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On the geometry of the spa
e of �brationsVin
ent Humilière1 and Ni
olas Roy2May 27, 2009Abstra
tThis resear
h was done at the Mathematis
hes Fors
hungsinstitutOberwolfa
h during a stay within the Resear
h in Pairs Programmefrom February 1 to February 14, 2009.We study geometri
al aspe
ts of the spa
e of �brations betweentwo given manifolds M and B, from the point of view of Fré
het ge-ometry. As a �rst result, we show that any 
onne
ted 
omponent ofthis spa
e is the base spa
e of a Fré
het-smooth prin
ipal bundle withthe identity 
omponent of the group of di�eomorphisms of M as totalspa
e. Se
ond, we prove that the spa
e of �brations is also itself thetotal spa
e of a smooth Fré
het prin
ipal bundle with stru
ture groupthe group of di�eomorphisms of the base B.1 Introdu
tion and resultsThe aim of this paper is to study some geometri
al properties of thespa
e Fib(M,B) of all smooth �brations π : M → B, with M and Bsmooth �nite-dimensional manifolds. By "�bration" we always meana lo
ally trivial �ber bundle. A

ording to Ehresmann Theorem [1℄,
Fib(M,B) is nothing but the spa
e of all smooth surje
tive submer-sions from M to B. This spa
e is known to be an open subset of theFré
het manifold of all smooth maps C∞(M,B), provided M is 
losed(see e.g. [2℄, p. 85). Throughout the paper, M (and B) will alwaysbe assumed to be 
losed and we will study Fib(M,B) in the frame-work of Fré
het di�erential geometry (see [4℄ or [2℄ for 
omprehensiveintrodu
tions).1Ludwig-Maximilian Universität, Muni
h, Germany. Partially supported by the ANR,proje
t "Symplexe". Email: vin
ent.humiliere�mathematik.uni-muen
hen.de2Humbolt universität zu Berlin, Germany. Email: roy�math.hu-berlin.de1



This work is a
tually part of a larger proje
t dealing with the studyof the spa
e of Lagrangian �brations of symple
ti
 manifolds, in orderto derive appli
ations to the theory of Hamiltonian 
ompletely inte-grable systems (this is the topi
 of subsequent papers [7, 3℄). Thepresent arti
le 
onsists of a preliminary study of the general (non-Lagrangian) 
ase.Suppose Fib(M,B) is non empty and let π0 ∈ Fib(M,B) be a�bration. A π0-verti
al di�eomorphism φ is a di�eomorphism of Mwhi
h lifts the identity of B, i.e., whi
h satis�es
π0 ◦ φ = π0.We denote by Diff(M) the group of di�eomorphisms ofM , by Diff0(M)its identity 
omponent and by Gπ0

the subgroup of all π0-verti
al dif-feomorphisms. We prove two independent theorems on the geometryof Fib(M,B). The �rst one relates the di�eomorphism group of Mand Fib(M,B).Theorem 1. Let π0 ∈ Fib(M,B).1. The a
tion of Gπ0
(resp. Gπ0

∩ Diff0(M)) on Diff(M) (resp.
Diff0(M)) by right 
omposition gives Diff(M) (resp. Diff0(M))the stru
ture of a Fré
het prin
ipal bundle.2. The 
onne
ted 
omponent of π0 in Fib(M,B) is naturally Fré
hetdi�eomorphi
 to the quotient spa
e Diff0(M)/(Gπ0

∩ Diff0(M)).The �rst and se
ond parts of this theorem are proved respe
tivelyin Se
tions 3 and 4.Remark. The a
tion of Gπ0
by left 
omposition leads also to a prin-
ipal bundle stru
ture, naturally obtained from the previous one by
onjugation by the inversion of di�eomorphisms.Remark. The di�eomorphism that we 
onstru
t to prove the se
ondpart of Theorem 1 is indu
ed by the map

Diff0(M) → Fib(M,B), φ 7→ π0 ◦ φ
−1.Note that in general, the analogous map de�ned on Diff(M) is notsurje
tive onto Fib(M,B), so that there is no similar result without the
onne
ted 
omponents assumptions. Indeed, for some manifolds M,Bone 
an �nd two �brations π1, π2 : M → B with non-di�eomorphi
�bers, whi
h therefore 
an not satisfy π1 = π2 ◦φ for any φ ∈ Diff(M).For instan
e, let M = S3 × S2, B = S2, π1 be the 
anoni
al proje
tiononto its se
ond fa
tor and π2 be the 
omposition of the Hopf �bration2



S3 → S2 with the proje
tion onto the �rst fa
tor. The �ber of π1 isthen S3 while the �ber of π2 is S1 × S2.One immediate 
onsequen
e of Theorem 1 is that Diff0(M) a
tstransitively on ea
h 
onne
ted 
omponent of Fib(M,B). This wasalready proved by Mi
hor in [6℄ using the Nash-Moser impli
it fun
tionTheorem. On the 
ontrary, our proof is based on expli
it 
onstru
tions.A 
orollary of this transitivity property is the following lemma, forwhi
h we 
an also give a very simple and dire
t proof:Lemma 2. Two �brations π0, π1 lying in the same 
onne
ted 
ompo-nent of Fib(M,B) have di�eomorphi
 �bers.Proof. Sin
e Fib(M,B) is a smooth Fré
het manifold, one 
an �nd asmooth loop Π in Fib(M,B) going through π0 and π1. This loop thende�nes a map̂
Π : S1 ×M → S1 ×B, (s, x) 7→ (s,Π(s)(x))whi
h is a submersion. Indeed, its di�erential is everywhere upper-triangular with submersive diagonal blo
ks. Then, a

ording to Ehres-mann Theorem [1℄, Π̂ is a �bration and in parti
ular its �bers are alldi�eomorphi
 to ea
h other. In parti
ular the �bers of π0 are di�eo-morphi
 to those of π1.The se
ond theorem 
on
erns the a
tion of Diff(B) on Fib(M,B)by left 
omposition. It was inspired by Mi
hor's arti
le [5℄ about theprin
ipal bundle stru
ture of the spa
e of embeddings.Theorem 3. Let π0 ∈ Fib(M,B). Suppose that π0 admits a globalse
tion. Then, the a
tion of Diff0(B) by left 
omposition gives the
onne
ted 
omponent of π0 in Fib(M,B) the stru
ture of a Fré
het

Diff0(B)-prin
ipal bundle.We will prove this theorem in Se
tion 5.Remark. Intuitively, two �brations in the same orbit under the a
tionof Diff0(B) de�ne the same foliation of M , so that the quotient spa
e
an be viewed as the spa
e of bundle-like foliations.Remark. Theorem 3 still holds when one repla
es Diff0(B) by Diff(B)and the 
onne
ted 
omponent of π0 by the subset of Fib(M,B) 
on-sisting in all �brations admitting a global se
tion. This subset is aunion of 
onne
ted 
omponents as follows easily from Theorem 1.Remark. What happens when π0 does not admit any global se
tionremains an open problem. 3



Strangely enough, whenM is symple
ti
 and we 
onsider the smallerspa
e of Lagrangian �brations, we have been able to prove the exis-ten
e of the prin
ipal bundle stru
ture (under the a
tion of the whole
Diff(B)) without any assumption on the existen
e of a global se
tion[3℄. The methods used therein involve the Nash-Moser Theorem butunfortunately do not apply here.A
knowledgementsA large part of this work has been done during our "Resear
h in Pair"stay at the MFO resear
h 
enter in Oberwolfa
h in February 2009. Wethank the MFO for its warm hospitality and for the perfe
t working
onditions it provided to us.2 Preparation LemmasIn this se
tion, we prove two independent lemmas that will be usefulin the proof of both Theorems 1 and 3.Lemma 4. Let p : X → B be a �ber bundle and Y ⊂ X a subbundle,i.e., a submanifold of X su
h that the restri
tion of p to it de�nes a�ber bundle over B. Then, there exists a tubular neighbourhood U of
Y , whose asso
iated proje
tion q : U → Y is p-verti
al, i.e.,

p ◦ q = p.

Remark. Noti
e that in the 
ase where X → B is a ve
tor bundle,one 
an 
onstru
t this tubular neighbourhood with the help of �lo
aladditions�, as de�ned in [5℄. 4



Proof. The usual 
onstru
tion of tubular neighbourhoods is the fol-lowing. We �rst 
onsider the normal bundle NY to Y , whi
h is ave
tor bundle over Y . Then, with the help of a Riemannian metri
 on
X, we 
an 
onstru
t a di�eomorphism φ from a neighbourhood of the
0-se
tion in NY to a neighbourhood of Y in X. Namely, one identi�esany element of NY with a tangent ve
tor on X whi
h is orthogonalto Y , and the exponential map provides a point in X. Then, the pro-je
tion q 
orresponds through the di�eomorphism φ to the proje
tion
NY → Y . Unfortunately, 
onstru
ted in this way, q has no reason tobe p-verti
al.Instead of �xing a metri
 on X and using the 
orresponding expo-nential map to 
onstru
t φ, we rather take a smooth family of metri
s
(gb)b∈B on the �bers Xb = p−1 (b). Su
h a family 
an be obtained forexample by restri
ting a given metri
 g on X to ea
h �ber Xb. Then,at ea
h point x ∈ Y , we denote b = p (x) and we identify NY (x) withthe ve
tor spa
e Wx orthogonal to Tx (Y ∩Xb) in TxXb, with respe
tto the metri
 gb on Xb, simply by

Wx → NY (x) = TxX/TxY

V → [V ] .This is inje
tive sin
e the interse
tion of Wx with TxY is trivial. It isalso surje
tive be
ause of dimension mat
hing. Indeed, the dimensionof NY (x) equals dimX − dimY . On the other hand, the dimensionof Wx is just dimXb − dimYb, where Yb = Y ∩Xb. But this is equalto (dimX − dimB) − (dimY − dimB), hen
e to dimNY (x). Thisde�nes therefore an isomorphism between Wx and NY (x).The 
onstru
tion of the di�eomorphism φ is as follows. For any ele-ment in NY (x) at some point x ∈ Y , we take the 
orresponding ve
torin Wx. Then, we use the exponential map asso
iated to the metri
 gb,where b = p (x), and obtain a point whi
h lies by 
onstru
tion in thesame �ber Xb as x does. The smoothness of this map is 
lear. Thefa
t that it is a di�eomorphism from a neighbourhood of the 0-se
tionin NY to a neighbourhood of Y in X, follows from the property thatthe linearisation at x of the exponential map is simply the identity on
TxXb. Finally, the fa
t that q is p-verti
al follows dire
tly from the
onstru
tion of φ.Lemma 5. Let F be a Fré
het manifold together with an a
tion of aFré
het Lie group G. Suppose that there exists a Fré
het spa
e E, su
hthat for any f ∈ F , there exist a G-invariant neighbourhood Wf of fin F , an open set Vf in M and a Fré
het di�eomorphism

Φf : Wf → G × Vf ,5



whi
h is equivariant under the a
tion of G, i.e., for all g ∈ G, ϕ ∈ Wf ,
Φf (g · ϕ) = (gΦ1

f (ϕ),Φ2
f (ϕ)),where Φ1

f , Φ2
f denote the respe
tive 
omponents of Φf .Then, F has the stru
ture of a Fré
het prin
ipal G-bundle.Proof. Let Q denote the quotient spa
e of F under the a
tion of G,endowed with the quotient topology. Let us 
he
k that Q is a Fré
hetmanifold.For any f ∈ F , the set Vf is then homeomorphi
 to some openset Uf in Q and the family (Uf )f∈F 
overs Q. Let us 
he
k that Qis Haussdorf. Let q, q′ be distin
t elements of Q. Let U denote oneelement of the family (Uf )f∈F 
ontaining q. If q′ is in U , sin
e theFré
het manifold M is haussdorf, there are two disjoint open subsetsin U (and thus in Q), 
ontaining respe
tively q and q′. If q′ is not in

U , then we 
an also �nd two disjoint open sets 
ontaining q and q′ bytaking any open neighbourhood of q in U whose 
losure is in
ludedin U and the 
omplement of its 
losure in Q. This is possible sin
e aFré
het topology is metrizable.Now, let q = Φ2
f (f) and q′ = Φ2

f ′(f ′) be two distin
t elements in
Q, with two neighbourhoods Uf , Uf ′ su
h that Uf ∩Uf ′ 6= ∅, and su
hthat there exist two homeomorphisms φ : Uf → Vf , φ′ : Uf ′ → Vf ′ .Then, for any �xed g ∈ G, the transition map 
an be written

φ′ ◦ φ−1|φ(Uf∩Uf ′ ) = Φ2
f ′ ◦ (Φf )−1|{g}×φ(Uf∩Uf ′)and hen
e is smooth. Therefore, the family of sets (Uf )f∈F is a smoothFré
het atlas for Q.Finally, we see that the family of maps (Φf )f∈F are smooth lo
alequivariant trivializations whose se
ond 
oordinate 
orrespond to thenatural proje
tion F → Q. We thus have a prin
ipal bundle stru
ture.3 The prin
ipal bundle stru
ture of Diff(M)In this se
tion, we prove that given a �xed �bration π0 : M → B thea
tion

Gπ0
×Di� (M) −→ Di� (M)

(ψ, φ) 7−→ φ ◦ ψgives Di� (M) the stru
ture of a Fré
het prin
ipal bundle with stru
-ture group Gπ0
, as 
laimed in the �rst point of Theorem 1. We leave6



to the reader to 
he
k that the proof works if one repla
es Diff(M) by
Diff0(M) and Gπ0

by Gπ0
∩ Diff(M).The proof is divided in three steps:

• In Se
tion 3.1 we show that the orbits of the Gπ0
-a
tion areFré
het submanifolds of Di� (M) and in parti
ular that Gπ0

isindeed a Fré
het Lie group.
• Then, in Se
tion 3.2 we 
onstru
t a Gπ0

-invariant neighbourhood
U of Id ∈ Di� (M) together with a Fré
het submanifold S ⊂ U ,transverse to the Gπ0

-orbits.
• Finally, Se
tion 3.3 provides the 
onstru
tion of the lo
al 
hartsof the Fré
het prin
ipal bundleDi� (M) ⊃ U −→ S × Gπ0

.Thanks to the transitive a
tion of Di� (M) onto itself by left
omposition, we then obtain a 
hart near any φ ∈ Di� (M).Throughout the proof, we will use intensively the standard identi�
a-tion of smooth maps on M with smooth se
tions of M ×M , namely
C∞ (M,M)

∼=
−→ Γ (M,M ×M)

φ 7−→ φ̂ = (Id, φ) .Here and always ex
ept when stated expli
itly, M ×M is viewed asa trivial bundle over the �rst fa
tor. Noti
e also that through thisidenti�
ation, di�eomorphisms of M 
orrespond to an open subset of
Γ (M,M ×M), whi
h we denote by D̂i� (M).3.1 The stru
ture group Gπ0We 
onstru
t a subbundle N ⊂M×M overM whi
h will provide latera suitable prin
ipal bundle 
hart for Di� (M) around Id. We de�nethe subset N by

N = {(x, y) ∈M ×M | π0 (x) = π0 (y)} .This is nothing but the pullba
k bundle of M π0→ B by the (same)smooth map π0 : M → B, hen
e a subbundle of M ×M over M . Thissubbundle N provides a ni
e parametrisation of the Gπ0
-orbits be
auseof the following equivalen
e.Lemma 6. Let φ ∈ Di� (M) be a di�eomorphism. Then the 
orre-sponding φ̂ ∈ Γ (M,M ×M) lies in Γ (M,N) if and only if φ ∈ Gπ0

.7



Proof. If φ ∈ Gπ0
, then for ea
h x, π0 ◦ φ (x) equals π0 (x) sin
e φ isverti
al with respe
t to π0. But this pre
isely means that (x, φ (x)) liesin N for all x ∈ M , i.e., φ̂ ∈ Γ (M,N). Conversely, if (x, φ (x)) ∈ Nfor all x ∈ M , this means by de�nition that π0 (x) = π0 ◦ φ (x) for all

x, hen
e φ ∈ Gπ0
.It follows from this lemma that Gπ0

is identi�ed through the 
orre-spondan
e φ 7→ φ̂ with the interse
tion of the open subset D̂i� (M) ⊂
Γ(M,M×M) and Γ (M,N). On the other hand, it is well-known [2,Exp 4.2.2℄ that the set of se
tions of a subbundle is a Fré
het subman-ifold of the set of se
tions of the bundle. Therefore Gπ0

is a Fré
hetsubmanifold of Di� (M). Moreover Gπ0
is also a subgroup of Di� (M),whi
h is a Fré
het Lie group. This proves the following.Lemma 7. The group Gπ0

is a Fré
het Lie group.Noti
e that the 
orresponding Lie algebra is Γ (M,Vπ0
) ⊂ X (M),where Vπ0

⊂ TM is the π0-verti
al tangent bundle ofM , i.e., Vπ0
(x) =

kerDπ0 (x).Noti
e also that the orbit of any φ0 ∈ Di� (M) is also a Fré
hetsubmanifold of Di� (M). Indeed, this orbit is simply the image of Gπ0by the left 
omposition map Lφ0
: Di� (M) → Di� (M) whi
h sendsany φ to φ0 ◦φ. This map is smooth [2, Exp. 4.4.5℄ and it inverse L

φ−1

0as well. It is therefore a Fré
het di�eomorphism of Di� (M), and theresult follows.3.2 The lo
al se
tion SWe now need a tubular neighbourhood of N in M ×M with spe
ialproperties, re�e
ting the fa
t that �bers of N over two di�erent points
x, x′ ∈ M satisfying π0 (x) = π0 (x′) are identi�ed, sin
e both arenaturally identi�ed with π−1

0 (π0 (x)).8



Lemma 8. There exists a tubular neighbourhood U ⊂ M ×M of N ,whi
h is invariant under the a
tion of Gπ0
on the se
ond fa
tor andwhose proje
tion P : U → N has the form

P (x, y) = (x, P2 (x, y))with P2 : U →M satisfying P2 (ψ (x) , y) = P2 (x, y) for any ψ ∈ Gπ0
.Proof. In order to get the required Gπ0

-invarian
e property of our tubu-lar neighbourhood inside M ×M , we will �rst make a 
onstru
tion in
B ×M and then lift it to M ×M .Let us 
onsider the trivial bundle B × M over B. Similarly asabove, one de�nes

Ñ = {(b, y) ∈ B ×M | b = π0 (y)} ,whi
h is a subbundle of B × M over B. Its �ber over b is simply
{b}×π−1

0 (b). Now, a

ording to Lemma 4, we 
an 
onstru
t a tubularneighbourhood Ũ ⊂ B ×M of Ñ su
h that the �bers of its asso
iatedproje
tion P̃ : Ũ → Ñ are in
luded in the �bers of B ×M , i.e., P̃ hasthe form P̃ (b, y) =
(
b, P̃2 (b, y)

).On the other hand, one 
an assume that Ũ is invariant under thea
tion of Gπ0
on the se
ond fa
tor of B×M . Indeed, for any neighbour-hood V ⊂ B×B of the diagonal, the set ρ−1 (V ), where ρ : B×M →Mis de�ned by ρ (b, x) = (b, π0 (x)), is a neighbourhood of Ñ in B ×M .Then, we 
an take V so small that ρ−1 (V ) is 
ontained in Ũ . To seethis, �x a metri
 on B ×M and 
onsider the distan
e δ between Ñand the boundary of Ũ . It is non-vanishing by 
ompa
tness of M and

B. Then one 
an take V with a diameter smaller than δ, implying
ρ−1 (V ) ⊂ Ũ . In other word, up to taking Ũ smaller, we 
an assumeit has the form Ũ = ρ−1 (V ), whi
h is by 
onstru
tion invariant underthe a
tion of Gπ0

on the se
ond fa
tor of B ×M .Now, if we de�ne π̂0 : M ×M → B ×M by π̂0 (x, y) = (π0 (x) , y),it follows that π̂−1
0

(
Ñ

) is pre
isely N and that U = π̂−1
0

(
Ũ

) is aneighbourhood of N . Then we 
he
k easily that the map
P : (x, y) 7−→

(
x, P̃2 ◦ π̂0 (x, y)

)is indeed a proje
tion from U onto N . Moreover, by 
onstru
tion forany ψ ∈ Gπ0
and any point x ∈ M , one has π0 (x) = π0 (ψ (x)). Thisimplies that

P̃2 ◦ π̂0 (ψ (x) , y) = P̃2 ◦ π̂0 (x, y)and therefore P2 (ψ (x) , y) = P2 (x, y). On the other hand, it isstraightforward to 
he
k that U is invariant under the a
tion of Gπ0
onthe se
ond fa
tor of B ×M , be
ause Ũ is so.9



The next step is to 
onstru
t a submanifold S ⊂ Di� (M) whi
h istransverse to the Gπ0
-orbits. We 
onsider the subbundle N ⊂M ×Mde�ned at the beginning of the se
tion, and the asso
iated tubularneighbourhood U P

→ N of Lemma 8. Then we denote by ∆ ⊂M ×Mthe diagonal and by ι∆ the asso
iated in
lusion. Clearly, ∆ lies a
tuallyin N . Then we de�ne S = P−1 (∆). It is a submanifold of M ×M ,but in fa
t will see that it is even a subbundle of M ×M transverseto N .To prove that it is a subbundle, �rst noti
e that S is nothing butthe total spa
e of the indu
ed bundle ι∗∆P over ∆. Then, sin
e therestri
tion to ∆ of the �rst proje
tion PM : M×M is a di�eomorphism
∆ → M , one gets by 
omposition a bundle S → M . Finally, sin
e
PM ◦ P = PM , the proje
tion of this last bundle is nothing but therestri
tion of PM to S, so that it is indeed a subbundle of M ×M .Sin
e TS 
ontains the verti
al dire
tion of the bundle P over N , S istransverse to N .Consequently, the set of se
tions of S or more pre
isely

S =
{
φ ∈ Di� (M) | φ̂ ∈ Γ (M,S)

}
,is a Fré
het submanifold of Di� (M). The following 
hara
terisationwill be useful.Lemma 9. A di�eomorphism φ lies in S if and only if P ◦ φ̂ = Îd.Proof. First, the left 
omposition of a se
tion φ̂ ∈ Γ (M,M ×M) by

P is still a se
tion. Therefore, P ◦ φ̂ equals Îd if and only if its image
P ◦ φ̂ (M) 
oin
ides with the image of Îd, namely ∆. But this happenspre
isely when the image of φ̂ lies in S, by de�nition of S.10



3.3 The prin
ipal bundle 
hartsWe now have all the te
hni
al tools for de�ning the prin
ipal bundle
harts on Di� (M). We �rst de�ne a 
hart near Id. We 
onsider theopen set U from Lemma 8 and de�ne the set
U =

{
φ ∈ Di� (M) | im(

φ̂
)
⊂ U

}whi
h is an open neighbourhood of Id in Di� (M). It is also Gπ0
-invariant be
ause of the 
orresponding property for U .On the other hand, in the de�nition of the prin
ipal bundle 
hartbelow, we will need that the 
omposition P ◦ φ̂ lies in D̂i� (M), orequivalently that the se
ond fa
tor P2 ◦ φ̂ is a di�eomorphism. Wethus have to restri
t to the smaller set

Ũ =
{
φ ∈ U | P2 ◦ φ̂ ∈ Diff(M)

}
,whi
h is open sin
e the left 
omposition by P2 is a Fré
het smoothmap. The set Ũ turns out to be also Gπ0

-invariant. Indeed, for any
φ ∈ Ũ and any ψ ∈ Gπ0

, we 
ompute P2 ◦ φ̂ ◦ ψ. This gives
P2 ◦ (Id, φ ◦ ψ) = P2 ◦ (ψ, φ ◦ ψ)be
ause of the se
ond property of P given in Lemma 8. But this isequal to P2 ◦ φ̂ ◦ ψ whi
h is a di�eomorphism of M sin
e both P2 ◦ φ̂and ψ are so.Lemma 10. The map

Φ : Ũ −→ S × Gπ0

φ 7−→ (φS , ψ) ,where ψ̂ = P ◦ φ̂ and φS = φ ◦ ψ−1, is well-de�ned and is a Fré
hetsmooth di�eomorphism, whose inverse is
Φ−1 : (φS , ψ) 7−→ φS ◦ ψ.Proof. First we 
he
k that this de�nition makes sense. Sin
e the imageof P lies in N , it follows that ψ̂ is a se
tion of N and, thanks toLemma 6, that ψ ∈ Gπ0
. It remains to 
he
k that φS lies indeed in

S. A

ording to Lemma 9, we only need to 
he
k that P ◦ φ̂S = Îd,or equivalently that P2 ◦ φ̂S = Id. The 
omposition P2 ◦ φ̂S equals
P2 ◦

(
Id, φ ◦ ψ−1

). Now, if we use the property of P2 given in Lemma8, we obtain P2 ◦
(
ψ−1, φ ◦ ψ−1

) and thus P2 ◦ φ̂ ◦ ψ−1. But this isexa
tly ψ ◦ ψ−1 and thus Id. The map Φ is therefore well de�ned.It is also smooth sin
e it is made of 
ompositions and inversion of11



di�eomorphisms, whi
h are both Fré
het smooth [2, Exp. 4.4.5 and4.4.6℄.Now, the image of the 
laimed inverse Φ−1 is in
luded in Ũ . Indeed,sin
e S is in
luded in U , then S is in
luded in U . It is moreover in
Ũ thanks to Lemma 9. Finally, Ũ is Gπ0

-invariant, hen
e the image of
Φ−1 is in
luded in Ũ .Then, it is straightforward to see that the 
laimed inverse Φ−1 is aleft inverse of Φ. Let us 
he
k that it is also a right inverse. For any
φS ∈ S and any ψ ∈ Gπ0

we have to 
ompute (φ′S , ψ
′) = Φ (φS ◦ ψ).First, we have ψ′ = P2 ◦ φ̂S ◦ ψ, i.e.,

ψ′ = P2 ◦ (Id, φS ◦ ψ) .But the property of P2 given in Lemma 8 shows that this equals P2 ◦
φ̂S ◦ ψ. On the other hand, sin
e φ̂S lies in S, one has P2 ◦ φ̂S = Id,hen
e ψ′ = ψ. Therefore, Φ (φS ◦ ψ) is equal to (φ′S , ψ) with φ′S givenby φS ◦ ψ ◦ ψ−1 whi
h thus 
oin
ides with φS . We have thus provedthat the map (φS , ψ) 7→ φS ◦ ψ is indeed the (double-sided) inverse of
Φ. Therefore, near Id ∈ Di� (M), we have 
onstru
ted a di�eomor-phism Φ from a Gπ0

-invariant neighbourhood Ũ of Id to S × Gπ0
. It isa
tually Gπ0

-equivariant, as one 
an easily 
he
k on the inverse Φ−1.Then, near any φ ∈ Di� (M), we 
an 
onstru
t a similar di�eomor-phism
Φφ0

: Ũφ0
−→ Sφ0

× Gπ0
,where Ũφ0

and Sφ0
are obtained respe
tively from Ũ and S by left
omposition with φ0. The map Φφ0

is simply de�ned by
Φφ0

(φ) =
(
φ0 ◦ ΦS

(
φ−1

0 ◦ φ
)
,ΦGπ0

(
φ−1

0 ◦ φ
))
,where ΦS and ΦGπ0 are respe
tively the S and Gπ0


omponent of Φ.Finally, it follows from Lemma 5 that the maps Φφ0
form a prin
ipalbundle atlas for Di� (M) with stru
ture group Gπ0

.4 The quotient spa
e Diff0(M)/(Gπ0∩Diff0(M))In this se
tion, we prove the se
ond part of Theorem 1.Proof. First re
all that, as already mentioned in the introdu
tion,
Fib(M,B) is an open subset of C∞(M,B). Let π0 ∈ Fib(M,B). Thesmooth map

Ψ : Diff0(M) → Fib(M,B), φ 7→ π0 ◦ φ
−112



indu
es a map̃
Ψ : Diff0(M)/(Gπ0

∩ Diff0(M)) → Fib(M,B).In order to prove that Ψ̃ is a di�eomorphism onto the 
omponent of
π0, we will prove that it is inje
tive, smooth, that it admits a lo
alsmooth inverse near any point and �nally that its image is the 
on-ne
ted 
omponent of π0.Proving the inje
tivity is easy: for any two di�eomorphisms φ1, φ2 ∈
Diff0(M) satisfying π0 ◦ φ−1

1 = π0 ◦ φ−1
2 , then φ−1

1 ◦ φ2 obviouslybelongs to Gπ0
and thus φ1 and φ2 represent the same element in

Diff0(M)/(Gπ0
∩ Diff0(M)).The fa
t that Ψ̃ is smooth follows from the �rst part of Theorem1. Indeed, for any ϕ in the quotient Diff0(M)/Gπ0

, the �rst part ofTheorem 1 implies that there exists a smooth se
tion σ of the bundle
Diff0(M) → Diff0(M)/Gπ0

de�ned on a neighbourhood of ϕ. On thisneighbourhood, Ψ̃ 
an be written Ψ̃ = Ψ ◦ σ and therefore is smooth.To 
onstru
t a lo
al inverse to Ψ̃, we will make use of the followinglemma whi
h relates the spa
es of se
tions of two di�erent �brationsof the same manifold.Lemma 11 (Roy [7℄). Let X be a smooth manifold and p1, p2 : X →
M be two �brations over M . Suppose there exists a 
ommon se
tion
s0 : M → X, i.e., a smooth map satisfying

p1 ◦ s0 = p2 ◦ s0 = IdM .Then, there exists open subsets V1 ⊂ Γ(p1) and V2 ⊂ Γ(p2) 
ontaining
s0 and su
h that the map

V1 → V2, α 7→ α ◦ (p2 ◦ α)−1is a di�eomorphism.For the sake of 
ompleteness, we brie�y re
all its proof.Proof. First of all, the map A : Γ(p1) → C∞(M,M), α 7→ p2 ◦ αis smooth and in parti
ular 
ontinuous so that the pre-image V1 ofthe open subset Diff(M) ⊂ C∞(M,M) is an open subset of Γ(p1).Moreover, s0 ∈ V1 sin
e A(s0) = Id. The map α 7→ α ◦ (p2 ◦ α)−1is well-de�ned on V1 and smooth, be
ause built of 
ompositions andinversion of di�eomorphisms. On the other hand, the image of α isindeed a se
tion of p2, sin
e p2 ◦ α ◦ (p2 ◦ α)−1 = Id.Reversing the roles of p1 and p2 one 
onstru
t similarly a map
β 7→ β ◦ (p1 ◦ β)−1, de�ned on some open set V2 ⊂ Γ(p2) 
ontaining
s0. It is then easily 
he
ked that, up to taking smaller V1 and V2, thismap and the previous one are inverse to ea
h other.13



Figure 1: On this pi
ture, the graph of s0 is identi�ed with MLet us now use Lemma 11 to 
onstru
t a lo
al inverse to Ψ̃ around
π0. Denote by pM : M × B → M and pB : M × B → B the nat-ural proje
tions on the �rst and the se
ond fa
tor respe
tively, and
s0 : M → M × B, x 7→ (x, π0(x)). It turns out that the graph of s0is a subbundle of pB pre
isely be
ause π0 : M → ×B is a submersion.Therefore, a

ording to Lemma 4, there exists a tubular neighbour-hood X of the graph of s0 whose proje
tion q is pB-verti
al.We now de�ne the two ne
essary �brations for applying Lemma11. The �rst one p1 : X → M is simply the restri
tion of pM to X.The se
ond one p2 : X → M is given by p2 = p1 ◦ q. Now, we seeeasily that s0, whi
h is obviously a se
tion of p1, is also a se
tion of p2.This is be
ause the proje
tion q a
ts as the identity on the graph of s0.Therefore, we 
an apply Lemma 11 and dedu
e that for any se
tion
s = (Id, π) of p1 
lose to s0, there exists a di�eomorphism f ∈ Diff(M)(depending smoothly on s and hen
e on π), su
h that s◦f is a se
tionof p2. Note by the way that sin
e Fib(M,B) is open in C∞(M,B), if sis su�
iently 
lose to s0, then π is a �bration. On the other hand, by
onstru
tion any se
tion of p2 has the form (g, π0), with g : M → M .Indeed, for any x ∈M , the �bre p−1

2 (x) is 
ontained in M ×{b}, with
b = π0(x). Thus, one has

(f, π ◦ f) = s ◦ f = (g, π0).This proves in parti
ular the 
ru
ial property π ◦ f = π0.We denote [f ] the image of a di�eomorphism f ∈ Diff0(M) in thequotient Diff0(M)/(Gπ0
∩ Diff0(M)). The map χ : π 7→ [f ] is our
andidate for being the lo
al smooth inverse of Ψ̃ around π0. Indeed,for any π near π0, one has

Ψ̃ (χ(π)) = Ψ̃ ([f ]) = Ψ(f) = π0 ◦ f
−1 = π.14



Conversely, for any [f ] 
lose to [Id], χ(
Ψ̃([f ])

) is given by
χ (Ψ(f)) = χ

(
π0 ◦ f

−1
)

= [g],where g ∈ Diff(M) satis�es π0 ◦ f−1 ◦ g = π0. But this pre
iselymeans that f−1 ◦ g ∈ Gπ0
, hen
e [g] = [f ]. Now, around any element

Ψ̃(φ) = π0 ◦ φ
−1 in the image of Ψ̃, we 
onstru
t the lo
al inverse of

Ψ̃ by π 7→ φ ◦ [χ(π ◦ φ)]. Here, the left 
omposition of φ with a 
lass
[f ] is de�ned to be [φ ◦ f ], whi
h makes sense be
ause φ ◦ (f ◦ Gπ0

) =
(φ ◦ f)◦Gπ0

. We leave to the reader to 
he
k that this is indeed a lo
alinverse of Ψ̃.Let us now �nish our proof. It remains to show that the image of
Ψ̃ is exa
tly the 
onne
ted 
omponent of π0 in Fib(M,B). First, theimage of Ψ̃ is 
onne
ted sin
e Diff0(M) is. Then, let π1 be an elementin the 
onne
ted 
omponent of π0 in Fib(M,B), so that there existsa path (πt)t∈[0,1] joining them. The 
ompa
tness of [0, 1] allows us to�nd 0 = t0 < . . . < tk = 1 su
h that for any i = 1, . . . , k, πti belongs tothe domain of the lo
al inverse as 
onstru
ted previously around πti−1(just repla
e π0 with πti−1

). Therefore, for any i = 1, . . . , k, thereexists an element φi in Diff0(M) su
h that
πti = πti−1

◦ φi.Thus π1 = π0 ◦ (φk ◦ . . . ◦ φ1) whi
h implies that π1 lies in the imageof Ψ̃.5 The prin
ipal bundle stru
ture of Fib(M, B)This se
tion is devoted to the proof of Theorem 3.Proof . � Let π0 ∈ Fib(M,B) and σ be a global se
tion of π0,i.e., π0 ◦σ = IdB . We denote by Fib0(M,B) the 
onne
ted 
omponentof π0 in Fib(M,B) and 
onsider the set S of all �brations for whi
h σis a se
tion:
S = {π ∈ Fib0(M,B) |π ◦ σ = IdB}.As a �rst step, let us prove that S is a Fré
het submanifold of

Fib0(M,B). To see this, �rst remark that sin
e Fib0(M,B) is a ho-mogeneous spa
e (Theorem 1), we 
an work in the neighbourhood of
π0 without la
k of generality. Then, remember that there exist anopen set U in Fib0(M,B) 
ontaining π0 and a Fré
het di�eomorphism15



Ψ : U → V onto a neighbourhood V of the zero se
tion in the Fré
hetlinear spa
e of se
tions Γ(π∗0TB) of the ve
tor bundle π∗0TB over M .Moreover, this 
hart Ψ 
an be 
hosen so that for all x ∈ M and all
π ∈ U , π(x) = π0(x) if and only if Ψ(π)(x) = 0.Now, if we denote by Σ the submanifold of M whi
h is the imageof the se
tion σ, we see that for π ∈ U ,

π ∈ S ⇐⇒ π|Σ = π0|Σ ⇐⇒ Ψ(π)|Σ = 0.Let us 
onsider the spa
e ΓΣ(π∗0TB) of se
tions of π∗0TB whi
h vanishon Σ and let us show that it is a 
losed subspa
e of Γ(π∗0TB) with a
losed 
omplement.First, ΓΣ(π∗0TB) is obviously 
losed, so that it only remains to
onstru
t a 
losed 
omplement. To any ve
tor �eld χ over B, weasso
iate the se
tion χ̃ of π∗0TB de�ned by
χ̃ = χ ◦ π0.Now, we 
onsider F = {χ̃ |χ ∈ Γ(TB)} the set of se
tions of π∗0TBwhi
h lift ve
tor �elds on B. The set F is a 
losed linear subspa
e of

Γ(π∗0TB). Moreover, for any s ∈ Γ(π∗0TB), we 
an 
onsider the ve
tor�eld s ◦ σ over B. In the de
omposition
s =

(
s− s̃ ◦ σ

)
+ s̃ ◦ σ,the �rst term lies in ΓΣ(π∗0TB) while the se
ond is in F , hen
e

Γ(π∗0TB) = ΓΣ(π∗0TB) + F .Sin
e moreover ΓΣ(π∗0TB) and F have trivial interse
tion, the sum isdire
t and F is a 
losed 
omplement of ΓΣ(π∗0TB). This proves our16




laim that ΓΣ(π∗0TB) is a 
losed subspa
e of Γ(π∗0TB), with 
losed
omplement.Consequently, the image of S ∩ U by Ψ 
oin
ides with the inter-se
tion of V with a 
losed 
omplemented linear subspa
e of Γ(π∗0TB).This shows that S is a Fré
het submanifold of Fib0(M,B).Let us now 
onsider W = {π ∈ Fib0(M,B) |π ◦ σ ∈ Diff0(B)}.Sin
e the right 
omposition by σ is a 
ontinuous map, W is an opensubset of Fib0(M,B). It is moreover invariant under the a
tion of
Diff0(B) by 
omposition on the left. We are going to show that thereis an equivariant Fré
het di�eomorphism

W ≃ Diff0(B) × S,where the a
tion of Diff0(B) on the right hand side is given by 
om-position on the left on the �rst fa
tor. Be
ause of Lemma 5, this willa
hieve the proof of Theorem 3.Let π ∈ W and set
Φ(π) = (π ◦ σ, (π ◦ σ)−1 ◦ π).The �rst fa
tor is obviously in Diff0(B) and the se
ond in W ∩ S.Sin
e 
omposition and inversion are smooth maps Φ is also a smoothmap. Moreover, the fa
t that Φ is equivariant is easily 
he
ked: forany φ ∈ Diff0(B), π ∈ W, one has

Φ(φ ◦ π) = (φ ◦ π ◦ σ, (φ ◦ π ◦ σ)−1 ◦ φ ◦ π)

= (φ ◦ (π ◦ σ), (π ◦ σ)−1 ◦ π).Finally, Φ has a smooth inverse given by the map (φ, πS) 7→ φ ◦ πS.
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