−1+a+2

(
−

w
(k)

i−k2

α
(k)

i−k2

+ 2aei

)
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by (2b). Then since w
(k)

i−k2/α
(k)

i−k2 is supported by the first k vectors el, l = 0, . . . , k−1,

by (2c),(2d) and (2e) applied successively this quantity is equal to

Sn′k
· · ·Sn′k−1+2a+4k+2

(
−

w
(k)

i−k2

α
(k)

i−k2

+ 2−4kei

)
and so equal to

Sn′k
· · ·Snk+k+1

(
−

w
(k)

i−k2

α
(k)

i−k2

+ 2−4kei

)
= Sn′k

· · ·Snk+5k+a+1

(
−

w
(k)

i−k2

α
(k)

i−k2

+ 2aei

)
.

Then the expression in (2f) destroys the quantity w
(k)

i−k2/α
(k)

i−k2 in this expression, and

we eventually get that

Sn′k
· · ·Sn′k−1+2a+4k+2

(
−

w
(k)

i−k2

α
(k)

i−k2

+ 2−4kei

)
= Sn′k

· · ·Snk+5k+a+2(2
aei) = ei.

Hence Sn′k
· · ·Sn′k−1+1 = I and property (d) is proved.

2.7. Proof of property (a). We now have prove by induction on k that ‖S−1
j ‖ ≤ 2

for every j with n′k−1 < j ≤ n′k. Let k ≥ 1 and suppose that ‖S−1
j ‖ ≤ 2 for every

j ≤ n′k−1. For 0 ≤ i ≤ k − 1 we have

S−1
1 · · ·S−1

i ek2+i = ‖S−1
1 · · ·S−1

i ek2+i‖ · ek2+i

since the operators S−1
1 , . . . , S−1

i just multiply the vector ek2+i by some coefficient.

Thus

S−1
1 · · ·S−1

i z
(k)
i = S−1

1 · · ·S−1
i y

(k)
i + 2−a‖y(k)

i ‖S−1
1 · · ·S−1

i ek2+i = w
(k)
i + α

(k)
i ek2+i.

Let r = card {s ; 1 ≤ s ≤ i and Ss 6= I}. Then ‖S−1
i · · ·S−1

i y
(k)
i ‖ ≤ 2r · ‖y(k)

i ‖ by the

induction assumption and ‖S−1
1 · · ·S−1

i ek2+i‖ = 2r by (3a). Hence

α
(k)
i = 2−a||y(k)

i ||2r ≥ 2−a||S−1
i · · ·S−1

i y
(k)
i || ≥ 2−a‖w(k)

i ‖.

Clearly ‖S−1
j ‖ ≤ 2 for all j with n′k−1 < j ≤ n′k, j 6= n′k−1 + a + 1 and j 6=

nk + 5k + a + 1. In order to prove that ‖S−1
j ‖ ≤ 2 in these two cases, we only have

to check that ‖S−1
j ei‖ ≤ 2 for every i ≥ 0: observe that at this point we use the

`1-norm in a crucial way.

• If i < k2 then , ‖S−1
n′k−1+a+1ei‖ = ‖ei‖ ≤ 2 and ‖S−1

nk+5k+a+1ei‖ ≤ 2 by (1).

• Similarly, if i > k2 + k − 1 then ‖S−1
n′k−1+a+1ei‖ ≤ 2 and ‖S−1

nk+5k+a+1ei‖ ≤ 2 by

(3).

• Let k2 ≤ i ≤ k2 + k − 1. Then

Sn′k−1+a+1Snk+5k+a+1eiSnk+5k+a+1Sn′k−1+a+1ei = ei.

So ‖S−1
nk+5k+a+1ei‖ = ‖Sn′k−1+a+1ei‖ ≤ 1 and ‖S−1

n′k−1+a+1ei‖ = ‖Snk+5k+a+1ei‖ ≤ 2.

This proves (a).
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2.8. Proof of property (f). Let k ∈ N and 0 ≤ i ≤ k − 1. Then

‖Snk
· · ·Si+1z

(k)
i ‖ = ‖Snk

· · ·S1(S
−1
1 · · ·S−1

i )z
(k)
i ‖

= ‖Snk
· · ·Sn1(w

(k)
i + α

(k)
i ek2+i)‖

= ‖Snk
· · ·Sn′k−1+1(w

(k)
i + α

(k)
i ek2+i)‖

= ‖Snk
· · ·Sn′k−1+a+1(w

(k)
i + 2aα

(k)
i ek2+i)‖

= ‖Snk
· · ·Sn′k−1+a+2(2

aα
(k)
i ek2+i)‖

= ‖Snk
· · ·Sn′k−1+2a+4k+2(2

−4kα
(k)
i ek2+i)‖

= ‖2−4kα
(k)
i ek2+i‖

= 2−4kα
(k)
i .

Then (f) is proved by observing that

2−4kα
(k)
i = 2−4k2−a||y(k)

i || . ||S−1
1 · · ·S−1

i ek2+i|| ≤ 2−4k2−a2k · 2k = 2−2k−a.

2.9. Proof of property (c). It remains to show that ‖Sj · · ·S1‖ ≤ 2a+1 for all

j ∈ N. By (d), it is sufficient to show that ‖Sj · · ·Sn′k−1
‖ ≤ 2a+1 for all k ∈ N

and n′k−1 < j ≤ n′k. Equivalently, using again the `1-norm, it must be proved that

‖Sj · · ·Sn′k−1+1ei‖ ≤ 2a+1 for every i ≥ 0 and n′k−1 < j ≤ n′k.

• For i < k2 this is clear since the operators Sj, n′k−1 < j ≤ n′k, act on ei as the

identity operator.

• For i > k2 + k − 1 this is also clear: ‖Sj · · ·Sn′k−1+1ei‖ ≤ 1 for all j, n′k−1 + 1 ≤
j ≤ n′k (just multiply the coefficients, the worst case being when j = n′k).

• For k2 ≤ i ≤ k2 + k − 1, the sequence

Sn′k−1+1ei, Sn′k−1+2Sn′k−1+1ei, . . . , Sn′k
· · ·Sn′k−1+1ei

is equal to 2ei, . . . , 2
aei,−

w
(k)

i−k2

α
(k)

i−k2

+2aei, . . . ,−
w

(k)

i−k2

α
(k)

i−k2

+2−4kei, . . . ,−
w

(k)

i−k2

α
(k)

i−k2

+2−4kei,−
w

(k)

i−k2

α
(k)

i−k2

+

2aei, 2
aei, . . . , ei. Hence

max
n′k−1+1≤j≤n′k

‖Sj · · ·Sn′k−1+1ei‖ =
∥∥∥−w

(k)

i−k2

α
(k)

i−k2

+ 2aei

∥∥∥ =
∣∣∣w(k)

i−k2

α
(k)

i−k2

∣∣∣+ 2a ≤ 2a+1.

This proves (c).

Thus the operators Sj, j ∈ N, satisfy all the properties (a) to (f), and consequently

the operator T defined here is ε-hypercyclic but not hypercyclic on Y =
⊕

`1
`1(N).

This finishes the proof of Theorem 1.3.
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2.10. Possible extensions of the method. In the same way it is possible to

construct a non-hypercyclic operator T on `1(N) on an infinite-dimensional separable

Hilbert space such that T ⊕ T is ε-hypercyclic. Indeed, consider the space Y as in

Theorem 1.3 and a sequence of pairs of vectors (y(k), ỹ(k)) which is dense in Y ⊕ Y .

In the same way one can construct a vector x⊕ x̃ ∈ Y ⊕Y which is ε-hypercyclic for

T ⊕ T . One can even have that Tn = T ⊕ · · · ⊕ T︸ ︷︷ ︸
n

is ε-hypercyclic for each n ∈ N.

Details are left to the reader.

3. Proof of Theorem 1.4

3.1. Point spectrum of the adjoint of an ε-hypercyclic operator. We need

the following auxiliary result:

Lemma 3.1. Let 0 < ε < 1 and let T ∈ B(X) be an ε-hypercyclic operator. Then

the point spectrum σp(T
∗) of the adjoint of T is empty.

Proof. Suppose on the contrary that α belongs to σp(T
∗). Let y∗ ∈ X∗ satisfy

‖y∗‖ = 1 and T ∗y∗ = αy∗, and let x ∈ X be an ε-hypercyclic vector for T . We

distinguish two cases.

• First case. We have either 〈x, y∗〉 = 0, or |α| ≤ 1. Choose t > (‖x‖+ 1)/(1− ε)

and y ∈ X with ‖y‖ = 1 and 〈y, y∗〉 > 1− ε/t. Since x is an ε-hypercyclic vector for

T , there exists an n ≥ 0 such that ‖T nx− ty‖ ≤ ε‖ty‖ = tε. So |〈T nx− y, y∗〉| ≤ tε.

On the other hand,

|〈T nx− ty, y∗〉| ≥ |〈ty, y∗〉| − |〈T nx, y∗〉| ≥ t− ε− |α|n|〈x, y∗〉| ≥ t− 1− ‖x‖.

Thus t− 1− ‖x‖ ≤ tε and so t ≤ (1 + ‖x‖)/(1− ε), a contradiction.

• Second case. We have 〈x, y∗〉 6= 0 and |α| > 1. Choose y ∈ X such that

0 6= ‖y‖ < |〈x, y∗〉|/(1 + ε). There exists n ≥ 0 such that ‖T nx − y‖ ≤ ε‖y‖, and

thus |〈T nx− y, y∗〉| ≤ ε‖y‖. On the other hand,

|〈T nx− y, y∗〉| ≥ |〈T nx, y∗〉| − |〈y, y∗〉| ≥ |αn| · |〈x, y∗〉| − ‖y‖ > |〈x, y∗〉| − ‖y‖.

Thus |〈x, y∗〉| − ‖y‖ < ε‖y‖, and so ‖y‖ > (|〈x, y∗〉|)(1 + ε), a contradiction again.

�

3.2. Proof of Theorem 1.4. Lemma 3.1 shows that we can assume that X is

infinite dimensional. We are going to prove that T is topologically transitive, i.e.

that for every nonempty open subsets U and V of X there exists an integer n ∈ N
such that T n(U) ∩ V is nonempty. Let u ∈ U and v ∈ V be two nonzero vectors

of U and V respectively, and let δ > 0 be so small that B(u, δ) ⊆ U , B(v, δ) ⊆
V and δ < min(‖u‖, ‖v‖). Let x ∈ X be an ε-hypercyclic vector for T , where

ε < δ/(6 max(‖u‖, ‖v‖)). There exists n0 ≥ 0 such that ‖T n0x − u‖ ≤ ε‖u‖ < δ,

and so T n0x belongs to U . Let us now show that there exist infinitely many n’s
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such that T nx belongs to V . Suppose on the contrary that there are only finitely

many such integers n1, . . . , nk. As above, for each v′ ∈ X with ‖v′ − v‖ < 2δ
3

there

exists an integer n(v′) which satisfies ‖T n(v′)x − v′‖ ≤ ε‖v′‖ ≤ 2ε‖v‖ < δ/3. Since

‖T n(v′)x−v‖ ≤ ‖T n(v′)x−v′‖+‖v′−v‖ < δ, we have n(v′) ∈ {n1, . . . , nk} and the ball

B(v, (2δ)/3) is covered by a finite number of balls B(T n1x, δ/3), . . . , B(T nkx, δ/3).

However, in an infinite dimensional space this is not possible. Hence there are

infinitely many n’s with ‖T nx− v‖ < δ, and in particular, there exists n1 > n0 such

that T n1x is in V . So T n1−n0T n0x = T n1x ∈ V ∩ T n1−n0(U), and consequently T is

hypercyclic.
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