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CLASSIFICATION OF IDEMPOTENT STATES ON THE
COMPACT QUANTUM GROUPS Uq(2), SUq(2), AND SOq(3)

UWE FRANZ, ADAM SKALSKI, AND REIJI TOMATSU

Abstract. We give a simple characterisation of those idempotent states on
compact quantum groups which arise as Haar states on quantum subgroups,
show that all idempotent states on quantum groups Uq(2), SUq(2), and SOq(3)
(q ∈ (−1, 0) ∪ (0, 1]) arise in this manner and list the idempotent states on
compact quantum semigroups U0(2), SU0(2), and SO0(3). In the Appendix
we provide a simple proof of coamenability of the deformations of classical
compact Lie groups.

1. Introduction

It is well known that if X is a locally compact topological semigroup, then
the space of regular probability measures on X possesses a natural convolution
product. Analogously if A is a compact quantum semigroup, i.e. a unital C∗-
algebra together with a coproduct (i.e., coassociative unital ∗-homomorphism)
∆ : A → A ⊗ A then one can consider a natural associative convolution product
on the state space of A,

λ ? µ = (λ⊗ µ) ◦∆, λ, µ ∈ S(A).

It is natural to ask whether one can characterise the states which satisfy the
idempotent property

µ ? µ = µ.

A particular and most important example of an idempotent state is the Haar
state on a given compact quantum group in the sense of Woronowicz [Wor98].
More general idempotent states arise naturally in considerations of Césaro limits
of convolution operators on compact quantum groups, cf. [FS08a]. They are also
an important ingredient in the construction of quantum hypergroups [CV99] and
occur as initial value ϕ0 of convolution semigroups (ϕt)t≥0 of states on quantum
groups, if one relaxes the initial condition ϕ0 = ε, cf. [FSc00].
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For classical compact groups, Kawada and Itô have proven that all idempo-
tent measures are induced by Haar measures of compact subgroups, see [KI40,
theorem 3]. Later this result was extended to arbitrary locally compact topo-
logical groups, see [Hey77] and references therein. In [Pal96] Pal showed that
this characterisation does not extend to quantum groups by giving an example of
an idempotent state on the Kac-Paljutkin quantum group which cannot arise as
the Haar state on a quantum subgroup. In [FS08b] the first two authors began
a systematic study of idempotent states on compact quantum groups. In par-
ticular we exhibited further examples of idempotent states on quantum groups
that are not induced by Haar states of quantum subgroups and gave a character-
isation of idempotent states on finite quantum groups in terms of sub quantum
hypergroups.

In this work we continue the analysis began in [FS08b] and show a simple
characterisation of those idempotent states which arise as Haar states on quantum
subgroups, so-called Haar idempotents. The main result of the present paper is
the classification of all idempotent states on the compact quantum groups Uq(2),
SUq(2), and SOq(3) for q ∈ (−1, 1] \ {0}. It turns out that they are all induced
by quantum subgroups, cf. Theorems 4.5, 5.1, and 5.2. As a byproduct we obtain
the classification of quantum subgroups of the afore-mentioned quantum groups,
giving a new proof of the known result of Podleś [Pod95] for SUq(2) and SOq(3).

For the value q = 0, the quantum cancellation properties fail and U0(2), SU0(2),
and SO0(3) are no longer compact quantum groups. But they can still be con-
sidered as compact quantum semigroups so that as explained above their state
spaces have natural convolution products. Using this we determine all idempo-
tent states on U0(2), SU0(2), and SO0(3), see Theorems 6.3 and 6.5 and 6.6. It
turns out that in the case q = 0 there exist additional families of idempotent
states, which do not appear when q 6= 0.

The detailed plan of the paper is as follows: in Section 2 we list the back-
ground results and definitions we need in the rest of the paper. In particular
we recall the definitions of the quantum groups being the subject of the paper,
discuss their corepresentation theory and present explicit formulas for their Haar
states. Section 3 introduces idempotent states on compact quantum groups, pro-
vides the characterisation of those idempotent states which arise as Haar states
on quantum subgroups (extending the results for finite quantum groups given
in [FS08b]) and briefly discusses the commutative and cocommutative situation
under the coamenability assumption. Section 4 contains main technical argu-
ments of the paper and ends with the characterisation of all idempotent states
on Uq(2) for q ∈ (−1, 1] \ {0}. In Section 5 we show how one can deduce the
corresponding statements for SUq(2) and SOq(3). Section 6 contains the classifi-
cation of the idempotent states on compact quantum semigroups U0(2), SU0(2),
and SO0(3). Finally in Section 7, we use the result of [FS08b] showing that idem-
potent states on compact quantum groups are group-like projections in the dual
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quantum group, giving rise to algebraic quantum hypergroups by the construc-
tion given in [LvD07], and discuss the quantum hypergroups associated to these
group-like projections for the case of SUq(2). The appendix contains a short di-
rect proof of coamenability of deformations of classical compact Lie groups based
on the representation theory developed in [KS98].

2. Preliminaries

The symbol ⊗ will denote the spatial tensor product of C∗-algebras, � will be
reserved for the purely algebraic tensor product.

2.1. Compact quantum groups. The notion of compact quantum groups has
been introduced in [Wor87a]. Here we adopt the definition from [Wor98] (Defi-
nition 2.1 of that paper).

Definition 2.1. A C∗-bialgebra (a compact quantum semigroup) is a pair (A,∆),
where A is a unital C∗-algebra, ∆ : A → A⊗ A is a unital, ∗-homomorphic map
which is coassociative

(∆⊗ idA) ◦∆ = (idA ⊗∆) ◦∆.

If the quantum cancellation properties

Lin((1⊗ A)∆(A)) = Lin((A⊗ 1)∆(A)) = A⊗ A,

are satisfied, then the pair (A,∆) is called a compact quantum group.

In quantum group theory it is quite common to write A = C(G), to emphasize
that A is considered as the algebra of functions on a compact quantum group G
— but note that the symbol G itself has no meaning.

The map ∆ is called the coproduct of A, it induces the convolution product

λ ? µ := (λ⊗ µ) ◦∆, λ, µ ∈ A∗.

A unitary U ∈Mn(A) is called a (finite-dimensional) unitary corepresentation
of A if for all i, j = 1, . . . , n we have ∆(Uij) =

∑n
k=1 Uik ⊗ Ukj. It is said to be

irreducible, if the only matrices T ∈ Mn(C) with TU = UT are multiples of the
identity matrix.

Possibly the most important feature of compact quantum groups is the exis-
tence of the dense ∗-subalgebra A (the algebra of matrix coefficients of irreducible
unitary corepresentations of A), which is in fact a Hopf ∗-algebra - so for example
∆ : A → A�A. This ∗-Hopf algebra is also denoted by A = Pol G, and treated
as the analog of polynomial functions of G.

Another fact of the crucial importance is given in the following result, Theorem
2.3 of [Wor98].

Proposition 2.2. Let A be a compact quantum group. There exists a unique
state h ∈ A∗ (called the Haar state of A) such that for all a ∈ A

(h⊗ idA) ◦∆(a) = (idA ⊗ h) ◦∆(a) = h(a)1.
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A compact quantum group is said to be in reduced form if the Haar state h is
faithful. If it is not the case we can always quotient out the kernel of h. This
procedure in particular does not influence the underlying Hopf ∗-algebra A; in
fact the reduced object may be viewed as the natural completion of A in the
GNS representation with respect to h (as opposed for example to the universal
completion of A, for details see [BMT01]). In general the reduced and universal
object need not coincide. This leads to certain technical complications which
are not of essential importance in our context (for example if a discrete group
Γ is not amenable, the reduced C∗-algebra of Γ is a proper quantum subgroup
of the universal C∗-algebra of Γ, even though they have ‘identical’ Haar states).
To avoid such difficulties we focus on the class of coamenable compact quantum
groups ([BMT01], see the Appendix to this paper for more information), for
which the reduced and universal C∗-algebraic completions of A are naturally
isomorphic. All deformations of classical compact Lie groups, so in particular
quantum groups Uq(2), SUq(2) and SOq(3) we consider in Sections 4 and 5 are
known to be coamenable ([Ban99]); we give a simple proof of this fact in the
Appendix.

The following definition was introduced by Podleś in the context of compact
matrix pseudogroups (Definition 1.3 of [Pod95]).

Definition 2.3. A compact quantum group B is said to be a quantum subgroup
of a compact quantum group A if there exists a surjective compact quantum
group morphism j : A → B, i.e. a surjective unital ∗-homomorphism j : A → B
such that

(2.1) ∆B ◦ j = (j ⊗ j) ◦∆A.

Strictly speaking, one should consider the pairs (B, j), since A can contain
several copies of B with different morphisms. We will not distinguish between
(B, j) and (B′, j′) if there exists an isomorphism of quantum groups Θ : B → B′

such that Θ◦j = j′. Note that such isomorphic pairs induce the same idempotent
state φ = hB◦j = hB′◦j′, since uniqueness of the Haar states implies hB = hB′◦Θ.

Any compact quantum group contains itself and the trivial compact quantum
group C as quantum subgroups; further these two quantum subgroups will be
called trivial. If G is a compact group and a compact quantum group A contains
G as a quantum subgroup, via a morphism j : A → C(G), we will sometimes
simply say that G is a subgroup of A.

2.2. q-Numbers. Let q 6= 1. We will use the following notation for q-numbers,

(x; q)n = (1− x)(1− qx) · · · (1− qn−1x),[
n
k

]
q

=
(q; q)n

(q; q)k(q; q)n−k

,

for n ∈ Z+, 0 ≤ k ≤ n, x ∈ R.
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2.3. The Woronowicz quantum group SUq(2). [Wor87a, Wor87b] For q ∈ R,
we denote by PolSUq(2) the ∗-bialgebra generated by α and γ, with the relations

αγ = qγα, αγ∗ = qγ∗α, γ∗γ = γγ∗,

γ∗γ + α∗α = 1, αα∗ − α∗α = (1− q2)γ∗γ,

and comultiplication and counit defined by setting

∆(α) = α⊗ α− qγ∗ ⊗ γ, ∆(γ) = γ ⊗ α+ α∗ ⊗ γ,

and ε(α) = 1, ε(γ) = 0. For q 6= 0, PolSUq(2) admits an antipode. On the
generators, it acts as

S(α) = α∗ and S(γ) = −qγ.

Denote the universal enveloping C∗-algebra of PolSUq(2) by C(SUq(2)), then ∆
extends uniquely to a non-degenerate coassociative homomorphism ∆ : C(SUq(2)) →
C(SUq(2))⊗C(SUq(2)), and the pair (C(SUq(2)),∆) is a C∗-bialgebra. For q 6= 0,
C(SUq(2)) is even a compact quantum group.

Note that the mapping α 7→ α∗ and γ 7→ qγ∗ induces isomorphisms PolSU1/q(2) →
PolSUq(2), C(SU1/q(2)) → C(SUq(2)), therefore it is sufficient to consider q ∈
[−1, 1].

2.3.1. Representation theory of C(SUq(2)). [Wor87b, VS88] The C∗-algebra C(SUq(2))
has two families of irreducible representations. The first family consists of the
one-dimensional representations ρθ, 0 ≤ θ < 2π, given by

ρθ(α) = eiθ,

ρθ(γ) = 0.

The other family consist of infinite-dimensional representations πθ, 0 ≤ θ < 2π,
acting on a separable Hilbert space h by

πθ(α)en =

{ √
1− q2n en−1 if n > 0,

0 if n = 0,

πθ(γ)en = eiθqnen,

where {en;n ∈ Z+} is an orthonormal basis for h.
This list is complete, i.e. any irreducible representation of C(SUq(2)) is uni-

tarily equivalent to a representation in one of the two families above (Theorem
3.2 of [VS88]). It is known that the C∗-algebra C(SUq(2)) is of type I, there-
fore any representation can be written as a direct integral over the irreducible
representations given above.
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2.3.2. Quantum subgroups of SUq(2). Let PolU(1) denote the ∗-algebra gener-
ated by one unitary w, ww∗ = w∗w = 1. With ∆(w) = w ⊗ w, ε(w) = 1,
S(w) = w∗, this becomes a ∗-Hopf algebra. Its enveloping C∗-algebra C(U(1)) is
a compact quantum group. Note that the ∗-algebra homomorphism PolSUq(2) →
PolU(1) defined by α 7→ w, γ 7→ 0 extends to a surjective compact quantum
group morphism j : C(SUq(2)) → C(U(1)), i.e. U(1) is a quantum subgroup
of SUq(2). Furthermore, Podleś in Theorem 2.1 of [Pod95] has shown that, for
q ∈ (−1, 0) ∪ (0, 1), U(1) and its closed subgroups are the only non-trivial quan-
tum subgroups of SUq(2). This will also follow from the results in Section 4.

There exists a second morphism j′ : C(SUq(2)) → C(U(1)), determined by
j′ : α 7→ w∗, γ 7→ 0. But we do not need to distinguish the pairs (C(U(1)), j)
and (C(U(1)), j′), since they are related by the automorphism Θ of C(U(1)) with
Θ(wk) = (w∗)k, Θ

(
(w∗)k

)
= wk, k ∈ N.

2.3.3. Corepresentations of SUq(2). Let q ∈ (−1, 0) ∪ (0, 1). We recall a few
basic facts about the corepresentations of SUq(2), for more details see [Wor87a,
Wor87b, VS88, MMN+88, Koo89]. For each non-negative half-integer s ∈ 1

2
Z+

there exists a 2s + 1-dimensional irreducible unitary corepresentation u(s) =

(u
(s)
k` )−s≤k,`≤s of SUq(2), which is unique up to unitary equivalence. Note that

that indices k, ` run over the set {−s,−s + 1, . . . , s − 1, s}, they are integers if
s ∈ Z+ is integer, and half-integer if s ∈ (1

2
Z+)\Z+ is half-integer. This conven-

tion is also used further in the paper.

The matrix elements u
(s)
k` , s ∈ 1

2
Z+, −s ≤ k, ` ≤ s, span PolSUq(2) and they

are linearly dense in C(SUq(2)), therefore will be sufficient for our calculations.
We have

u(0) = (1), u(1/2) =

(
α −qγ∗
γ α∗

)
,

u(1) =

 α2 −q
√

1 + q2γ∗α q2(γ∗)2√
1 + q2γα 1− (1 + q2)γ∗γ −q

√
1 + q2α∗γ∗

γ2
√

1 + q2α∗γ (α∗)2

 ,

and the matrix elements of the higher-dimensional corepresentations are of the
form

u
(s)
k` =


α−k−`p

(s)
k` γ

k−` for k + ` ≤ 0, k ≥ `,

α−k−`p
(s)
k` (γ∗)`−k for k + ` ≤ 0, k ≤ `,

(α∗)k+`p
(s)
k` γ

k−` for k + ` ≥ 0, k ≥ `,

(α∗)k+`p
(s)
k` (γ∗)`−k for k + ` ≥ 0, k ≤ `,

where p
(s)
k` is a polynomial in γ∗γ.

In particular, for s an integer, u
(s)
00 = ps(γ

∗γ; 1, 1; q2) is the little q-Legendre

polynomial and u
(s)
s0 =

√[
2s
s

]
q2

(α∗)sγs.
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If we define a Z-grading on PolSUq(2) by

degα = degα∗ = 0, deg γ = 1, deg γ∗ = −1,

then we have
deg u

(s)
k` = k − `.

With this grading, it is straight-forward to verify the following formula for the
square of the antipode on homogeneous elements,

(2.2) S2(a) = q2 deg aa.

2.3.4. The Haar state of SUq(2). As stated in Proposition 2.2, there exists a
unique invariant state h on the compact quantum group SUq(2), called the Haar
state. The Haar state is the identity on the one-dimensional corepresentation,
and vanishes on the matrix elements of all other irreducible corepresentations,
i.e.

h
(
u

(s)
k`

)
= δ0s

for s ∈ 1
2
Z+, −s ≤ k, ` ≤ s. On polynomials p(γ∗γ) ∈ C[γ∗γ], it is equal to

Jackson’s q-integral ([Koo89]),

h
(
p(γ∗γ)

)
= (1− q2)

∞∑
k=0

q2kp(q2k) =:

∫ 1

0

p(x)dq2x.

2.4. The compact quantum group SOq(3). A compact quantum group B
is called a quotient group of (A,∆), if there exists an injective morphism of
quantum groups j : B → A. The compact quantum group SOq(3) can be defined
as the quotient of SUq(2) by the quantum subgroup Z2, cf. [Pod95]. PolSOq(3)
is the subalgebra of PolSUq(2) spanned by the matrix elements of the unitary
irreducible corepresentations with integer label, and C(SOq(3)) its norm closure.
The Haar state on SOq(3) is simply the restriction of the Haar state on SUq(2).

Podleś [Pod95] has shown that SOq(3) and SO−q(3) are isomorphic.

2.4.1. The semigroup case q = 0. We define PolSO0(3) as the unital ∗-subalgebra
of PolSU0(2) generated by α2, γ2, γα, γ∗α, and γ∗γ, i.e.

PolSO0(3) = span
{
(α∗)rγkαs, (α∗)r(γ∗)kαs : r, k, s ∈ Z+ s.t. r + k + s even}.

Since

∆
(
(α∗)rγkαs

)
=

k∑
κ=0

(α∗)r+k−κγκαs ⊗ (α∗)rγk−καs+κ,

∆
(
(α∗)r(γ∗)kαs

)
=

k∑
κ=0

(α∗)r(γ∗)καs+k−κ ⊗ (α∗)r+κ(γ∗)k−καs,

this is a sub ∗-Hopf algebra in PolSU0(2). The C∗-bialgebra C(SO0(3)) is then
defined as the norm closure of PolSO0(3) in C(SU0(2)).
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2.4.2. The conditional expectation E : C(SUq(2)) → C(SOq(3)). Looking at the
defining relations of SUq(2), it is clear that ϑ : α → −α, γ → −γ extends
to a unique ∗-algebra automorphism of C(SUq(2)). Therefore E = 1

2
(id + ϑ)

defines a completely positive unital map from C(SUq(2)) to itself. If φ2 = hZ2 ◦ j
denotes the idempotent state on SUq(2) induced by the Haar measure of Z2 (with
j : SUq(2) → C(Z2) the corresponding surjective morphism), then we can write
E also as

E = (id⊗ φ2) ◦∆.

Checking

E(u
(s)
k` ) =

{
u

(s)
k` if s ∈ Z+,
0 else.

we can show that the range of E is equal to C(SOq(3)). Furthermore, E satisfies

∆ ◦ E = (id⊗ E) ◦∆ = (E ⊗ id) ◦∆ = (E ⊗ E) ◦∆.

2.4.3. Quantum subgroups of SOq(3). The restriction of the morphism j : C(SUq(2)) →
C(U(1)) to C(SOq(3)) is no longer surjective, its range is equal to the subalgebra
{f ∈ C(U(1)) : f(z) = f(−z)∀z ∈ U(1)} = C(U(1)/Z2). Since U(1)/Z2

∼= U(1),
we see that SOq(3) contains U(1) ∼= SO(2) and its closed subgroups as quantum
subgroups. Podleś [Pod95] has shown that these are the only non-trivial quantum
subgroups of SOq(3). Again this can be deduced from the results of Section 5.

2.5. The compact quantum group Uq(2). [Koe91, Wys04, ZZ05] Let q ∈ R.
Then PolUq(2) is defined as the ∗-bialgebra generated by a, c, and v, with the
relations

av = va, cv = vc, cc∗ = c∗c,

ac = qca, ac∗ = qc∗a, vv∗ = v∗v = 1,

aa∗ + q2cc∗ = 1 = a∗a+ c∗c,

∆(a) = a⊗ a− qc∗v∗ ⊗ c, ∆(c) = c⊗ a+ a⊗ c, ∆(v) = v ⊗ v,

ε(a) = ε(v) = 1, ε(c) = 0.

For q 6= 0, PolUq(2) admits an antipode, given by

S(a) = a∗, S(v) = v∗, S(c) = −qcv,

on the generators.
Denote the universal enveloping C∗-algebra of PolUq(2) by C(Uq(2)), then

∆ : PolUq(2) → PolUq(2) � PolUq(2) extends uniquely to a non-degenerate
coassociative homomorphism ∆ : C(Uq(2)) → C(Uq(2))⊗C(Uq(2)), and the pair
(C(Uq(2)),∆) is a C∗-bialgebra. For q 6= 0, C(Uq(2)) is even a compact quantum
group. It is again sufficient to consider q ∈ [−1, 1], since Uq(2) and U1/q(2) are
isomorphic.
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2.5.1. Quantum subgroups of Uq(2). The mapping a 7→ α, c 7→ γ, v 7→ 1 extends
to a surjective compact quantum group morphism C(Uq(2)) → C(SUq(2)) and
shows that SUq(2) is a quantum subgroup of Uq(2). Actually, as a C∗-algebra,
Uq(2) is isomorphic to the tensor product of C(SUq(2)) and C(U(1)). As a com-
pact quantum group, it is equal to a twisted product of C(SUq(2)) and C(U(1)),
cf. [Wys04], written as Uq(2) = SUq(2) nσ U(1).

Another quantum subgroup of Uq(2) is the two-dimensional torus. Denote by
Pol T2 the ∗-Hopf algebra generated by two commuting unitaries, i.e. by w1, w2

with the relations

w1w
∗
1 = 1 = w∗

1w1, w2w
∗
2 = 1 = w∗

2w2, w1w2 = w2w1, w1w
∗
2 = w∗

2w1,

∆(w1) = w1 ⊗ w1, ∆(w2) = w2 ⊗ w2, ε(w1) = ε(w2) = 1,

and C(T2) the compact quantum group obtained as its C∗-enveloping algebra.
Then the mapping a 7→ w1, c 7→ 0, v 7→ w2 extends to a unique surjective compact
quantum group morphism C(Uq(2)) → C(T2).

We will see that the twisted products SUq(2) nσ Zn, n ∈ N, the torus T2,
and its closed subgroups are the only non-trivial quantum subgroups of Uq(2), cf.
Corollary 4.7.

2.5.2. Corepresentations of Uq(2). Unitary irreducible corepresentations of Uq(2)
can be obtained as tensor product of unitary irreducible corepresentations of
SUq(2) with corepresentations of U(1), cf. [Wys04]. In this way one obtains the
following family of unitary irreducible corepresentations of Uq(2),

v(s,p) =
(
u

(s)
k` v

p+s+`
)
−s≤k,`≤s

for p ∈ Z, s ∈ 1
2
Z+. The matrix elements of these corepresentations clearly span

PolUq(2). Therefore they are dense in C(Uq(2)) and will be sufficient for the
calculations in this paper.

Assume q 6= 0. We want to compute the action of the square of the antipode on
the matrix elements of the unitary irreducible corepresentations defined above.
Since we have S2(a) = a, S2(c) = q2c, and S2(v) = v, we get

(2.3) S2(u
(s)
k` v

p+s+`) = q2(k−`)u
(s)
k` v

p+s+`

p ∈ Z, s ∈ 1
2
Z+, and −s ≤ k, ` ≤ s.

2.5.3. The Haar state of Uq(2). The Haar state h on Uq(2) can be written as a
tensor product of the Haar state on SUq(2) and the Haar state on U(1), it acts
on the matrix elements of the unitary irreducible corepresentations given above
as

h
(
u

(s)
k` v

p+s+`
)

= δ0sδ0p

for s ∈ 1
2
Z+, −s ≤ k, ` ≤ s, p ∈ Z.
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2.6. Multiplicative domain of a completely positive unital map. The
following result by Choi on multiplicative domains will be useful for us.

Lemma 2.4. [Cho74, Theorem 3.1], [Pau02, Theorem 3.18] Let T : A→ B be a
completely positive unital linear map between two C∗-algebras A and B. Set

DT = {a ∈ A : T (aa∗) = T (a)T (a∗), T (a∗a) = T (a∗)T (a)}.

Then we have

T (ab) = T (a)T (b) and T (ba) = T (b)T (a)

for all a ∈ DT and b ∈ A.

3. Idempotent states on compact quantum groups

In this section we formally introduce the notion of idempotent states on a
C∗-bialgebra, provide a characterisation of those idempotent staets on compact
quantum hroups which arise as Haar states on quantum subgroups and discuss
commutative and cocommutative cases.

Definition 3.1. Let (A,∆) be a C∗-bialgebra. A state φ ∈ A∗ is called an
idempotent state if

(φ⊗ φ) ◦∆ = φ,

i.e. if it is idempotent for the convolution product.

Assume now that (A,∆) is a compact quantum group.

Definition 3.2. A state φ ∈ A∗ is called a Haar state on a quantum subgroup
of A (or a Haar idempotent) if there exists a quantum subgroup (B, j) of A and
φ = hB ◦ j, where hB denotes the Haar state on B.

It is easy to check that each Haar state on a quantum subgroup of A is idempo-
tent. It follows from the example of Pal in [Pal96] and our work in [FS08b] that
not every idempotent state is a Haar idempotent. We have the following simple
characterisation, extending Theorem 4.5 of [FS08b].

Theorem 3.3. Let A be a compact quantum group, let φ ∈ A∗ be an idempotent
state and let Nφ = {a ∈ A : φ(a∗a) = 0} denote the null space of φ. Then φ is a
Haar idempotent if and only if Nφ is a two-sided (equivalently, selfadjoint) ideal.

Proof. It is an easy consequence of the Cauchy-Schwarz inequality that Nφ is a
left ideal; thus it is a two-sided ideal if and only if it is selfadjoint.

Suppose first that φ is a Haar idempotent, i.e. there exists a compact quantum
group B and a surjective compact quantum group morphism j : A → B such that
φ = hB ◦ j. Recall that we assumed hB to be faithful, so that Nφ = {a ∈ A :
j(a∗a) = 0} = {a ∈ A : j(a) = 0}, which is obviously self-adjoint.
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Suppose then that Nφ is a two-sided selfadjoint ideal. Let B := A/Nφ and let
πφ : A → B denote the canonical quotient map. We want to define the coproduct
on B by the formula

(3.1) ∆B ◦ πφ(a) = (πφ ⊗ πφ) ◦∆(a) ∈ B⊗ B.

We need to check that it is well-defined - to this end we employ a slightly modified
idea from the proof of Theorem 2.1 of [BMT01]. A standard use of Cauchy-
Schwarz inequality implies that φ|Nφ

= 0, so that there exists a faithful state
ψ ∈ B∗ such that ψ ◦ πφ = φ. Faithfulness of ψ implies that also the map
idB⊗ψ : B⊗B → B is faithful (note that here faithfulness of a positive map T is
understood in the usual sense, namely Ta = 0 and a ≥ 0 imply a = 0) and thus
also ψ ⊗ ψ ∈ (B⊗ B)∗ is faithful. Suppose then that a ∈ Nφ. We have then

0 = φ(a∗a) = (φ⊗ φ) ◦∆(a∗a) = (ψ ⊗ ψ) ◦ (πφ ⊗ πφ)(∆(a∗a)),

so also (πφ ⊗ πφ)∆(a∗a) = 0. The last statement implies that (πφ ⊗ πφ)∆(a) = 0
and validity of the definition given in the formula (3.1) is established. The fact
that ∆B is a coassociative unital ∗-homomorphism follows immediately from the
analogous properties of ∆; similarly the cancellation properties of B follow from
obvious equalities of the type

(B⊗ 1B)∆B(B) = (πφ ⊗ πφ)((A⊗ 1A)∆(A))

and the cancellation properties of A. Thus (B,∆B) is a compact quantum group
and it remains to check that ψ defined above is actually the invariant state on B.
This is however an immediate consequence of the following observation:

(ψ ⊗ ψ) ◦∆B ◦ πφ = (φ⊗ φ) ◦∆ = φ = ψ ◦ πφ,

so that ψ is an idempotent state and, as it is faithful, it has to coincide with the
Haar state of B ([Wor98]). �

Note that the first implication remains valid without the assumption of faithful-
ness of hB; alternatively one could exploit the modular properties of Haar states
on not-necessarily-coamenable compact quantum groups implying that their null
spaces are always selfadjoint.

The following proposition will be useful for the classification of idempotent
states on in the next two sections, cf. [FS08b, Section 3].

Proposition 3.4. Let φ ∈ A∗ be an idempotent state. Then φ is invariant under
the antipode, in the sense that φ(a) = φ ◦ S(a) for all a belonging to the ∗-Hopf
algebra A.

3.1. Idempotent states on cocommutative compact quantum groups.
Suppose now that A is cocommutative, i.e. ∆ = τ ◦∆, where τ : A⊗ A → A⊗ A
denoted the usual tensor flip. It is easy to deduce from the general theory of
duality for quantum groups ([KV00]) that A is isomorphic to the dual of C0(Γ),
where Γ is a (classical) discrete group. For the reasons mentioned in the previous
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section in general we need to distinguish between the reduced and the universal
dual; thus we restrict our attention to amenable Γ. The following generalises
Theorem 6.2 of [FS08b] to the infinite-dimensional context.

Theorem 3.5. Let Γ be an amenable discrete group and A = C∗(Γ). There is
a one-to-one correspondence between idempotent states on A and subgroups of Γ.
An idempotent state φ ∈ A∗ is a Haar idempotent if and only if the corresponding
subgroup of Γ is normal.

Proof. The dual of A may be identified with the Fourier-Stieltjes algebra B(Γ).
The convolution of functionals in A∗ corresponds then to the pointwise multipli-
cation of functions in B(Γ) and φ ∈ B(Γ) corresponds to a positive (respectively,
unital) functional on A if and only if it is positive definite (respectively, φ(e) = 1).
This implies that φ ∈ B(Γ) corresponds to an idempotent state if and only if it is
an indicator function (of a certain subset S ⊂ Γ) which is positive definite. It is
a well known fact that this happens if and only if S is a subgroup of Γ ([HR70],
Cor. (32.7) and Example (34.3 a)). It remains to prove that if S is a subgroup of
Γ then χS ∈ B(Γ) is a Haar state on a quantum subgroup of A if and only if S is
normal. For the ‘if’ direction assume that S is a normal subgroup and consider
the compact quantum group B = C∗(Γ/S) (recall that quotients of amenable
groups are amenable). Let F (Γ) denote the dense ∗-subalgebra of A given by the
functions f =

∑
γ∈Γ αγλγ (αγ ∈ C, {γ : αγ 6= 0} finite). Define j : F (Γ) → B by

j(f) =
∑
γ∈Γ

αγλ[γ],

where f is as above. So-defined j is bounded: note that it is a restriction of the
transpose of the map T : B∗ → A∗ given by

T (φ)(γ) = φ([γ]), φ ∈ B(Γ/S), γ ∈ Γ.

The map T is well defined as it maps positive definite functions into positive
definite functions; these generate the relevant Fourier-Stieltjes algebras. Further
the closed graph theorem allows to prove that T is bounded; therefore so is
T ∗ : A∗∗ → B∗∗ and j = T ∗|F (Γ). It is now easy to check that the extension of j
to A is a surjective unital ∗-homomorphism (onto B). As the Haar state on B is
given by

hB

 ∑
κ∈Γ/S

ακλκ

 = α[e],

there is

hB(j(f)) =
∑
γ∈S

αγ,

so that hB ◦ j corresponds via the identification of A∗ to B(Γ) exactly to the
characteristic function of S.
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The other direction follows exactly as in [FS08b]; we reproduce the argument
for the sake of completeness. Suppose that S is a subgroup of Γ which is not
normal and let γ0 ∈ Γ, s0 ∈ S be such that γ0s0γ

−1
0 /∈ S. Denote by φS the state

on A corresponding to the indicator function of S. Define f ∈ A by f = λγ0s0−λγ0 .
Then

f ∗f = 2λe − λs−1
0
− λs0 , ff ∗ = 2λe − λγ0s−1

0 γ−1
0
− λγ0s0γ−1

0
.

This implies that
φS(f ∗f) = 0, φS(ff ∗) = 2,

so that KerφS is not selfadjoint and φS cannot be a Haar idempotent. �

Corollary 3.6. Let A be a coamenable cocommutative compact quantum group.
The following are equivalent:

(1) all idempotent states on A are Haar idempotents;
(2) A ∼= C∗(Γ) for an amenable hamiltonian (i.e. containing no non-normal

subgroups) discrete group Γ.

4. Idempotent states on Uq(2) (q ∈ (−1, 0) ∪ (0, 1])

For q = 1, C(Uq(2)) is equal to the C∗-algebra of continuous functions on the
unitary group U(2), and by Kawada and Itô’s classical theorem all idempotent
states on C(U(2)) come from Haar measures of compact subgroups of U(2).
In this section we shall classify the idempotent states on C(Uq(2)) for −1 <
q < 1, q 6= 0. It turns out that they all correspond to Haar states of quantum
subgroups of Uq(2).

We begin with some preparatory lemmas.

Lemma 4.1. Let φ : PolUq(2) → C be an idempotent state. Then we have

φ(u
(s)
k` v

r) = 0 if k 6= `,

and φ(u
(s)
kk v

r) ∈ {0, 1}, for all s ∈ 1
2
Z+, r ∈ Z, −s ≤ k, ` ≤ s.

Proof. By Proposition 3.4, we have φ◦S = φ on PolUq(2). Therefore, by Equation
(2.3),

φ(u
(s)
k` v

r) = φ ◦ S2(u
(s)
k` v

r) = q2(k−`)φ(u
(s)
k` v

r)

i.e. φ(u
(s)
k` v

r) = 0 for k 6= `.
Define the matrices Ms,p(φ) ∈M2s+1(C) by

Ms,p(φ) =
(
φ(u

(s)
k` v

p+s+`)
)
−s≤k,`≤s

.

Then φ = φ ? φ is equivalent to

Ms,p(φ) =
(
Ms,p(φ)

)2
for all s ∈ 1

2
Z+, p ∈ Z. As we have already seen that these matrices are diagonal,

it follows that the diagonal entries can take only the values 0 and 1. �
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Lemma 4.2. If φ : PolUq(2) → C is an idempotent state with φ(u
(1)
00 ) = 1, then

there exists an idempotent state φ̃ : Pol T2 → C such that

φ = φ̃ ◦ πT2 .

Proof. By the previous lemma φ(c) = φ(c∗) = 0

We have u
(1)
00 = 1−(1+q2)c∗c, therefore φ(u

(s)
00 ) = 1 is equivalent to φ(c∗c) = 0.

Then by Lemma 2.4, c, c∗ ∈ Dφ, and φ vanishes on expressions of the form uc,

cu, uc∗, c∗u with u ∈ PolUq(2). But since vc = cv and u
(s)
k` c = q−(k−`)cu

(s)
k` ,

u
(s)
k` c

∗ = q−(k−`)c∗u
(s)
k` for s ∈ 1

2
Z+, −s ≤ k, ` ≤ s, we can deduce that φ vanishes

on the ideal

Ic = {u1cu2, u1c
∗u2;u1, u2 ∈ PolUq(2)}

generated by c and c∗. It follows that we can divide out Ic, i.e. there exists a
unique state φ̃ on PolUq(2)/Ic such that the diagram

PolUq(2)
π //

φ

��

PolUq(2)/Ic

φ̃
wwnnnnnnnnnnnnn

C

commutes.
But ε(Ic) = 0,

∆(Ic) ⊆ Ic � PolUq(2) + PolUq(2)� Ic,

and S(Ic) ⊆ Ic i.e. Ic is also a Hopf ∗-ideal and PolUq(2)/Ic is a ∗-Hopf algebra.
One easily verifies that actually PolUq(2)/Ic

∼= Pol T2. Since πT2 : PolUq(2) →
Pol T2 is surjective coalgebra morphism, its dual π∗T2 : (Pol T2)∗ 3 f 7→ π∗T2(f) =

f ◦ πT2 ∈ (PolUq(2))∗ is an injective algebra homomorphism, and φ̃ = (π∗T2)−1(φ)
is again idempotent. �

Lemma 4.3. If φ : PolUq(2) → C is an idempotent state with φ(u
(1)
00 ) = 0, then

φ(u
(s)
00 ) = 0 for all integers s ≥ 1, i.e. we have φ|C[c∗c] = h|C[c∗c].

Proof. Recall u
(1)
00 = 1 − (1 + q2)c∗c. Therefore φ(u

(s)
00 ) = 0 is equivalent to

φ(c∗c) = 1
1+q2 .

Assume there exists an integer s > 1 with φ(u
(s)
00 ) = 1. Then the Cauchy-

Schwarz inequality implies φ((u
(s)
00 )∗u

(s)
00 ) ≥ 1. The unitarity of the corepresenta-

tion v(s,p) gives

1 =
s∑

k=−s

(
u

(s)
k0 v

p+s
)∗
u

(s)
k0 v

p+s =
s∑

k=−s

(
u

(s)
k0

)∗
u

(s)
k0 ,
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therefore

φ

 ∑
k∈{−s,...,s}

k 6=0

(
u

(s)
k0

)∗
u

(s)
k0

 ≤ 0,

and in particular φ
(
(u

(s)
s0 )∗u

(s)
s0

)
= 0. We have(

u(s)
s

)∗
u

(s)
s0 =

[
2s
s

]
q2

(
(a∗)scs

)∗
(a∗)scs =

[
2s
s

]
q2

(c∗)scsas(a∗)s

= (c∗c)s(1− q2c∗c) · · · (1− q2sc∗c)

By the representation theory of C(SUq(2)), c∗c is positive self-adjoint contrac-
tion, with the spectrum σ(c∗c) ⊆ {q2n;n ∈ Z+} ∪ {0}, and therefore the prod-
uct (1 − q2c∗c) · · · (1 − q2sc∗c) defines a strictly positive operator. Therefore

φ
(
(u

(s)
s,0)

∗u
(s)
s,0

)
= 0 implies φ

(
(c∗c)s

)
= 0, which is impossible if φ(c∗c) = 1

1+q2 > 0.

Therefore φ(u
(s)
00 ) = 0 for all integers s ≥ 1. �

Lemma 4.4. Let

A0 = span{u(s)
k` v

r; s ∈ 1

2
Z+, s > 0,−s ≤ k, ` ≤ s, r ∈ Z}

i.e. A0 is the subspace spanned by the matrix elements of the unitary irreducible
corepresentations of dimension at least two.

Assume that φ|C[c∗c] = h|C[c∗c], i.e.

φ(u
(s)
00 ) = δ0s

for s ∈ Z+.
Then we have φ|A0 = h|A0, i.e.

φ
(
u

(s)
k` v

r
)

= 0

for all r ∈ Z, s ∈ 1
2
Z+, s > 0, and −s ≤ k, ` ≤ s.

Proof. By Lemma 4.1, we already know that φ(u
(s)
k` v

r) ∈ {0, 1}, and φ(u
(s)
k` v

r) = 0
for k 6= `. Assume there exist s ∈ 1

2
Z+, s > 0, −s ≤ k ≤ s and r ∈ Z such that

φ(u
(s)
kk v

r) = 1.

We will show that this is impossible, if φ agrees with the Haar state h on the
subalgebra generated by c∗c.

By the Cauchy-Schwarz inequality, we have

φ
(
(u

(s)
kk )∗u

(s)
kk

)
≥
∣∣∣φ(u

(s)
kk v

r)
∣∣∣2 = 1.

Applying φ to
s∑

`=−s

(u
(s)
`k )∗u

(s)
`k = 1,
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we can deduce ∑
`∈{−s,...,s}

6̀=k

φ
(
(u

(s)
`k )∗u

(s)
`k

)
= 0.

But this contradicts φ|C[c∗c] = h|C[c∗c], because∑
`∈{−s,...,s}

6̀=k

(u
(s)
`k )∗u

(s)
`k = 1− (u

(s)
kk )∗u

(s)
kk

is a non-zero positive element in C[c∗c] and the Haar state is faithful. �

We can now give a description of all idempotent states on Uq(2). It turns out
that they are all induced by Haar states of quantum subgroups of Uq(2).

Theorem 4.5. Let q ∈ (−1, 0) ∪ (0, 1). Then the following is a complete list of
the idempotent states on the compact quantum group Uq(2).

(1) The Haar state h of Uq(2).

(2) φ̃ ◦ πT2, where πT2 denotes the surjective quantum group morphism πT2 :

C(Uq(2)) → C(T2) and φ̃ is an idempotent state on C(T2). In particular
if ε̃ denotes the counit of C(T2), then ε̃ ◦ πT2 is the counit of Uq(2).

(3) The states induced by the Haar states of the compact quantum subgroups
SUq(2) nσ Zn of Uq(2) ∼= SUq(2) nσ U(1), for n ∈ N. The case of n = 1
corresponds to the Haar state on SUq(2) viewed as a quantum subgroup
of Uq(2).

Remark 4.6. (1) The compact quantum group C(T2) is commutative, by Kawada
and Itô’s theorem all idempotent states on C(T2) are induced by Haar
measures of compact subgroups of the two-dimensional torus T2.

(2) As a compact quantum group, Zn is given by

Pol Zn = C(Zn) = span {w0, . . . , wn−1},
with wkw` = wk+` mod n, S(wk) = wn−k = (wk)

∗, ∆(wk) = wk ⊗ wk,
and ε(wk) = 1 for k = 0, . . . , n − 1. The Haar state of Zn is given by
h(wk) = δ0k. C(Zn) can also be obtained from PolU(1) by dividing out
the Hopf ∗-ideal {u1(w

n − 1)u2; u1, u2 ∈ PolU(1)}.
Analogous to [Wys04, Section 4], one can define the twisted prod-

uct SUq(2) nσ Zn. Alternatively, Pol(SUq(2) nσ Zn) can be obtained
from Uq(2) ∼= SUq(2) nσ U(1) by dividing out the Hopf ideal {u1(v

n −
1)u2; u1, u2 ∈ PolUq(2)}, and C(SUq(2) nσ Zn) as its C∗-completion.
This construction shows that SUq(2) nσ Zn is a quantum subgroup of
Uq(2) ∼= SUq(2) nσ U(1). As in the case of Uq(2), C(SUq(2) nσ Zn) =
C(SUq(2))⊗ C(Zn) as a C∗-algebra, and the Haar state of SUq(2) nσ Zn

is equal to the tensor product of the Haar states of SUq(2) and Zn.

Proof. (of Theorem 4.5) Let φ : C(Uq(2)) → C be an idempotent state on Uq(2).
Clearly φ is uniquely determined by its restriction to PolUq(2).
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We distinguish two cases.

Case (i) φ(u
(1)
00 ) = 1. In this case Lemma 4.2 shows that φ is induced by an

idempotent state on the quantum subgroup T2 of Uq(2), i.e. φ = φ̃ ◦ πT2 for some

idempotent state φ̃ : C(T2) → C. This case includes the counit ε of Uq(2), it
corresponds to the trivial subgroup {1} of T2.

Case (ii) φ(u
(1)
00 ) = 0. In this case Lemma 4.3 and Lemma 4.4 imply that φ agrees

with the Haar state h on the subspace A0, i.e.

φ(u
(s)
k` v

r) = 0

for all s ∈ 1
2
Z+, s > 0, −s ≤ k, ` ≤ s, and r ∈ Z. It remains to determine φ on

the ∗-subalgebra alg{v, v∗} generated by v, since PolUq(2) = A0⊕alg{v, v∗} as a
vector space. But this subalgebra is isomorphic to the ∗-Hopf algebra PolU(1) of
polynomials on the unit circle, and therefore φ|alg{v,v∗} has to be induced by the
Haar measure of a compact subgroup of U(1). We have the following possibilities.

(1) φ|alg{v,v∗} = εU(1), i.e. the restriction of φ to alg{v, v∗} is equal to the
counit of PolU(1) . In this case we have

φ(u
(s)
k` v

r) =

{
1 if s = k = ` = 0, and r ∈ Z,
0 else.

This formula shows that φ = hSUq(2)◦πSUq(2), where πSUq(2) is the quantum
groups morphism from Uq(2) onto SUq(2) and hSUq(2) denotes the Haar
state of SUq(2).

(2) φ|alg{v,v∗} = hU(1), i.e. the restriction of φ to alg{v, v∗} is equal to the Haar
state of PolU(1) . In this case we have

φ(u
(s)
k` v

r) =

{
1 if s = k = ` = 0 and r = 0,
0 else.

We see that in this case φ is the Haar state h of Uq(2).
(3) φ|alg{v,v∗} is the idempotent state on U(1) induced by the Haar measure

of the subgroup Zn ⊆ U(1) for some n ∈ N, n ≥ 2. In this case we have

φ(u
(s)
k` v

r) =

{
1 if s = k = ` = 0 and r ≡ 0 mod n,
0 else.

It follows that φ is induced by the Haar state of the quantum subgroup
SUq(2) nσ Zn of Uq(2) ∼= SUq(2) nσ U(1).

Conversely, all the states we have found are induced by Haar states on quantum
subgroups of Uq(2), therefore they are clearly idempotent. It can be also checked
directly. �

We see that all idempotent states on Uq(2) are induced from Haar states of
quantum subgroups of Uq(2). We can also deduce the complete list of quantum
subgroups of Uq(2):
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Corollary 4.7. Let q ∈ (−1, 0) ∪ (0, 1). Then the following is a complete list of
the non-trivial quantum subgroups of Uq(2).

(1) The two-dimensional torus and its closed subgroups.
(2) The compact quantum groups of the form SUq(2)nσ Zn, with n ∈ N (here

the twisting is identical to that appearing in the identification Uq(2) ∼=
SUq(2) nσ T).

5. Idempotent states on compact quantum groups SUq(2) and
SOq(3) (q ∈ (−1, 0) ∪ (0, 1])

Let us first discuss the case q = 1. C(SU1(2)) and C(SO1(3)) are the algebras
of continuous functions on the groups SU(2) and SO(3). All idempotent states
correspond to Haar measures on compact subgroups. The list of these subgroups
can be found, e.g., in [Pod95].

Consider now the generic case q ∈ (−1, 0) ∪ (0, 1). Every idempotent state
on SUq(2) induces an idempotent state on Uq(2), since SUq(2) is a quantum
subgroup of Uq(2). This observation allows us to deduce all idempotent states on
SUq(2) from Theorem 4.5. We omit the details and just state the result.

Theorem 5.1. Let q ∈ (−1, 0) ∪ (0, 1). The Haar state, the counit, and the
idempotent states induced by the quantum subgroups U(1) and Zn, 2 ≤ n ≤ ∞,
are the only idempotent states on SUq(2).

Since the morphism j : C(SUq(2)) → C(U(1)) gives the diagonal matrices

(
j(u

(s)
k` )
)
−s≤k,`≤s

=


z2s

z2s−2

. . .
z−2s

 ,

we get

(5.1)
(
hU(1) ◦ j

)
(u

(s)
k` ) =

{
1 if s ∈ Z+, k = ` = 0,
0 else.

and (
hZ2n ◦ j

)
(u

(s)
k` ) =

{
1 if s ∈ Z+, k = `, 2k ≡ 0 mod 2n,
0 else.

(5.2)

(
hZ2n+1 ◦ j

)
(u

(s)
k` ) =

{
1 if k = `, 2k ≡ 0 mod 2n+ 1,
0 else.

(5.3)

for n ∈ N.
Consider now the idempotent states on SOq(3). Since C(SOq(3)) is a subal-

gebra of C(SUq(2)) and since the inclusion map is a quantum group morphism,
every idempotent state on SUq(2) gives an idempotent state on SOq(3) by re-
striction. We will show that all idempotent states on SOq(3) arise in this way.
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It follows that all idempotent states on SOq(3) are induced from Haar states of
quantum subgroups.

Theorem 5.2. Let q ∈ (−1, 0)∪(0, 1) and n an odd integer. Then the restrictions
to C(SOq(3)) of the idempotent states hZn ◦ j and hZ2n ◦ j coincide.

Furthermore, the Haar state, the counit, and the states induced from the Haar
states on the quantum subgroups U(1) ∼= SO(2) and its closed subgroups are the
only idempotent states on SOq(3).

Proof. The first statement follows from Equations (5.2) and (5.3).
Let now φ be an idempotent state on SOq(3). Denote by E the conditional ex-

pectation from C(SUq(2)) onto C(SOq(3)) introduced in Paragraph 2.4.2. Then

φ̂ = φ ◦E defines an idempotent state on SUq(2) such that φ = φ̂|C(SOq(3)). With
this observation Theorem 5.2 follows immediately from Theorem 5.1. �

Remark 5.3. This method applies to quotient quantum groups in general. Let A
be a compact quantum group. A quantum subgroup (B, j) is called normal, if
the images of the conditional expectations

EA/B =
(
id⊗ (hB ◦ j)

)
◦∆,

EB\A =
(
(hB ◦ i)⊗ id

)
◦∆,

coincide, cf. [Wan08, Proposition 2.1 and Definition 2.2]. In this case the quo-
tient A/B = EA/B(A) has a natural compact quantum group structure and all
idempotent states on A/B arise as restrictions of idempotent states on A.

As a corollary to Theorems 5.1 and 5.2, we recover Podleś’ classification [Pod95]
of the quantum subgroups of SUq(2) and SOq(3).

Corollary 5.4. Let q ∈ (−1, 0) ∪ (0, 1). Then U(1) ∼= SO(2) and its closed
subgroups are the only non-trivial quantum subgroups of both SUq(2) and SOq(3).

6. Idempotent states on compact quantum semigroups U0(2), SU0(2)
and SO0(3)

In this section we compute all idempotent states on U0(2), SU0(2) and SO0(3).
As in the cases q 6= 0 considered earlier we begin with the C∗-bialgebra C(U0(2)).
Again we first need some preparatory observations and lemmas.

Note that πT2 : C(Uq(2)) → C(T2) is a well-defined ∗-algebra and coalgebra
morphism also for q = 0, so T2 and its compact subgroups induce idempotent
states on U0(2).

For q = 0 the algebraic relations of a and c become

cc∗ = c∗c, aa∗ = 1, ac = ac∗ = 0, a∗a = 1− c∗c.

As a is a coisometry, we have a decreasing family of orthogonal projections
(a∗)nan, n ∈ N , which are group-like, i.e. ∆((a∗)nan) = (a∗)nan ⊗ (a∗)nan, and
c∗c = 1− a∗a is also an orthogonal projection.
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Denote by M the unital semigroup U(1)× (Z+ ∪ {∞}) with the operation

(z1, n1) · (z2, n2) = (z1z2,min(n1, n2))

for z1, z2 ∈ U(1), n1, n2 ∈ Z+ ∪ {∞}. This is an abelian semigroup with unit
element eM = (1,∞). Equip Z+∪{∞} with the topology in which a subset of Z+∪
{∞} is open if and only if it is either an arbitrary subset of Z+ or the complement
of a finite subset of Z+ (i.e. Z+ ∪ {∞} is the one-point-compactification of Z+),
and equip U(1)× (Z+ ∪ {∞}) with the product topology.

The C∗-bialgebra C(M) will play an important role in this section.

Lemma 6.1. A probability measure µ on M is idempotent if and only if there
exists an n ∈ Z+ ∪ {∞} and an idempotent probability ρ on U(1) such that
µ = ρ⊗ δn.

Proof. Any probability on M can be expressed as a sum µ =
∑∞

n=0 ρn ⊗ δn +
ρ∞⊗ δ∞, where ρn, n ∈ Z+ ∪{∞} are uniquely determined positive measures on
U(1) with total mass

∑∞
n=0 ρn(U(1)) + ρ∞(U(1)) = 1, and δn denotes the Dirac

measure on Z+ ∪ {∞}, i.e.

δn(Q) =

{
1 if n ∈ Q,
0 if n 6∈ Q,

for Q ⊆ Z+ ∪ {∞}. We have

(δn ? δm)(Q) = (δn ⊗ δm)
({

(k, `) ∈ (Z+ ∪ {∞})2; min(k, `) ∈ Q
})

=

{
1 if min(n,m) ∈ Q,
0 if min(n,m) 6∈ Q,

i.e. δn ? δm = δmin(n,m). Therefore

µ?2 = ρ?2
∞ ⊗ δ∞ +

∞∑
n=0

(
ρn ?

(
ρn + 2

∞∑
m=n+1

ρm + 2 ρ∞

))
⊗ δn.

Clearly, if ρ∞ is an idempotent probability on U(1) and ρn = 0 for n ∈ Z+, then
µ = ρ∞ ⊗ δ∞ is idempotent.

Assume now that ρ∞(U(1)) < 1. Then there exists a unique n ∈ Z+ such
that

∑∞
m=n+1 ρm(U(1)) < 1,

∑∞
m=n ρm(U(1)) = 1 (i.e. n is the biggest integer

m for which ρ≥m = ρ∞ +
∑∞

k=m ρk is a probability). Let p = ρn(U(1)). If µ is
idempotent, then we have

p = µ(U(1)× {n}) = µ?2(U(1)× {n}) = (ρn ? (2ρ≥n − ρn)) (U(1)) = 2p− p2.

Since p = ρn(U(1)) > 0 by the choice of n, we get p = 1, i.e. ρm = 0 for m 6= n
and ρn is a probability. Then ρn has to be idempotent, and µ = ρn ⊗ δn is of the
desired form.

Conversely, any probability of the form µ = ρn ⊗ δn with n ∈ Z+ ∪ {∞} and
ρn idempotent is idempotent. �
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For k ∈ Z and n ∈ Z+, define functions Θk
n : M → C by

Θk
n(z,m) =

{
zk if m ≥ n,
0 if m < n.

The span of these functions is dense in C(M), and they satisfy

Θk
nΘ`

m = Θk+`
max(n,m), (Θk

n)∗ = Θ−k
n , and ε(Θk

n) = Θk
n(eM) = 1.

For their coproduct, we have

∆Θk
n

(
(z1,m1), (z2,m2)

)
= Θk

n

(
z1z2,min(m1,m2)

)
=

{
(z1z2)

k if m1,m2 ≥ n,
0 else,

i.e. ∆Θk
n = Θk

n ⊗Θk
n.

Proposition 6.2. The semigroup M is a quantum quotient semigroup of U0(2),
in the sense that there exists an injective ∗-algebra homomorphism j from PolM :=
span{Θk

n;n ∈ Z+, k ∈ Z} to PolU0(2) such that

∆M ◦ j = (j ⊗ j) ◦∆.

Proof. For n ∈ Z+ and k ∈ Z, define Ek
n = (α∗)nαnvk ∈ PolUq(2). From

the defining relations of U0(2), one can check that the Ek
n satisfy the same ∗-

algebraic and coalgebraic relations as the Θk
n, i.e. j(Θk

n) = Ek
n defines a ∗-bialgebra

homomorphism j : PolM → PolU0(2).
Let us show that j is injective. Assume there exists a non-zero function f =∑
k,n λk,nΘk

n such that j(f) = 0. Let n0 be the smallest integer for which there
exists a k ∈ Z such that λk,n 6= 0. Take the representation π = π0 ⊗ idL2(T) of
C(U0(2)) ∼= C(SU0(2)) ⊗ C(U(1)) (recall that π0 was defined in Section 2.3.1).
Since j(f) = 0, the operator χ = π(j(f)) =

∑
λk,nπ0 ((α∗)nαn) vk has to vanish.

Apply χ to en0 ⊗ 1. Since π0 ((α∗)nαn) en0 = 0 for n > n0, we get χ(en0 ⊗ 1) =∑
k λn0,ke0 ⊗ vk ∈ h ⊗ L2(T), which implies λn0,k = 0 for all k, in contradiction

to the choice of n0. �

We can now give a description of all idempotent states on U0(2).

Theorem 6.3. The following gives a complete list of the idempotents states on
U0(2).

(1) The idempotent states induced by the Haar measures on the two-dimensional
torus T2 and its closed subgroups. If ρ denotes the Haar measure of T2 or
one of its closed subgroups, then the corresponding idempotent φρ state is
given by

φρ

(
(a∗)rckasv`

)
= δ0k

∫
T2

ws−r
1 w`

2dρ(w1, w2)

for n,m ∈ Z+, k, ` ∈ Z. This includes the counit of U0(2), for the trivial
subgroup {1} of T2.
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(2) The family Ψn,m = ψn ⊗ φm, n ∈ Z+, m ∈ N ∪ {∞}. Here φm is an
idempotent state on C(U(1)), namely the Haar measure for m = ∞ and
the idempotent state induced by the Haar measure of Zm for m ∈ N. And
ψn, n ∈ Z+ is the idempotent state on C(SU0(2)) defined by

ψn

(
(α∗)rγkαs

)
=

{
1 if r = s ≤ n and k = 0
0 else.

Remark 6.4. The state Ψ0,∞ can be considered as the Haar state on U0(2) since
it is invariant, i.e.

Ψ0,∞ ? f = f ?Ψ0,∞ = f(1)Ψ0,∞

for any f ∈ C(U0(2))∗. But Ψ0,∞ is not faithful. Its null space

NΨ0,∞ = {u ∈ PolU0(2); Ψ0,∞(u∗u) = 0}
= span {(a∗)kcma`vn; k ∈ Z+,m, n ∈ Z, ` ≥ 1}

is a left ideal, but not self-adjoint or two-sided. It is a subcoalgebra, i.e. we have

∆NΨ0,∞ ⊆ NΨ0,∞ �NΨ0,∞ ,

but it is not a coideal, since the counit does not vanish on NΨ0,∞ .

Proof. (of Theorem 6.3) Let φ : C(U0(2)) → C be an idempotent state on U0(2).
Then φ induces an idempotent state φ ◦ j on C(M). By Lemma 6.1, φ ◦ j is
integration against a probability measure of the form ρ⊗ δn with n ∈ Z+ ∪ {∞}
and ρ an idempotent measure on U(1). This determines φ on the subalgebra
generated by v and (a∗)rar, r ∈ N, we have

φ
(
(a∗)rarvk

)
=

{
ρ(vk) if r ≤ n,
0 else,

for k ∈ Z, r ∈ Z+.
Case (i): n = ∞. For k > 0 and any r, s ∈ Z+, ` ∈ Z, we have∣∣φ ((a∗)rckasv`

)∣∣2 ≤ φ ((a∗)rar)φ
(
(a∗)s(c∗)kckas

)
= φ

(
(a∗)sas − (a∗)s+1as+1

)
= 0,

and therefore φ vanishes on the ∗-ideal Ic generated by c. As in the proof of
Lemma 4.2, it follows that φ is induced by an idempotent state on PolU0(2)/Ic

∼=
Pol T2, i.e. φ is of the form given in (1).
Case (ii): n = 0. Using again the Cauchy-Schwarz inequality, we get∣∣φ ((a∗)rcka0v`

)∣∣2 ≤ φ ((a∗)rar)φ
(
(a∗)sas − (a∗)s+1as+1

)
,(6.1) ∣∣φ ((a∗)rckasv`

)∣∣2 ≤ φ
(
(a∗)rar − (a∗)r+1ar+1

)
φ ((a∗)sas) ,(6.2) ∣∣φ ((a∗)rasv`

)∣∣2 ≤ φ ((a∗)rar)φ ((a∗)sas) ,(6.3)
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for k, r, s ∈ Z+, ` ∈ Z. This shows that φ
(
(a∗)rckarv`

)
vanishes, unless r = s = 0.

different from 0. But then φ = φ ? φ implies

φ(ckv`) = (φ⊗ φ)
(
∆(ckv`)

)
=

k∑
κ=0

φ
(
(a∗)k−κcκv`

)
φ
(
ck−κaκv`

)
= 0

for k > 0, s ∈ Z. By hermitianity φ
(
(c∗)kv`

)
= 0 for k > 0, and φ has the form

given in (2) with n = 0.
Case (iii): n ∈ N. We use once more the Cauchy-Schwarz inequality. For k 6= 0,
(6.1) and (6.2) imply that φ

(
(a∗)rckasv`

)
vanishes unless r = s = n. But then

we can show that φ = φ ? φ implies φ
(
(a∗)nckanv`

)
= 0 in the same way as in

the previous case.
For k = 0, we see from (6.3) that φ

(
(a∗)rasv`

)
vanishes unless r, s ≤ n. The

elements (a∗)rasv` are group-like, therefore φ
(
(a∗)rasv`

)
∈ {0, 1}. If we can show

φ
(
(a∗)rasv`

)
6= 1 for r 6= s, we are done, since then φ

(
(a∗)rckasv`

)
is non-zero

only if r = s ≤ n. We get φ
(
(a∗)rasv`

)
= δrsρ(v

`) for r, s ≤ n, i.e. φ has the form
given in (2).

We show φ
(
(a∗)rasv`

)
6= 1 for r 6= s by contradiction. Assume there exists

a triple (r0, s0, `0) such that φ
(
(a∗)rasv`

)
= 1 and choose such a triple with

maximal r0. Set

b = (a∗)r0as0v`0 + (a∗)s0ar0v−`0 − 1.

Maximality of r0 implies r0 > s0 and

φ
(
(a∗)2r0−s0as0v2`0

)
= φ

(
(a∗)s0a2r0−s0v−2`0

)
= 0,

therefore we get

φ(b∗b) = φ ((a∗)r0ar0) + φ ((a∗)s0as0) + 1

+φ
(
(a∗)2r0−s0as0v2`

)
+ φ

(
(a∗)s0a2r0−s0v−2`

)
−2φ

(
(a∗)r0as0v`

)
− 2φ

(
(a∗)s0ar0v−`

)
= −1,

which is clearly a contradiction to the positivity of φ.
Conversely, using the formulas

∆
(
(a∗)rckasv`

)
=

k∑
κ=0

(a∗)r+k−κcκasv` ⊗ (a∗)rck−κas+κv`,

∆
(
(a∗)r(c∗)kasv`

)
=

k∑
κ=0

(a∗)r(c∗)κas+k−κv` ⊗ (a∗)r+κ(c∗)k−κasv`,

for r, s, k ∈ Z+, ` ∈ Z, for the coproduct in PolU0(2), one can check that all
states given in the theorem are indeed idempotent. �
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The complete description of the idempotent states on SU0(2) follows now di-
rectly from Theorem 6.3 and the comments before Theorem 4.5.

Theorem 6.5. The following gives a complete list of the idempotents states on
SU0(2).

(1) The family φn, n ∈ N ∪ {∞} where φ1 is the counit, φ∞ the idempotent
induced by the Haar state of quantum subgroup U(1), and φn, 2 ≤ n <∞,
denotes the idempotent state induced by the Haar state on the quantum
subgroup Zn.

(2) The family ψn, n ∈ Z+ defined by

ψn

(
(α∗)rγkαs

)
=

{
1 if k = 0, r = s ≤ n,
0 else.

for r, s ∈ Z+, k ∈ Z, with the convention γ−k = (γ∗)k.

Similarly using the conditional expectation introduced in Paragraph 2.4.2, we
can derive a complete classification of the idempotent states on SO0(3). The
proof is identical to the proof of Theorem 5.2 and therefore omitted.

Theorem 6.6. All idempotent states on SO0(3) arise as restriction of idempotent
states on SU0(2). Note also that we have again φn|C(SO0(3)) = φ2n|C(SO0(3)) for n
an odd integer.

7. The idempotent states on SUq(2) as elements of the dual and
associated quantum hypergroups

Let A be a compact quantum group and A the corresponding Hopf ∗-algebra
dense in A. Then A is an algebraic quantum group in the sense of van Daele, and
so is its dual Â, given by the functionals of the form h(· a) with a ∈ A. By [FS08b,
Lemma 3.1], an idempotent state φ on A defines a group-like projection pφ in the

multiplier algebra M(Â) of the dual, and therefore, by [LvD07, Theorem 2.7]

and [FS08b, Theorem 2.4] an algebraic quantum hypergroup Âpφ
. As an algebra,

Âpφ
= pφÂpφ, and the coproduct of Âpφ

is given by

∆̂pφ
= (pφ ⊗ pφ)∆̂(a)(pφ ⊗ pφ)

for a ∈ Âpφ
, where ∆̂ denotes the coproduct of Â.

Let q ∈ (−1, 0)∪ (0, 1). In this section we will consider the case of the compact
quantum group SUq(2) and describe the algebraic quantum hypergroups associ-
ated to its idempotent states. Note that in this case the dense Hopf ∗-algebra is

A = PolSUq(2) = span {u(s)
k` : s ∈ 1

2
Z+,−s ≤ k, ` ≤ s}. We will use the basis

e
(s)
kl =

1− q2(2s+1)

q2(s−k)(1− q2)
h
(
(u

(s)
k` )∗ ·

)
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for Â = Pol ŜUq(2). Using the orthogonality relation

h
(
(u

(s)
k` )∗u

(s′)
k′`′

)
= δss′δkk′δ``′

q2(s−k)(1− q2)

1− q2(2s+1)
,

for s, s′ ∈ 1
2
Z+, −s ≤ k, ` ≤ s, −s′ ≤ k′, `′ ≤ s′, cf. [Koo89, Eq. (5.12)], we

can check that this basis is dual to the basis {u(s)
k` : s ∈ 1

2
Z+,−s ≤ k, ` ≤ s} of

PolSUq(2). The algebraic quantum group Â = Pol ŜUq(2) is of discrete type and
equal to the algebraic direct sum

Â =
⊕

s∈ 1
2

Z+

M2s+1.

The e
(s)
k` form a basis of matrix units for M2s+1 = span {e(s)kl : −s ≤ k, ` ≤ s}.

The Haar state h and the counit ε give the elements ph = 1 and pε = e
(0)
00

in M(Â), and the associated algebraic quantum hypergroups are Âph
= Â and

Âpε = C.
The remaining cases are more interesting.

7.1. The idempotent state φ2 = hZ2◦j induced by the quantum subgroup
Z2. We have

pφ2 =
∞∑

s=0

s∑
k=−s

e
(s)
kk =

∞∑
s=0

12s+1,

i.e. pφ2 is the sum of the identity matrices from the odd-dimensional matrix

algebras M2s+1, s ∈ Z+. This projection is in the center of M(Â), therefore

Â2 = pφ2Âpφ2 will be an algebraic quantum group. We get

Â2 =
⊕
s∈Z+

M2s+1 = Pol ŜOq(3),

i.e. Âpφ2
is discrete algebraic quantum group dual to SOq(3). This is to be

expected as Z2 is the only nontrivial normal quantum subgroup of SUq(2) and
SOq(3) is the corresponding quotient quantum group.

7.2. The idempotent state φ∞ = hU(1) ◦ j induced by the quantum sub-
group U(1). Here

pφ∞ =
∞∑

s=0

e
(s)
00

and this projection is not central. We get

Âp∞ =
∞⊕

s=0

C

which is a commutative algebraic quantum hypergroup of discrete type. This is
the dual of the hypergroup introduced in [Koo91, Section 7].
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7.3. The idempotent states φn = hZn ◦ j, 3 ≤ n < ∞. The remaining cases
also give non-central projections,

pφ2n =
∞∑

s=0

d s
n
e∑

k=−d s
n
e

e
(s)
nk,nk,

pφ2n+1 =
∑

s∈ 1
2

Z+

∑
−s≤k≤s

2k≡0 mod 2n+1

e
(s)
kk ,

for 1 ≤ n < ∞, cf. Equations (5.2) and (5.3). They lead to non-commutative

algebraic quantum hypergroups Ân = pφnÂpφn ,

Â2n =
∞⊕

k=0

nM2k+1,

Â2n+1 =
∞⊕

k=0

(2n+ 1)Mk,

of discrete type (in the formulas above nM2k+1 denotes n direct copies of the
matrix algebra M2k+1 and similarly (2n + 1)Mk denotes 2n + 1 direct copies of
the matrix algebra Mk).

Note that as the quantum subgroups consider in the last two paragraphs are
not normal, the objects we obtain have only the quantum hypergroup structure
(and can be informally thought of as duals of quantum hypergroups obtained via
the double coset construction, [CV99]).

Appendix

The goal of the appendix is to provide a short proof of coamenability of the
deformations of classical compact Lie groups. To facilitate the discussion we use

here the symbol G to denote a compact quantum group, Ĝ to denote the dual of G,
C(G)red and C(G) to denote respectively the reduced and universal C∗-algebras
associated with G and L∞(G) to denote the corresponding von Neumann algebra
(we refer for example to [Tom07] for precise definitions). Note that contrary to
the main body of the paper we do not assume that the Haar state on G is faithful,
so that G need not be in the reduced form. We adopt the following definition
([BMT02], [Tom06]).

Definition A.1. A compact quantum group G is said to be coamenable if the

dual quantum group Ĝ is amenable, that is, L∞(Ĝ) has an invariant mean.

The following result gives a useful criterion to check coamenability:

Theorem A.2. [BMT02, Theorem 4.7], [Tom06, Corollary 3.7, Theorem 3.8] A
compact quantum group G is coamenable if and only if there exists a counit on
C(G)red if and only if there exists a ∗-homorphism from C(G)red onto C.
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The second equivalence is fairly easy to show, in the first the forward implica-
tion was established in [BMT02] and the backward implication in [Tom06].

Let G be a classical compact Lie group and Gq the q-deformation with the
parameter −1 < q < 1, q 6= 0 (see [KS98]). The function algebra C(Gq) is the
universal C∗-algebra generated by certain polynomial elements. The Haar state
is denoted by h.

The following theorem was proved by T. Banica ([Ban99, Corollary 6.2]). We
present another direct proof using L. I. Korogodski-Y. S. Soibelman’s results on
the representation theory of C(Gq).

Theorem A.3. The quantum group Gq is coamenable.

Proof. Let us introduce the left ideal Nh := {a ∈ C(Gq) | h(a∗a) = 0}, which is in
fact an ideal of C(Gq). The reduced compact quantum group C(Gq)red is defined
as the quotient C(Gq)/Nh. By Theorem A.2 to show that Gq is coamenable it
suffices to show that the C∗-algebra C(Gq)red has a character.

Consider an irreducible representation π : C(Gq)red → B(Hπ). Composing this
map with the canonical surjection ρ : C(Gq) → C(Gq)red, we get an irreducible
representation π ◦ ρ of C(Gq). Thanks to [KS98, Theorem 6.2.7 (3), §3], we may
assume that π ◦ ρ is of the following form:

π ◦ ρ = (πsi1
⊗ · · · ⊗ πsik

⊗ πt) ◦ δ(k)

or π ◦ ρ = πt, where si1 · · · sik is the reduced decomposition in the Weyl group of
G, and t ∈ T , the maximal torus of G. In the latter case π is a one-dimensional
representation. In the former case, we remark that the counit of C(Gq) factors
through Imπsi

for every i, that is, there exists ηi : Imπsi
→ C such that ηi◦πsi

= ε
(See the argument in [Tom07, p. 294]).

Then we introduce a representation π̃ := (ηi1 ⊗ · · · ⊗ ηik ⊗ id) ◦ π of C(Gq)red,
which is well-defined and one-dimensional. Indeed,

π̃ ◦ ρ = (ε⊗ · · · ⊗ ε⊗ πt) ◦ δ(k) = πt.

Thus we have proved in each case the existence of a one-dimensional representa-
tion of the C∗-algebra C(G)red, and Gq is co-amenable. �
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